有理数计算(巧算)培优
专题1.33 《有理数》计算题综合训练(培优篇)(专项练习)
专题1.33 《有理数》计算题综合训练(培优篇)(专项练习)一、解答题1.(1)计算:3100221-5--1-12-21-1-32()()÷+⨯ (2)解方程:1111333302222x ⎧⎫⎡⎤⎛⎫----=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭2.有一列按一定顺序和规律排列的数: 第一个数是; 第二个数是; 第三个数是;…对任何正整数n ,第n 个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a ,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于”;(3)设M 表示,,,…,,这2016个数的和,即,求证:.3.计算:(1)412411-÷; (2)3(72)95-÷; (3)1339(2)()1648-÷⨯; (4)1853()()334÷-÷-;(5) 14(81)2()(8)49-÷⨯-÷-; (6)1331(0.25)(1)244-÷÷-⨯-.4.计算:(1)3521(2)(1)13[()]2-⨯--+-; (2)[(-3)3-(-5)3]÷[(-3)-(-5)];(3) 221143(2)(1)(1)33--⨯-⨯-÷-; (4)2016221(1)(0.5)[2(3)]36---÷⨯---.5.计算:(1) 0.125×(-7)×8; (2) -32-(-8)×(-1)5÷(-1)4; (4) [212-(79-1112+16)×36]÷5; (4) (-370)×(-14)+0.25×24.5+(-512)×(-25%).6.计算 (1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----;(3)74324.773276.3----; (4).25.032581413125.0-+-+ 7.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--;(3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-;(4))]3()6.0321(4[2-÷⨯-+---; (6)4211(10.5)[2(3)]3---⨯⨯--.8.阅读下面文字: 对于(﹣556)+(﹣923)+1734+(﹣312)可以如下计算:原式=[(﹣5)+(﹣56)]+[(﹣9)+(﹣23)]+(17+34)+[(﹣3)+(﹣12)]=[(一5)+(﹣9)+17+(一3)]+[(﹣56)+(﹣23)+34+(﹣12)]=0+(﹣114)=﹣114上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,请你计算:(﹣112)+(﹣200056)+400034+(﹣199923)9.计算:(1)-2-(+10); (2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15); (4)232(3)(2)(1)( 1.75)343-----+.10.计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}.10.(1)3131.75613848⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭.(3)()31122.525 2.5485⎛⎫⨯--⨯+⨯- ⎪⎝⎭.(3)()()222017213313⎛⎫-⨯-+-÷- ⎪⎝⎭.11.已知282(41)3830x y y z x -+-+-=,求x +y +z 的值.12. 计算:112⎛⎫- ⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭ ×…×(1-149)×(1-150).14.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计如图所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值.15.计算:1+111121231232000++⋅⋅⋅+++++++⋅⋅⋅+.16.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭17.探索研究:(1)比较下列各式的大小(用“<”“>”或“=”连接) ①|3||2|+-_________|32|-;①1123+_______1123+; ①|6||3|+-________|63|-.(2)通过以上比较,请你归纳出当a ,b 为有理数时||||a b +与||a b +的大小关系.(直接写出结果)(3)根据(2)中得出的结论,当||20152015x x +=-时,x 的取值范围是________.若123415a a a a +++=,12345a a a a +++=,则12a a +=________.18.阅读材料:求l+2+22+32+42+…+22013的值.解:设S= l+2+22+32+42+…+20122+22013,将等式两边同时乘2, 得2S=2+22+32+42+52+…+22013+22014. 将下式减去上式,得2S -S=22014-l 即S=22014-l , 即1+2+22+32+42+…+22013= 22014-l 仿照此法计算:(1)1+3+2333++…+100319.2014年“十一”黄金周期间,罗浮山风景区在7天假期中每天旅游的人数变化如下表(正 数表示比前一天多的人数,负数表示比前一天少的人数):(1)请判断7天中游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2)若9月30日的游客人数为0.3万人,则这7天的游客总人数是多少万人?20.观察下列各式:3211=,332123+=,33321236++=,33332123410+++=…()1请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系? ()2利用上述规律,计算:333331234...100+++++.21.下面是按一定规律排列的一列数: 第1个数:1-(1+12-); 第2个数:2-(1+12-)[1+2(1)3-][1+3(1)4-]; 第3个数:3-(1+12-)[1+2(1)3-][1+3(1)4-][1+4(1)5-][1+5(1)6-]. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.22.数学老师布置了一道思考题:“计算121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题. 小红的解法:原式的倒数为()2112121123020351210310653031065⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-=-+-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以121121303106510⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭. 小明的解法:原式12112151113303610530623010⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-+=-÷-=-⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 请你分别用小红和小明的方法计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.23.