七年级数学实数专项训练
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级数学-实数常考题目训练 (含答案)
人教版七年级数学-实数常考题目训练姓名:学校:学号:一.选择题(共17小题)1.平方根等于它本身的数是()A.﹣1B.0C.1D.±12.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或4.的算术平方根是()A.±3B.3C.﹣3D.95.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个6.下列各式中正确的是()A.B.C.D.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣58.计算正确的是()A.=±2B.=3C.=﹣2D.±=±49.3是27的()A.算术平方根B.平方根C.立方根D.立方10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间13.实数的整数部分是()A.4B.5C.6D.714.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.19.若=3,求2x+5的平方根.20.9的算术平方根是;的立方根是;=.21.若的算术平方根是a,则a的相反数为.22.已知的小数部分是a,的整数部分是b,则a+b=.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.(3)4x2﹣9=0;(4)8(x+1)3=125.(5)(x﹣3)3+27=0.(6)(x﹣1)2=4;23.计算:+++.|﹣3|﹣++(﹣2)2.24.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.25.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.人教版七年级数学-实数常考题目训练参考答案与试题解析一.选择题(共17小题)1-5:BCDBC 6-10:BDDCA 11-17ACCCCBA1.平方根等于它本身的数是()A.﹣1B.0C.1D.±1【解答】解:平方根等于它本身的数是0.故选:B.2.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b【解答】解:∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项A不符合题意;∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项B不符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项C符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项D不符合题意.故选:C.3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或【解答】解:∵2a﹣1和﹣a+4是一个正数的平方根,∴①2a﹣1+4﹣a=0,解得a=﹣3,把a=﹣3代入4﹣a得7,∴这个正数的值是49;②2a﹣1=4﹣a,解得a=,把a=代入4﹣a得=,∴这个正数的值是;故选:D.4.的算术平方根是()A.±3B.3C.﹣3D.9【解答】解:∵=9,∴的算术平方根是:=3.故选:B.5.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个【解答】解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.6.下列各式中正确的是()A.B.C.D.【解答】解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣5【解答】解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.8.计算正确的是()A.=±2B.=3C.=﹣2D.±=±4【解答】解:A.根据算术平方根的定义,=2,故A错误.B.根据立方根的定义,≠3,故B错误.C.根据二次根式的定义,无意义且≠﹣2,故C错误.D.根据平方根的定义,,故D正确.故选:D.9.3是27的()A.算术平方根B.平方根C.立方根D.立方【解答】解:∵33=27,∴3是27的立方根,故选:C.10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④【解答】解:①的立方根为,故错误;②﹣是17的平方根,正确;③﹣27有立方根,故错误;④比大且比小的实数有无数个,正确.综上可得①③正确.故选:A.11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个【解答】解:=4,=2,无理数有,﹣π,共有2个,故选:A.12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵25<26<36,∴5<<6,∴4<﹣1<5,∴估计﹣1的值在:4到5之间,故选:C.13.实数的整数部分是()A.4B.5C.6D.7【解答】解:∵16<17<25,∴4<<5,∴6<2+<7,∴2+的整数部分是6,故选:C.14.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b【解答】解:∵a<0,a<b,c<a,b>c,∴a﹣b<0,c﹣a<0,b﹣c>0,∴原式=﹣a+a﹣b+a﹣c+b﹣c=a﹣2c,故选:C.15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D【解答】解:∵<<,∴3<<4,∴在数轴对应的点可能是C点.故选:C.16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,c﹣a>0,b﹣c<0.∴原式=b﹣a﹣c+a+c﹣b=0.故选:B.17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个【解答】解:∵无限循环小数是有理数,∴①的说法错误;∵带根号且开不尽方的数才是无理数,∴②的说法错误;∵互为相反数的两个数相加等于0,∴两个互为相反数的无理数相加等于0,是有理数,∴③的说法错误;∵无理数与有理数的和一定是无理数,∴④的说法正确;∵是无理数,而分数是有理数,∴⑤的说法错误;∵0乘以任何数都等于0,∴一个无理数与0相乘等于0,∴⑥的说法错误.综上,说法正确的有:④.故选:A.二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.【解答】解:∵(±)2=6,∴这个数等于±,故答案为:±.19.若=3,求2x+5的平方根.【解答】解:∵=3,∴x+2=9,即x=7,∴2x+5=19,19的平方根是±,故答案为:±.20.9的算术平方根是3;的立方根是2;=﹣.【解答】解:9的算术平方根是3,∵=8,∴的立方根是2,=﹣,故答案为:3、2、.21.若的算术平方根是a,则a的相反数为﹣3.【解答】解:∵=9,9的算术平方根3,∴的算术平方根a=3,∴a的相反数为﹣3,故答案为:﹣3.22.已知的小数部分是a,的整数部分是b,则a+b=.【解答】解:∵4<5<9,∴2<<3,∴a=﹣2,∵4<8<9,∴2<<3,∴b=2,∴a+b=,故答案为:.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.24.求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【解答】解:(1)4x2﹣9=0,4x2=9,x2=,x1=,x2=﹣;(2)8(x+1)3=125,(x+1)3=,x+1=,x=1.5.25.求下列各式中的x:(1)(x+2)2=25;(2)(x﹣3)3+27=0.【解答】解:(1)(x+2)2=25,x+2=±5,x1=﹣7,x2=3;(2)(x﹣3)3+27=0,x﹣3=﹣3,x=0.26.求下列各式中的x:(1)(x﹣1)2=4;(2)8(x+1)3=27.【解答】解:(1)(x﹣1)2=16x﹣1=4,x﹣1=﹣4,∴x=5或﹣3;(2)(x+1)3=()3,∴x+1=,∴x =.第11 页27.计算:+++.【解答】解:+++=﹣2+5+2﹣3=+2.28.计算|﹣3|﹣++(﹣2)2.【解答】解:原式=3﹣4﹣2+4=1.29.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.【解答】解:(1)∵正数的两个不同的平方根是3a﹣14和a﹣2,∴3a﹣14+a﹣2=0,解得a=4,∵b﹣15的立方根为﹣3,∴b﹣15=﹣27,解得b=﹣12∴a=4、b=﹣12;(2)a=4、b=﹣12代入4a+b得4×4+(﹣12)=4,∴4a+b的平方根是±2.30.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.【解答】解:因为2x+3的算术平方根是3,5x+y+2的立方根是2,所以,解得,所以x﹣y+4=16,所以x﹣y+4的平方根为±=±4.第12 页。
人教版七年级数学下册第6章实数专题作业
【对应训练】 5.计算:
(1)
3 (-2)2 -
1 27
×
(-3)2 +
196 ×3 -64 ÷
(2)| 5 - 6 |-| 5 -3|-| 6 -4|.
12254 ;
解:(1)-39 (2)2 6 -7
6.已知(x-12)2=169,(y-1)3=-0.125,求 x - 2xy -3 4y+x 的值.
4 25
-|
7 -3|.
(3) 0.3;
解: 7
解:1525
21.解方程: (1)(x-2)3=64;
解:x=6
(2)4(3x+1)2-1=0. 解:x=-16 或-12
22.已知实数 x,y 满足 x-2 +(y+1)2=0,则 x-y 等于( A ) A.3 B.-3 C.1 D.-1
【对应训练】
3 3.
-64
的立方根为_3__-__4____.
4.如果 x<0,那么 x 的立方根为( A )
A.3 x
B.3 -x
C.-3 x
D.±3 x
四、对实数的有关概念理解不透彻 【例4】下列命题正确的是( D) A.无理数包括正无理数、0和负无理数 B.无理数不是实数 C.无理数是带根号的数 D.无理数是无限不循环小数
2.已知 M=m-1 m+6 是 m+6 的算术平方根, N=2m-3n+3 n+6 是 n+6 的立方根,试求 M-N 的值.
解:由题意可知 m-1=2,2m-3n+3=3,可得 m=3,n=2, 所以 M= 9 =3,N=3 8 =2,所以 M-N=3-2=1
二、实数的非负性 【例 2】若 x2-1 + y+1 =0,求 x2019+y2020 的值. 分析:由题意可知 x2-1=0,y+1=0,分别求出 x,y, 再代入求值,注意分两种情况.
七年级初一数学下学期第六章 实数单元达标质量专项训练试卷
七年级初一数学下学期第六章 实数单元达标质量专项训练试卷一、选择题1.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-2.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n3.在实数227,042中,是无理数的是( ) A .227B .0C 4D 24.设42a ,小整数部分为b ,则1a b-的值为( ) A .2-B 2C .21+D .21 5.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间6.若m 、n 满足()21150m n -+-=m n +的平方根是( ) A .4±B .2±C .4D .27.330x y =,则x 和y 的关系是( ) A .0x y ==B .0x y -=C .1xy=D .0x y +=8.下列各数中,属于无理数的是( ) A .227B 2C 9D .0.10100100019.若4a =2=3b ,且a +b <0,则a -b 的值是( ) A .1或7 B .﹣1或7 C .1或﹣7 D .﹣1或﹣7 10.下列各数中,介于6和7之间的数是( )A 43B 50C 58D 339二、填空题11.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.12.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___13.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 15.23(2)0y x --=,则y x -的平方根_________.16116的算术平方根为_______. 17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________ 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.如图,数轴上的点A 能与实数15,3,22---_____________三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数 x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 23.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.24.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)22=17.26.阅读材料,回答问题:(1)对于任意实数x,符号[]x表示“不超过x的最大整数”,在数轴上,当x是整数,[]x就是x,当x不是整数时,[]x是点x左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.2.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.3.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:227是分数,属于有理数,故选项A 不合题意; 0是整数,属于有理数,故选项B 不合题意;2=-,是整数,属于有理数,故选项C 不合题意;是无理数,故选项D 符合题意.故选:D . 【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.4.D解析:D 【详解】解:∵1<2<4,∴1<2, ∴﹣2<<﹣1,∴2<43, ∴a=2,b=422=-2∴1221a b -===. 故选D . 【点睛】本题考查估算无理数的大小.5.C解析:C 【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125= ∴6465125<<∴45<.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.6.B解析:B【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B.【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.9.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a与b的值,即可求出-a b的值.【详解】a==,且a+b<0,解:∵3∴a=−4,a=−3;a=−4,b=3,则a−b=−1或−7.故选D.【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.A解析:A【分析】求出每个根式的范围,再判断即可.【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题11.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.12.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.13.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:2213n n -+. 14.131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131,5n+1=131, 解得n=26, 5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==. 1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.16.【分析】利用算术平方根的定义计算得到的值,求出的算术平方根即可..【详解】∵,,∴的算术平方根为;故答案为:.【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键. 解析:12【分析】14=的值,求出14的算术平方根即可.. 【详解】14=12=,的算术平方根为12; 故答案为:12. 【点睛】此题考查了算术平方根,熟练掌握平方根的定义是解本题的关键.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】 此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑; (3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)5,3;(2)有正格数对,正格数对为()26L ,【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -=∵x ,kx 为正整数且k 为整数∴329k +=,3k =,2x =, ∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.23.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+,此时最大值为785993b c+=+=,最小值为6511777b c⎛⎫⎛⎫+=-+-=-⎪ ⎪⎝⎭⎝⎭,∵58611 3977 >>->-∴综上所述最大值为53,最小值为117-.【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)a=1,b﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得;②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得.【详解】(1)∵3 3.44<<∴[]3.43=∵6 5.75-<-<-∴[]5.76-=-故答案为:3;6-.(2)①∵3.074<∴3.07公里需要2元∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元∴7.93公里所需费用为:2+1=3(元)∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元)故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里.【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.。
人教版七下数学《实数》专项训练题
人教版七下数学《实数》专项训练题一、选择题(共24小题)1.下列数中,﹣4的相反数是()A.4B.﹣4C.14D.−142.若m与−(−13)互为相反数,则m的值为()A.﹣3B.−13C.13D.33.若x的绝对值是3,则x的值是()A.3B.﹣3C.±3D.−134.−20212022的绝对值是()A.−20212022B.20212022C.20222021D.−202220215.若|a﹣2|与|b+3|互为相反数,则a+b=()A.﹣1B.1C.2D.﹣3 6.若x+13=0,则x的倒数等于()A.13B.−13C.3D.﹣37.﹣0.5的倒数是()A.﹣5B.5C.﹣2D.28.估计√26的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间9.据统计,2021年第一季度,世界主要经济体的经济增长情况如下:德国﹣3.3%,美国0.4%,中国18.3%,日本﹣1.9%,其中增长率最小的是()A.美国B.中国C.日本D.德国10.下面算式与512−13+214的值相等的是()A.312−(−213)+(−414)B.12−(−313)+314C.212+(−213)+714D.412−(−13)+31411.﹣42的相反数是()A.﹣16B.16C.8D.﹣812.在式子“﹣23〇(﹣1)2中的“〇”内填入下列运算符号,计算后结果最大的是()A.+B.﹣C.×D.÷=3m,则m的值为()13.若32+32+⋯+32︸9个32A.2B.4C.9D.1814.同步卫星在赤道上空大约36000000米处,将数据36000000用科学记数法表示为()A.0.36×108B.3.6×107C.36×106D.3.6×10815.一季度,面对国际环境更趋复杂严峻和国内疫情频发带来的多重考验,在以习近平同志为核心的党中央坚强领导下,科学统筹疫情防控和经济社会发展,初步核算,一季度国内生产总值约为27万亿元,按不变价格计算,同比增长4.8%.数据27万亿元用科学记数法表示为()A.2.7×1013元B.2.7×1014元C.0.27×1014元D.27×1012元16.2022年1月17日10时35分,我国成功发射了试验十三号卫星,为中国航天取得开门红.其授时精度为世界之最,不超过0.000 000 0099秒.数据“0.000 000 009 9”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.9.9×10﹣8 17.芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,经测算,一粒芝麻的质量约为0.00000201kg,将数据0.00000201用科学记数法表示为()A.20.1×10﹣7B.2.01×10﹣6C.0.201×10﹣5D.2.01×10﹣8 18.据国家卫生健康委相关负责人介绍,截至2021年12月25日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗275809.4万剂次.数据“275809.4万”精确到千万位可用科学记数法表示为()A.27×108B.2.76×109C.2.758×109D.2.7×10919.近似数3.20精确的数位是()A.十分位B.百分位C.千分位D.十位20.1,−√2,0,√3中最小的数是()A.1B.−√2C.0D.√321.计算√3.24×640.09×4的结果是()A.24B.±24C.48D.±48 22.a的算术平方根是4,那么a的值是()A.8B.16C.2D.±2 23.√−83的平方是()A.8B.4C.2D.﹣4 24.下列实数中,是无理数的是()A.113B.√−83C.√0.04D.π二、填空题(共19小题)25.已知a满足|8﹣a|+√a−9=a,则a的值是.26.如图,数轴上A,B,C三点分别表示实数−√11,1,3,且B是CD的中点,则点A与点D之间表示整数的点有个.27.在如图所示的数轴上,点B与点C关于点A对称,A,B两点表示的实数分别是√3和﹣1,则线段BC的长度为.28.在比√5−1小的数中,最大的整数是.29.比较大小√2+√3√10(选填“>”、“=”、“<“).30.将实数2,﹣1,0,−√5从小到大用符号“<”连接起来.31.已知a,b都是实数.若|a﹣4|+√b+2=0,则√ab3=.32.−6427的立方根是.33.若实数a、b满足√a+2+|b﹣1|=0,则−1ab=.234.已知实数a、b,满足(a+2)2+√b−3=0,则ab的值.35.计算−√(−5)2的结果为.36.若|a﹣1|+(b+2)2=0,则(a+b)2022的平方根是.37.2022年3月12日是我国第44个植树节.