七年级数学实数专项训练
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级数学-实数常考题目训练 (含答案)

人教版七年级数学-实数常考题目训练姓名:学校:学号:一.选择题(共17小题)1.平方根等于它本身的数是()A.﹣1B.0C.1D.±12.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或4.的算术平方根是()A.±3B.3C.﹣3D.95.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个6.下列各式中正确的是()A.B.C.D.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣58.计算正确的是()A.=±2B.=3C.=﹣2D.±=±49.3是27的()A.算术平方根B.平方根C.立方根D.立方10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间13.实数的整数部分是()A.4B.5C.6D.714.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.19.若=3,求2x+5的平方根.20.9的算术平方根是;的立方根是;=.21.若的算术平方根是a,则a的相反数为.22.已知的小数部分是a,的整数部分是b,则a+b=.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.(3)4x2﹣9=0;(4)8(x+1)3=125.(5)(x﹣3)3+27=0.(6)(x﹣1)2=4;23.计算:+++.|﹣3|﹣++(﹣2)2.24.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.25.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.人教版七年级数学-实数常考题目训练参考答案与试题解析一.选择题(共17小题)1-5:BCDBC 6-10:BDDCA 11-17ACCCCBA1.平方根等于它本身的数是()A.﹣1B.0C.1D.±1【解答】解:平方根等于它本身的数是0.故选:B.2.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b【解答】解:∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项A不符合题意;∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项B不符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项C符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项D不符合题意.故选:C.3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或【解答】解:∵2a﹣1和﹣a+4是一个正数的平方根,∴①2a﹣1+4﹣a=0,解得a=﹣3,把a=﹣3代入4﹣a得7,∴这个正数的值是49;②2a﹣1=4﹣a,解得a=,把a=代入4﹣a得=,∴这个正数的值是;故选:D.4.的算术平方根是()A.±3B.3C.﹣3D.9【解答】解:∵=9,∴的算术平方根是:=3.故选:B.5.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个【解答】解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.6.下列各式中正确的是()A.B.C.D.【解答】解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣5【解答】解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.8.计算正确的是()A.=±2B.=3C.=﹣2D.±=±4【解答】解:A.根据算术平方根的定义,=2,故A错误.B.根据立方根的定义,≠3,故B错误.C.根据二次根式的定义,无意义且≠﹣2,故C错误.D.根据平方根的定义,,故D正确.故选:D.9.3是27的()A.算术平方根B.平方根C.立方根D.立方【解答】解:∵33=27,∴3是27的立方根,故选:C.10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④【解答】解:①的立方根为,故错误;②﹣是17的平方根,正确;③﹣27有立方根,故错误;④比大且比小的实数有无数个,正确.综上可得①③正确.故选:A.11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个【解答】解:=4,=2,无理数有,﹣π,共有2个,故选:A.12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵25<26<36,∴5<<6,∴4<﹣1<5,∴估计﹣1的值在:4到5之间,故选:C.13.实数的整数部分是()A.4B.5C.6D.7【解答】解:∵16<17<25,∴4<<5,∴6<2+<7,∴2+的整数部分是6,故选:C.14.