观察下列各等式,并回答问题:112⨯=1﹣12;123⨯=12﹣13;134⨯=13﹣14;145⨯=14﹣15;… (1)填空:1n(n 1)+=______(n 是正整数)(2)计算:112⨯ +123⨯+134⨯+145⨯+…+120042005⨯=______.(3)计算:112⨯ +123⨯+134⨯+145⨯+…+1n(n 1)+=______. (4)求113⨯+135⨯+157⨯+179⨯+…+120132015⨯的值.24.计算:196.9130.31310073317 1889.42377.124 111001150÷+⨯-÷+--+参考答案1.(1)3910-(2)90x=【解析】试题分析:(1)先去括号和绝对值符号后,再计算即可;(2)按等式性质称项、两边同时乘2,直至系数为1即可;试题解析:(1)原式=() 125112478391192020 ---⨯--==-+;(2)12{12[12(12x-3)-3]-3}-3=01 2{12[12(12x-3)-3]-3}=31 2[12(12x-3)-3]-3=61 2[12(12x-3)-3]=91 2(12x-3)-3=181 2(12x-3)=2112x-3=4212x=45x=902.(1)第5个;(2);证明过程见解析;(3)证明过程见解析.【解析】试题分析:(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.试题解析:(1)由题意知第5个数a==;(2)①第n个数为,第(n+1)个数为,①+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)①1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,①1﹣<+++…++<2﹣,即<+++…++<,①.考点:(1)分式的混合运算;(2)规律型;(3)数字的变化类3.(1)1311-;(2)1815-;(3)103-;(4)1;(5)-2;(6)-14【解析】试题分析:(1)(2)(3)利用带分数的性质,把复杂的数写成两个数的和,再用乘法分配律计算;(4)(5)(6)把乘数运算,带分数,统一成假分数的乘积形式,约分求解.试题解析:(1)4411411 12412123 11114411411⎛⎫⎛⎫-÷=-+⨯-⨯+⨯=-⎪ ⎪⎝⎭⎝⎭.(2)3311311 72972728 55995915⎛⎫⎛⎫⎛⎫-÷=-+⨯=-⨯+⨯=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3)1339454810 2164816393⎛⎫⎛⎫⎛⎫-÷⨯=-⨯⨯=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(4)185103431 334385⎛⎫⎛⎫⎛⎫⎛⎫÷-÷-=⨯-⨯-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(5)()()()()()1444812881816824999⎛⎫⎛⎫-÷⨯-÷-=-⨯⨯-÷-=÷-=- ⎪⎪⎝⎭⎝⎭. (6)()()13334710.251414244234⎛⎫⎛⎫-÷÷-⨯-=-⨯⨯-⨯-=- ⎪ ⎪⎝⎭⎝⎭. 4.(1) 154-;(2)49;(3)-22;(4)-10 【解析】(1)原式=18(1)134-⨯---, =18134--, =154-. (2)原式=[27(125)](35)---÷-+, =(27125)2-+÷, =982÷, =49.(3)原式=231634()()34--⨯⨯-⨯- =166--, =22-.(4)原式=341()6(29)66--⨯⨯--, =11()6(11)6--⨯⨯-, =111-, =10-. 考点:有理数的混合运算. 5.(1)-7;(2)-17;(3)310;(4)100. 【解析】 试题分析:这是一组有理数的混合运算题,在计算时,首先确定好正确的运算顺序,其次注意“符号”问题;具体解题过程中,(1)小题要注意乘法交换律和结合律的使用;(2)小题要特别注意“符号”方面的问题;(3)小题注意乘法分配律的使用;(4)小题注意乘法分配律的逆用. 试题解析:(1)原式=()0.12587⨯⨯- =()17⨯- =7-.(2)原式=()()9811---⨯-÷ =98-- =17-. (3)原式=()1122833625⎡⎤--+⨯⎢⎥⎣⎦ =51125⎛⎫-⨯ ⎪⎝⎭ =310. (4)原式=11137024.5 5.5444⨯+⨯+⨯ =()137024.5 5.54++ =100. 6.(1)615-; (2)1312- ; (3)-17 ; (4)283【解析】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.试题解析:解:(1)152********⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭ =][11152444263⎡⎤⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ =-5+(-16) =156-(2)21113642⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭=21113642⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭=21113264⎛⎫⎛⎫-+-+-+ ⎪ ⎪⎝⎭⎝⎭=-43+14 = 1312-(3)343.7627.24377---- =()343.767.242377⎛⎫⎛⎫-+-+-+- ⎪ ⎪⎝⎭⎝⎭=-11+(-6) =-17(4)1120.125350.25483+-+- =()1112350.258483⎛⎫++-++- ⎪⎝⎭ =()111230.2558843⎛⎫+-++-+ ⎪⎝⎭ =0+3+253=2837.(1)70;(2)123;(3)542-;(4)-385.5;(5)2.2;(6)16.【解析】试题分析:(1)利用有理数的乘方和有理数乘除法法则计算即可;(2)按先乘除,后加减的顺序计算,注意有因数为0; (3)利用乘法分配率进行简算; (4)利用乘法分配率进行简算;(5)按先乘除,后加减,有括号先算括号内的;(6)按照有理数四则混合运算顺序进行计算即可.试题解析:(1)原式=16+18×3=16+54=70;(2)原式=1203-=123;(3)原式=315715()152424531215⨯-+⨯-⨯+⨯=5695105-+-+=1441255-+=-;(4)原式=515536367188180105687.5385.5 1816⨯+⨯-⨯-⨯=+--=-;(5)原式=2[4(10.4)(3)]2[40.6(3)]2[4(0.2)] ---+-÷-=---+÷-=---+-2.2=(6)原式=111711[29]1(7)123666 --⨯⨯-=--⨯-=-+=.8.5 4 -.【解析】试题分析:首先分析(-556)+(-923)+1734+(-312)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;再分别计算求值.试题解析:(﹣112)+(﹣200056)+400034+(﹣199923)=﹣1+(﹣12)+(﹣2000)+(﹣56)+4000+34+(﹣1999)+(﹣23),=﹣1+(﹣2000)+4000+(﹣1999)+(﹣12)+(﹣56)+34+(﹣23),=(﹣2)+34,=﹣54.点拨:首先阅读材料,结合有理数运算的法则,理解拆项法的原理及应用,然后仿照材料的方法,进行计算.9.(1)-12;(2)3.6(3)-15;(4)-1.【解析】试题分析:根据有理数的减法法则,减去一个数等于加上这个数的相反数,然后根据加法法则求解即可.试题解析:(1)-2-(+10)=-2+(-10)=-12.(2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-323)-(-234)-(-123)-(+1.75)=-323+234+123+(-134)=(-323+123)+ [(+234)+(-134)]=-2+1 =-1.10.