全国绿化委员会办公室3月11日发布的《2021年中国国土绿化状况公报》显示,全国完成造林360万公顷,种草改良草原306.67万公顷,治理沙化、石漠化土地144万公顷.360万可用科学记数法表示为.38.《易经》中记载,远古时期人们通过结绳记数.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,示例:图①表示的数量为2+0×6+3×62+2×63+1×64=1838(个).则图②表示的数量为个.39.茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了元.40.在罗马数字符号中,用I代表1,V代表5,X代表10.一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加上小数字的数目;一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如:“Ⅶ”表示“7”,“Ⅳ”表示“4”,则“XV”表示的数字为.41.若|m﹣2|+(n+3)2=0,则(m+n)2022=.42.某市今年参加中考的学生人数大约9.89×104人,这个近似数精确到位.43.若数a四舍五入后得a=3.14,则a的取值范围为.三、解答题(共13小题)44.已知数轴上有两个点A:﹣3,B:1.(1)求线段AB的长;(2)若|m|=2,且m<0;在点B右侧且到点B距离为5的点表示的数为n.①求m与n;②计算2m+n+mn;÷|﹣2|.45.计算:32﹣(1﹣4)×1346.如图,在一条不完整的数轴上,点A,B,C对应的数分别为a,b,c,其中点A在点B的左侧,且a+b=0.(1)若AB=4,c=5,求a+c的值;(2)若点C在点A的左侧,化简|a﹣c|+|a﹣b|;(3)若b=6,AB=3BC,求c的值.47.淇淇同学在电脑中设置了一个有理数的运算程序:输入数“a”加“★”键+1.再输入“b”,就可以得到运算a★b=|2﹣a2|−1b(1)按此程序(﹣3)★2=;(2)若淇淇输入数“﹣1”加“★”键再输入“x”后,电脑输出的数为1,求x的值;(3)嘉嘉同学运用淇淇设置的在这个程序时,屏幕显示:“该操作无法进行,”你能说出嘉嘉在什么地方出错了吗?48.若两个有理数A、B满足A+B=8,则称A、B互为“吉祥数”.如5和3就是一对“吉祥数”.回答下列问题:(1)求﹣5的“吉祥数”;(2)若3x的“吉祥数”是﹣4,求x的值;(3)x和9能否互为“吉祥数”?若能,请求出;若不能,请说明理由.49.在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,B,C是AD的三等分点,如图所示.(1)BC=;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为﹣10,求出点A,B,D所对应数的和.50.计算:﹣12+√8−|√2−3|+(12)﹣2.51.计算:(π﹣3)0−√12+(12)﹣1+|1﹣2√3|.52.计算:(π−3)0+(−15)−1−√16+cos60°⋅(−1)2022−|−7|.53.观察以下算式:①1×11×5=18×(1+31×5);②2×35×9=18×(1+35×9);③3×59×13=18×(1+39×13).(1)请写出第④个算式:.(2)请用n(n是正整数)表示出第n个算式,并计算1×11×5+2×35×9+3×59×13+⋯+9×17 33×37+10×1937×41.54.如图,在一条直线上,从左到右依次有点A、B、C,其中AB=4cm,BC=2cm.以这条直线为基础建立数轴、设点A、B、C所表示数的和是p.(1)如果规定向右为正方向;①若以BC的中点为原点O,以1cm为单位长度建立数轴,则p=;②若单位长度不变,改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值;并说明原点每向右移动1cm,p值将如何变化?③若单位长度不变,使p=64,则应将①中的原点O沿数轴向方向移动cm;④若以①中的原点为原点,单位长度为ncm建立数轴,则p=.(2)如果以1cm为单位长度,点A表示的数是﹣1,则点C表示的数是.55.计算:(−81)×49−49÷(−89).解法1:原式=(−81)×(49−49)÷(−89)①=(−81)×0÷(−89)②=0③解法2:原式=(−81)×49−49×(−98)①=−36+12②=−3612③(1)解法1是从第步开始出现错误的;解法2是从第步开始出现错误的;(填写序号即可)(2)请给出正确解答.56.如图,数轴上从左到右有点A,B,C,D,其中点C为原点,A、D所对应的数分别为﹣5,1,点B为AD的中点.(1)在图中标出点C的位置,并直接写出点B对应的数;(2)若在数轴上另取一点E,且B,E两点间的距离是7,求A,B,C,D,E对应的数的和.。
七年级数学下册实数的混合运算专项训练(60题)(人教版)
专题6.3 实数的混合运算专项训练(60题)【人教版】考卷信息:本卷试题共60道大题,本卷试题针对性较高,覆盖面广,选题有深度,涵盖了实数的混合运算的所有情况!一.解答题(共60小题)1.(2022春•芜湖期末)计算:|1−√3|+|2−√3|+(−√9)2+√−643.【分析】利用绝对值的意义,实数的乘方法则和立方根的意义解答即可.【解答】解:原式=√3−1+2−√3+9﹣4=6.2.(2022春•永城市期末)计算:√−273−√925+|√643−√49|.【分析】首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:√−273−√925+|√643−√49|=﹣3−35+|4﹣7|=﹣3−35+|﹣3|=﹣3−35+3=−35.3.(2022春•杨浦区校级期末)计算:√314−1−√252−242+√(−8)23.【分析】利用算术平方根和立方根的意义化简运算即可.【解答】解:原式=√94−√49+√643=32−7+4=−32.4.(2022春•合阳县期末)计算:√36−√(−3)2+√−83×√14.【分析】先计算平方根、立方根,再计算乘法,后计算加减.【解答】解:√36−√(−3)2+√−83×√14=6−3+(−2)×12=6﹣3﹣1=2.5.(2022春•开福区校级期末)计算:√4+|√3−3|−√−273+(−2)3.【分析】先计算开平方、开立方、立方和绝对值,后计算加减.【解答】解:√4+|√3−3|−√−273+(−2)3=2+3−√3+3﹣8=−√3.6.(2022春•南丹县期末)计算:√36+√−273−√(−5)2−|√2−2|.【分析】根据二次根式的加减运算法则以及绝对值的性质即可求出答案.【解答】解:原式=6﹣3﹣5﹣(2−√2)=﹣2﹣2+√2=﹣4+√2.7.(2022春•防城区校级期末)计算:√−273−√19+√3+|√3−√9|.【分析】先计算开立方、开平方和绝对值,后计算加减.【解答】解:√−273−√19+√3+|√3−√9|=﹣3−13+√3+3−√3=−13.8.(2022春•绵阳期末)计算:|√3−2|+√100×√0.0643−√3(√3−1).【分析】首先计算开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|√3−2|+√100×√0.0643−√3(√3−1)=2−√3+10×0.4﹣3+√3=2−√3+4﹣3+√3=3.9.(2022春•齐齐哈尔期末)计算|1−√3|+√1916−√−1643+√(−2)2.【分析】利用绝对值的意义,算术平方根的意义,立方根的意义和二次根式的性质化简运算即可.【解答】解:原式=√3−1+54−(−14)+2=√3−1+54+14+2√3−1+32+2=√3+52.10.(2022春•钦州期末)计算:√81+√−273−√(−2)2+|−√3|.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:√81+√−273−√(−2)2+|−√3| =9+(﹣3)﹣2+√3 =9﹣3﹣2+√3 =4+√3.11.(2022春•岳池县期末)计算:√−273+|2−√3|﹣(−√16)+2√3.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=﹣3+2−√3+4+2√3 =3+√3.12.(2022春•定南县期末)计算:√2783−√254−√3(√3−1√3).【分析】直接利用立方根的性质以及二次根式的性质、二次根式的乘法运算法则分别化简,进而得出答案.【解答】解:原式=32−54−3+1=−74.13.(2022春•宣恩县期末)计算;√83−√3(√3−1)+|√3−2|+√(−3)2+(﹣1)2022. 【分析】根据立方根、绝对值和有理数的乘法分别化简,再计算即可. 【解答】解:原式=2﹣3+√3−(√3−2)+3+1 =2﹣3+√3−√3+2+3+1 =5.14.(2022春•华阴市期末)计算:√9−(﹣1)2022−√−83+|2−√6|. 【分析】先算乘方和开方,再化简绝对值,最后算加减. 【解答】解:原式=3﹣1﹣(﹣2)+√6−2 =3﹣1+2+√6−2 =2+√6.15.(2022春•剑阁县期末)计算:﹣12022+√16×(−3)2+(−6)÷√−83. 【分析】先利用乘方,立方根,算术平方根进行运算,再进行实数的混合运算求解. 【解答】解:原式=﹣1+4×9+(﹣6)÷(﹣2) =﹣1+36+3 =38.16.(2022春•镜湖区校级期末)计算:﹣12022+√25−|1−√2|+√−83−√(−3)2. 【分析】原式利用乘方的意义,算术平方根、立方根定义,绝对值的代数意义,以及二次根式性质计算即可求出值.【解答】解:原式=﹣1+5﹣(√2−1)﹣2﹣3=﹣1+5−√2+1﹣2﹣3=−√2.17.(2022春•朝天区期末)计算:|52−√9|+(﹣1)2022−√273+√(−6)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|52−√9|+(﹣1)2022−√273+√(−6)2=12+1﹣3+6=92.18.(2022春•渭南期末)计算:√25−|1−√2|+√−273−√(−3)2.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:√25−|1−√2|+√−273−√(−3)2=5−√2+1+(−3)−3=5−√2+1−3−3=−√2.19.(2022春•中山市期末)计算:√16+√−83+|√5−3|﹣(2−√5).【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣2+3−√5−2+√5=3.20.(2022春•谷城县期末)计算:|√3−2|−√−83+√3×(√3+1√3)−√16.【分析】直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=2−√3+2+3+1﹣4=4−√3.21.(2022春•平邑县期末)计算:(1)√−83−√3+(√5)2+|1−√3|;(2)−23−|1−√2|−√−273×√(−3)2.【分析】(1)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案;(2)直接利用立方根的性质以及绝对值的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:(1)原式=−2−√3+5+√3−1 =2;(2)原式=−8+1−√2−(−3)×3 =−8+1−√2+9 =2−√2.22.(2022春•费县期末)计算: (1)√−83−√3+(√5)2+|1−√3|; (2)﹣23﹣|1−√2|−√−273×√(−3)2.【分析】(1)原式利用立方根定义,二次根式性质,以及绝对值的代数意义计算即可求出值;(2)原式利用乘方的意义,绝对值的代数意义,以及立方根,二次根式性质计算求出值. 【解答】解:(1)原式=﹣2−√3+5+√3−1 =2;(2)原式=﹣8﹣(√2−1)﹣(﹣3)×3 =﹣8−√2+1+9 =2−√2.23.(2022春•西平县期末)计算: (1)√183+√(−2)2+√14;(2)﹣12+√4+√−273+|√3−1|. 【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. (2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)﹣12+√4+√−273+|√3−1| =﹣1+2+(﹣3)+(√3−1) =﹣1+2+(﹣3)+√3−1 =√3−3.24.(2022春•虞城县期末)(1)计算:(﹣1)2023+|2−√5|−√9;(2)求式中x的值:(x+2)3=−1258.【分析】(1)根据乘方运算、绝对值的性质以及二次根式的加减运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=﹣1+√5−2﹣3=﹣6+√5.(2)(x+2)3=−1258,x+2=−52,x=−92.25.(2021春•新市区校级期末)计算:(1)√81+√−273+√(−2)2+|√3−2|;(2)求x的值,2(x+3)3+54=0.【分析】(1)根据求立方根、绝对值的意义、实数的运算法则等知识直接计算即可;(2)利用立方根的含义求解x+3,再求解x即可.【解答】解:(1)√81+√−273+√(−2)2+|√3−2|;=9+(−3)+2+2−√3=10−√3;(2)2(x+3)3+54=0,变形得(x+3)3=﹣27,即有x+3=﹣3,则x=﹣6.26.(2022春•林州市校级期末)计算(1)√−83+|√3−3|+√(−3)2−(−√3);(2)(﹣2)2×√116+|√−83+√2|+√2.【分析】(1)利用立方根、去绝对值、算术平方根、去括号定义求解即可.(2)利用数的平方、算术平方根、去绝对值化简求值即可.【解答】解:(1)原式=﹣2+3−√3+3+√3=4;(2)原式=4×14+2−√2+√2=1+2=3.27.(2022春•泗水县期末)计算:(1)2√2+√25+√83−|√2−2|;(2)√214−√(−2)4+√1−19273+(−1)2022.【分析】(1)直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质、立方根的性质、有理数的乘方运算法则分别化简,进而合并得出答案.【解答】解:(1)原式=2√2+5+2﹣(2−√2)=2√2+5+2﹣2+√2=3√2+5;(2)原式=32−4+23+1=−56.28.(2022春•新市区期末)计算:(1)√0.25−√−273+√(−14)2;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)根据算术平方根、立方根的性质化简,再计算即可;(2)根据绝对值的性质化简,再合并即可.【解答】解:(1)原式=0.5+3+14=334;(2)原式=(√3−√2)﹣(√3−2)﹣(√2−1)=√3−√2−√3+2−√2+1=3﹣2√2.29.(2022春•安次区校级期末)计算:(1)√4−√−83+√16+5;(2)|√3−2|−√14+√3(√3+1)−√−183.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而合并得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:(1)原式=2+2+4+5=13;(2)原式=2−√3−12+3+√3+12=5.30.(2022春•博兴县期末)计算:(1)√1−89−√643+√−1273;(2)√2.56−√0.2163+|1−√2|.【分析】(1)原式利用算术平方根及立方根定义计算即可求出值;(2)原式利用算术平方根,立方根定义,以及绝对值的代数意义计算即可求出值.【解答】解:(1)原式=√19−√643+√−1273=13−4−13=﹣4;(2)原式=1.6﹣0.6+√2−1=√2.31.(2022春•固始县期末)计算:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简每一个绝对值,然后再进行计算即可解答.【解答】解:(1)(−2)3×√(−4)2+√(−4)33+(−12)2−√273=﹣8×4+(﹣4)+14−3=﹣32﹣4+14−3=﹣3834;(2)|1−√2|+|√2−√3|+|√3−2|+|2−√5| =√2−1+√3−√2+2−√3+√5−2=√5−1.32.(2022春•忠县期末)计算:(1)√32+√−273+√49;(2)−14×√4+|√9−5|+√214+√−0.1253.【分析】(1)利用算术平方根,立方根的意义化简运算即可;(2)注意各项的符号和运算法则.【解答】解:(1)原式=3﹣3+23=23,(2)原式=﹣1×2+5﹣3+32−12=﹣2+5﹣3+1=1.33.(2022春•天津期末)计算:(1)求式子中x的值:√ᵆ2−243=1;(2)√3+√(−3)2−√−83−|√3−2|.【分析】(1)利用立方根的意义和平方根的意义解答即可;(2)利用二次根式的性质,立方根的意义,绝对值的意义解答即可.【解答】解:(1)∵√ᵆ2−243=1,∴x2﹣24=1,∴x2=25.∴x=±5.(2)原式=√3+3﹣(﹣2)﹣(2−√3)=√3+3+2﹣2+√3=3+2√3.34.(2022春•清丰县期末)计算:(1)(−2)3×18−√273×(−√19);(2)(3+3√3)√3−(2√3+√3).【分析】(1)利用有理数的乘方法则,立方根的意义和平方根的意义化简计算即可;(2)利用二次根式的性质解答即可.【解答】解:(1)原式=﹣8×18−3×(−13)=﹣1﹣(﹣1)=0;(2)原式=3√3+9﹣3√3=9.35.(2022春•潼南区期末)计算下列各式的值:(1)|−2|+√916−√83;(2)√0.25+|√5−3|+√−1253−(−√5).【分析】先计算开方及绝对值,再合并即可.【解答】解:(1)原式=2+34−2=34;(2)原式=0.5+3−√5−5+√5=﹣1.5.36.(2022春•綦江区期末)计算.(1)计算:(﹣1)3+|−2√2|+√273−√4;(2)√9+|√5−3|+√−643+(﹣1)2022.【分析】(1)原式利用乘方的意义,绝对值的代数意义,以及算术平方根、立方根定义计算即可求出值;(2)原式利用算术平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可求出值.【解答】解:(1)原式=﹣1+2√2+3﹣2=2√2;(2)原式=3+3−√5−4+1=3−√5.37.(2022春•临沭县期中)(1)计算:√(−1)23+|1−√2|+√(−2)2;.(2)求x的值:(x+1)3=−278【分析】(1)先计算√(−1)23、√(−2)2,再化简绝对值,最后加减.(2)利用立方根的意义求出x.【解答】解:(1)原式=√13+|1−√2|+√4=1+√2−1+2=√2+2;(2)x+1=−√273,8−1,x=−32x=−5.238.(2022春•聂荣县期中)计算:(1)|√6−√2|+|√2−1|﹣|3−√6|;(2)√273.3+√(−3)2−√−1【分析】(1)先化去绝对值号,再加减;(2)先求出27、﹣1的立方根及(﹣3)2的算术平方根,再加减.【解答】解:(1)原式=√6−√2+√2−1﹣3+√6=2√6−4;(2)原式=3+3+1=7.39.(2022春•河北区校级期中)计算:(1)√16−√273+(√13)2+√(−1)33; (2)√3(√3−1)+|√2−√3|.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√16−√273+(√13)2+√(−1)33 =4﹣3+13+(﹣1) =13.(2)√3(√3−1)+|√2−√3|=√3×√3−√3+(√3−√2)=3−√3+√3−√2=3−√2.40.(2022春•西城区校级期中)(1)计算:√81+√−273+√(−23)2; (2)计算:4√3−2(1+√3)+|2−√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√81+√−273+√(−23)2 =9+(﹣3)+23=9﹣3+23=203; (2)4√3−2(1+√3)+|2−√2|=4√3−2﹣2√3+2−√2=2√3−√2.41.(2022春•夏邑县期中)计算:(1)√(94)2+|2−√7|−√(78−1)3; (2)(−√6)2×12+√−273+√62+82. 【分析】(1)根据二次根式的性质,绝对值的性质,立方根的性质进行计算便可;(2)根据二次根式的性质,立方根的性质进行计算便可.【解答】解:(1)原式=94+√7−2−√−183=94+√7−2+12=√7+34;(2)原式=6×12−3+10=3﹣3+10=10.42.(2022春•海淀区校级期中)计算:(1)√25+√−643−|2−√5|+√(−3)2;(2)√2(2+√2)﹣2√2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘法,再算加减,即可解答.【解答】解:(1)√25+√−643−|2−√5|+√(−3)2=5+(﹣4)−√5+2+3=5﹣4−√5+2+3=6−√5;(2)√2(2+√2)﹣2√2=2√2+2﹣2√2=2.43.(2022春•洛龙区期中)计算和解方程:(1)√0.04+√−83−√14+|√3−2|+2√3;(2)2(1﹣x)2=8.【分析】(1)根据二次根式的性质,立方根的性质,绝对值的性质,合并同类二次根式的法则进行计算便可;(2)运用直接开平方法解方程便可.【解答】解:(1)原式=0.2﹣2−12+2−√3+2√3=﹣0.3+√3;(2)(1﹣x)2=4,1﹣x=±2,∴x1=﹣1,x2=3.44.(2022春•随州期中)计算下列各式:①√(−1)2+√14×(−2)2−√−643②|√3−√2|+|√3−√2|−|√2−1|【分析】(1)利用算术平方根和立方根计算即可.(2)先利用绝对值的定义去绝对值,再合并运算.【解答】解:①√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.②|√3−√2|+|√3−√2|−|√2−1|=√3−√2+√3−√2−(√2−1)=√3−√2+√3−√2−√2+1=(√3+√3)−(√2+√2+√2)+1=2√3−3√2+1.45.(2022春•老河口市月考)计算(1)√16+√149−√−(−4);(2)√52−42−√62+82+√(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√16+√149−√−(−4)=4+17−2=157;(2)√52−42−√62+82+√(−2)2=3﹣10+2=﹣5.46.(2022春•渝北区月考)计算:(1)√−83−√9+(−1)2021+(−√2)2;(2)(−3)2+2×(√2−1)−|−2√2|.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√−83−√9+(−1)2021+(−√2)2=﹣2﹣3+(﹣1)+2=﹣4;(2)(−3)2+2×(√2−1)−|−2√2|=9+2√2−2﹣2√2=7.47.(2022春•崇义县期中)计算:(1)√4+|﹣2|+√−643+(﹣1)2022;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)√4+|﹣2|+√−643+(﹣1)2022=2+2﹣4+1=1;(2)(−√3)2+√(−5)2−(﹣7)+√82÷2 =3+5+7+2√2÷2=15+√2.48.(2022春•黄石期中)计算:(1)﹣(12)2−√2516−√−83; (2)|√2−√3|+|1−√2|+√3−(﹣1)2021.【分析】(1)首先计算乘方、开平方和开立方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)﹣(12)2−√2516−√−83=−14−54−(﹣2) =−32+2 =12.(2)|√2−√3|+|1−√2|+√3−(﹣1)2021=√3−√2+(√2−1)+√3−(﹣1)=√3−√2+√2−1+√3+1=2√3.49.(2022春•渑池县期中)计算:(1)√214−√0.09+√(−3)2;(2)−43÷(−32)−√−83−(1−√9)+|1−√2|.