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b【解答】解:∵a<0,a<b,c<a,b>c,∴a﹣b<0,c﹣a<0,b﹣c>0,∴原式=﹣a+a﹣b+a﹣c+b﹣c=a﹣2c,故选:C.15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D【解答】解:∵<<,∴3<<4,∴在数轴对应的点可能是C点.故选:C.16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,c﹣a>0,b﹣c<0.∴原式=b﹣a﹣c+a+c﹣b=0.故选:B.17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个【解答】解:∵无限循环小数是有理数,∴①的说法错误;∵带根号且开不尽方的数才是无理数,∴②的说法错误;∵互为相反数的两个数相加等于0,∴两个互为相反数的无理数相加等于0,是有理数,∴③的说法错误;∵无理数与有理数的和一定是无理数,∴④的说法正确;∵是无理数,而分数是有理数,∴⑤的说法错误;∵0乘以任何数都等于0,∴一个无理数与0相乘等于0,∴⑥的说法错误.综上,说法正确的有:④.故选:A.二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.【解答】解:∵(±)2=6,∴这个数等于±,故答案为:±.19.若=3,求2x+5的平方根.【解答】解:∵=3,∴x+2=9,即x=7,∴2x+5=19,19的平方根是±,故答案为:±.20.9的算术平方根是3;的立方根是2;=﹣.【解答】解:9的算术平方根是3,∵=8,∴的立方根是2,=﹣,故答案为:3、2、.21.若的算术平方根是a,则a的相反数为﹣3.【解答】解:∵=9,9的算术平方根3,∴的算术平方根a=3,∴a的相反数为﹣3,故答案为:﹣3.22.已知的小数部分是a,的整数部分是b,则a+b=.【解答】解:∵4<5<9,∴2<<3,∴a=﹣2,∵4<8<9,∴2<<3,∴b=2,∴a+b=,故答案为:.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.24.求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【解答】解:(1)4x2﹣9=0,4x2=9,x2=,x1=,x2=﹣;(2)8(x+1)3=125,(x+1)3=,x+1=,x=1.5.25.求下列各式中的x:(1)(x+2)2=25;(2)(x﹣3)3+27=0.【解答】解:(1)(x+2)2=25,x+2=±5,x1=﹣7,x2=3;(2)(x﹣3)3+27=0,x﹣3=﹣3,x=0.26.求下列各式中的x:(1)(x﹣1)2=4;(2)8(x+1)3=27.【解答】解:(1)(x﹣1)2=16x﹣1=4,x﹣1=﹣4,∴x=5或﹣3;(2)(x+1)3=()3,∴x+1=,∴x =.第11 页27.计算:+++.【解答】解:+++=﹣2+5+2﹣3=+2.28.计算|﹣3|﹣++(﹣2)2.【解答】解:原式=3﹣4﹣2+4=1.29.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.【解答】解:(1)∵正数的两个不同的平方根是3a﹣14和a﹣2,∴3a﹣14+a﹣2=0,解得a=4,∵b﹣15的立方根为﹣3,∴b﹣15=﹣27,解得b=﹣12∴a=4、b=﹣12;(2)a=4、b=﹣12代入4a+b得4×4+(﹣12)=4,∴4a+b的平方根是±2.30.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.【解答】解:因为2x+3的算术平方根是3,5x+y+2的立方根是2,所以,解得,所以x﹣y+4=16,所以x﹣y+4的平方根为±=±4.第12 页。
人教版七年级数学下册第6章实数专题作业

【对应训练】 5.计算:
(1)
3 (-2)2 -
1 27
×
(-3)2 +
196 ×3 -64 ÷
(2)| 5 - 6 |-| 5 -3|-| 6 -4|.
12254 ;
解:(1)-39 (2)2 6 -7
6.已知(x-12)2=169,(y-1)3=-0.125,求 x - 2xy -3 4y+x 的值.
4 25
-|
7 -3|.
(3) 0.3;
解: 7
解:1525
21.解方程: (1)(x-2)3=64;
解:x=6
(2)4(3x+1)2-1=0. 解:x=-16 或-12
22.已知实数 x,y 满足 x-2 +(y+1)2=0,则 x-y 等于( A ) A.3 B.-3 C.1 D.-1
【对应训练】
3 3.
-64
的立方根为_3__-__4____.
4.如果 x<0,那么 x 的立方根为( A )
A.3 x
B.3 -x
C.-3 x
D.±3 x
四、对实数的有关概念理解不透彻 【例4】下列命题正确的是( D) A.无理数包括正无理数、0和负无理数 B.无理数不是实数 C.无理数是带根号的数 D.无理数是无限不循环小数
2.已知 M=m-1 m+6 是 m+6 的算术平方根, N=2m-3n+3 n+6 是 n+6 的立方根,试求 M-N 的值.
解:由题意可知 m-1=2,2m-3n+3=3,可得 m=3,n=2, 所以 M= 9 =3,N=3 8 =2,所以 M-N=3-2=1
二、实数的非负性 【例 2】若 x2-1 + y+1 =0,求 x2019+y2020 的值. 分析:由题意可知 x2-1=0,y+1=0,分别求出 x,y, 再代入求值,注意分两种情况.