(1)原式=514;(2)原式=3.【解析】【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587=(3.587-1.587)+(5+7)+(-512-314)=2+12-83 4=51 4 .(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.11.(1)52-.(2)1-.(3)10-.【解析】试题分析:(1)化简,利用加法结合律计算.(2)利用乘法分配律计算.(3)先算乘方,再算乘除,最后计算加减.试题解析:(1)3131.75613848⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭7515274848=--+ 22448=- 52=-.(2)()31122.525 2.5485⎛⎫⨯--⨯+⨯- ⎪⎝⎭310122.5 2.5 2.5485=⨯+⨯-⨯35122.5445⎛⎫=⨯+- ⎪⎝⎭22.55⎛⎫=⨯- ⎪⎝⎭1=-.(3)()()222017213313⎛⎫-⨯-+-÷- ⎪⎝⎭()19919=-⨯+÷-()19=-+-10=-.点拨:计算题中的一些运算技巧(1)熟练掌握常用分数和小数的互化:10.52=,10.254=,10.25=,10.1258=,10.110=, 20.45=,30.65=,340.3750.885==,. (2)利用带分数的性质,把复杂的数写成两个数的和,再用乘法分配律计算. (3)多个数相乘,负数是奇数个,最后符号为负;负数是偶数个,最后符号为正. (4) 带分数,统一成假分数的乘积形式,约分计算.(5)有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号时、先算小括号里面的运算,再算中括号,然后算大括号.运算律:①加法的交换律:a+b=b+a ; ①加法的结合律:(a+b)+c=a+(b+c); ①乘法的交换律:ab=ba ; ①乘法的结合律:(ab )c =a (bc );①乘法对加法的分配律:a (b+c )=ab+ac ; 注:除法没有分配律. 12.3 【解析】【试题分析】根据绝对值、完全平方的非负性得,由题意可知80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,代入得:x +y +z =3.. 【试题解析】由题意可知80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,所以x +y +z =3..【方法点拨】绝对值的非负性与平方的非负性可以和许多数学知识相结合进行考查. 13.150【解析】 【分析】先计算括号内的,然后再根据多个有理数相乘的运算法则进行求解即可. 【详解】112⎛⎫- ⎪⎝⎭ ×113⎛⎫- ⎪⎝⎭ ×114⎛⎫- ⎪⎝⎭×…×(1-149)×(1-150 )=1234484923454950⨯⨯⨯⨯⨯⨯ =150. 【点拨】本题考查了有理数的加、乘混合运算,熟练掌握运算顺序以及运算法则是解题的关键. 14.112n-【分析】把一个面积为1的正方形分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的正方形,再把面积为14的正方形分成两个面积为18的三角形,…,由图形揭示的规律进行解答即可得. 【详解】 由图可知11122=-, 221111222+=-,233111112222++=-, …2111112222n n +++=-, 所以234n n 1111111222222++++⋅⋅⋅+=-.【点拨】本题考查了规律题——图形的变化类,认真观察,通过计算从中发现规律是解题的关键. 15.119992001【分析】根据有理数的混合运算法则计算即可. 【详解】因为1+2+3+…+n =12{(1+2+…+n )+[n +(n -1)+(n -2)+…+1]} = 12 [(1+n )+(2+n -1)+(3+n -2)+…+(n +1)]= 12n (n +1),所以()12112123?··11n n n n n ⎛⎫==- ⎪++++++⎝⎭.所以原式=1+2(12-13)+2(13-14)+…+2(1111)1222000200122001-=+⨯-⨯=119992001【点拨】本题考查的是有理数的混合运算,掌握有理数的混合运算法则是解题的关键,解答时,注意正确找出规律. 16.(1)14-(2)124-【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答; (2)根据例子将每项的整数部分相加,分数部分相加即可解答. 【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭104⎛⎫=+- ⎪⎝⎭14=-(2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭124⎛⎫=-+- ⎪⎝⎭124=-【点拨】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算. 17.(1)①>;①=;①>;(2)||||||a b a b ++;(3)0x ,10或10-或5或5-【分析】(1)根据有理数绝对值的化简方法分别化简、计算后进行比较即可;(2)根据(1)的规律即可得到答案;(3)根据(2)的规律即可得到答案.【详解】(1)①因为|3||2|5,|32|1+-=-=,所以|3||2||32|+->-.①因为11112323+=+, 所以11112323+=+. ①因为|6||3|9,|63|3+-=-=,所以|6||3||63|+->-.故答案为>,=,>;(2)当a ,b 异号时,||||||a b a b +>+,当a ,b 同号时,||||||a b a b +=+,所以||||||a b a b ++;(3)由(2)中得出的结论可知,x 与2015-同号,所以x 的取值范围是0x . 因为1234123415,5a a a a a a a a +++=+++=,所以12a a +与34a a +异号,则1210a a +=或10-或5或5-,故答案为0x ,10或10-或5或5-.【点拨】此题考查了有理数绝对值的化简:正数的绝对值等于它本身,零的绝对值是零,负数的绝对值等于它的相反数,以及绝对值的化简方法的应用.18.101312-.先仿照已知条件给的设设S=1+3+2333++…+1003,然后再将等式的两边同时乘以3,就可得出另外一个式子,然后两式相减,即可求出.【详解】解:设S=1+3+2333++…+1003(1),3S=3+2333++…+1003+1013(2)(2)-(1)得:2S=1013-1 ①S=101312- ①1+3+2333++…+1003=101312- 19.(1)0.22万人(2)这7天的游客总人数是3.42万人【分析】(1)根据表格确定出七天内游客人数最多与最少的,求出之差即可;;(2) 根据9月30日的人数,以及表格,求出这7天的游客总人数即可.【详解】解:7天中游客人数最多的是10月3日,最少的是10月7日,它们相差0.58-0.36=0.22(万人).(2) (1) 1日游客人数为0.3+0.16=0.46(万人);2日游客人数为0.46+0.08=0.54(万人);3日游客人数为0.54+0.04=0.58(万人);4日游客人数为0.58-0.04=0.54(万人);5日游客人数为0.54-0.08=0.46(万人);6日游客人数为0.46+0.02=0.48(万人);7日游客人数为0.48-0.12=0.36(万人).0.46+0.54+0.58+0.54+0.46+0.48+0.36=3.42(万人).答:这7天的游客总人数是3.42万人20.(1) 右边幂的底数等于左边各个幂的底数的和;(2)2 5050.【分析】(1)通过观察可知,右边幂的底数等于左边各个幂的底数的和,(2)利用规律即可解决问题.