【分析】(1)首先计算开方,然后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开立方和绝对值,然后计算除法,最后从左向右依次计算,求出算式的值即可.【解答】解:(1)√214−√0.09+√(−3)2=32−0.3+3=4.2.(2)−43÷(−32)−√−83−(1−√9)+|1−√2|=﹣64÷(﹣32)﹣(﹣2)﹣1+3+(√2−1)=2+2﹣1+3+√2−1=5+√2.50.(2022春•江北区校级月考)计算:(1)√0.2163−√1916+5×√1100;(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2.【分析】(1)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解(1)√0.2163−√1916+5×√1100=0.6−54+5×110=35−54+12=−320.(2)|−√2|−√−83+|2−√3|+(−√9)2+√(−9)2 =√2−(﹣2)+(2−√3)+9+9=√2+2+2−√3+9+9=√2−√3+22.51.(2022春•三台县月考)计算.(1)﹣12022+√(−2)2−√643×√−27643+|√3−2|;(2)13(x ﹣2)2−427=0.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.(2)首先求出(x ﹣2)2的值;然后根据平方根的含义和求法,求出x ﹣2的值,进而求出x 的值即可.【解答】解:(1)﹣12022+√(−2)2−√643×√−27643+|√3−2| =﹣1+2﹣4×(−34)+(2−√3) =﹣1+2+3+2−√3=6−√3.(2)∵13(x ﹣2)2−427=0,∴(x ﹣2)2=49, ∴x ﹣2=−23或x ﹣2=23, 解得:x =43或x =83. 52.(2022春•天门校级月考)计算(1)|√5−2|+√25+√(−2)2+√−273; (2)﹣12﹣(﹣2)3×18−√273×|−13|+2÷(√2)2. 【分析】(1)原式利用绝对值的代数意义,算术平方根、立方根性质计算即可求出值;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可求出值.【解答】解:(1)原式=√5−2+5+2﹣3=√5+2;(2)原式=﹣1﹣(﹣8)×18−3×13+2÷2 =﹣1+1﹣1+1=0.53.(2022春•铁锋区期中)计算(1)√22−√214+√78−13−√−13; (2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1=1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.54.(2021春•涪城区校级期中)计算:(1)√49−√−643−(√2)2+√1+916;(2)√(−5)2−|√3−2|+|√5−3|+|−√5|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=7+4﹣2+54=1014;(2)原式=5﹣(2−√3)+3−√5+√5=5﹣2+√3+3−√5+√5=6+√3.55.(2016秋•苏州期中)计算下列各题.(1)√0.16+√0.49−√0.81;(2)﹣16√0.25−4√1−653;(3)|−√549|−√210273+√19+116;(4)√1−0.9733×√(−10)2−2(√133−π)0.【分析】(1)、(2)根据数的开方法则分别计算出各数,再根据实数的加减法则进行计算即可;(3)先根据绝对值的性质及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(4)先根据数的开方法则及0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)原式=0.4+0.7﹣0.9=0.2;(2)原式=﹣16×0.5﹣4×(﹣4)=﹣8+16=8;(3)原式=73−43+512=1712;(4)原式=0.3×10﹣2=3﹣2=1.56.(2022春•林州市期末)计算:(1)计算:√(−2)2−√1253+|√3−2|+√3;(2)已知x是﹣27的立方根,y是13的算术平方根,求x+y2+6的平方根.【分析】(1)直接利用二次根式的性质以及立方根的定义、绝对值的性质分别化简,进而合并得出答案;(2)直接利用立方根的定义以及算术平方根的性质得出x,y的值,进而利用平方根的定义得出答案.【解答】解:(1)原式=2﹣5+2−√3+√3=﹣1;(2)∵x是﹣27的立方根,∴x=﹣3,∵y是13的算术平方根,∴y=√13,∴x+y2+6=﹣3+13+6=16,∴x+y2+6的平方根为:±4.57.(2022春•无棣县期末)(1)计算:√94+√−183−|3−√2|+√(−2)2.(2)若实数a+5的一个平方根是﹣3,−14b﹣a的立方根是﹣2,求√ᵄ+√ᵄ的值.【分析】(1)利用算术平方根的意义立方根的意义,绝对值的意义和二次根式的性质化简运算即可;(2)利用平方根和立方根的意义求得a,b的值,再将a,b的值代入计算即可.【解答】解:(1)原式=32−12−(3−√2)+2=1﹣3+√2+2 =√2;(2)∵实数a +5的一个平方根是﹣3,∴a +5=9,∴a =4.∵−14b ﹣a 的立方根是﹣2, ∴−14b ﹣a =﹣8, ∴−14b ﹣4=﹣8,∴b =16.∴√ᵄ+√ᵄ=√4+√16=2+4=6.58.(2022春•洛阳期中)已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为√2,f 的算术平方根是8,求12ab +ᵅ+ᵅ5+e 2+√ᵅ3的值. 【分析】根据相反数,倒数,以及绝对值的意义求出c +d ,ab 及e 的值,代入计算即可.【解答】解:由题意可知:ab =1,c +d =0,e =±√2,f =64,∴e 2=(±√2)2=2,√ᵅ3=√643=4, ∴12ab +ᵅ+ᵅ5+e 2+√ᵅ3=12+0+2+4=612. 59.(2022春•秭归县期中)已知(x ﹣7)2=121,(y +1)3=﹣0.064,求代数式√ᵆ−2−√ᵆ+10ᵆ+√245ᵆ3的值. 【分析】根据平方根的定义,以及立方根的定义即可求得x ,y 的值,然后代入所求的代数式化简求值即可.【解答】解:∵(x ﹣7)2=121,∴x ﹣7=±11,则x =18或﹣4,又∵x ﹣2>0,即x >2.则x =18.∵(y +1)3=﹣0.064,∴y +1=﹣0.4,∴y =﹣1.4.则√ᵆ−2−√ᵆ+10ᵆ+√245ᵆ3=√18−2−√18−10×1.4−√245×1.43=4﹣2﹣7=﹣560.(2022春•朔州月考)(1)计算:√14−√−0.1253+√(−4)2−|−6|;(2)解方程:25x2﹣36=0;(3)已知√ᵆ+1+|ᵆ−2|=0,且√1−2ᵆ3与√3ᵆ−53互为相反数,求yz﹣x的平方根.【分析】(1)利用算术平方根的意义,立方根的意义,二次根式的性质和绝对值的意义解答即可;(2)利用平方根的意义解答即可;(3)利用非负数的意义和相反数的意义求得x,y,z的值,再将x,y,z的值代入解答即可.【解答】解:(1)原式=12−(﹣0.5)+4﹣6=12+0.5+4﹣6=﹣1;(2)25x2﹣36=0,∴x2=3625.∴x是3625的平方根,∴x=±65.(3)∵√ᵆ+1+|ᵆ−2|=0,√ᵆ+1≥0,|y﹣2|≥0,∴x+1=0,y﹣2=0.∴x=﹣1,y=2.∵√1−2ᵆ3与√3ᵆ−53互为相反数,∴1﹣2z+3z﹣5=0.解得:z=4.∴yz﹣x=8﹣(﹣1)=9.∵9的平方根为±3,∴yz﹣x的平方根为±3.。
人教版七年级初一数学第二学期第六章 实数单元质量专项训练
人教版七年级初一数学第二学期第六章 实数单元质量专项训练一、选择题1.在下面各数中无理数的个数有( )-3.14,23,227,0.1010010001...,+1.99,-3π A .1个B .2个C .3个D .4个 2.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C .1n +D .21n 3.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()aa=④ C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.4.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >06.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会 7.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个.①3*2=11.②()215⊕-=-.③(13*25)712912425⎛⎫⊕⊕=- ⎪⎝⎭. ④若a *b=b *a ,则a=b. A .1个B .2个C .3个D .4个 8.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±99.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.a 10的整数部分,b 的立方根为-2,则a+b 的值为________.14.观察下列各式:123415⨯⨯⨯+=;2345111⨯⨯⨯+=;3456119⨯⨯⨯+=;121314151a ⨯⨯⨯+=,则a =_____.15.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 16.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: [10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.19.利用计算器,得0.050.2236,0.50.7071,5 2.236,507.071≈≈≈≈,按此规律,可得500的值约为_____________20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.22.(1)观察下列式子:①100222112-=-==;②211224222-=-==;③322228442-=-==;……根据上述等式的规律,试写出第n个等式,并说明第n个等式成立;(2)求0122019++++的个位数字.222223.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O,对于两个不同的点A和B,若点A、 B到点O的距离相等,则称点A与点B互为基准等距变换点.例如图2,点A表示数-1,点B表示数5,它们与基准点O的距离都是3个单位长度,我们称点A与点B互为基准等距变换点.①记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点.I.若m=3,则n= ;II.用含m的代数式表示n= ;②对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;③点P在点Q的左边,点P与点Q之间的距离为8个单位长度,对Q点做如下操作: Q1为Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3为Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5为Q4的基准等距变换点......,依此顺序不断地重复变换,得到Q5,Q6,Q7....Q n,若P与Q n.两点间的距离是4,直接写出n的值.24.定义☆运算:观察下列运算:(+3)☆(+15)= +18(﹣14)☆(﹣7)= +21(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣230☆(﹣15)= +15(+13)☆ 0= +13两数进行☆运算时,同号,异号.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,.(2)计算:(﹣11)☆ [0☆(﹣12)]=.(3)若2×(﹣2☆a)﹣1=8,求a的值.25.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.26.z 是64的方根,求x y z -+的平方根【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.2.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,.故选:D .【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.3.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.4.C解析:C【分析】.【详解】∵91516<<,<<即:34<<,3与4之间,故数轴上的点为点M ,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.5.D解析:D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a <﹣3,﹣2<b <﹣1,0<c <1,2<d <3,∵﹣4<a <﹣3,0<c <1,∴ac <0,故A 错误;∵﹣2<b <﹣1,0<c <1,∴1<|b |<2,0<|c |<1,故|c |<|b |,故B 错误; ∵﹣4<a <﹣3,2<d <3,∴﹣3<﹣d <﹣2,故a <﹣d ,故C 错误;∵﹣2<b <﹣1,2<d <3,∴b +d >0,故D 正确.故选:D .【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.6.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B 所对应的数为1,翻转2次后,点C 所对应的数为2翻转3次后,点A 所对应的数为3翻转4次后,点B 所对应的数为4经过观察得出:每3次翻转为一个循环∵20193673÷=∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.7.B解析:B【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果.【详解】解:∵a *b =3a -b ,2a b b a ⊕=-,∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确; ③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦3(12)5=⊕- 2312()5=-- 30925=- 故③错误;④若a *b=b *a ,则有3a -b=3b-a,化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.8.C解析:C【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解.【详解】由题意得:23522x -=,∴29x =,∵2(39)±=,∴3x =±,故选:C .【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键. 9.B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误; ③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B.【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.10.B解析:B【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.13.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.14.181【分析】观察各式得出其中的规律,再代入求解即可.由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的解析:17 45【分析】按照新定义的运算法先求出x,然后再进行计算即可.【详解】解:由15 21=21(21)(11)3x⊕=++++18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.16.或【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}==2x+1 解析:12或13【解析】 【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1, ∵M{3,2x +1,4x -1}=min{2,-x +3,5x}, ∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.17.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a -【解析】由数轴得,a +b <0,b-a >0,=-a-b +b-a =-2a.故答案为-2a.点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时a 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案. 【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】≈≈≈≈,7.071不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,≈.因此得到第三个数的估值扩大1022.36故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】 (1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5. 【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.23.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点;(2)由基准点的定义可知,22m n +=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n ;【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1,∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4,∴n=4-m ;故答案为:4-m②设点M 表示的数是m ,先乘以23,得到23m ,再沿着数轴向右移动2个单位长度得到点N 为23m+2,∵点M 与点N 互为基准等距变换点,∴23m+2+m=4,∴m=112; ③设P 点表示的数是m ,则Q 点表示的数是m+8,如图,由题可知Q 1表示的数是4-(m+8),Q 2表示的数是-4+(m+8),Q 3表示的数是8-(m+8),Q 4表示的数是-8+(m+8),Q 5表示的数是12-(m+8),Q 6表示的数是-12+(m+8)…∴当n 为偶数,Q n 表示的数是-2n+(m+8),∵若P 与Q n 两点间的距离是4,∴|m-[-2n+(m+8)]|=4,∴n=2或n=6.【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q 的变换规律是解题的关键.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决; (3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.26.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x、y的值,然后求出z的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z是64的方根,∴z=8-+=-1-2+8=5,所以,x y z-+的平方根是所以,x y z【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.。
实数(挑战综合(压轴)题分类专题)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)
专题6.15实数(挑战综合(压轴)题分类专题)(专项练习)【类型一】实数✭✭平方根✭✭立方根【类型①】实数➼➻平方根✭✭立方根➼➻解方程(两个题)1.求下列x 的值(1) ()2251360x +-=(2) ()3218x -=-2.求下列各式中x 的值:(1) 225640x -=;(2) ()33433270x ++=;(3) 2(21)16x +=【类型②】实数➼➻平方根✭✭立方根➼➻运算求值(两个题)3.计算: (1) 33(1)128-+ (2) 3223(5)(3)2532(3)--+.4.计算 (1)310.0184- (2) 332【类型③】实数➼➻平方根✭✭立方根➼➻综合化简与运算(四个题) 5.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B 3设点A 所表示的数为m .(1) 实数m 的值是_________;(2) 求()221m m +++的值.(3) 在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +4d -求238c d ++的平方根.6.已知:x 的平方根是3a +与215a -213b -.(1) 求a ,b 的值;(2) 求x 的值;(3) 求1a b +-的立方根.7.已知235,4,8a b c ===-.(1) 若,a b <求a b +的值;(2) 若0abc >,求32a b c --的值.8.计算: (1) 239(6)27--(2) 51的整数部分为a 51的小数部分为b ,求23a b +的值.【类型二】实数✭✭平方根✭✭立方根【类型①】实数➼➻混合运算(四个题)9.计算(1) ()29234--; (2) 223184(3)2⎛⎫- ⎪⎝⎭.10.计算: (1)23327(3)1--- (2) 23164(2)9--11.(1)用“<”“>”或“=”填空: 1 22 3 (2)由以上可知:①|12= ,②23= .(3)计算:12233420212022++.(结果保留根号)12.知识链接:①对于任意两个实数a ,b ,如果0a b ->,那么a b >;如果0a b -=,那么a b =;如果0a b -<,那么a b <;②任意实数a 的平方都是非负数,即20a ≥. 知识运用:(1) 7______53; (2) 已知a 为实数,2(32)A a =-,()()21432B a a a =---,请你比较A 、B 的大小;(3) 已知x 、y 均为正数,比较2x y +与82xy x y+的大小.【类型②】实数➼➻大小比较✭✭估算✭✭整数部分与小数部分(两个题) 13.已知21a -的平方根是3±,9b -的立方根是2,c 12(1) 求a 、b 、c 的值;(2) 若x 121212x 的值.14.阅读材料,解答下面的问题: 479273<<, 7的整数部分为272.(1) 6(2) 已知56a ,56的小数部分是b ,求2021()a b +的值.【类型③】实数➼➻运算✭✭化简✭✭规律(三个题)15.观察下列等式,并回答问题: ①1221=; 2332= 3443= 4554……(1) 请写出第⑤个等式:______356=______;(2) 写出你猜想的第n 个等式:______;(用含n 的式子表示)(3) 241-1的大小.16.观察下列各等式及验证过程:11122323-=211121223232323-=⨯⨯ 11113()23438-=21111313()23423423843-===⨯⨯⨯⨯ 11114()345415-=21111414()345345534541-==⨯⨯⨯⨯针对上述各式反映的规律,写出用n(n为正整数)表示的等式_____.17.观察表格,回答问题:a …0.0001 0.01 1 100 10000 …a…0.01 x 1 y 100 …x=y=(2)从表格中探究a a①10 3.161000≈________;②8.973b,用含m的代数式表示b,则b=________;m=897.3(3)a a的大小.当________a a>;当________a a;当________a a.【类型四】实数✭✭平方根(算术平方根)✭✭立方根➽拓展与应用【类型①】实数➼➻应用➼➻化简✭✭求值(四个题)18.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).(1)图中拼成的正方形的面积是___________;边长是___________;(2)你能把十个小正方形组成的图形纸(图3),剪开并拼成正方形吗?若能,请仿照图的形式把它重新拼成一个正方形.并求出这个正方形的边长是___________.19.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y6)x的值.20.综合与实践如图是一张面积为2400cm的正方形纸片.(1)正方形纸片的边长为______;(直接写出答案)(2)若用此正方形纸片制作一个体积为3216cm的无盖正方体,请在这张正方形纸片上画出无盖正方体的平面展开图的示意图,并求出该正方体所用纸片的面积.21.“2探究活动,根据各探究小组的汇报,完成下列问题.。