七年级初一数学下学期第六章 实数单元达标质量专项训练试卷

七年级初一数学下学期第六章 实数单元达标质量专项训练试卷一、选择题1.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-2.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n3.在实数227,042中,是无理数的是( ) A .227B .0C 4D 24.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .21+D .21 5.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间6.若m 、n 满足()21150m n -+-=m n +的平方根是( ) A .4±B .2±C .4D .27.330x y =,则x 和y 的关系是( ) A .0x y ==B .0x y -=C .1xy=D .0x y +=8.下列各数中,属于无理数的是( ) A .227B 2C 9D .0.10100100019.若4a =2=3b ,且a +b <0,则a -b 的值是( ) A .1或7 B .﹣1或7 C .1或﹣7 D .﹣1或﹣7 10.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 339二、填空题11.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 15.23(2)0y x --=,则y x -的平方根_________.16116的算术平方根为_______. 17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.如图,数轴上的点A 能与实数15,3,22---_____________三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.24.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)22=17.26.阅读材料,回答问题:(1)对于任意实数x,符号[]x表示“不超过x的最大整数”,在数轴上,当x是整数,[]x就是x,当x不是整数时,[]x是点x左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.2.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.3.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:227是分数,属于有理数,故选项A 不合题意; 0是整数,属于有理数,故选项B 不合题意;2=-,是整数,属于有理数,故选项C 不合题意;是无理数,故选项D 符合题意.故选:D . 【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.4.D解析:D 【详解】解:∵1<2<4,∴1<2, ∴﹣2<<﹣1,∴2<43, ∴a=2,b=422=-2∴1221a b -===. 故选D . 【点睛】本题考查估算无理数的大小.5.C解析:C 【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125= ∴6465125<<∴45<.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.9.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a与b的值,即可求出-a b的值.【详解】a==,且a+b<0,解:∵3∴a=−4,a=−3;a=−4,b=3,则a−b=−1或−7.故选D.【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.A解析:A【分析】求出每个根式的范围,再判断即可.【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题11.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:2213n n -+. 14.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131,5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==. 1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.16.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】 此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑; (3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =, ∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+,此时最大值为785993b c+=+=,最小值为6511777b c⎛⎫⎛⎫+=-+-=-⎪ ⎪⎝⎭⎝⎭,∵58611 3977 >>->-∴综上所述最大值为53,最小值为117-.【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)a=1,b﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.。
人教版七下数学《实数》专项训练题

人教版七下数学《实数》专项训练题一、选择题(共24小题)1.下列数中,﹣4的相反数是()A.4B.﹣4C.14D.−142.若m与−(−13)互为相反数,则m的值为()A.﹣3B.−13C.13D.33.若x的绝对值是3,则x的值是()A.3B.﹣3C.±3D.−134.−20212022的绝对值是()A.−20212022B.20212022C.20222021D.−202220215.若|a﹣2|与|b+3|互为相反数,则a+b=()A.﹣1B.1C.2D.﹣3 6.若x+13=0,则x的倒数等于()A.13B.−13C.3D.﹣37.﹣0.5的倒数是()A.﹣5B.5C.﹣2D.28.估计√26的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间9.据统计,2021年第一季度,世界主要经济体的经济增长情况如下:德国﹣3.3%,美国0.4%,中国18.3%,日本﹣1.9%,其中增长率最小的是()A.美国B.中国C.日本D.德国10.下面算式与512−13+214的值相等的是()A.312−(−213)+(−414)B.12−(−313)+314C.212+(−213)+714D.412−(−13)+31411.﹣42的相反数是()A.﹣16B.16C.8D.﹣812.在式子“﹣23〇(﹣1)2中的“〇”内填入下列运算符号,计算后结果最大的是()A.+B.﹣C.×D.÷=3m,则m的值为()13.若32+32+⋯+32︸9个32A.2B.4C.9D.1814.同步卫星在赤道上空大约36000000米处,将数据36000000用科学记数法表示为()A.0.36×108B.3.6×107C.36×106D.3.6×10815.一季度,面对国际环境更趋复杂严峻和国内疫情频发带来的多重考验,在以习近平同志为核心的党中央坚强领导下,科学统筹疫情防控和经济社会发展,初步核算,一季度国内生产总值约为27万亿元,按不变价格计算,同比增长4.8%.数据27万亿元用科学记数法表示为()A.2.7×1013元B.2.7×1014元C.0.27×1014元D.27×1012元16.2022年1月17日10时35分,我国成功发射了试验十三号卫星,为中国航天取得开门红.其授时精度为世界之最,不超过0.000 000 0099秒.数据“0.000 000 009 9”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.9.9×10﹣8 17.芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,经测算,一粒芝麻的质量约为0.00000201kg,将数据0.00000201用科学记数法表示为()A.20.1×10﹣7B.2.01×10﹣6C.0.201×10﹣5D.2.01×10﹣8 18.