【详解】()1右边幂的底数等于左边各个幂的底数的和,(2)333331234...100+++++,2(123...100)=++++,21100[100]2+=⨯, 25050=.【点拨】本题主要考查数字变化类规律型,解决本题的关键是要熟练掌握学会观察并归纳规律. 21.(1)见解析(2)40332 【分析】(1)按照运算法则运算即可;(2)按照(1)中计算方式,逐步写出第2017个代数式,由此可以写出第2017个数;【详解】(1)第1个数:12;第2个数:32;第3个数:52. (2)第2 017个数:2 017-23403240331(1)(1)(1)(1)1+)[1][1][1][1]23440334034-----++++( =2017-14365403440332345640334034⨯⨯⨯⨯⨯⨯⨯ =2017-12=40332. 【点拨】题目考查了数字的变化规律,解决此类问题的关键是找出所求数字与序号的关系,题目整体难易适中,适合课后训练.22.114- 【解析】【分析】参考小红和小明的两种不同方法计算即可.【详解】解:法1:原式的倒数为()13221132242792812352114614374261437⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯-=-+-+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①113221426143714⎛⎫⎛⎫-÷-+-=- ⎪ ⎪⎝⎭⎝⎭; 法2:原式1123215111113426314742624234214⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-+=-÷-=-÷=-⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点拨】灵活采用运算技巧能使计算简化.23.(1)111n n -+ ;(2)20042005 ;(3)1n n +;(4)10072015. 【解析】【分析】(1)根据题意确定出拆项规律,写出第n 个式子即可;(2)根据拆项规律,先拆项再抵消写即可求解;(3)根据拆项规律,先拆项再抵消写即可求解;(4)根据拆项规律,先拆项再抵消写即可求解.【详解】解:(1)111(1)1n n n n =-++(n 是正整数) (2)111111223344520042005++++⋯+⨯⨯⨯⨯⨯ =11111122320042005-+-+⋯+-=1﹣12005 =20042005. (3)1111112233445(1)n n ++++⋯+⨯⨯⨯⨯+ =1111112231n n -+-+⋯+-+ =111n -+ =1n n +. (4)111111335577920132015+++++⨯⨯⨯⨯⨯ =11111111123355720132015⎛⎫⨯-+-+-+⋯+- ⎪⎝⎭ =11122015⎛⎫⨯- ⎪⎝⎭=1201422015⨯=10072015. 故答案为:(1)111n n -+ ;(2)20042005 ;(3)1n n +;(4)10072015. 【点拨】 考查了有理数的混合运算,(4)的关键是将式子变形为11111111123355720132015⎛⎫⨯-+-+-+⋯+- ⎪⎝⎭进行计算. 24.4【分析】根据题意将小数和分数互相转化,将分数除法转变为分数乘法,然后根据分数的乘法运算法则和乘法分配律计算即可.【详解】原式1(6.910.091)33377.12 4.34711188.039.4211+-⨯⎛⎫=⨯-+ ⎪⎝⎭+-=22.78 205111.394111⎛⎫⨯-⎪⎝⎭-=22051.392 205111.3911⎡⎤⎛⎫⨯-⨯⎪⎢⎥⎝⎭⎣⎦-=22⨯=4故答案为4.【点拨】本题考查了含小数的分数乘除混合运算,关键是掌握分数除法的运算法则,并且要将小数转化为分数或分数转化为小数.。
最新人教版数学七年级上册 有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。
请问灰太狼有几种抓羊方案?【答案】(1)解:如图:点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:解得:,则x=4,或x=5,即抓四只小羊一只老羊或抓五只小羊【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.2.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.8.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
培优专题3 有理数的巧算(含答案)-
培优专题3 有理数的巧算有理数的巧算,实际上是结合算式的特点,灵活运用有理数的运算律,使之避繁就简,从而提高解题的速度和准确率.由于有理数的巧算常常体现出方法和思维的灵活性,因此是初中数学竞赛试题中,作为考察代数运算能力的一个重要内容.在有理数的运算中,除了一些常见的巧算方法外,还可以用平均数的估算法、连续整数的求和法、求分数和的裂项相消法等.例1计算:(-1136+13107÷24107-1718)÷(-78)×1711.分析在运算中合理运用运算律,可以达到简化运算的目的.要做到合理,关键是仔细观察题中数之间的联系.解:原式=371317818 ()()362418711 -+-⨯-⨯=37398 (17)()2477 -+-⨯-=14878136206 77777777-+=.练习11.-292324×12=_________.2.1995减去它的12,再减去余下的13,再减去余下的14,…依次类推,一直减到余下的11995,•试求最后剩下的数.3.计算:472 6342+472 6352-472 633×472 635-472 634×472 636.例2 计算:3-6+9-12+…+1995-1998+2001-2004.分析 此题解法较多,如何根据其特点使运算简而巧是关键.这个题的特点是每一个数均是3的倍数,当提取公因数3后,很容易发现这个和实际上是由668•个数组成,且可相邻的两个数为一组,组成334组就可解决.解法1:原式=3×(1-2+3-4+…+665-666+667-668)=3×[(1-2)+(3-4)+…+(665-666)+(667-668)]=3×(-334)=-1002.解法2:原式=(3-6)+(9-12)+…+(1995-1998)+(2001-2004)=-3×334=-1002.练习21.计算:1+2-3-4+5+6-7-8+…+1998-1999-2000+2001+2002-2003-2004.2.计算:999×998 998 999-998×999 999 998.3.计算:9999n 个×9999n 个+91999n 个.例3 计算:S n =222121+-+223131+-+…+2211n n +-+22(1)1(1)1n n +++-. 分析 将每一项拆成两项之差,使得总和中构成相反数的项相消.拆项中常常用到: ①1(1)n n +=1n -11n +; ②1(1)(1)n n -+=12(11n --11n +); ③1(1)(2)n n n ++=12[1(1)n n +-1(1)(2)n n ++]. 解:先将假分数化成带分数,并适当拆项.由2211n n +-=1+221n -=1+(11n --11n +), 知:222121+-=1+(1-13) 223131+-=1+(12-14) …因此S n =n+(1-13)+(12-14)+…+(11n --11n +)+(1n -12n +) =n+1+12-11n +-12n + =322992(1)(2)n n n n n ++++. 练习31.1-22+32-42+…+992-1002+1012.2.112⨯+123⨯+134⨯+…+1(1)n n+=________.3.已知:P=(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).那么P的个位数是________.