实数(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.8 实数(基础篇)(专项练习)一、单选题1.下列实数中,无理数是( ) A 3B .3.14C .0D .2272.下列说法:①负数和0没有平方根;①所有的实数都存在立方根;①正数的绝对值等于它本身;①相反数等于本身的数有无数个.正确的个数是( )A .0B .1C .2D .33.在2,0,2- ) A .2B .0C .3-D 242对应的点在( )A .点B 与点C 之间 B .点C 与点D 之间 C .点D 与点E 之间D .点E 与点F 之间5515a < ) A .12a <<B .23a <<C .34a <<D .24a <<6.已知2341156=,2351225=,2361296=,2371369=.若n 为整数且11334n n -,则n 的值为( )A .34B .35C .36D .3775a ,小数部分为b ,则2a b -=( ) A .25B .25C .65D .658.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .569.已知 432=1849,442=1936,452=2025,462=2116…,若n 为整数,且n 2048<n +1,则n 的值为( )A .43B .44C .45D .4610.勾股定理在《九章算术》中的表述是:“勾股术曰:勾股各自乘,并而开方除之,即弦”.即22c a b +(a 为勾,b 为股,c 为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是( )A .1B .2C .3D .4二、填空题1121的相反数是__________,3.14π-=____________ 1251___________1(填“>”、“<”或“=”) 1351小的数中,最大的整数是___________.14.如图所示,在数轴上点A 所表示的数为a ,则a 的值为 _______.15.已知实数a 在数轴上的位置如图所示,计算3||1|a a --=_____.16.若22a a -=-,则=a ________(请写出一个符合条件的无理数).17.按如图所示的程序计算,若开始输入的值为9,则最后输出的y 值是___________.18.观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++=+⨯; 3221113111341234x =++=+⨯; …根据以上规律,计算123420222022x x x x x +++++-=_______.三、解答题19.将下列各数填入相应的大括号里.22 7,3.1415926578-39320.6,0363π正分数:{…};整数:{…};无理数:{…}.20.计算:(1) 233336481125(3)4(2)--(2) 223153|168))(5(2-+----21.a,b均为正整数,且a7b32a+b的最小值.22.(1)如果x是313y是31313x y-根.(2)当m 为何值时,关于x 的方程547m x x +=+的解与方程341125x x -+-=的解互为相反数.23.探究题:(1) 计算下列各式,完成填空: 49649⨯= ,12549= ,12549⨯= (2) 通过上面的计算,比较左右两边的等式,你发现了什么?请用字母表示你发现的规律是 ;请用这一规律计算:227132024.阅读下列过程,回答问题(1)通过计算下列各式的值探究问题:22______20=______215⎛⎫=⎪⎝⎭______()23-______.探究:当0a≥2a______;当a<02a______.(2)应用(1)中所得结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,()222a b a b+.参考答案1.A【分析】根据无理数的定义,“无限不循环的小数是无理数”逐个分析判断即可.3 3.14,0,227中,3.14,0,2273故选:A.【点拨】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,①无限不循环小数,①含有π的数.2.C【分析】直接利用平方根、立方根、绝对值、相反数的性质分别分析得出答案.解:①0有平方根,故错误;①所有的实数都存在立方根,故正确;①正数的绝对值等于它本身,故正确;①相反数等于本身的数有1个,故错误;故选:C.【点拨】此题主要考查了平方根、立方根、绝对值、相反数等定义,正确掌握相关定义是解题关键.3.C【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数即可求解.解:由题可知,3022-<<<①最小的数是3-故选:C.【点拨】本题主要考查了实数比较大小,熟练掌握正实数都大于0,负实数都小于0是解题的关键.4.C2解:①122<21与2之间,即点D与点E之间,故选:C.25.D【分析】对不等式进行适当的放缩,即可得到答案.解:25154a <<<,24a ∴<<,故选:D .【点拨】本题考查了无理数的估算,对不等式进行适当放缩是解题的关键. 6.D1334 解:①2361296=,2371369=,且129613341369<<, ①36133437<,①n 为整数且11334n n -<, ①37n =,故D 正确. 故选:D .【点拨】本题主要考查估算无理数的大小,理解算术平方根的定义是正确解答的前提. 7.C5a 、b 的值,最后代入求出即可. 解:253<<,2a ∴=,52b =,222(52)65a b ∴-=⨯-=故选:C .5 8.C解:根据定义,得45<5110x +≤+ ①504<60x ≤+ 解得:46<56x ≤. 故选C . 9.C2048解:①452=2025,462=2116, ①2025<2048<2116, ①45204846,①n 为整数,且n 2048<n +1, ①n =45; 故选:C .【点拨】本题考查了无理数的估算,熟练掌握平方数是解题的关键. 10.D【分析】首先利用勾股定理求出“弦”,然后利用算术平方根的性质估计其最接近的整数. 解:依题意“弦”222313+ 而3.512.2513164=, ∴“弦”最接近的整数是4.故选:D .【点拨】本题主要考查了利用勾股定理进行计算,同时也利用了算术平方根的性质估计无理数的大小.11. 12 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.12.>【分析】先求出25<解:①222455=<=,①25<-=>,511520>,511故答案为:>.【点拨】本题主要考查了实数比较大小,熟知作差法比较大小的方法是解题的关键.13.151的范围即可解答.>,解:①54>,542=>,511①51小的数中,最大的整数是:1,故答案为:1.【点拨】本题考查了估算无理数的大小,熟练掌握平方数是解题的关键.142【分析】先根据勾股定理求出直角三角形的斜边,即可求解.解:如图:由图可知:22OA=+=112①数轴上点A所表示的数为a,①2a=2【点拨】本题考查了数轴和实数,勾股定理的应用,能读懂图是解此题的关键.1531##3-a-的符号,再化简绝对值即可求解.3a与1解:由数轴可得:0,3a a <>30a >,10a -<, ()31a a -- 31=,31.【点拨】本题考查了实数与数轴,根据数轴进行绝对值化简,解题关键是能利用数轴判断出式子的正负.162(答案不唯一)【分析】根据绝对值的性质可得a -2≤0,据此可得a 的取值范围,再根据无理数的定义求解即可.解:①22a a -=-, ①a -2≤0,2a ≤,①2a =2【点拨】本题考查了无理数以及估算无理数的大小,解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.17.3【分析】根据已知判断每一步输出结果即可得到答案.解:由所示的程序可得:9的算术平方根是3,3是有理数,取3的平方根3理数,输出为y ,①开始输入的x 值为9,则最后输出的y 值是3± 故答案为:3【点拨】本题考查实数的分类及运算,判断每步计算结果是否为无理数是解题的关键. 18.20222023【分析】根据已知等式,归纳总结得到拆项规律,根据规律展开,最后合并,即可求出答案. 解:①12211311112212x =++==+⨯ 2211711123623x =++==+⨯ 3221113111341234x =++=+⨯ ① ①12320222022x x x x +++⋯+-11111111202212233420222023=++++++⋯++-⨯⨯⨯⨯ 11111112022120222233420222023=+-+-+-+⋯+-- 112023 20222023. 故答案为:20222023. 【点拨】本题考查了数字的规律,解此题的关键是能根据已知条件得出规律. 19.22,3.14159265,0.67;36-337,9,23π,. 【分析】由正分数,整数,无理数的含义逐一判断各数,再填入各自的集合中即可得到答案.解:正分数:{ 22,3.14159265,0.67…}; 整数:{ 36-…};无理数:{ 337,9,23π,…}. 【点拨】本题考查的是实数的分类,掌握实数中的正分数,整数与无理数的含义是解题的关键.20.(1)3 (2)4【分析】(1)根据二次根式,三次根式的性质化简,再根据实数的混合运算即可求解;(2)根据乘方运算,绝对值性质,二次根式的性质,三次根式的性质化简,再根据实数的运算即可求解.(1233336481125(3)4(2)--495322=-++-+3=,故答案为:3.(2)解:223153|168))(5(2-+---1354245=-+++4=,故答案为:4.【点拨】本题主要考查二次根式,三次根式的性质,绝对值的性质,幂的运算,实数的混合运算,掌握二次根式,三次根式的性质,实数的混合运算是解题的关键.21.4 732a 、b 的值,最后求得a+b 的最小值即可.解:①4<7<9,①27<3.①1<2<8,①1322.①a 、b 均为正整数,①a 的最小值为3,b 只能是1,所以当a=3,b=1时,a+b 有最小值,最小值=3+1=4.【点拨】本题主要考查的是估算无理数的大小,732题的关键.22.(1)±3;(2)m=-4 【分析】(113313x 、y 的值,再代入计算即可.(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m 的值即可.解:(1)91316①3134<,①63137<+,①x=6,y=3136133=,①13x y -,①13x y -±3;(2)341125x x -+-=, 解得:x=-9,①547m x x +=+的解为x=9,代入,得54979m +⨯=+,解得:m=-4.【点拨】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程547m x x +=+的解. 23.(1)6,57,57 a b a b ⋅a ≥0,b ≥022*******【分析】(1)根据算术平方根的定义进行计算;(2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方2275271320320⨯ 解:(149366⨯==11525=5=4977⨯125525=49497⨯; 故答案为:6,57,57; (2)比较得到的等式发现两个非负数的算术平方根的积等于这两个数的积的算术平方根.a b a b =⋅a ≥0,b ≥0).22752793132032042=⨯= a b a b •(a ≥0,b ≥0),32【点拨】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.24.(1)2;0;15;3:a;a-;(2)应用:2a-.【分析】(1)分别计算各式的值,并归纳出探究结果;(2)先利用(1)式的探究结果化简二次根式,再根据字母a、b在数轴上的位置及绝对值的意义进行化简,合并后即可得出结果.解:(1222200215⎛⎫=⎪⎝⎭15()23-=3.探究:当0a≥2a a;当a<02a=-a故答案为:2;0;15;3:a;a-;(2)观察数轴可知:−2<a<−1,0<b<1,a+b<0.()222a b a b+=|a|+|b|+|a+b|=−a+b-a−b=−2a.【点拨】此题主要考查了算术平方根的计算以及二次根式的化简,根据已知能准确归纳探究结果并能运用其正确化简是解题的关键,此题重点培养学生的归纳应用能力.。
七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)
七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
人教版数学七年级下册第6章 实 数 专项训练
人教版数学七年级下册专项训练二实数1.√25的平方根是( )A.5B.5或-5C.√5或-√5D.√52.在3.14159,-√3,23,√7,1.732,π5,√5-1中,无理数有( )A.1个B.2个C.3个D.4个3.下列说法:①无理数是开方开不尽的数;②每一个无理数都可以用数轴上的一个点表示出来;③√256的算术平方根是4;④0的平方根和立方根都是0.其中正确的说法有( )A.4个B.3个C.2个D.1个4.按如图所示的程序计算,若开始输入的n值为√3,则最后输出的m值为( )A.15+7√3B.15+√3C.3+3√3D.3+√35.如图,正方形的周长为8个单位长度.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示-3的点重合,然后将数轴按顺时针方向绕该正方形一直转动下去,则数轴上表示2021的点与正方形上对应的数字是( )A.0B.2C.4D.66.若(x-3) 3=-64,则x=.7.比较大小:4-√130.5.(填“>”“<”或“=”)8.若点A在数轴上,且和表示1的点相距√3个单位长度,则点A表示的数为.9.规定:[a]表示小于a的最大整数.例如:[5]=4,[-6.7]=-7,则(1)[-3.2]+[6.3]=;(2)方程[-π]+2x=6的解是.10.计算:(1)√14+√0.52−√83;(2)|√3-π|-|π-√2|.11.已知x-2的平方根是±4,5x-y+21的立方根是5,求(x+y)3的平方根.12.正数x的两个平方根分别是2-a,2a-7.(1)求a的值;(2)求1-x这个数的立方根.13.王师傅有一根长40 m的钢材,他想将这段钢材锯断后焊成三个面积分别为3m2,13m2,47m2的正方形铁框.问王师傅的钢材够用吗?请通过计算说明理由.14.阅读理解:一般地,在数轴上点A ,B 表示的实数分别为a ,b (a <b ),则A ,B 两点的距离AB =x B -x A =b -a.如图,在数轴上点A ,B 表示的实数分别为-3,4,则记x A =-3,x B =4.因为-3<4,显然A ,B 两点的距离AB =x B -x A =4-(-3)=7.若C 为线段AB 的中点,则AC =CB ,所以x C -x A =x B -x C ,即x C =x A +x B 2. 解决问题:(1)求图中线段AB 的中点C 表示的实数x C 的值.(2)若数轴上有一点M ,满足MA +MB =11,求点M 表示的实数x M .(3)若动点P ,Q 分别从点A ,B 同时向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度.设运动时间为t s,求当t 为何值时,有2PA -QB =6?此时P ,Q 两点表示的实数x P ,x Q 的值分别是多少?参考答案1.√25的平方根是( C)A.5B.5或-5C.√5或-√5D.√52.在3.14159,-√3,23,√7,1.732,π5,√5-1中,无理数有( D)A.1个B.2个C.3个D.4个3.下列说法:①无理数是开方开不尽的数;②每一个无理数都可以用数轴上的一个点表示出来;③√256的算术平方根是4;④0的平方根和立方根都是0.其中正确的说法有( B)A.4个B.3个C.2个D.1个4.按如图所示的程序计算,若开始输入的n值为√3,则最后输出的m值为( A)A.15+7√3B.15+√3C.3+3√3D.3+√35.如图,正方形的周长为8个单位长度.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示-3的点重合,然后将数轴按顺时针方向绕该正方形一直转动下去,则数轴上表示2021的点与正方形上对应的数字是( D )A.0B.2C.4D.66.若(x-3)3=-64,则x=-1.7.比较大小:4-√13<0.5.(填“>”“<”或“=”)8.若点A在数轴上,且和表示1的点相距√3个单位长度,则点A表示的数为1+√3或1−√3.9.规定:[a]表示小于a的最大整数.例如:[5]=4,[-6.7]=-7,则(1)[-3.2]+[6.3]=2;(2)方程[-π]+2x=6的解是x=5.10.计算:(1)√14+√0.52−√83;解:原式=12+12-2=-1.(2)|√3-π|-|π-√2|.解:原式=π-√3-(π-√2)=π-√3-π+√2=√2−√3.11.已知x-2的平方根是±4,5x-y+21的立方根是5,求(x+y)3的平方根.解:由x-2的平方根是±4,得x-2=16,解得x=18.由5x-y+21的立方根是5,得5x-y+21=125,把x=18代入5x-y+21=125,得y=-14,所以(x+y)3=[18+(-14)]3=64,所以(x+y)3的平方根是±8.12.正数x的两个平方根分别是2-a,2a-7.(1)求a的值;(2)求1-x这个数的立方根.解:(1)∵正数x的两个平方根分别是2-a和2a-7,∴(2-a)+(2a-7)=0,解得a=5.(2)∵a=5,∴2-a=-3,2a-7=3,∴这个正数是9,∴1-x=-8,∴1-x这个数的立方根是-2.13.王师傅有一根长40 m的钢材,他想将这段钢材锯断后焊成三个面积分别为3m2,13m2,47m2的正方形铁框.问王师傅的钢材够用吗?请通过计算说明理由.解:王师傅的钢材不够用.理由:∵正方形的面积是3 m2,∴它的边长是√3m,∴所耗费的钢材是4×√3=4√3(m).∵正方形的面积是13 m2,∴它的边长是√13m,∴所耗费的钢材是4×√13=4√13(m).∵正方形的面积是47 m2,∴它的边长是√47m,∴所耗费的钢材是4×√47=4√47(m).∴所耗费的钢材的总长度是(4√3+4√13+4√47) m.∵4√3+4√13+4√47≈48.8>40,∴王师傅的钢材不够用.14.阅读理解:一般地,在数轴上点A,B表示的实数分别为a,b(a<b),则A,B两点的距离AB=x B-x A=b-a.如图,在数轴上点A,B表示的实数分别为-3,4,则记x A=-3,x B=4.因为-3<4,显然A,B两点的距离AB=x B-x A=4-(-3)=7.若C为线段AB的中点,则AC=CB,所以x C-x A=x B-x C,即x C=x A+x B2.解决问题:(1)求图中线段AB 的中点C 表示的实数x C 的值.(2)若数轴上有一点M ,满足MA +MB =11,求点M 表示的实数x M .(3)若动点P ,Q 分别从点A ,B 同时向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度.设运动时间为t s,求当t 为何值时,有2PA -QB =6?此时P ,Q 两点表示的实数x P ,x Q 的值分别是多少?解:(1)根据阅读材料可知x C =−3+42=12. (2)①当点M 在点A 的左侧时,由MA +MB =11,得-3-x M +4-x M =11,解得x M =-5;②当点M 在点B 的右侧时,由MA +MB =11,得x M -(-3)+x M -4=11,解得x M =6.综上所述,点M 表示的实数是-5或6.(3)由题意得PA =2t ,QB =t ,∴2PA -QB =2×2t -t =6,∴t =2,∴x P =-3+2×2=1,x Q =4+2×1=6,∴当t =2 s 时,有2PA -QB =6,此时P ,Q 两点表示的实数分别是1,6.。