据国家卫生健康委相关负责人介绍,截至2021年12月25日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗275809.4万剂次.数据“275809.4万”精确到千万位可用科学记数法表示为()A.27×108B.2.76×109C.2.758×109D.2.7×10919.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位20.1,−√2,0,√3中最小的数是()A.1B.−√2C.0D.√321.计算√3.24×640.09×4的结果是()A.24B.±24C.48D.±48 22.a的算术平方根是4,那么a的值是()A.8B.16C.2D.±2 23.√−83的平方是()A.8B.4C.2D.﹣4 24.下列实数中,是无理数的是()A.113B.√−83C.√0.04D.π二、填空题(共19小题)25.已知a满足|8﹣a|+√a−9=a,则a的值是.26.如图,数轴上A,B,C三点分别表示实数−√11,1,3,且B是CD的中点,则点A与点D之间表示整数的点有个.27.在如图所示的数轴上,点B与点C关于点A对称,A,B两点表示的实数分别是√3和﹣1,则线段BC的长度为.28.在比√5−1小的数中,最大的整数是.29.比较大小√2+√3√10(选填“>”、“=”、“<“).30.将实数2,﹣1,0,−√5从小到大用符号“<”连接起来.31.已知a,b都是实数.若|a﹣4|+√b+2=0,则√ab3=.32.−6427的立方根是.33.若实数a、b满足√a+2+|b﹣1|=0,则−1ab=.234.已知实数a、b,满足(a+2)2+√b−3=0,则ab的值.35.计算−√(−5)2的结果为.36.若|a﹣1|+(b+2)2=0,则(a+b)2022的平方根是.37.2022年3月12日是我国第44个植树节.全国绿化委员会办公室3月11日发布的《2021年中国国土绿化状况公报》显示,全国完成造林360万公顷,种草改良草原306.67万公顷,治理沙化、石漠化土地144万公顷.360万可用科学记数法表示为.38.《易经》中记载,远古时期人们通过结绳记数.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,示例:图①表示的数量为2+0×6+3×62+2×63+1×64=1838(个).则图②表示的数量为个.39.茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了元.40.在罗马数字符号中,用I代表1,V代表5,X代表10.一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加上小数字的数目;一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如:“Ⅶ”表示“7”,“Ⅳ”表示“4”,则“XV”表示的数字为.41.若|m﹣2|+(n+3)2=0,则(m+n)2022=.42.某市今年参加中考的学生人数大约9.89×104人,这个近似数精确到位.43.若数a四舍五入后得a=3.14,则a的取值范围为.三、解答题(共13小题)44.已知数轴上有两个点A:﹣3,B:1.(1)求线段AB的长;(2)若|m|=2,且m<0;在点B右侧且到点B距离为5的点表示的数为n.①求m与n;②计算2m+n+mn;÷|﹣2|.45.计算:32﹣(1﹣4)×1346.如图,在一条不完整的数轴上,点A,B,C对应的数分别为a,b,c,其中点A在点B的左侧,且a+b=0.(1)若AB=4,c=5,求a+c的值;(2)若点C在点A的左侧,化简|a﹣c|+|a﹣b|;(3)若b=6,AB=3BC,求c的值.47.淇淇同学在电脑中设置了一个有理数的运算程序:输入数“a”加“★”键+1.再输入“b”,就可以得到运算a★b=|2﹣a2|−1b(1)按此程序(﹣3)★2=;(2)若淇淇输入数“﹣1”加“★”键再输入“x”后,电脑输出的数为1,求x的值;(3)嘉嘉同学运用淇淇设置的在这个程序时,屏幕显示:“该操作无法进行,”你能说出嘉嘉在什么地方出错了吗?48.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)x和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.49.在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,B,C是AD的三等分点,如图所示.(1)BC=;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为﹣10,求出点A,B,D所对应数的和.50.计算:﹣12+√8−|√2−3|+(12)﹣2.51.计算:(π﹣3)0−√12+(12)﹣1+|1﹣2√3|.52.计算:(π−3)0+(−15)−1−√16+cos60°⋅(−1)2022−|−7|.53.观察以下算式:①1×11×5=18×(1+31×5);②2×35×9=18×(1+35×9);③3×59×13=18×(1+39×13).(1)请写出第④个算式:.(2)请用n(n是正整数)表示出第n个算式,并计算1×11×5+2×35×9+3×59×13+⋯+9×17 33×37+10×1937×41.54.如图,在一条直线上,从左到右依次有点A、B、C,其中AB=4cm,BC=2cm.以这条直线为基础建立数轴、设点A、B、C所表示数的和是p.(1)如果规定向右为正方向;①若以BC的中点为原点O,以1cm为单位长度建立数轴,则p=;②若单位长度不变,改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值;并说明原点每向右移动1cm,p值将如何变化?③若单位长度不变,使p=64,则应将①中的原点O沿数轴向方向移动cm;④若以①中的原点为原点,单位长度为ncm建立数轴,则p=.(2)如果以1cm为单位长度,点A表示的数是﹣1,则点C表示的数是.55.计算:(−81)×49−49÷(−89).解法1:原式=(−81)×(49−49)÷(−89)①=(−81)×0÷(−89)②=0③解法2:原式=(−81)×49−49×(−98)①=−36+12②=−3612③(1)解法1是从第步开始出现错误的;解法2是从第步开始出现错误的;(填写序号即可)(2)请给出正确解答.56.如图,数轴上从左到右有点A,B,C,D,其中点C为原点,A、D所对应的数分别为﹣5,1,点B为AD的中点.(1)在图中标出点C的位置,并直接写出点B对应的数;(2)若在数轴上另取一点E,且B,E两点间的距离是7,求A,B,C,D,E对应的数的和.。
七年级数学下册实数的混合运算专项训练(60题)(人教版)

专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可.【解答】解:原式=√3−1+2−√3+9﹣4=6.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49|=﹣3−35+|4﹣7|=﹣3−35+|﹣3|=﹣3−35+3=−35.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23.【分析】利用算术平方根和立方根的意义化简运算即可.【解答】解:原式=√94−√49+√643=32−7+4=−32.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减.【解答】解:√36−√(−3)2+√−83×√14=6−3+(−2)×12=6﹣3﹣1=2.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.【分析】先计算开平方、开立方、立方和绝对值,后计算加减.【解答】解:√4+|√3−3|−√−273+(−2)3=2+3−√3+3﹣8=−√3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案.【解答】解:原式=6﹣3﹣5﹣(2−√2)=﹣2﹣2+√2=﹣4+√2.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|.【分析】先计算开立方、开平方和绝对值,后计算加减.【解答】解:√−273−√19+√3+|√3−√9|=﹣3−13+√3+3−√3=−13.