例4 计算:(12+13+…+12005)(1+12+13+…+12004)-(1+12+13+…+12005)(12+13+…+12004).分析四个括号中均包含12+13+…+12004,我们可以用一个字母表示它,简化计算.解:设12+13+…+12004=A,则:原式=(A+12005)(1+A)-(1+A+12005)·A=A+A2+12005+12005A-A-A2-12005A=12005.练习41.求S=1+3+32+33+ (32005)2.求1+12+212+312+…+200412.3.比较:S n=12+23448162nn++++(n是正整数)与2的大小.例5从A、B两地随机抽取10株麦苗,测得它们的株高分别如下:(单位:cm)A:76,90,84,86,81,87,86,82,85,83;B:82,84,85,89,79,80,91,89,79,74.问:哪个麦地的麦苗长得高.分析这里问哪个麦地的麦苗长得高,实质上是比较其平均数的大小.在求平均数时,若直接将各数相加求和,计算较麻烦.一般是当一组数据x1,x2,x3•…x n的各个数值较大且要求它们的和时,我们可将各数据同时减去一个适当的常数a,•得到y1=x1-a,y2=x2-a,y3=x3-a…,y n=x n-a,那么x1+x2+x3+…+x n=na+(y1+y2+y3+…y n).这里应注意的是,常数a的确定要使得新数据的求和运算尽可能简单.解:将上述两组数据分别减去85,得到两组新数据:A′:-9,5,-1,1,-4,2,1,-3,0,-2;B′:-3,-1,0,4,-6,-5,6,4,-6,-11.则A组数据的平均数为:110[85×10+(-9+5-1+1-4+2+1-3+0-2)]=110(850-10)=84.B组数据的平均数为:110[85×10+(-3-1+0+4-6-5+6+4-6-11)]=110(850-18)=83.2.∴A地麦苗长得高.练习51.已知如下数表:12 3 43 4 5 6 74 5 6 7 8 9 10…那么第200行所有数的和为__________.2.对20名儿童的身高测量如下:(单位:cm)97,101,104,98,103,101,99,97,102,96,100,102,88,100,101,96,99,102,105,98.则它们的平均身高是________.3.计算下列各数的和.49.7,50.3,49,49.3,50.5,49.4,49.8,50.2,50,50.4,49.6,49.7,50.2.答案:练习11.-35912.原式=(-30+124)×12=360+12=35912. 2.1.原式=1995×(1-12)×(1-13)×…×(1-11995) =1995×12×23…×19941995 =1.3.2原式=472 635×(472 635-472 633)+472 634×(472 634-472 636)=472 635×2-472 634×2=(472 635-472 634)×2=2.练习21.-2004.原式=(1+2-3-4)+(5+6-7-8)+…+(1997+1998-1999-2000)+(2001+•2002-•2003-2004) =-4×501=-2004.2.1997.原式=(998+1)×998 998 999-998×(998 998 999+1 001 000-1) =998×998 998 999+998 998 999-998×998 998 999-998 998 000+998=999+998=1997.3.21000n 个0原式=9999n 个×9999n 个+1000n 个0+9999n 个=9999n 个×(9999n 个+1)+ 1000n 个0=9999n 个×1000n 个0+1000n 个0=(9999n 个+1)×1000n 个0=1000n 个0×1000n 个0=21000n 个0. 练习31.5151.原式=(1012-1002)+(992-982)+…+(32-22)+1=(101+100)×(101-100)+(99+98)×(99-98)+…+(3+2)×(3-2)+1 =201+197+…+1 =(2011)512+⨯ =5151.2.1n n + 原式=(1-12)+(12-13)+…+(1n -11n +) =1-11n +=1n n +. 3.5.原式=(2-1)(2+1)(22+1)…(232+1)=(22-1)(22+1)…(232+1)=(232-1)(232+1)=264-1.∵21=2,22=4,23=8,24=16,25=32,故264的末尾数字为6,∴原数的末尾数字为5. 练习41.2006312-.3S=3+32+33+…+32006, ∴2S=32006-1,∴S=2006312-. 2.2-200412.设1+12+212+…+200412=A . 则2A=2+1+12+212+…+200312,∴A=2-200412. 3.S n <2. 2S n =1+22+34+48+…+12n n -.∴2S n -S n =1+(22-12)+(34-24)+(48-38)+…+(12n n --112n n --)-2n n =1+12+14+18+…+112n --2n n 由练2知1+12+14+18+…+112n -=2-112n -. ∴S=2-112n --2n n <2. 练习51.159201.第200行的数为:200,201,202…598.方法1:200+201+…+598=(598200)3992+⨯=159201. 方法2:每个数都减去399,则得到一组新数据:-199,-198,-197…,197,198,199,其和为0,故200+201+…+598=399×399+0=159201.2.198.9.将每个数据都减去100得到一组新数据,其和为-11, 故原数据和为:100×20-11=1989,故平均身高为99.45.3.648.1.将原数据的每个数据减去50,得到一组新数据,其和为-1.9,• 故原数据和为:50×13-1.9=648.1.。
浙教版七上数学第二章有理数运算培优训练试题(附答案)
浙教版七上数学第二章有理数运算培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1. 由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A. 精确到十分位B. 精确到个位C. 精确到百位D. 精确到千位 2. 有人用600元买了一匹马,又以700元的价钱卖了出去;然后,他再用800元把它买回来,最后以900元的价钱卖出.在这桩马的交易中,他( )A. 收支平衡B. 赚了100元C. 赚了300元D. 赚了200元 3. 已知两个有理数a ,b 如果0<ab 且0>+b a ,那么( )A. a >0,b >0B. a <0,b >0C. a 、b 同号D. a 、b 异号,且正数的绝对值较大 4.已知3=x ,162=y ,则=+y x ( )A. 7或1-B. 1或7-C.7117--或或或D. 7或15. 计算99001...3012011216121++++++的值为( ) A. 1001 B. 10099 C. 901 D. 991006.如图,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1===PR NP MN 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是A. M 或RB. N 或PC. M 或ND. P 或R7.下列各式:①10=a ;②532a a a =⋅;③4122-=-;④()()()0182534=-⨯÷-+--;⑤2222x x x =+, 其中正确的是( )A. ①②③B. ①③⑤C. ②③④D. ②④⑤8.四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色按逆时针方向改变一次,则开灯32分钟四盏灯的颜色排列为( )9.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2019次输出的结果为( )A .3B .6C .4D .110.