实数(常考考点分类专题)(巩固篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.14 实数(常考考点分类专题)(巩固篇)(专项练习)【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根1.一个正数的两个平方根分别是25a -和1a -+,则a 的值为( )A .2B .3C .4D .92.下列说法正确的是( )A .1的平方根是1B .3次方根是本身的数有0和1C .m -的3次方根是3m -D .a<0时,a -的平方根为a 【考点二】实数➽➼➵概念的理解✮✮分类3.下列命题:①无理数都是实数;①实数都是无理数;①无限小数都是无理数:①带根号的数都是无理数;①不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4 4.实数227,2-21,2π,(333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根515n -n 不可能是( )A .6B .9C .11D .146.下列说法中,正确的是 ( )A .64的平方根是8B .4的平方根是2或-2C .(-3)2没有平方根D 164和-4 7.若()235270a b -+-=,则a b -的值为( )A.2B.-2C.5D.8【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数8.如果一个正数的平方根是a+3及2a﹣15,那么这个正数是()A.441B.49C.7或21D.49或4419.若a的算术平方根为17.25,b的立方根为8.69-;x的平方根为 1.725±,y的立方根为86.9,则()A.1,1000100x a y b==-B.1,100100x a y b==C.1100,100x a y a==D.1,1001000x a y b==-【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围10.已知x为实数,且2120y x++-=(),则x y的值为()A.-1B.1C.2D.12 11224)A.7到8之间B.6到7之间C.5到6之间D.4到5之间【考点四】平方根✮✮立方根➽➼➵解方程12.已知:有理数满足22404nm n⎛⎫++-=⎪⎝⎭,则33m n的值为()A.1B.1-C.1±D.2±13.如果一个比m小2的数的平方等于2(4)-,那么m等于()A.4-B.4±C.2-D.2-或6【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用14.23.6 4.858 2.36 1.536236000)A.﹣485.8B.﹣48.58C.﹣153.6D.﹣1536 15.体积为5的正方体棱长为()A5B35C.5D.5 2【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用16.下列说法正确的是()A .4的算术平方根是2B .0.16的平方根是0.4C .0没有立方根D .1的立方根是±1 17.若a 16b 64a+b 的值是( )A .4B .4或0C .6或2D .6【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简18.下列各组数中,互为相反数的是( )A .-33B .3-和13-C .3-与3-D .3()23-19.如图,若2a =-,则32810a a --的值所对应的点可能落在( )A .点A 处B .点B 处C .点C 处D .点D 处【考点二】实数大小比较➽➼➵运算✮✮化简20.下列实数中,最小的数是( )A .0B .1-C .3-D 521.下列实数中最大的数是( )A 327B .πC 15D .4【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分22.已知m 与n 为两个连续的自然数,且满足377m n <<,则m n +的值为( ). A .1 B .3 C .5 D .723.若202013a,202113b,则a +b 的值为( )A .2021B .2020C .4041D .1【考点四】实数➽➼➵混合运算 24.计算2535 )A .-1B .1C .525-D .255253331632700.1251464--( ) A .114- B .114± C .154 D .134【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义 26.按如图所示的程序计算,若开始输入的x 5 )A .55B .55C .24D .35115+27.规定不超过实数x 的最大整数称为x 的整数部分,记作[]x ,例如[]9.859=,[]33=,103⎡=⎣.下列说法:①422⎡⎤=⎣⎦;①123192054⎡⎤⎡⎤⎡⎡⎡⎤+++⋅⋅⋅++=⎣⎦⎣⎦⎣⎣⎣⎦;①11a a ⎡⎡+=+⎣⎣(a 为正整数);①若n 为正整数,且4545n n ⎡⎤=⎣⎦则n 的最小值为6,其中正确说法的个数是( )A .1B .2C .3D .4【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题28.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地21,宽为4)的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示,则图①中两块阴影部分的周长和是( )A .21B .16C .)2214D .)4214 29.有一列数按如下规律排列:2,314-,56,7则第10个数是( ) A .10 B 10 C .1011 D 11【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根30.已知两个不相等的实数,x y 满足:2x a =,2y a =x y +__________. 31.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.【考点二】实数➽➼➵概念的理解✮✮分类32.下列说法:①无理数就是开方开不尽的数;①2x 5x 的整数有4个;①﹣381①不带根号的数都是有理数;①不是有限小数的不是有理数;①对于任意实数a 2a a .其中正确的序号是_____.33.在22311121,(1),3.14,|82|,,3,(),0,743π----------中,有理数有m 个,自然数有n 个,整数有p 个,分数有k 个,负数有t 个,则m -n -k +t +p =________.【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根34.0.16的算术平方根是______25______.35()2460x y -+=,那么2x y -的平方根为_______.36.如果一个正数的两个平方根是24m -与31m -,那么这个正数的立方根是____________. 【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数37.一个数的平方等于81,这个数是___________.38.已知x 没有平方根,且||27x =,则x 的立方根为________.【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围3910x x y --=,则20222022x y +的值为____________.40.已知221m <2m +m =_____.【考点四】平方根✮✮立方根➽➼➵解方程411y -0,则(y ﹣2)2021=________.42.已知3163x +=-,则x =_______【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用43.已知3270x -=.(1)x 的值为_____;(2)x 的算术平方根为_____.44.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用45.已知271x y ++的算术平方根是6,83x y +的立方根是5,则+x y 的平方根为___________.46.已知4m +15的算术平方根是3,2﹣6n 的立方根是﹣264n m -___.【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简472(81)-_____,127的立方根是_____2_____. 48.实数a ,b 在数轴上的对应点如图所示,化简:2233()()a a b b a --=____________.【考点二】实数大小比较➽➼➵运算✮✮化简49.比较大小:1232-“>”“<”“=”)50101-89.(填“>”或“<”) 【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分51.已知:23m ,小数部分为n ,则2m n -=_____.52.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,21⎡=⎣,则191⎡⎤=⎣⎦______.【考点四】实数➽➼➵混合运算53.已知x 、y 是有理数,且x 、y 满足22321462x y +=-x y +=______.543162527________.【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义55.如图,程序运算器中,当输入-1时,则输出的数是______.56.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44,31⎡==⎣,现对72进行如下操作: 727288221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地:(1)对64只需进行________次操作后变为1.(2)只需进行3次操作后变为1的所有正整数中,最大的是________.【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题57.如图,四边形ABCD CEFG 、均为正方形,其中正方形ABCD 面积为28cm .图中阴影部分面积为25cm ,正方形CEFG 面积为_________.58.a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差的倒数,…,依此类推,2010a 的差倒数2011a =_____.参考答案1.C【分析】根据一个正数的两个平方根互为相反数得2a−5+(−a+1)=0,求解即可.解:①一个正数的两个平方根分别是2a−5、−a+1,①2a−5+(−a+1)=0,解得a=4.故选:C.【点拨】本题考查的是平方根,掌握“一个正数的平方根有两个,它们互为相反数”,是解题的关键.2.C【分析】根据平方根,立方根的概念理解分析选项即可.解:A. 1的平方根是1,①1的平方根是1±,故选项说法错误,不符合题意;B. 3次方根是本身的数有0和1,①3次方根是本身的数有0和1和1-,故选项说法错误,不符合题意;C. m -的3次方根是3m -D. a<0时,a -的平方根为a ①a<0时,a -的平方根为a -合题意;故选:C【点拨】本题考查平方根,立方根的相关概念,解题的关键是要熟练掌握相关概念.3.D【分析】根据无理数的定义,即无理数是无限不循环小数,结合各选项说法进行判断即可. 解:①无理数都是实数,正确;①错误,实数包括无理数和有理数;①错误,无限循环小数是有理数;①9①错误,不带根号的数不一定是有理数,如π等无限不循环小数,错误;故选:D .【点拨】本题主要考查实数,熟练掌握无理数的定义是解题的关键.4.B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案. 解:实数227,2-21,2π,333,3-中,无理数为:2-21、2π,共3个;故答案为:B .【点拨】本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.5.B 【分析】先确定n 15n -是整数,n 为正整数,确定n 的值即可. 15n -n 为正整数,∴15﹣n >0,解得:n <15,15n -∴n 的值为:6,11,14,故选:B .【点拨】本题考查了算术平方根,确定n 的取值范围是解题的关键.6.B【分析】根据平方根的相关定义对每个选项做出判断即可得到答案;解:A :64的平方根是8或-8,故该选项错误;B :4的平方根是2或-2,故该选项正确;C :2(3)=9,9的平方根是3或-3,故该选项错误;D 164,4的平方根是2或-2,故该选项错误;故选B ;【点拨】本题考查了平方根,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键.7.A【分析】根据非负数性质求出a 、b 值,再代入a b -计算即可.解:①()235270a b -+-=, ①50a -=,3270b -=,5a ∴=,3b =,532a b -=-=∴.故选:A .【点拨】本题考查非负数性质,立方根,代数式求值,熟练掌握绝对值的非负性,偶次方的非负性,求立方根是解题的关键.8.B【分析】根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的平方根,最后可得这个正数的值.解:①一个正数的平方根是a +3和2a ﹣15,①a +3和2a ﹣15互为相反数,即(a +3)+(2a ﹣15)=0;解得a =4,则a +3=﹣(2a ﹣15)=7;则这个数为27=49;故选:B .【点拨】本题考查了平方根的概念、解一元一次方程,注意一个正数有两个平方根,它们互为相反数.9.A【分析】根据平方根、算术平方根和立方根的定义求出a 、b 、x 、y 的值,再找出关系即可. 解:①a 的算术平方根为17.25,b 的立方根为-8.69,①a =297.5625,b =-656.234909.①x 的平方根为±1.725,y 的立方根为86.9,①x =2.975625,y =656234.909,①1,1000100x a y b ==-. 故选:A .【点拨】本题考查了对平方根、算术平方根和立方根的运用.解题的关键是掌握平方根、算术平方根和立方根的定义.10.B【分析】根据非负数的性质, 求出1y =-,2x =,即可计算x y 的值.解:()2120y x +-, 10y ∴+=,20x -=,1y ,2x =,()211x y ∴=-=,故选B .【点拨】本题考查了平方数的非负性,算术平方根的非负性,解题关键是掌握几个非负数的和等于0,则每一个算式都等于0.11.B4822448=364849<<648<<7, 2246和7之间,故选:B .【点拨】本题考查估算无理数的大小,二次根式的乘除法,掌握算术平方根的定义,二次根式乘除法的计算方法是正确解答的前提.12.B【分析】根据平方和绝对值的非负性可求出m 和n 的值,再代入33m n 中,求值即可.解:①22404n m n ⎛⎫++-= ⎪⎝⎭, ①20440n m n ⎧+=⎪⎨⎪-=⎩,解得:122m n ⎧=-⎪⎨⎪=⎩或122m n ⎧=⎪⎨⎪=-⎩. 当122m n =-=,时,33331212m n ⎛⎫=-⨯=- ⎪⎝⎭; 当122m n ==-,时,33331(2)12m n ⎛⎫=⨯-=- ⎪⎝⎭. 综上可知33m n 的值为1-.故选B .【点拨】本题考查非负数的性质,利用平方根解方程,代数式求值.掌握平方和绝对值的非负性是解题关键.13.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,①24m -=±,①2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.14.A【分析】根据平方根小数点的移动规律解答.解:236000是由23.6小数点向右移动4236000485.8;故选:A.【点拨】此题考查了平方根小数点的移动规律:当被开方数的小数点向右每移动两位,则平方根的小数点向右移动一位;当被开方数的小数点向左每移动两位,则平方根的小数点向左移动一位.15.B【分析】根据正方体体积公式进行计算即可.解:设正方体的棱长为a,则有:35a=解得,35a=35故选:B【点拨】本题主要考查了立方根的应用,正确掌握立方体的体积公式是解答本题的关键.16.A【分析】根据平方根和立方根的定义判断即可.解:①4的算术平方根是2,①A正确,符合题意;①0.16的平方根是±0.4,①B错误,不符合题意;①0的立方根是0,①C错误,不符合题意;①1的立方根是1,①D错误,不符合题意;故选A.【点拨】本题考查了平方根即如果一个数的平方等于a,称这个数为a的平方根,立方根如果一个数的立方等于a,称这个数为a的立方根,熟练掌握定义是解题的关键.17.C【分析】由a 16a=±2,由b 64b=4,由此即可求得a+b 的值.解:①a 16①a=±2,①b 64①b=4,①a+b=2+4=6或a+b=-2+4=2.故选C .【点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.18.C【分析】先依据相反数和绝对值的定义化简各数,然后再依据相反数的定义进行判断即可. 解:A 、-3的相反数是3,故A 不符合题意B 、|-3|=3,3的相反数是-3,故B 不符合题意;C 、3-333-C 符合题意;D ()23=|3|--=3,3的相反数是-3,故D 不符合题意.故选:C .【点拨】本题考查相反数定义,即相加为0的两个数互为相反数,要注意细心运算每个选项.19.C【分析】先将a 的值代入代数式计算出得数,然后再在数轴上找到对应的点即可.解:将2a =-代入32810a a --得:()()3228122183210⨯---==--- , ①12123<<,且接近1. 故选:C .【点拨】本题主要考查求代数式的值、数轴上的点与实数的对应等知识点,熟练掌握数轴与实数一一对应的关系是关键.20.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:①315-0,①最小的是3故选:C .【点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.21.D3273=,1543<<,后比较即可.解:① 3273=,1543<<,10154π<<<,①3154π<<<,故选D .【点拨】本题考查了无理数的估算,求立方根,实数大小的比较,正确进行无理数的估算,实数大小比较是解题的关键.22.A【分析】根据无理数的估算可得:6377<<,03771<,据此即可解答. 解:6377<,13770∴-<<, 03771∴<,0m ∴=,1n =,011m n ∴+=+=,故选:A .【点拨】本题考查了无理数的估算,绝对值,代数式求值问题,求得03771<<是解决本题的关键.23.D【分析】13再求出202013与202113的取值范围,从而求出a ,b 的值,即可求解.解:①91316<<,①3134<,①20201320242023<<,20201320172016<,①133a =,413b =①1334131a b +=+=.故选:D .【点拨】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分和小数部分.24.B【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 解:2535+(253525351-+-=,故选B .【点拨】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.25.A【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.解:原式311300.5264=---+ 11300.524=---++ 324=-; 故答案为:A.【点拨】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.26.B【分析】把x 5x (x +1)得到结果,若大于7则输出,若结果不大于7再次代入,循环后满足条件即为所求结果.解:当x 5x (x +1))55155=,①4<5<9①253,①557①最后输出的结果为55故选:B .【点拨】此题考查了代数式求值,弄清题中的程序框图的意义是解本题的关键.27.B 【分析】根据取整函数的定义即可求解.解:①422⎡=⎣,故①正确; ①1231920⎡⎡⎡⎡⎡+++⋅⋅⋅++⎣⎣⎣⎣⎣31527354=⨯+⨯+⨯+⨯54=,故①正确;①若5a =时,12a ⎡⎤+=⎣⎦,13a ⎡+=⎣, 故11a a ⎡⎡+=+⎣⎣(a 为正整数)不一定成立,故①错误; ①若n 为正整数,且4545n n ⎡=⎣45n 是哪个开得尽方的正整数, 4535=,①n 的最小整数为5,故①错误;综上分析可知,正确的个数为2,故B 正确.故选:B .【点拨】本题主要考查了取整函数的定义,能够正确估算无理数的大小是解题的关键,难度不大.28.B【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案. 解:较大阴影的周长为:(42)22b a -⨯+⨯,较小阴影的周长为:(4)222a b -⨯+⨯,两块阴影部分的周长和为:[][](42)22(4)222b a a b -⨯+⨯+-⨯+⨯= 16,故两块阴影部分的周长和为16.故选B .【点拨】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.29.D【分析】将这列数据改写成:234567…,按照三步确定结果:一确定符号,二确定分子,三确定分母即可.解:2314-567可写出: 22-34567, ①第1011, 故选:D . 【点拨】本题考查数字类变化规律,解题的关键是把已知的一列数变形,找到变化规律. 30.0【分析】由题意可得x 、y 是a 的两个不相等的平方根,根据平方根的性质可得x +y =0即可解答解:①两个不相等的实数,x y 满足:2x a =,2y a =①x 、y 是a 的两个不相等的平方根①x +y =0x y +.故答案为0.【点拨】本题主要考查了平方根的性质,掌握一个数的两个不相等的平方根的和为0成为解答本题的关键.31.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.解:①21b -和4b +是正数a 的平方根,①2140b b -++=,解得1b ,将b 代入212(1)13b ,①正数2(3)9a , ①198a b +=-+=,①a b +3382ab , 故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.32.①①【分析】根据有理数、无理数、实数的意义逐项进行判断即可.解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;①2x 5x 的整数有﹣1,0,1,2共4个,因此①正确,符合题意; ①﹣3是9819,因此①正确,符合题意;①π就是无理数,不带根号的数也不一定是有理数,因此①不正确,不符合题意; ①无限循环小数,是有理数,因此①不正确,不符合题意;①若a <02a |a|=﹣a ,因此①不正确,不符合题意;因此正确的结论只有①①,故答案为:①①.【点拨】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提. 33.12【分析】根据实数分类,分别求出m 、n 、k 、t 的值是多少,再应用代入法求值即可. 解:由题意可得 有理数8个,即m 8=,自然数2个,即2n =,分数3个,即3k =,整数5个,即5p =,负数有4个,即4t =故12m n k t p --++=.【点拨】本题主要考查有理数的分类,以及有理数的乘方,有理数的减法的运算方法,熟练掌握实数的定义和分类是解答此题的关键.34. 0.4 5±【分析】根据求一个数的算术平方根与平方根进行计算即可求解.解:0.16的算术平方根是0.4255=255故答案为:0.4,5±【点拨】本题考查了求一个数的算术平方根与平方根,理解平方根与算术平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.35.141414-14-14【分析】根据算术平方根和平方的非负性,求出x y 、的值,然后进行计算即可. 解:()2460x y -+=,又()24060x y -+≥,,()24060x y -=+=,,①40x -=,60y +=,①4x =,y =-6,①()2246=86=14x y -=⨯--+,①2x y -的平方根为:14故答案为:14±【点拨】本题考查了算术平方根和平方式的非负性、代数式求值,解题的关键是利用非负性求出x y 、的值.3634【分析】根据一个正数的两个平方根互为相反数,列出方程,即可求得这个数,再求它的立方根即可.解:一个正数的两个平方根是24m -与31m -,24310m m -+-=∴, 解得1m =,24242m ∴-=-=-,故这个正数为4,3434【点拨】本题考查了一个正数的两个平方根之间的关系,求一个数的立方根,熟练掌握和运用一个正数的两个平方根之间的关系是解决本题的关键.37.9或-9【分析】根据平方根的定义即可解答.解:①()2981±=,①这个数是9或-9.故答案为:9或-9. 【点拨】本题主要考查了平方根的定义,一个正数的平方根有两个且这两个数互为相反数. 38.3-【分析】根据题意,27去掉绝对值的值为±27,在根据题意x 没有平方根直接算出立方根即可.解:①27去掉绝对值的值为±27,①x =±27,又①x 没有平方根①x =27,①x 的立方根为-3.故答案为:-3.【点拨】本题考查了绝对值的性质、平方根的性质和立方根的计算,解决此题的关键是不漏题目条件,掌握基本的计算即可.39.2【分析】根据非负数的性质列式求出x 、y 的值,然后相乘即可得解.解:根据题意得:10x -=,0x y -=,解得:1x =,1y =,①20222022112x y +=+=.故答案为:2.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.40.-1,2,-2.【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据2m +解:2m + ①m 是整数,①221m <①m 2≤4,①-2≤m≤2,①m=-2,-1,0,1,2当m=±2或-12m +故答案为:-1,2,-2【点拨】本题考查算术平方根,解题的关键是根据条件求出m 的范围,本题属于中等题型. 41.1-【分析】根据算术平方根的定义得到1y =,代入代数式根据()111n n n ⎧-=⎨-⎩为偶数为奇数求解即可得到结论.解:1y -0,∴10y -=,得1y =,()()()20212021202121211y ∴-=-=-=-,故答案为:1-.【点拨】本题考查代数式求值,涉及到算术平方根的定义和()111n n n ⎧-=⎨-⎩为偶数为奇数,熟练掌握相关定义是解决问题的关键.42.4-【分析】移项后直接开立方即可得到答案.