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1)=2−√3+10×0.4﹣3+√3=2−√3+4﹣3+√3=3.9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2=√3−1+54+14+2√3−1+32+2=√3+52.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:√81+√−273−√(−2)2+|−√3| =9+(﹣3)﹣2+√3 =9﹣3﹣2+√3 =4+√3.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3 =3+√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−1√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案.【解答】解:原式=32−54−3+1=−74.13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022. 【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可. 【解答】解:原式=2﹣3+√3−(√3−2)+3+1 =2﹣3+√3−√3+2+3+1 =5.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|. 【分析】先算乘方和开方,再化简绝对值,最后算加减. 【解答】解:原式=3﹣1﹣(﹣2)+√6−2 =3﹣1+2+√6−2 =2+√6.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83. 【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解. 【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2) =﹣1+36+3 =38.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2. 【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2022−√273+√(−6)2=12+1﹣3+6=92.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3+1√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=2−√3+2+3+1﹣4=4−√3.21.(2022春•平邑县期末)计算:(1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1 =2;(2)原式=−8+1−√2−(−3)×3 =−8+1−√2+9 =2−√2.22.(2022春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|; (2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值. 【解答】解:(1)原式=﹣2−√3+5+√3−1 =2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3 =﹣8−√2+1+9 =2−√2.23.(2022春•西平县期末)计算: (1)√183+√(−2)2+√14;(2)﹣12+√4+√−273+|√3−1|. 【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. (2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)﹣12+√4+√−273+|√3−1| =﹣1+2+(﹣3)+(√3−1) =﹣1+2+(﹣3)+√3−1 =√3−3.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x的值:(x+2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x+2)3=−1258,x+2=−52,x=−92.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x的值,2(x+3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x+3,再求解x即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x+3)3+54=0,变形得(x+3)3=﹣27,即有x+3=﹣3,则x=﹣6.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2=1+2=3.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14=334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2022春•博兴县期末)计算:(1)√1−89−√643+√−1273;(2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1=√2.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3=﹣32﹣4+14−3=﹣3834;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5| =√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2022春•忠县期末)计算:(1)√32+√−273+√49;(2)−14×√4+|√9−5|+√214+√−0.1253.【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12=﹣2+5﹣3+1=1.33.(2022春•天津期末)计算:(1)求式子中x的值:√ᵆ2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√ᵆ2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2022春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;.(2)求x的值:(x+1)3=−278【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x.【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x+1=−√273,8−1,x=−32x=−5.238.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273.3+√(−3)2−√−1【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33 =4﹣3+13+(﹣1) =13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2 =9+(﹣3)+23=9﹣3+23=203; (2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3; (2)(−√6)2×12+√−273+√62+82. 【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183=94+√7−2+12=√7+34;(2)原式=6×12−3+10=3﹣3+10=10.42.(2022春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2022春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x)2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3=﹣0.3+√3;(2)(1﹣x)2=4,1﹣x=±2,∴x1=﹣1,x2=3.44.