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2018将与圆周上的哪个数字重合( )A.0B.1C.2D.3二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11. 已知()0212=++-b a ,求()_________20192018=++a b a12.若5=a ,2=b ,且0>ab ,则_______________=+b a 13.当n 为正整数时,()()nn 21211-+-+的值是14.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动:第一次将点A 向左移动3个单位长度到达点A 1,第2次将点A 1向右平移6个单位长度到达点A 2,第3次将点A 2向左移动9个单位长度到达点A 3…则第6次移动到点A 6时,点A 6在数轴上对应的实数是 ;按照这种规律移动下去,第2018次移动到点2018A 时,2018A 在数轴上对应的实数是15.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,n 层二叉树的结点总数为_______ 16.观察规律并填空:(1)4323212112=⨯=⎪⎭⎫ ⎝⎛-(2)323432232131121122=⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-(3)85454334322321411311211222=⨯⨯⨯⨯⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-......______11......4113112112222=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-n (用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题共4小题,每小题2分,共8分)(1)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--324413322415 (2)()241258347-⨯⎪⎭⎫⎝⎛+--(3)()()2178877-⨯⨯÷- (4)()()()201938131021-÷----+-18(本题8如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,点B 所对应的数是 ;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,则A 、B 两点间距离为 ;(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.19(本题8分)某足球守门员练习折返跑,从守门员位置出发,向前跑记为正数,向后跑记为负数,他的练习记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了守门员位置? (2)守门员离开离开守门员位置最远是多少米?(3)守门员离开守门员位置达到10米以上(包括10米)的次数是多少?20(本题10分)小明有 5 张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出 2 张卡片,使这 2 张卡片上数字的乘积最大,乘积的最大值为________; (2)从中取出 2 张卡片,使这 2 张卡片上数字相除的商最小,商的最小值为________; (3)从中取出 4 张卡片,用学过的运算方法进行计算,使结果为24请你写出符合要求的运算式子(至少一个)21(本题10分). 已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=_____________(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止,①当P 、Q 两点运动停止时,求点P 和点Q 的距离;②求当t 为何值时P 、Q 两点恰好在途中相遇。
浙教版(2024)七年级上册第二章 有理数的运算 培优(含答案)
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
有理数的及其运算---培优题库4(含解析)
有理数及其运算培优题库41.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9 B.10 C.12 D.132.如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA=,点Q到点B的距离QB=;点P与点Q之间的距离 PQ=.3.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?4.在有理数范围内,我们定义三个数之间的新运算法则“⊕”;a⊕b⊕c=(|a﹣b﹣c|+a+b+c).如:1⊕(﹣2)⊕3=[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=1.解答下列问题:(1)计算:⊕(﹣3)⊕(﹣)的值;(2)在﹣,﹣,﹣,0,,,,,,这11个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c”运算,求在所有计算的结果中的最大值.5.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?6.如图,在单位长度为1的数轴上有,A、B、C、D四个点,点A、C表示的有理数互为相反数(1)请在数轴上标出原点O,并在点A、B、C、D上方标出它们所表示的有理数;(2)A、C两点间的距离AC=,B、D两点间距离BD=;(3)通过观察可以发现,数轴上两点之间的距离可以用这两个点所表示的有理数的绝对值来表示,如果数轴上点M表示的有理数是x,点N表示的有理数是y,那么M、N两地间的距离用含有绝对值的式子可以表示为;(4)设点P在数轴表示的有理数是x,借助数轴解答下列问题:①式子|x﹣4|表示点P与有理数所对应的点之间的距离:|x+1|表示点P与有理数所对应的点之间的距离;②当x是哪个有理数或哪个有理数范围内时,式子|x﹣4|+|x+1|的值最小?最小值是多少?③若式子|x﹣4|+|x+1|的值是6,那么点P所表示的有理数是多少?.7.已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?8.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N:.9.点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO=|a﹣0|=|a|,类似地,点B与原点O两点之间的距离表示为BO,则BO=|b|,点A与点B两点之间的距离表示为AB=|a ﹣b|.请结合数轴,思考并回答以下问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示m和﹣1的两点之间的距离是;(3)数轴上表示m和﹣1的两点之间的距离是3,则有理数m是;(4)若x表示一个有理数,并且x比﹣3大,x比1小,则|x﹣1|+|x+3|=;(5)求满足|x﹣2|+|x+4|=6的所有整数x的和.10.结合数轴与绝对值的知识回答下列问题:一般地,数轴上表示数m和数n的两点之间的距离公式为|m﹣n|.(1)例如:数轴上表示4和1的两点之间的距离为|4﹣1|=数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2)|=|5+2|=(2)数轴上表示数a的点与表示﹣4的点之间的距离表示为数轴上表示数a的点与表示2的点之间的距离表示为若数轴上a位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.11.