解:3163x +=-,3163x =--364x =-①4x=--故答案为:4【点拨】本题主要考查了开立方解方程,正确理解一个数的立方根只有一个是解答本题的关键.43.33【分析】(1)利用立方根的定义求得x的值;(2)利用算术平方根的定义解答即可.解:(1)①3270x-=,①33x==,273①x=3,故答案为:3;(2)由(1)知x=3,∴333【点拨】本题考查立方根和算术平方根的定义及计算,正确利用上述定义与性质解答是解题的关键.44.±3【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.解:①2a-1的平方根是±3,①2a-1=9,解得a=5;①3a+b-1的算术平方根是4,①3a-b-1=16,①3×5-b-1=16,解得b=-2,①a-2b=5+2×2=9,①a-2b的平方根是:93±=±.故答案为:±3.【点拨】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;①算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.45.4±【分析】根据271x y ++的算术平方根是6,83x y +的立方根是5,可得方程组2713683125x y x y ++=⎧⎨+=⎩①②,①+①再化简得到+x y 的值,然后求平方根即可得到答案. 解:①271x y ++的算术平方根是6,83x y +的立方根是5①2713683125x y x y ++=⎧⎨+=⎩①② ①①+①:1010160x y +=①+x y =16①+x y 的平方根为4±故答案为:4±.【点拨】本题考查了平方根和立方根的定义,平方根和立方根是解题关键.易错点:正数有两个平方根,不能只写一个平方根.46.4【分析】利用算术平方根,立方根定义求出m 与n 的值,代入原式计算即可求出值. 解:由题意可得:4159m +=,268n -=-, 解得:32m =-,53n =, 5364=6416432n m ⎛⎫-⨯-⨯- ⎪⎝⎭. 故答案为:4.【点拨】本题考查了平方根、算术平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,其中的正数叫做a 的算术平方根,.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.47. 9 13 2122【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可. 2(81)-的算术平方根是9,127=31()3的立方根是13222故答案为:-9,13,22. 【点拨】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.48.a - 【分析】根据数轴可得:0a b << ,从而得到a b b a -=-,再根据算术平方根和立方根的性质求解即可.解:根据题意得:0a b << ,①0a b -< ,①a b b a -=-, 2233()()a a b b a --()a a b b a =--+-a b a b a =--++-a =-.故答案为:a -.【点拨】本题主要考查了实数与数轴、算术平方根、立方根的性质等知识点,掌握根据数轴判定代数式的正负是解题的关键.49.>【分析】利用两个负数比较大小,绝对值大的反而小即可求解. 解:①1212=321818-==1218< ①1218> 即1232-->故答案为:>【点拨】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.50.>解:首先估算得出3104<1012>1011->,819<,由此比较得出答案即可. 【解答】解:3104<<, ∴1012>,1011->, 819<, ∴10189->. 故答案为:>.【点拨】本题考查实数的大小比较和无理数的估算,10的关键.51.73-37-+【分析】3进而估算出23确定m n 、的值,再代入计算即可.解:①134<<,①132<,①3234<<,①23+3m =,小数部分(23331n =-, ①()263173m n --==故答案为:73-【点拨】本题考查无理数的估算,根据接近的数求出整数部分是解题关键.52.3【分析】估计出31914<<,再结合题意,[]a 表示不超过a 的最大整数,因此即可得出191⎡⎤⎣⎦的答案. 解:①161925<<,①4195<,①31914<<,①1913⎡⎤=⎣⎦,故答案为:3.【点拨】本题考查了实数的估算,以及新定义运算,熟练找准无理数的整数部分是本题的关键.53.2-或10 【分析】把22321462x y ++=-(2231462x y y +-=-+,根据x 、y 是有理数,得到22314x y +-的值为有理数,即(62y -+故60y +=,求出y ,再求得x 即可求解. 解:2232142x y y +=-2231422x y y ∴+-=-,(2231462x y y ∴+-=-+x 、y 是有理数,22314x y ∴+-的值为有理数,(62y ∴-+60y ∴+=,解得y =-6,223140x y ∴+-=()2236140x ∴+⨯--=,解得4x =±,2x y ∴+=-或10x y +=-,故答案为:2-或10.【点拨】本题主要考查了代数式求值,利用有理数的定义进行求解,解题的关键在于能够熟练掌握相关知识进行求解.54.9559-【分析】先根据绝对值的性质、算术平方根和立方根的定义进行化简,然后再进行计算即可.3162527=+4253=95故答案为:95【点拨】本题考查了实数的混合运算,解本题的关键在熟练掌握绝对值的性质、算术平方根和立方根的定义.算术平方根:一般地,如果一个正数的平方等于a,即2x a=,那么这个正数就叫做a的算术平方根;立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根.55.7【分析】根据图表列出算式,然后把x=-1代入算式进行计算,注意分两种情况,且只有运算的数值大于3时才能输出结果.即可得解.解:根据题意可得,(-1+4)×(-2)+(-3)=3×(-2)+(-3)=-6-3=-9<3(-9+4)×(-2)+(-3)=(-5)×(-2)+(-3)=10-3=7>3.故答案为7.【点拨】此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.56.3255【分析】(1)根据题意对64进行计算即可得出答案.(2)根据题意对256进行计算即可得出答案.解:(1)依题可得,646488221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,①对64只需进行3次操作后变为1.故答案为:3.(2)只需进行3次操作后变为1的所有正整数中,最大的是255,①25616⎡=⎣,164⎡=⎣,42⎡⎤=⎣⎦,21⎡=⎣,①对256只需进行4次操作后变为1,①只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【点拨】本题考查新定义,算术平方根,理解新定义是解题的关键.57.18【分析】先设出正方形边长,再分别求出它们的边长,即可求解.解:设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,①28a =,①0a >, ①22a =①阴影面积为()()11222222522S b b b =-⨯=, ①0b >①32b =①218b =,故答案为:18. 【点拨】本题考查了实数运算的实际应用,解题关键是正确求出正方形的边长并且表示出阴影面积. 58.13- 【分析】根据题目中的数据,可以写出这列数的前几项,从而可以发现数字的变化特点,然后即可得到a 2011的值.解:由题意可得,113a =-,。
专题训练:实数章节易错题42题专训(解析版)—24-2025学年七年级数学上册单元速记巧练(浙教版)
《实数》章节易错综合题42题专训1.(2023秋•东阳市期中)对于0的表述,不正确的是( )A.0是自然数B.相反数是本身的数只有0C.0的平方根是本身D.0既不是有理数也不是无理数【分析】分别根据有理数的定义和分类,相反数的定义以及平方根的定义逐一判断即可.【解答】解:A.0是自然数,说法正确,故本选项不符合题意;B.相反数是本身的数只有0,说法正确,故本选项不符合题意;C.0的平方根是本身,说法正确,故本选项不符合题意;D.0是有理数不是无理数,原来的说法错误,故本选项符合题意.故选:D.2.(2023秋•鄞州区校级期中)已知a2=16,b3=﹣27,且|a﹣b|=a﹣b,则a+b的值为( )A.1B.﹣7C.﹣1D.1或﹣7【分析】先根据平方和立方的定义求出a,b的值,再根据|a﹣b|=a﹣b求出符合条件的a,b的值,最后将a,b 的值代入a+b中即可求解.【解答】解:∵a2=16,b3=﹣27,∴a=±4,b=﹣3,∵|a﹣b|=a﹣b,∴a﹣b≥0,∴a≥b,∴a=4,b=﹣3,∴a+b=4+(﹣3)=1,故选:A.3.(2023秋•德清县期末)下列说法正确的是( )A.的平方根是±4B.(﹣3)2的算术平方根是﹣3C.负数没有立方根【分析】根据平方根、算术平方根和立方根的概念判断各选项即可.【解答】解:A、=4的平方根是±2,故A选项错误;B、(﹣3)2的算术平方根是3,故B选项错误;C、负数有立方根,故C选项错误;D、是2的算术平方根,故D选项正确.故选:D.4.(2023秋•慈溪市校级期中)有一个数值转换器,原理如图,当输入的x为81时,输出的y是( )A.9B.3C.±3D.【分析】将81 代入得9,9是有理数,再将9代入得3,3是有理数,再将3代入得,是无理数,故y=.【解答】解:∵,9是有理数,∴,3是有理数,∴,,∴,故选:D.5.(2023秋•柯城区校级期中)用符号表示“的平方根是”正确的是( )A.B.C.D.【分析】根据正数由两个平方根进行解答,即可得到答案.【解答】解:“的平方根是”的表示法为.故选:D.6.(2023秋•平湖市校级期中)下列各数中属于无理数的是( )A.3.14B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:A、3.14是有限小数,属于有理数,故此选项不符合题意;B、=2,2是整数,属于有理数,故此选项不符合题意;D、是分数,属于有理数,故此选项不符合题意.故选:C.7.(2023秋•富阳区校级期中)下列说法:①无理数的倒数还是无理数;②若a,b互为相反数,则=﹣1;③若a为任意有理数,则a﹣|a|≤0;④两个有理数比较,绝对值大的反而小.其中正确的有( )A.1个B.2个C.3个D.4个【分析】根据无理数的定义和倒数的定义可判断①;根据相反数的定义和0不能做分母可判断②;根据绝对值的性质可判断③;根据有理数的大小比较方法可判断④.【解答】解:①无理数的倒数还是无理数,正确;②当a=b=0时,无意义,故若a,b互为相反数,则说法错误;③若a为任意有理数,则a﹣|a|≤0,正确;④两个负数比较,绝对值大的反而小,故原说法错误.综上可知正确的有①③共两个.故选:B.8.(2024春•温岭市期末)关于的说法错误的是( )A.它是无理数B.它是面积为13的正方形边长的值C.它是比4大的数D.它是13的算术平方根【分析】分别根据无理数的定义,算术平方根的定义和实数的大小比较判断即可.【解答】解:A、是无理数,故不符合题意;B、它是面积为13的正方形边长的值,故不符合题意;C、、∵42=16,13<16,∴<4,故符合题意;D、它是13的算术平方根,故不符合题意.故选:C.9.(2024春•路桥区期末)实数a所对应的点的位置如图所示,则a可能是( )A.B.C.D.【解答】解:由数轴知:3<a<4,∵,,,,∴a可能是,故选:C.10.(2023秋•婺城区校级期中)如图,实数在数轴上的对应点可能是( )A.A点B.B点C.C点D.D点【分析】根据无理数估算方法估算的大小,即可判断.【解答】解:∵1<2<4,∴,∴,∴,∴实数在数轴上的对应点可能是B点,故选:B.11.(2023秋•东阳市期中)在4.1,,,﹣3绝对值最小的数是( )A.4.1B.C.D.﹣3【分析】|﹣|=,|﹣3|=【解答】解:∵|﹣|=,|﹣3|=3,∴4.1>>3>,则绝对值最小的数是﹣,故选:C.12.(2023秋•鹿城区期中)估计的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先确定的范围,再加1,得出的范围即可.【解答】解:∵,∴,∴,故选:C.13.(2023秋•慈溪市校级期中)已知a、b是表中两个相邻的数,且,则a=( )x2361364.81368.64372.49376.36380.25384.16388.09392.04396.01400A.19.4B.19.5C.19.6D.19.7【分析】根据表格找一个数的平方最接近380的两个数,一个比380小的,另一个比380大的,即可解答.【解答】解:∵19.42=376.3,19.52=380.2,∴376.3<380<380.2,∴,∴,∴a=19.4,故选:A.14.(2023秋•金华期中)已知的小数部分为a,的小数部分为b,则a+b的值为( )A.0B.1C.D.【分析】根据得到a、b的值,即可得到答案.【解答】解:∵,∴,∴,∵,∴,∴a+b=1.故答案为:B.15.(2023秋•瑞安市期中)下列计算正确的是( )A.B.C.D.【分析】根据平方根、立方根和二次根式的性质与化简的定义进行计算.【解答】解:A、,A计算错误,不符合题意;B、,B计算错误,不符合题意;C、,C计算错误,不符合题意;D、,D计算正确,符合题意.故答案为:D.16.(2023秋•柯城区校级期中)把四张形状大小完全相同,宽为1cm的小长方形卡片(如图①)不重叠地放在一图②中两块阴影部分的周长和是( )A.20cm B.C.D.【分析】先设小长方形卡片的长为x cm,再结合图形得出上面的阴影长方形的周长和下面的阴影长方形的周长,再把它们加起来即可求出答案.【解答】解:设小长方形卡片的长为x cm,根据题意得:,∴,则图②中两块阴影部分周长和是:====20(cm),∴图②中两块阴影部分的周长和是20cm.故选:A.17.(2023秋•鄞州区月考)以下各数0,,﹣2,102,,|,﹣()2,,,0.1010010001…(相邻两个1之间依次增加1个零).有理数的个数是 5 .【分析】先化简每个数,然后根据有理数的定义判断即可.【解答】解:,102=100,,,有理数有:0,﹣2,102,﹣()2,,共5个,故答案为:5.18.(2023秋•鄞州区月考)|x﹣2|与(y+1)2互为相反数,则x+3y= ﹣1 .【分析】根据非负数的性质列出方程求出未知数的值,再代入所求代数式计算即可.∴|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴x+3y=﹣1,故答案为:﹣1.19.(2023秋•余姚市校级期中)若一个正数的平方根分别为5﹣a和2a﹣1,则这个正数是 81 .【分析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【解答】解:由题可知,5﹣a+2a﹣1=0,解得a=﹣4,则这个正数是(5﹣a)2=92=81.故答案为:81.20.(2023秋•平湖市校级期中)的算术平方根是 3 .【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为,由此即可得到答案.【解答】解:∵=9,∴的算术平方根是3.故答案为:3.21.(2023秋•鹿城区期中)一个数的算术平方根是7,则这个数是 49 .【分析】根据算术平方根的定义可知这个数为72,据此可得答案.【解答】解:∵一个数的算术平方根是7,∴这个数为72=49,故答案为:49.22.(2023秋•鹿城区期中)小明在单位长度为1的方格纸中画出两个小正方形(如图1),再将这两个小正方形剪开拼成一个大正方形(如图2),则大正方形的边长是 .【解答】解:由题意得,图1中的两个正方形面积分别为:5,2,∴图2中拼接成的大正方形面积为5+2=7,∴大正方形的边长是.故答案为:.23.(2023秋•柯城区校级期中)若则|a﹣1|++(c﹣3)2=0,(a+b)c= ﹣1 .【分析】先根据非负数的性质求出a和b的值,再代入所求代数式进行计算即可.【解答】解:∵|a﹣1|++(c﹣3)2=0,∴a﹣1=0,b+2=0且c﹣3=0,则a=1,b=﹣2,c=3,所以(a+b)c=(1﹣2)3=﹣1.故答案为:﹣1.24.(2023秋•鹿城区期中)若一个正方体的体积是8,那么它的棱长是 2 .【分析】根据立方根解答即可.【解答】解:若一个正方体的体积是8,那么它的棱长是2;故答案为:2.25.(2023秋•金华期中)定义新运算“☆”:a☆b=,则12☆(3☆4)= 13 .【分析】【解答】解:12☆(3☆4)=12☆=12☆5==13.故答案为:13.26.(2023秋•东阳市期中)= ;±= ± ;= 5 ; ﹣ .【解答】解:==;±=±;==5;==﹣.故答案为:,±,5,﹣.27.(2023秋•鄞州区月考)如图,将1、,三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,(3,2)为第3排第2列的数为,则(8,2)与(100,100)表示的两个数的积是 .1第一排第二排1第三排11第四排1第五排……第五列第四列第三列第二列第一列…【分析】由题意得出1,,这三个数循环出现,且第n排有n个数,再根据(8,2)表示第8排第2列的数,即第30个数,根据规律计算出(8,2)表示的数;用同样的方法求出(100,100)表示的数,即可求出答案.【解答】解:由题意得,1,,这三个数循环出现,且第n排有n个数,∵(8,2)表示第8排第2列的数,∴(8,2)表示的数是第(1+2+3+•+7)+2=7×(7+1)2+2=30个数,∴30÷3=10,∴(8,2)表示的数是,∵(100,100)表示第100排第100列的数,∴(100,100)表示的数是第(1+2+3+…+99)+100=99×(99+1)+100=5050个数,∴5050÷3=1683•1,∴(100,100)表示的数是1,故(8,2)与(100,100)表示的两个数的积是,故答案为:.10 .【分析】根据题意可知,有理数的x,y必须满足y=﹣6,y=﹣6,进而求出x的值,再求x+y的值.【解答】解:∵x、y是有理数,且x、y满足,∴y=﹣6,∴y=﹣6,∴2x2+3y=14,即2x2+3×(﹣6)=14,∴x=±4,∴x+y=﹣2或﹣10,故答案为:﹣2或﹣10.29.(2023秋•鄞州区校级期中)的值等于 1 .【分析】先计算算术平方根和立方根,再计算减法即可.【解答】解:原式=4﹣3=1,故答案为:1.30.(2023秋•余姚市校级期中)把下列各数的序号填在相应的大括号里:①,②﹣③0,④,⑤+5,⑥,⑦,⑧﹣3.24,⑨3.1415926整数:{ ③④⑤ }负分数:{ ②⑧ }正有理数:{ ④⑤⑥⑨ }无理数:{ ①⑦ }【分析】分别利用整数、负分数、正有理数、无理数的定义分析得出答案.【解答】解:=3,整数:{③④⑤},负分数:{②⑧},正有理数:{④⑤⑥⑨},无理数:{①⑦},故答案为:③④⑤;②⑧;④⑤⑥⑨;①⑦.31.(2023秋•海曙区校级期中)计算:(1)﹣9+12﹣3+8;(3)|﹣2|.【分析】(1)根据有理数的加减混合运算的运算顺序和运算法则进行计算即可;(2)根据有理数的四则混合运算的运算顺序和运算法则进行计算即可;(3)根据实数的混合运算顺序和运算法则进行计算即可.【解答】解:(1)﹣9+12﹣3+8=8;(2)====;(3)=2+(﹣3)×2﹣1=2﹣6﹣1=﹣5.32.(2023秋•鄞州区校级期中)计算:(1)12+(﹣7);(2);(3)﹣23÷×(﹣)2;(4)|﹣2|;(5);(6)(﹣1)2021×2﹣(﹣2)4+4+|﹣3|.【分析】(1)用有理数加法法则计算;(2)用乘法分配律计算即可;(3)先算乘方,把除化为乘,再约分;(4)先算乘方,求算术平方根,去绝对值,再算乘法,最后算加减;(5)先算算术平方根,去绝对值,再算加减;【解答】解:(1)原式=5;(2)原式=×(﹣27)+×(﹣27)﹣×(﹣27)=﹣6﹣9+2=﹣13;(3)原式=﹣8××=﹣8;(4)原式=9+3×﹣2=9+5﹣2=12;(5)原式=5﹣3+2﹣=4﹣;(6)原式=﹣1×2﹣16+4+3=﹣2﹣16+4+3=﹣11.33.(2023秋•平湖市校级期中)已知a与b互为相反数,c与d互为倒数,x是64的立方根,求3a+3b﹣cd+x2的值.【分析】+b、cd、x的值,再代入3a+3b﹣cd+x2中计算即可.【解答】解:∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,∵x是64的立方根,∴x=4,∴3a+3b﹣cd+x2=3(a+b)﹣cd+x2=0﹣1+16=15.34.(2023秋•义乌市期中)已知a是最大的负整数,b是绝对值最小的数,c是倒数是它本身的正数,d是9的负平方根.(1)a= ﹣1 ,b= 0 ,c= 1 ,d= ﹣3 .(2)求bd2023++c的值.(2)根据(1)中的值代入即可.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是绝对值最小的数,∴b=0,∵c是倒数是它本身的正数,∴c=1,∵d是9的负平方根.∴d=﹣3,故答案为:﹣1;0;1;﹣3;(2)由(1)知:a=﹣1;b=0;c=1;d=﹣3;∴bd2023++c=0×(﹣3)2023++1=0+0+1=1.35.(2023秋•北仑区校级期中)已知:81的算术平方根是2a﹣1,b是的整数部分.(1)求a,b的值;(2)求2a﹣3b的平方根.【分析】(1)根据算术平方根,无理数的估算,求得a和b的值;(2)根据(1)的结果,代入代数式,然后求得平方根即可求解.【解答】解:(1)∵81的算术平方根是2a﹣1,b是的整数部分,∴2a﹣1=9,b=2,∴a=5,b=2;(2)由(1)知:a=5,b=2,∴2a﹣3b=2×5﹣3×2=4,∴2a﹣3b的平方根是±2.36.(2023秋•鹿城区期中)为了激发学生的兴趣爱好,培养对数学学科的热爱,某校决定举办数学学科节活动.七年级某班需要在小明和小鹿两位同学中选出一名志愿者协助活动,同学们提议两人从正负数相同的若干卡片中各抽取四张,若抽出的八张卡片中正数多则小明去:负数多则小鹿去.以下是他们抽取的卡片:2π 3.14﹣4(1)该班选出的志愿者是 小明 ;(2)请将以上卡片中的数字按要求填入相应的区域内:整数负分数【分析】(1)根据正负数定义进行分类选择即可;(2)根据整数,负分数的定义进行分类选择即可.【解答】解:(1)抽取的卡片中正数有:2π,,3.14,,,共有5个数,抽取的负数有:,,﹣4,共有3个数,∵5>3,∴正数卡片多,小明去,故答案为:小明;(2)∵,∴以上数字整数有:,﹣4;负分数有:,.37.(2023秋•海曙区校级期中)阅读下面材料:点A、B a,b,则A,B两点之间的距离表示为|AB|=|a﹣b|.回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是 3 .(2)数轴上表示x与﹣3的两点之间的距离表示为 |x+3| .(3)若x表示数轴上的一个实数,且|x+1|+|x﹣2|=5,则x= 3或﹣2 .(4)若x表示数轴上的一个实数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2022|+|x﹣2023|最小值.【分析】(1)根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得出结论;(2)根据数轴上两点的距离等于这两个数的差的绝对值列式即可得出结论;(3)根据绝对值的性质化简即可得出结论;(4)结合数轴,根据绝对值几何意义可得最小值.【解答】解:(1)数轴上表示﹣2和﹣5的两点之间的距离是|(﹣2)﹣(﹣5)|=|5﹣2|=3,故答案为:3;(2)数轴上表示x与﹣3的两点之间的距离是|x﹣(﹣3)|=|x+3|,(3)∵|x+1|+|x﹣2|=5=|x﹣(﹣1)|+|x﹣2|,当x≤﹣1时,|x+1|+|x﹣2|=﹣(x+1)﹣(x﹣2)=5,解得:x=﹣2;当x≥2时,|x+1|+|x﹣2|=(x+1)+(x﹣2)=5,解得:x=3;当﹣1<x<2时,|x+1|+|x﹣2|=(x+1)﹣(x﹣2)=3≠5;故答案为:3或﹣2;(4)|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+⋅⋅⋅+|x﹣2022|+|x﹣2023|表示x到点1,2,3,4,⋯,2023的点距离之和,当时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+⋅⋅⋅+|x﹣2022|+|x﹣2023|的值最小是:1+2+3+⋯+1011+0+1+2+3+⋯+1011=(1+2+3+⋯+1011)×2=(1+1011)×1011=1023132.38.