(2022春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2022春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2022春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2022春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2022;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2022=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2 =3+5+7+2√2÷2=15+√2.48.(2022春•黄石期中)计算:(1)﹣(12)2−√2516−√−83; (2)|√2−√3|+|1−√2|+√3−(﹣1)2021.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2) =−32+2 =12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2021=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2022春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2022春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100;(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2 =√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2022春•三台县月考)计算.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12022+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3) =﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49, ∴x ﹣2=−23或x ﹣2=23, 解得:x =43或x =83. 52.(2022春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273; (2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2. 【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1=1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2021春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54=1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(2016秋•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√ᵄ+√ᵄ的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2 =√2;(2)∵实数a +5的一个平方根是﹣3,∴a +5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8, ∴−14b ﹣4=﹣8,∴b =16.∴√ᵄ+√ᵄ=√4+√16=2+4=6.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +ᵅ+ᵅ5+e 2+√ᵅ3的值. 【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√ᵅ3=√643=4, ∴12ab +ᵅ+ᵅ5+e 2+√ᵅ3=12+0+2+4=612. 59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√ᵆ−2−√ᵆ+10ᵆ+√245ᵆ3的值. 【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√ᵆ−2−√ᵆ+10ᵆ+√245ᵆ3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|;(2)解方程:25x2﹣36=0;(3)已知√ᵆ+1+|ᵆ−2|=0,且√1−2ᵆ3与√3ᵆ−53互为相反数,求yz﹣x的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x,y,z的值,再将x,y,z的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6=12+0.5+4﹣6=﹣1;(2)25x2﹣36=0,∴x2=3625.∴x是3625的平方根,∴x=±65.(3)∵√ᵆ+1+|ᵆ−2|=0,√ᵆ+1≥0,|y﹣2|≥0,∴x+1=0,y﹣2=0.∴x=﹣1,y=2.∵√1−2ᵆ3与√3ᵆ−53互为相反数,∴1﹣2z+3z﹣5=0.解得:z=4.∴yz﹣x=8﹣(﹣1)=9.∵9的平方根为±3,∴yz﹣x的平方根为±3.。
人教版七年级初一数学第二学期第六章 实数单元质量专项训练

人教版七年级初一数学第二学期第六章 实数单元质量专项训练一、选择题1.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个B .2个C .3个D .4个 2.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n 3.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa=④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.4.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >06.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会 7.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个.①3*2=11.②()215⊕-=-.③(13*25)712912425⎛⎫⊕⊕=- ⎪⎝⎭. ④若a *b=b *a ,则a=b. A .1个B .2个C .3个D .4个 8.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±99.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.a 10的整数部分,b 的立方根为-2,则a+b 的值为________.14.观察下列各式:123415⨯⨯⨯+=;2345111⨯⨯⨯+=;3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.15.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.19.利用计算器,得0.050.2236,0.50.7071,5 2.236,507.071≈≈≈≈,按此规律,可得500的值约为_____________20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.(1)观察下列式子:①100222112-=-==;②211224222-=-==;③322228442-=-==;……根据上述等式的规律,试写出第n个等式,并说明第n个等式成立;(2)求0122019++++的个位数字.222223.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O,对于两个不同的点A和B,若点A、 B到点O的距离相等,则称点A与点B互为基准等距变换点.例如图2,点A表示数-1,点B表示数5,它们与基准点O的距离都是3个单位长度,我们称点A与点B互为基准等距变换点.