如图,数轴上A、B两点所对应的数分别是a和b,且(a+5)2+|b﹣7|=0.(1)则a=,b=.A、B两点之间的距离=;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2017次时,求点P所对应的有理数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?请直接写出此时点P的位置,并指出是第几次运动.12.阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b| (3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示﹣2和5的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为.(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.13.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,”因此,为了解问题和解决问题,我们常常需要把“数”和“形”结合起来.【教材回顾由形想数】下图选自教材《合并同类项》(单位略)(1)从图1中可以直观地看出,学校的占地面积可以表示为100a+200a+240b+60b,也可以表示为【速算研究由数想形】37×33,26×24,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?图形建模:用长方形的面积表示两个正数的乘积,以37×33为例:构图方法:如图2,画长为37,宽为33的长方形,将这个37×33的长方形从右边切下一个长为30,宽为3的小长方形,拼接到原长方形的上面.图形分析:原长方形面积可以有两种不同的表达方式,37×33的长方形面积(30+7+3)×30的长方形与右上角3×7的矩形面积之和,即37×33=(30+10)×30+3×7=4×3×100+3×7=1221.用文字表述37×33的算方法是:十位数字3加1的和与3相乘,再乘以100,加上个位数字3与7的积,构成运算结果.(2)①类比示例:对于26×24,画图并简要说明其构图方法、速算方法.②归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是.(用文字语言表述)(3)①如图3,你能破解其中的奥妙吗?请画图解释图3的速算方法,并标出必要数据.②归纳提炼:用字母表示①中的速算方法:ab=.(用符号语言表述,设其中一个两位数是a,另一个两位数是b).14.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ =2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.15.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.16.在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b﹣6|=0,(1)求a、b的值;(2)若在数轴上存在一点C,使得C到B的距离是C到A的距离的3倍,求点C表示的数;(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.17.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,到终点表示的数是﹣2.已知A、B是数轴上的点,请参照上图,完成下列填空:(1)如果点A表示的数是3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动12个单位长度,再向左移动16个单位长度,那么终点B 表示的数是,A、B两点间的距离为;(3)一般地,如果点A表示的数是a,将点A先向右移动m个单位长度,再向左移动n个单位长度,那么终点B表示的数是,A、B两点间的距离为.18.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1时),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|;(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动,3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请求BC﹣AB的值.19.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.20.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)A景区与C景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.21.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=,(log216)2+log381=.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算 5!=(2)已知x为整数,求出满足该等式的x:=1.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD =4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b ﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P 到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.24.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?25.观察下列各式:=×(1﹣),=×(﹣),=×(﹣),…,=×(),…(1)归纳猜想:=.(2)巧计算:+++…+‘(3)巧解方程:++=.26.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?27.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,我们知道了绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.(1)一般地,点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的所有值是.②|x﹣3|+|x+1|的最小值是.28.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x 的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.29.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+的值.30.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+4,﹣6,+3①第次滚动后,A点距离原点最远②当圆片结束运动时,此时点A所表示的数是.31.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?32.如图1,有一个玩具火车放置在数轴上,若将火车在数轴上水平移动,则当A点移动到B点时,B点所对应的数为15,当B点移动到A点时,A点所对应的数为3(单位:单位长度).由此可得(1)玩具火车的长为个单位长度.(2)你能解决下面问题吗?一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?请你帮他求出来.(3)在(1)的条件下数轴上放置与AB一模一样的玩具火车CD,使原点与C重合,两列玩具火车分别从O 和A同时向右出发,已知CD火车速度1个单位/秒,AB火车速度为0.5个单位/秒,问几秒两火车头A与C 相距1个单位?33.