(2023秋•海曙区校级期中)阅读下面文字,然后回答问题.是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于的整数部分是1,将减去它的整数部分,差就是它的小数部分,因此的小数部分可用表示.由此我们得到一个结论:若,其中x0<y<1,那么x=1,.请解答下列问题:(1)如果,其中a是整数,且0<b<1,那么a= 5 ,b= ﹣5 ;(2)如果,其中c是整数,且0<d<1,求|c﹣d|的值.【分析】(1)用夹逼法估算,得出的整数部分和小数部分,即可解答;(2)先用夹逼法估算,得出的整数部分和小数部分,进而得出c和d的值,将其代入|c﹣d|进行化简即可.【解答】解:(1)∵25<26<36,∴,∴的整数部分是5,小数部分是,∵,其中a是整数,且0<b<1,∴,故答案为:5,;∴,∴,∴整数部分为2,小数部分为,∵,其中c是整数,且0<d<1,∴,∴.39.(2023秋•鄞州区校级期中)如图,每个小正方形的边长均为1.(1)图中阴影部分的面积是 13 ;阴影部分正方形的边长a是 .(2)估计边长a的值在两个相邻整数 3 与 4 之间.(3)我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用(π﹣3)表示它的小数部分.设边长a的整数部分为x,小数部分为y,求(x﹣y)的相反数.【分析】(1)阴影部分的面积=总面积﹣4个直角三角形的面积,再根据正方形的面积公式以及算术平方根的定义可得阴影部分正方形的边长;(2)根据无理数的估算方法解答即可;(3)结合(2)的结论解答即可.【解答】解:(1)图中阴影部分的面积是:=25﹣12=13;阴影部分正方形的边长a是,故答案为:13;;(2)∵9<13<16,∴;故答案为:3;4;(3)∵;∴a的整数部分为x=3,小数部分为y=(),∴x﹣y=3﹣()=,∴(x﹣y)的相反数.40.(2023秋•东阳市期中)对于含算术平方根的算式,在有些情况下,可以不需要计算出结果也能将算术平方根符号去掉,例如:,.观察上述式子的特征,解答下列问题:(1)把下列各式写成去掉算术平方根符号的形式(不用写出计算结果):= 10﹣6 ;= 9﹣7 ;(2)当a>b时,= a﹣b ;当a<b时,= b﹣a ;(3)计算:….【分析】(1)根据题目给出的式子特征按要求填空即可;(2)根据题目给出的式子特征按要求填空即可;(3)分别将算式中的算术平方根去掉,再运用有理数加法结合律计算即可.【解答】解:(1)由题意可知:=10﹣6,=9﹣7,故答案为:10﹣6,9﹣7;(2)由题意可知:当a>b时,=a﹣b,当a<b时,=b﹣a,故答案为:a﹣b,b﹣a;(3)原式===.41.(2023秋•东阳市期中)(1)请你在图1中画一个边长为的正方形,要求所画正方形的顶点都在格点上;(2)如图2,面积为7的正方形ABCD的顶点A在数轴上,且点A表示的数为﹣1,若点E在数轴上,(点E在点A的右侧)且AB=AE,则点E所表示的数为 ﹣1 ;(3)以图1中1个方格的边长为单位1,画出数轴,然后在数轴上表示和.【分析】(1)可看作是直角边分别为1和4的直角三角形的斜边,再结合正方形的性质画图即可.(2)由题意可得AB=AE=,由数轴的定义可知点E所表示的数为﹣1.(3)由题意画出数轴,在数轴上取点A,使点A表示的数为2,作直角三角形ABC,使AB=1,BC=4,∠B=90°,则AC=,以点A为圆心,AC的长为半径画弧,分别交数轴于点D,E,则点D所表示的数为,点E所表示的数为.【解答】解:(1)如图1,正方形ABCD即为所求.(2)∵正方形ABCD的面积为7,∴正方形ABCD的边长为,即AB=,∴AE=,∴点E所表示的数为﹣1.故答案为:﹣1.(3)如图,点D所表示的数为,点E所表示的数为.42.(2020秋•北仑区期末)如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为 ﹣ , ;(2)请你参照上面的方法:①把图3中5×1的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a= .(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及a﹣3.(图中标出必要线段的长)【分析】(1)根据图①得出小正方形对角线长即可;(2)根据长方形面积即可得出正方形面积,从而求出正方形边长;(3)从原点开始画一个长是2,宽是1的长方形,对角线即为a.【解答】解:(1)由勾股定理得:对角线为,∴图②中A、B两点表示的数分别﹣,,故答案为:﹣,.(2)∵长方形面积为5,∴正方形边长为,如图所示:故答案为:.。
专题3.4 实数的混合运算专项训练(40题)-2024-2025学年七年级数学上册举一反三系列(浙教
专题3.4 实数的混合运算专项训练(40题)【浙教版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·七年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·七年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·七年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·七年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·七年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·七年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·七年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|.【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·七年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·七年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·七年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·七年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·七年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·七年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·七年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·七年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·七年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·七年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·七年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·七年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·七年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·七年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·七年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·七年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·七年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·七年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·七年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·七年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·七年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·七年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·七年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·七年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·七年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·七年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·七年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564∶x −1=√−125643=−54,∶x =−14;(2)解:3(x −1)2−15=0, ∶3(x −1)2=15, ∶(x −1)2=5, ∶x −1=±√5, ∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·七年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值. 【答案】(1)√2 (2)4(3)x 1=52,x 2=−52(4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可; (3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273, =√2−1−2+3, =√2.(2)解:∶√a −1+√b −5=0, ∶a −1=0,b −5=0, ∶a =1,b =5,∶(a −b )2=(1−5)2=16, ∶(a −b )2的算术平方根是4. (3)解:4x 2=25, x 2=254,∶x 1=52,x 2=−52. (4)解:(x +1)2=1, x +1=±1, ∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·七年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.【答案】(1)−4 (2)−34 (3)15 (4)−20【分析】(1)先将减法运算变成加法,再计算求解; (2)先计算乘方、绝对值和括号里面的,再计算加法; (3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减. 【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22=−1+16×6×14=−1+14=−34;(3)(14−23−56)×(−12)=−14×12+23×12+56×12=−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法. 37.(2023春·山东德州·七年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−4 【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·七年级校考期中)计算:(1)|−8|+32+(−12)−32 (2)2×(−5)−(−3)÷34 (3)√81+√−273+√(−23)2−14 (4)22+(−2)2+√19+(−1)2019 【答案】(1)−4(2)−6(3)523(4)713【分析】(1)先算绝对值和去括号,再算加减;(2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减;(4)先算乘方和算术平方根,再算加减.【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4=−6(3)√81+√−273+√(−23)2−14 =9+(−3)+23−1 =523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·七年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·七年级期中)计算(1)√16−√−83+√−1273 (2)√3(√3√3) (3)|3−√2|−|√2−π|−√(−3)2(4)9(x +1)2−16=0(解方程) 【答案】(1)523(2)2(3)6−π (4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可;(3)根据实数的混合计算法则求解即可;(4)根据求平方根的方法解方程即可.【详解】(1)解:原式=4−(−2)+(−13)=4+2−13 =523; (2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0,∶9(x +1)2=16,∶(x +1)2=169,∶x +1=43或x +1=−43, ∶x =13或x =−73.【点睛】本题主要考查了实数的混合计算,求平方根的方法解方程,熟知相关计算法则是解题的关键.。
人教版七年级数学下册第6章实数单元综合专题提升训练(含答案)
人教版七年级数学下册第6章实数单元综合专题提升训练(附答案)1.已知一个数的立方根是﹣,那么这个数是()A.﹣B.C.D.﹣2.在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个3.若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1C.m+1D.4.实数a,b在数轴上的位置如图,则下列结论错误的是()A.b>a B.|a|>|b|C.﹣a<b D.﹣b>a5.下列说法:①5是25的算术平方根;②是的一个平方根;③(﹣4)2的平方根是﹣4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个6.x、y都为实数,且,则(xy)99的值()A.1B.﹣1C.2D.﹣27.正数n扩大到原来的100倍,则它的算术平方根()A.扩大到原来的100倍B.扩大到原来的10倍C.比原来增加了100倍D.比原来增加了10倍8.下列说法正确的是()①a的倒数是;②m的绝对值是m;③无理数都是无限小数;④实数可以分为有理数和无理数.A.1个B.2个C.3个D.4个9.下列运算中,正确的是()A.=±3B.=﹣2C.(﹣2)0=0D.2﹣1=﹣210.下列说法正确的是()A.0.25是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根11.已知实数的小数部分为a,的小数部分为b,则7a+5b的值为()A.B.0.504C.2﹣D.12.如果(1﹣)2=3﹣2,那么3﹣2的算术平方根是()A.±(1﹣)B.1﹣C.﹣1D.3+213.有下列说法:①不存在最大的无理数,也不存在最小的无理数;②无限小数都是无理数;③无理数都是无限小数;④带根号的数都是无理数;⑤两个无理数的和还是无理数;⑥有绝对值最小的数;⑦比负数大的是正数.其中,错误的有()A.3个B.4个C.5个D.6个14.下列说法正确的是()A.0.是无理数B.是分数C.是无限小数,是无理数D.0.13579…(小数部分由连续的奇数组成)是无理数15.若n为自然数,则的结果是()A.1B.±1C.﹣1D.2n+116.下列四种说法中,共有()个是错误的.(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).A.1B.2C.3D.417.下列说法错误的有()①所有的实数都有平方根②所有的实数都有算术平方根③所有的实数都有立方根④所有的实数都有绝对值⑤所有的实数都有倒数.A.1个B.2个C.3个D.4个18.比较大小:﹣3.14﹣π,.19.如果+|y﹣3|=0,那么x3+y2=.20.若a=﹣,b=﹣||,c=﹣,则a,b,c的大小关系是.21.的算术平方根的倒数是.22.若实数a,b满足=0,则代数式a2019+b2020=.23.在下列说法中:①0.09是0.81的平方根;②9的平方根是±3;③(﹣5)2的算术平方根是5;④是一个负数;⑤0的平方根和立方根都是0;⑥=±2;⑦全体实数和数轴上的点一一对应.其中正确的是.24.若的整数部分为a,的小数部分为b,则ab=.25.若某数的立方等于﹣0.027,则这个数的倒数是.26.已知x﹣1是64的算术平方根,则x的算术平方根是.27.计算:①;②.28.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2019+﹣|﹣5|++.29.求下列各式中的x:(1)x3=﹣0.125;(2)8x3=27;(3)x3+2=1;(4)(x﹣1)3=8;(5)27x3=343;(6)3x3+0.648=0.30.(1)计算:;(2)已知:(x﹣15)2=169,(y﹣1)3=﹣0.125,求的值.参考答案1.解:,即的立方根是﹣,故选:D.2.解:﹣,0,﹣3.14,是有理数,3π,,,0.151 551 555 1…是无理数,共有4个,故选:C.3.解:∵自然数的算术平方根为m,∴自然数是m2,∴下一个自然数是m2+1,它的算术平方根是.故选:A.4.解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.5.解:①∵52=25,∴5是25的算术平方根,①正确;②∵=,∴是的一个平方根,②正确;③∵(±4)2=(﹣4)2,∴(﹣4)2的平方根是±4,③错误;④∵02=03=0,12=13=1,∴立方根和算术平方根都等于自身的数是0和1,正确.故选:C.6.解:∵,∴,解得,∴(xy)99=(﹣2×)99=﹣1,故选:B.7.解:设这个数是a,那么算术平方根为;扩大100倍后为100a,则=10,所以一个数扩大为原来的100倍,那么它的算术平方根扩大到10倍,所以比原来增加了10﹣1=9倍故选:B.8.解:①a的倒数是,当a=0时该结论不成立,故说法错误;②m的绝对值是|m|,当m≥0时m的绝对值是m,当m<0时m的绝对值是﹣m,故说法错误;③无理数都是无限不循环小数,故说法正确;④实数可以分为有理数和无理数,故说法正确.故选:B.9.解:∵=3,∴选项A不正确;∵=﹣2,∴选项B正确;∵(﹣2)0=1,∴选项C不正确;∵2﹣1=,∴选项D不正确.故选:B.10.解:A、0.5是0.25的一个平方根,所以A选项不正确;B、正数有两个平方根,它们互为相反数,所以B选项正确;C、72的平方根为±7,所以C选项不正确;D、负数没有平方根,所以D选项不正确.故选:B.11.解:2<<3,∴7<5+<8,∴1<<,∴的整数部分是1,小数部分是a=﹣1=,同理求出的小数部分是b=﹣1=,∴7a+5b=7×+5×=﹣,故选:D.12.解:(1﹣)2=3﹣2,∴3﹣2的平方根为±(﹣1),∴3﹣2的算术平方根为(﹣1).故选:C.13.解:①不存在最大的无理数,也不存在最小的无理数;①正确②无限小数都是无理数;无限不循环小数是无理数,故②错误.③无理数都是无限小数;③正确.④带根号的数都是无理数;④错误,⑤两个无理数的和还是无理数;相反数时和为0,故⑤错误.⑥有绝对值最小的数;故⑥正确⑦比负数大的是正数.0,不是正数,故⑦错误.错误的有②④⑤⑦故选:B.14.解:A、0.是有理数,故A选项错误;B、是无理数,故B选项错误;C、是无限小数,是有理数,故C选项错误;D、0.13579…(小数部分由连续的奇数组成)是无理数,故D选项正确.故选:D.15.解:==﹣1.故选:C.16.解:(1)负数的立方根是负数,故负数没有立方根错误;(2)1的立方根是1,1平方根是±1,故1的立方根与平方根都是1错误;(3)=2,2平方根是,故正确;(4)==,故原题错误.错误的共有3个.故选:C.17.解:①∵负数没有平方根,故说法①错误,②∵负数没有平方根也没有算术平方根,故说法②错误,③正数有一个正的立方根,负数有一个负的立方根,0的立方根是0,∴所有的实数都有立方根.故说法③正确;④∵所有的实数都有绝对值,故说法④正确;⑤∵0没有倒数,故说法⑤错误;故所以说法①②⑤错误,说法③④正确.故选:C.18.解:|﹣3.14|=3.14,|﹣π|=π,∵3.14<π,∴﹣3.14>﹣π;=﹣,∵<,∴>.故答案为:>、>.19.解:由题意,得,解得;因此x3+y2=(﹣2)3+32=1.20.解:∵a==﹣3,b==,c==2,∴a<b<c.故答案为:a<b<c.21.解:由题意,得8的算术平方根是2,的算术平方根的倒数是=,故答案为:.22.解:由已知得:a+1=0,a+b=0,∴a=﹣1,b=1,∴a2019+b2020=(﹣1)2019+12020=﹣1+1=0.23.解:①0.9是0.81的平方根,故①错误;②9的平方根是±3,故②正确;③(﹣5)2的算术平方根是5,故③正确;④无意义,故④错误;⑤0的平方根和立方根都是0,故⑤正确;⑥=2,故⑥错误;⑦全体实数和数轴上的点一一对应,故⑦正确;故答案为:②③⑤⑦.24.解:34,a=3,2,b=﹣2,ab=3(﹣2)=3﹣6.故答案为:3﹣6.25.解:∵(﹣0.3)3=﹣0.027,∴这个数为﹣0.3,∴﹣0.3的倒数==﹣.故答案为﹣.26.解:∵82=64,∴64的算术平方根8,∴x﹣1=8,解得x=9,∵32=9,∴x的算术平方根是3.故答案为:3.27.解:①原式=+9﹣2++1=+=+;②原式=(8+3)÷(+5)=11÷=11×=2.28.解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5.29.解:(1)∵x3=﹣0.125,∴x=﹣0.5,(2)∵8x3=27,∴x=,(3)∵x3+2=1,∴x=﹣1,(4)∵(x﹣1)3=8,∴x﹣1=2,解得:x=3,(5)∵27x3=343,∴x=,(6)∵3x3+0.648=0,∴x=﹣0.6.30.解:(1)原式=3+﹣2+﹣3=;(2)∵(x﹣15)2=169,∴x﹣15=±13,即x=15±13,x=28或2,∵(y﹣1)3=﹣0.125,∴y﹣1=﹣0.5,即y=1﹣0.5=0.5.①当x=28,y=0.5时,原式=﹣﹣=3;②当x=2,y=0.5时,原式=﹣﹣=1.。
初一数学实数计算题专题训练(含答案)
初一数学实数计算题专题训练(含答案) 专题一计算题训练一1.计算题:| -2 | - (1+) 0+.解答:原式 = 2 - 1 + 2 = 3.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2).解答:原式 = - + 4 × 9 + 3 = 38.5.计算题:(-4)³ - 8 ÷ (-8) - (-1).解答:原式 = -64 + 1 - (-1) = -64 + 2 = -62.10.(-2)³ + (-3) × [(-4)² + 2] - (-3)² ÷ (-2).解答:原式 = -8 + (-3) × [16 + 2] - 9 ÷ (-2) = -8 + (-3) × 18 + 4.5 = -8 - 54 + 4.5 = -57.5.11.| -| -1 | - 2 |.解答:原式 = | -1 - 2 | = 1.14.求 x 的值:9x² = 121.解答:x² = 121 ÷ 9 = 13 1/3,x = ± √13 1/3.15.已知 2x + 3y = 10,3x - y = 2,求 xy 的值(精确到0.01)。