①记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点.I.若m=3,则n= ;II.用含m的代数式表示n= ;②对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;③点P在点Q的左边,点P与点Q之间的距离为8个单位长度,对Q点做如下操作: Q1为Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3为Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5为Q4的基准等距变换点......,依此顺序不断地重复变换,得到Q5,Q6,Q7....Q n,若P与Q n.两点间的距离是4,直接写出n的值.24.定义☆运算:观察下列运算:(+3)☆(+15)= +18(﹣14)☆(﹣7)= +21(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣230☆(﹣15)= +15(+13)☆ 0= +13两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:(﹣11)☆ [0☆(﹣12)]=.(3)若2×(﹣2☆a)﹣1=8,求a的值.25.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.26.z 是64的方根,求x y z -+的平方根【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.2.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,.故选:D .【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.3.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.4.C解析:C【分析】.【详解】∵91516<<,<<即:34<<,3与4之间,故数轴上的点为点M ,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.5.D解析:D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a <﹣3,﹣2<b <﹣1,0<c <1,2<d <3,∵﹣4<a <﹣3,0<c <1,∴ac <0,故A 错误;∵﹣2<b <﹣1,0<c <1,∴1<|b |<2,0<|c |<1,故|c |<|b |,故B 错误; ∵﹣4<a <﹣3,2<d <3,∴﹣3<﹣d <﹣2,故a <﹣d ,故C 错误;∵﹣2<b <﹣1,2<d <3,∴b +d >0,故D 正确.故选:D .【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.6.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B 所对应的数为1,翻转2次后,点C 所对应的数为2翻转3次后,点A 所对应的数为3翻转4次后,点B 所对应的数为4经过观察得出:每3次翻转为一个循环∵20193673÷=∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.7.B解析:B【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果.【详解】解:∵a *b =3a -b ,2a b b a ⊕=-,∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确; ③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦3(12)5=⊕- 2312()5=-- 30925=- 故③错误;④若a *b=b *a ,则有3a -b=3b-a,化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.8.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 9.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B.【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.10.B解析:B【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.181【分析】观察各式得出其中的规律,再代入求解即可.由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的解析:17 45【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由15 21=21(21)(11)3x⊕=++++18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.16.或【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}==2x+1 解析:12或13【解析】 【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1, ∵M{3,2x +1,4x -1}=min{2,-x +3,5x}, ∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.17.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a -【解析】由数轴得,a +b <0,b-a >0,=-a-b +b-a =-2a.故答案为-2a.点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案. 【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】≈≈≈≈,7.071不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,≈.因此得到第三个数的估值扩大1022.36故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】 (1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5. 【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点;(2)由基准点的定义可知,22m n +=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n ;【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1,∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4,∴n=4-m ;故答案为:4-m②设点M 表示的数是m ,先乘以23,得到23m ,再沿着数轴向右移动2个单位长度得到点N 为23m+2,∵点M 与点N 互为基准等距变换点,∴23m+2+m=4,∴m=112; ③设P 点表示的数是m ,则Q 点表示的数是m+8,如图,由题可知Q 1表示的数是4-(m+8),Q 2表示的数是-4+(m+8),Q 3表示的数是8-(m+8),Q 4表示的数是-8+(m+8),Q 5表示的数是12-(m+8),Q 6表示的数是-12+(m+8)…∴当n 为偶数,Q n 表示的数是-2n+(m+8),∵若P 与Q n 两点间的距离是4,∴|m-[-2n+(m+8)]|=4,∴n=2或n=6.【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q 的变换规律是解题的关键.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决; (3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.26.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8-+=-1-2+8=5,所以,x y z-+的平方根是所以,x y z【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.。