解答:将第二个式子变形为 y = 3x - 2,代入第一个式子得到 2x + 9x - 6 = 10,解得 x = 1,代入 y = 3x - 2 得到 y = 1,所以 xy = 1,精确到 0.01.16.比较大小:-2,-(-2)(要求写过程说明)。
解答:-(-2) = 2,所以 -2 < -(-2).17.求 x 的值:(x + 10)² = 16.解答:x + 10 = ± 4,解得 x = -6 或 -14.19.已知 m < n,求 (m + n) ÷ 2 和 (n - m)²的大小关系。
2022年沪科版七年级数学下册第6章 实数专项训练试题(含答案解析)
沪科版七年级数学下册第6章 实数专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在实数23-0、π-、0.2 ).A .1个B .2个C .3个D .4个2a a 的值不可能为( )A .2B .3C .4D .53、下列各数中不是无理数的是( )A .3π-C .0.151151115…(相邻两个5之间1的个数逐次加1) 4、下列各数中,不是无理数的是( )A B .πC D .0.808008…(相邻两个8之间0的个数逐次加1)5、若关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,则k 的值为( )A .9B .﹣3C .﹣3或3D .36、在下列各数23,3.1415926,0.213,-2π2之间依次多1个0)中无理数的个数有( )A .1个B .2个C .3个D .4个7、已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .28、下列各数中,是无理数的是( )A .3.14B .πC .38 D 9、下列运算正确的是( )AB 9C 9D 810、点A 在数轴上的位置如图所示,则点A 表示的数可能是( )AB C D 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设[x )表示大于x 的最小整数,如[3)=4,[﹣1.2)=﹣1,(1)[﹣3.9)=______.(2)下列结论中正确的是______(填写所有正确结论的序号)①[0)=0;②[x )﹣x 的最小值是0;③[x )﹣x 的最大值是1;④存在实数x ,使[x )﹣x =0.5成立.2、0.064的立方根是______.3最接近的整数为______.4、在﹣(﹣12),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.5、如果3278x =-,那么x =_____. 三、解答题(5小题,每小题10分,共计50分)1、将下列各数在数轴上表示出来,并用“<”号把它们连接起来.12-,3-,2-2、已知正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,a ﹣4b 的算术平方根是4.(1)求这个正数a 以及b 的值;(2)求b 2+3a ﹣8的立方根.3、求下列各数的平方根: (1)121 (2)729(3)(-13)2 (4)3(4)-- 4、已知a 、b 互为倒数,c 、d(c +d )2+1的值.5、如果一个四位数m 满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为1m ,十位数字与个位数字之和记为2m ,记F (m )12m m =,若F (m )为整效,则称这个数为“运算数“,例如:∵F (5332)5332⨯==+3,3是整数,∴5332是“运算数”;∵F (1722)177224⨯==+,74不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s 和t 都是“运算数”,其中s =8910+11x (2≤x ≤8,且x 为整数);t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F (t )=4,规定:k ()2t F s =-,求所有k 的值.-参考答案-一、单选题1、B【分析】无限不循环小数是无理数,根据无理数的定义解答.【详解】,∴23-0π-、0.2π-,故选:B .【点睛】此题考查了无理数的定义,正确掌握定义及正确求一个数的立方根及算术平方根是解题的关键.2、D【分析】a 可能的值,判断求解即可.【详解】,a ,∴整数a 可能的值为:2,3,4,∴整数a 的值不可能为5,故选:D .【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.3、C【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:AB 、3π-,是无理数,故此选项不符合题意;C 12,是分数,是有理数,故此选项符合题意; D 、0.151151115…(相邻两个5之间1的个数逐次加1),是无理数,故此选项不符合题意. 故选:C .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如8之间依次多1个0)等形式.4、A【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.3=,不是无理数,符合题意;π0.808008…(相邻两个8之间0的个数逐次加1)都是无理数,不符合题意;故选:A .【点睛】本题考查了无理数的定义,能熟记无理数的定义的内容是解此题的关键.5、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】 解: 关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,290,30k k ①②由①得:3,k由②得:3,k ≠所以:3,k =-故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.6、C根据无理数的概念求解即可.【详解】解:-22之间依次多1个0)是无理数,其它是有理数, 故无理数一共有3个,故选:C .【点睛】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、C【分析】分两种情况讨论求解:当2m ﹣1与5﹣m 是a 的两个不同的平方根和当2m ﹣1与5﹣m 是a 的同一个平方根.【详解】解:若2m ﹣1与5﹣m 互为相反数,则2m ﹣1+5﹣m =0,∴m =﹣4,∴5﹣m =5﹣(﹣4)=9,∴a =92=81,若2m ﹣1=5﹣m ,∴m =2,∴5﹣m =5﹣2=3,∴a =32=9,【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.8、B【分析】根据无理数的定义,“无限不循环的小数是无理数”逐项分析即可.【详解】解:A. 3.14是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;是有理数,故该选项不符合题意;C. 38=是有理数,故该选项不符合题意;3故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9、C【分析】)a≥表示非负数a的算术平方根,其结果是一个非负数,从而可判断A,B,C a的立方根,从而可判断C,于是可得答案.【详解】=故A不符合题意;9,=故B不符合题意;9,9,=-故C符合题意;=故D不符合题意;4,故选C【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“算术平方根与立方根的定义及求解一个数的算术平方根与立方根”是解本题的关键.10、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A,故该选项符合题意;B<4,故该选项不符合题意;C,故该选项不符合题意;D,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.二、填空题1、-3;③④【分析】(1)利用题中的新定义判断即可.(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3(2)解:①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项正确;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.∴正确的选项是:③④;故答案为:③④.【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.2、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵3,0.40.064∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.3、5【分析】先判断5266,再根据26251,362610,从而可得答案.【详解】解:252636,5266,26251,362610,而110,26更接近的整数是5.故答案为:5【点睛】本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.4、-1【分析】先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.【详解】解∵﹣(﹣12)=12,﹣1,|3﹣π|=π-3,0,∴−1<0<π-3<12,∴这四个数中,最小的数是−1.故填:−1.【点睛】本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.5、32- 【分析】本题可利用立方根的定义直接求解.【详解】 ∵3327()28-=-, ∴32x =-. 故填:32-. 【点睛】本题考查立方根的定义:如果一个数的立方等于a ,则这个数称为a 的立方根使用时和平方根定义对比记忆.三、解答题1、在数轴上表示出来见解析;1322-<-<- 【分析】先把2-化简,然后把各数在数轴上表示出来,最后根据数轴左边数小于右边数的规律进行排序.【详解】解:∵|2|2-=32, 将这些数表示在数轴上如图所示:∴1322-<-<- 【点睛】本题考查有理数的综合应用,熟练掌握绝对值和算术平方根的计算、利用数轴比较有理数大小的方法是解题关键.2、(1)36a =,5b =;(2)b 2+3a ﹣8的立方根是5【分析】(1)根据题意可得,2x ﹣2+6﹣3x =0,即可求出a =36,再根据a ﹣4b 的算术平方根是4,求出b 的值即可;(2)将(1)中所求a 、b 的值代入代数式b 2+3a ﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,∴2x ﹣2+6﹣3x =0,∴x =4,∴2x ﹣2=6,∴a =36,∵a ﹣4b 的算术平方根是4,∴a ﹣4b =16,∴36-4b =16∴b =5;(2)当a =36,b =5时,b 2+3a ﹣8=25+36×3﹣8=125,∴b2+3a﹣85.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.3、(1)±11; (2)53±;(3)±13;(4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2)725299=,因为2525()39=±,所以729的平方根是53±;(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.4、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab =1,c +d =0,(c +d )2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.5、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据28x ≤≤找出s ,设100010010(2)t a a b b =++++,其中19,17a b ≤≤≤≤,且,a b 为整数,由()4F t =,找出,a b 的值,代入()2t k F s =-中即可得解. 【详解】(1)99(9981)981F ⨯==+,9是整数,∴9981是“运算数”, 236(2314)145F ⨯==+,65不是整数,∴2314不是“运算数”; (2)891011s x =+,28x ≤≤且x 为整数,s ∴可为:8932,8943,8954,8965,8976,8987,8998, s 是“运算数”,8954s ∴=,89()854F s ⨯==+, t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为a ,个位数上的数字为b ,则千位上的数字为a ,十位上的数字为(2)b +,其中19,17a b ≤≤≤≤且,a b 为整数,100010010(2)t a a b b ∴=++++,()4F t =,2422a b ∴=+,即288a b =+, 当1b =时,4a =,其他情况不满足题意,10004100410314431t ∴=⨯+⨯+⨯+=,()4431738.5282t k F s ∴===--. 【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.。
七年级数学实数考点专题训练
七年级数学实数考点专题训练单选题1、下列四个数中,最大的有理数是()A.-1B.-2019C.√3D.0答案:D解析:根据有理数大小比较判断即可;已知选项中有理数大小为0>−1>−2019,故答案选D.小提示:本题主要考查了有理数比大小,准确判断是解题的关键.2、如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为√3时,输入值x为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③答案:D解析:根据运算规则即可求解.解:①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,,√4=2,y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.小提示:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、下列说法中:①不带根号的数都是有理数;②-8没有立方根;③平方根等于本身的数是1;④√a有意义的条件是a为正数;其中正确的有 ( )A.0个B.1个C.2个D.3个根据是二次根式有意义的条件、平方根的概念和立方根的概念判断即可.解:不带根号的数不一定都是有理数,例如π,①错误;-8的立方根是-2,②错误;平方根等于本身的数是0,③错误;√a 有意义的条件是a 为非负数,④错误,故选A .小提示:本题考查的是二次根式有意义的条件、平方根的概念和立方根的概念,掌握二次根式中的被开方数是非负数是解题的关键.4、已知√0.53≈0.793 7,√53≈1.710 0,那么下列各式正确的是( )A .√5003≈17.100B .√5003≈7.937C .√5003≈171.00D .√5003≈79.37答案:B解析:试题分析:√5003=√0.5×10003=√0.53×10≈7.937.故选B .点睛:本题考查了立方根的性质,知道被开方数每扩大(或缩小)1000倍,则它的立方根就相应的扩大(或缩小)10倍是解决此题的关键.5、下列实数:3,0,12,−√2,0.35,其中最小的实数是( )A .3B .0C .−√2D .0.35正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 解:根据实数比较大小的方法,可得﹣√2<0<0.35<12<3,所以最小的实数是﹣√2,故选:C .小提示:本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.6、已知√a 3=0.1738,√5.283=1.738,则a 的值为( )A .0.528B .0.0528C .0.00528D .0.000528答案:C解析:根据立方根的变化规律如果被开方数缩小1000倍,它的值就缩小10倍,从而得出答案∵√a 3=0.528 ,√5.283=1.738 , ∴a=0.00528,故选C.小提示:此题考查了立方根,熟练掌握立方根的变化规律是本题的关键.7、√3﹣2的绝对值是( )A.2−√3B.√3−2C.√3D.1答案:A解析:根据差的绝对值是大数减小数,可得答案.解:√3﹣2的绝对值是2﹣√3.故选:A.小提示:本题主要考查了绝对值化简,准确分析计算是解题的关键.8、下列说法中正确的是().A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是±1答案:C解析:根据平方根,算术平方根和立方根的定义分别判断即可.解:A、0.09的平方根是±0.3,故选项错误;B、√16=4,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.小提示:本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.填空题9、计算:|1−√3|+√9−√83.答案:√3解析:分别绝对值运算、算术平方根运算、立方根运算、合并同类项进行求解即可.解:原式=√3−1+3−2=√3.小提示:本题考查实数的混合运算,熟练掌握运算法则是解答的关键.10、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________. 答案:107解析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x ,712x=56, 解得:x =107,故答案为x =107.小提示:此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.11、4的平方根是 .答案:±2.解析:解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.12、请写一个比−√6小的无理数....答:____.答案:−√7(答案不唯一)解析:根据无理数的定义填空即可.解:比−√6小的无理数如:−√7(答案不唯一),故答案为−√7(答案不唯一).小提示:本题考查了无理数的定义及比较无理数大小,比较基础.13、数学家发明了一个魔术盒,当任意“数对” (a,b)进入其中时,会得到一个新的数:a2−b+1,例如把(3,−2)放入其中,就会得到32−(−2)+1=12,现将“数对”(−3,−2)放入其中后,得到的数是__________.答案:12解析:根据题中“数对”的新定义,求出所求即可.解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,所以答案是:12.小提示:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.解答题14、已知长方形的长为72cm,宽为18cm,求与这个长方形面积相等的正方形的边长.答案:36cm解析:首先求出长方形面积,进而得出正方形的边长.因为长方形的长为72 cm,宽为18 cm,所以这个长方形面积为:72×18=1296(cm2),所以与这个长方形面积相等的正方形的边长为:√1296=36(cm),答:正方形的边长为36 cm.小提示:此题主要考查了算术平方根的定义以及矩形、正方形面积求法,正确开平方是解题关键.15、学习了无理数后,某数学兴趣小组开展了一次探究活动:估算√13的近似值.小明的方法:因为√9<√13<√16,所以设√13=3+k(0<k<1),则(√13)2=(3+k)2..所以13=9+6k+k2,所以13≈9+6k,解得k≈23≈3+0.67=3.67.所以√13≈3+23(1)请你依照小明的方法,估算√41的近似值;(2)请结合上述具体实例概括出估算√m的公式:已知非负整数a,b,m,若a<√m<a+1,且m=a2+b,则√m≈________(用含a,b的代数式表示)(3)请用(2)中的结论估算√37的近似值.答案:(1)6.24;(2)a+b2a;(3)6.08.解析:(1)根据题目信息,找出41前后的两个平方数,从而确定出√41=6+k(0<k<1),再根据题目信息近似求解即可;(2)根据题目提供的求法,先求出k值,然后再加上a即可;(3)把a换成6,b换成1代入公式进行计算即可得解.(1)因为√36<√41<√49,所以设√41=6+k(0<k<1),则(√41)2=(6+k)2,所以41=36+12k+k2,所以41≈36+12k,解得k≈512,所以√41≈6+512≈6+0.42=6.42.(2)a+b2a设√m=a+k(0<k<1),所以m=a2+2ak+k2≈a2+2ak.因为m=a2+b,所以a2+2ak=a2+b,解得k=b2a ,所以√m≈a+b2a.(3)因为√36<√37<√49,所以a=6,m=37=a2+b=36+b=37,所以b=1,所以√37≈a+b2a =6+112≈6.08.小提示:本题考查了无理数的估算,读懂题目提供信息,然后根据信息中的方法改变数据即可,找出一般性的方法解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学实数专项训练一
1.把下列各数填入相应的集全内:
-8.6,9,21
a a a a <<<-179,0.99,-p ,0.76 (1)有理数集全:﹛ …﹜ ;(2)无理数集全:
﹛ …﹜ ;
(3)正实数集合:﹛ …﹜ ;(4)负实数集合:
﹛ …﹜ ;
2.化简:
(1
3;(2(3))21;(4))11。
3.化简
(1
; (2 (3
二、综合创新探究
4.(创新题)实数a 、b 、c 在数轴上的对应关系如图2-5-1,化简
a b c a b c a ---+--。
的大小。
5.
6.(应用题)在一个半径为20cm的圆形铁板上,截取一面积最大的正方形铁板作机器零件,求正方形的边(精确到0.1cm)。
7.已知,()2
-+-+求a+b-2c的值。
a b
340
7-2.已知a、b、c为三角形三边长,且满足()2
-+-+,
a b
340试判断三角形的形状。
8.(梅州中考)下列各组数中,互为相反数的是()。
A.2和1
2 B.2和1
2
- C.-2和
2 -
9.
61
2
骣
琪
桫
.
八年级数学实数专项训练二
1.若a 是一个无理数,则1-a 是( ).
A.正数
B.负数
C.无理数
D.有理数
2. 1.5-的相反数是( ).
A.32-
B.32
C.2
3- D.23 3.下列各语句中错误的个数为( ).
①最小的实数和最大的实数都不存在;②任何实数的绝对值都是非负
数;
③任何实数的平方根都是互为相反数;④若两个非负数的和为零,则
这两个数都为零.
A.4
B.3
C.2
D.1
4.实数a 在数轴上的位置如图2-6-2,则a ,-a ,1
a ,2a 的大小关系是( ).
A.
21a a a a <-<< B.21a a a a
-<<< C. 21
a a a a -<<< D. 21
a a a a <<<-
5.等腰三角形的两条边长分别为那么这个三角形的周长等
于 。
33-的相反数是,绝对值是,的
,的绝对值是
7.负数a的差的绝对值是 .
8.比较大小:
(1);(2)(3)2
--
--
3
9.求下列各式中的x.
(1)4
x-;(2)()2120;
x-=.
4326
x-=()()2
x--=(3)10
10.计算:()20
222
--++
11.已知一个正方形的边长为4cm,另一个正方形的面积是这个正方形面积的10倍,求另一个正方形的边长。
(精确到0.01)。
12.把下列各数写入相应的集合内。
31
27,0.26,,0,10.512,3.p
--
(1)有理数集全:﹛ …﹜ ;(2)无理数集全:﹛ …﹜ ;
(3)正实数集合:﹛ …﹜ ;(4)负实数集合:﹛ …﹜ ;
13.化简:
(1)5;(2
(3)(11-+;(4)2;
(5
.
14.已知正数a 和b ,有下列命题:
(1)若a+b=2
1;(2)若a+b=33
2;(3)若a+b=6,
3.
根据以上三个命题所提供的规律猜想:
若a+b=9 ;若a+b=n (n 为正整数).。