实数(挑战综合(压轴)题分类专题)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.15实数(挑战综合(压轴)题分类专题)(专项练习)【类型一】实数✭✭平方根✭✭立方根【类型①】实数➼➻平方根✭✭立方根➼➻解方程(两个题)1.求下列x 的值(1) ()2251360x +-=(2) ()3218x -=-2.求下列各式中x 的值:(1) 225640x -=;(2) ()33433270x ++=;(3) 2(21)16x +=【类型②】实数➼➻平方根✭✭立方根➼➻运算求值(两个题)3.计算: (1) 33(1)128-+ (2) 3223(5)(3)2532(3)--+.4.计算 (1)310.0184- (2) 332【类型③】实数➼➻平方根✭✭立方根➼➻综合化简与运算(四个题) 5.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B 3设点A 所表示的数为m .(1) 实数m 的值是_________;(2) 求()221m m +++的值.(3) 在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +4d -求238c d ++的平方根.6.已知:x 的平方根是3a +与215a -213b -.(1) 求a ,b 的值;(2) 求x 的值;(3) 求1a b +-的立方根.7.已知235,4,8a b c ===-.(1) 若,a b <求a b +的值;(2) 若0abc >,求32a b c --的值.8.计算: (1) 239(6)27--(2) 51的整数部分为a 51的小数部分为b ,求23a b +的值.【类型二】实数✭✭平方根✭✭立方根【类型①】实数➼➻混合运算(四个题)9.计算(1) ()29234--; (2) 223184(3)2⎛⎫- ⎪⎝⎭.10.计算: (1)23327(3)1--- (2) 23164(2)9--11.(1)用“<”“>”或“=”填空: 1 22 3 (2)由以上可知:①|12= ,②23= .(3)计算:12233420212022++.(结果保留根号)12.知识链接:①对于任意两个实数a ,b ,如果0a b ->,那么a b >;如果0a b -=,那么a b =;如果0a b -<,那么a b <;②任意实数a 的平方都是非负数,即20a ≥. 知识运用:(1) 7______53; (2) 已知a 为实数,2(32)A a =-,()()21432B a a a =---,请你比较A 、B 的大小;(3) 已知x 、y 均为正数,比较2x y +与82xy x y+的大小.【类型②】实数➼➻大小比较✭✭估算✭✭整数部分与小数部分(两个题) 13.已知21a -的平方根是3±,9b -的立方根是2,c 12(1) 求a 、b 、c 的值;(2) 若x 121212x 的值.14.阅读材料,解答下面的问题: 479273<<, 7的整数部分为272.(1) 6(2) 已知56a ,56的小数部分是b ,求2021()a b +的值.【类型③】实数➼➻运算✭✭化简✭✭规律(三个题)15.观察下列等式,并回答问题: ①1221=; 2332= 3443= 4554……(1) 请写出第⑤个等式:______356=______;(2) 写出你猜想的第n 个等式:______;(用含n 的式子表示)(3) 241-1的大小.16.观察下列各等式及验证过程:11122323-=211121223232323-=⨯⨯ 11113()23438-=21111313()23423423843-===⨯⨯⨯⨯ 11114()345415-=21111414()345345534541-==⨯⨯⨯⨯针对上述各式反映的规律,写出用n(n为正整数)表示的等式_____.17.观察表格,回答问题:a …0.0001 0.01 1 100 10000 …a…0.01 x 1 y 100 …x=y=(2)从表格中探究a a①10 3.161000≈________;②8.973b,用含m的代数式表示b,则b=________;m=897.3(3)a a的大小.当________a a>;当________a a;当________a a.【类型四】实数✭✭平方根(算术平方根)✭✭立方根➽拓展与应用【类型①】实数➼➻应用➼➻化简✭✭求值(四个题)18.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).(1)图中拼成的正方形的面积是___________;边长是___________;(2)你能把十个小正方形组成的图形纸(图3),剪开并拼成正方形吗?若能,请仿照图的形式把它重新拼成一个正方形.并求出这个正方形的边长是___________.19.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y6)x的值.20.综合与实践如图是一张面积为2400cm的正方形纸片.(1)正方形纸片的边长为______;(直接写出答案)(2)若用此正方形纸片制作一个体积为3216cm的无盖正方体,请在这张正方形纸片上画出无盖正方体的平面展开图的示意图,并求出该正方体所用纸片的面积.21.“2探究活动,根据各探究小组的汇报,完成下列问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学实数专项训练一
1.把下列各数填入相应的集全内:
-8.6,9,21
a a a a <<<-179,0.99,-p ,0.76 (1)有理数集全:﹛ …﹜ ;(2)无理数集全:
﹛ …﹜ ;
(3)正实数集合:﹛ …﹜ ;(4)负实数集合:
﹛ …﹜ ;
2.化简:
(1
3;(2(3))21;(4))11。
3.化简
(1
; (2 (3
二、综合创新探究
4.(创新题)实数a 、b 、c 在数轴上的对应关系如图2-5-1,化简
a b c a b c a ---+--。
的大小。
5.
6.(应用题)在一个半径为20cm的圆形铁板上,截取一面积最大的正方形铁板作机器零件,求正方形的边(精确到0.1cm)。
7.已知,()2
-+-+求a+b-2c的值。
a b
340
7-2.已知a、b、c为三角形三边长,且满足()2
-+-+,
a b
340试判断三角形的形状。
8.(梅州中考)下列各组数中,互为相反数的是()。
A.2和1
2 B.2和1
2
- C.-2和
2 -
9.
61
2
骣
琪
桫
.
八年级数学实数专项训练二
1.若a 是一个无理数,则1-a 是( ).
A.正数
B.负数
C.无理数
D.有理数
2. 1.5-的相反数是( ).
A.32-
B.32
C.2
3- D.23 3.下列各语句中错误的个数为( ).
①最小的实数和最大的实数都不存在;②任何实数的绝对值都是非负
数;
③任何实数的平方根都是互为相反数;④若两个非负数的和为零,则
这两个数都为零.
A.4
B.3
C.2
D.1
4.实数a 在数轴上的位置如图2-6-2,则a ,-a ,1
a ,2a 的大小关系是( ).
A.
21a a a a <-<< B.21a a a a
-<<< C. 21
a a a a -<<< D. 21
a a a a <<<-
5.等腰三角形的两条边长分别为那么这个三角形的周长等
于 。
33-的相反数是,绝对值是,的
,的绝对值是
7.负数a的差的绝对值是 .
8.比较大小:
(1);(2)(3)2
--
--
3
9.求下列各式中的x.
(1)4
x-;(2)()2120;
x-=.
4326
x-=()()2
x--=(3)10
10.计算:()20
222
--++
11.已知一个正方形的边长为4cm,另一个正方形的面积是这个正方形面积的10倍,求另一个正方形的边长。
(精确到0.01)。
12.把下列各数写入相应的集合内。
31
27,0.26,,0,10.512,3.p
--
(1)有理数集全:﹛ …﹜ ;(2)无理数集全:﹛ …﹜ ;
(3)正实数集合:﹛ …﹜ ;(4)负实数集合:﹛ …﹜ ;
13.化简:
(1)5;(2
(3)(11-+;(4)2;
(5
.
14.已知正数a 和b ,有下列命题:
(1)若a+b=2
1;(2)若a+b=33
2;(3)若a+b=6,
3.
根据以上三个命题所提供的规律猜想:
若a+b=9 ;若a+b=n (n 为正整数).。