数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=(结果用幂表示)34.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1仿照此法计算:1+2+22+23+ (2100)35.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+…+2005+2006﹣2007﹣2008.36.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时.(1)如果甲乙丙三人同时改卷,那么需要多少时间完成?(2)如果按照甲、乙、丙、甲、乙、丙,…的次序轮流阅卷,每一轮中每人各阅卷1小时,那么需要多少小时完成?(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)37.某超市在国庆期间推出如下优惠购物方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折优惠;③一次性购物超过300元一律八折优惠.王强两次购物分别付款80元、234元;若他一次性购买,比分两次购买可省多少元?38.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)不等式|x﹣3|+|x+4|≥9的解集为.39.如果表示运算x+y+z,表示运算a﹣b﹣c+d,那么的结果是多少?40.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:2015年10月18日起1008次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸找出以前同一车次的时刻表如下:2014年1008次列车时刻表到站时间始发点发车时间终点站A站下午14:30 B站第三日8:30 比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)41.如图,在数轴上,点A表示的数是﹣1,点B表示的数是2.5,解答下列各问:(2)观察数轴,与点A的距离为10的点表示的数为;(3)若将数轴折叠,使点A恰好与表示3的点重合,则点B与表示的点重合;(4)若数轴上P、Q两点之间的距离为2016,点P在点Q的左侧,且P、Q两点按(3)中的方式折叠后互相重合,则P、Q两点表示的数分别是,.42.为了计算1+2+22+23+24+…+29+210的值,我们采用如下的方法:设S=1+2+22+23+24+…+29+210①,则2S=2+22+23+24+…+29+210+211②,由②﹣①,得S=211﹣1,利用上述的方法,求1+5+52+53+54+…+52014+52015的值.43.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销售+0.3 +0.4 ﹣0.5 ﹣0.6 ﹣0.7 +0.1 价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?44.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2016,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?45.如图1在5×5的方格(每小格边长为1个单位长度)格点处有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+3),从B到A的爬行路线为:B→A(﹣1,﹣3),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,);(2)若甲虫A的爬行路线为A→B→C→D(如左图),请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图2标出甲虫A的爬行路线示意图及最终甲虫P的位置;若甲虫A向上爬行的速度为每秒0.5个单位长度,向下爬行的速度为每秒2个单位长度,向左或向右爬行的速度为每秒1个单位长度,请计算甲虫A 爬行的时间.46.计算下面各题(1)计算:+++…++(2)计算:1++++…+.47.(一)问题:你能比较两个数20102011和20112010的大小吗?为解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n为自然数),然后从简单情形入手,从中发现规律,经过归纳猜想出结论.(1)通过计算,比较下列各组数的大小:。
完整版)有理数培优专题
完整版)有理数培优专题
有理数培优专题
简介
本文档将详细介绍有理数的基本概念、性质和运算规则,以及一些与有理数相关的常见问题和解法。
内容
1.有理数的定义
有理数是可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
有理数可以用分数的形式表示,例如1/2、-3/4等。
2.有理数的四则运算
加法:有理数之间的加法可以通过分数的加法规则进行计算,即分子相加,分母保持不变。
减法:有理数之间的减法可以通过分数的减法规则进行计算,即分子相减,分母保持不变。
乘法:有理数之间的乘法可以通过分数的乘法规则进行计算,即分子相乘,分母相乘。
除法:有理数之间的除法可以通过分数的除法规则进行计算,即将一个有理数乘以另一个有理数的倒数。
3.有理数的性质
有理数的加法满足交换律、结合律和分配律。
有理数的乘法满足交换律、结合律和分配律。
有理数的加法和乘法满足分数的相应性质。
有理数的乘法满足0的性质,即任何有理数乘以0的结果都是0.
4.有理数的应用
有理数在日常生活中的应用非常广泛,例如计算物品的价格、测量长度和温度等。
有理数在代数学中也有重要的应用,例如解方程、求解不等式等。
5.有理数的解题技巧
解有理数的运算题可以借助分数运算的规则,如化简分数、通
分等。
解有理数的应用题可以将问题转化为数学模型,然后进行计算。
结论
有理数作为数学的重要分支之一,具有广泛的应用领域以及丰
富的运算规则和性质。
通过研究有理数的定义、运算规则和应用,
可以提高我们的数学思维能力,并且在实际问题解决中发挥重要作用。
七年级有理数(培优篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
培优竞赛辅导二:有理数的巧算
【培优竞赛辅导】第二讲 有理数的巧算【赛点解析】1、有理数的运算时初中代数中最基本的运算,在运算过程中,根据题目的结构特点灵活采用算法和技巧,不仅可以简化运算,提高解题速度,而且可以养成勤于动脑,善于观察到良好习惯。
2、有理数的相关概念和性质法则⑴有理数的运算法则 ⑵有理数的运算律及其性质3、常用运算技巧⑴巧用运算律 ⑵凑整法 ⑶拆项法(裂项相消) ⑷分组相约法 ⑸倒写相加法 ⑹错位相减法 ⑺换元法 ⑻观察探究、归纳法【专题精讲】【例1】计算下列各题⑴ 32333333251233()0.750.5()(1)()4()44372544-⨯+⨯-+⨯⨯+÷-⑵ 12713923(0.125)(1)(8)()35-⨯-⨯-⨯-【例2】计算:1234567891011122005200620072008--++--++--+++--+【例3】计算:⑴111111261220309900++++++⑵1111133********++++⨯⨯⨯⨯反思说明:一般地,多个分数相加减,如果分子相同,分母是两个整数的积,且每个分母中因数差相同,可以用裂项相消法求值。
①111(1)1n n n n=-++②1111()()n n k k n n k=-++③1111[](1)(2)2(1)(1)(2)n n n n n n n=-+++++④1111()(1)(1)211n n n n=--+-+【例4】(第18届迎春杯)计算:1111 2481024 ++++【例5】计算:11212312341235859 ()()()() 23344455556060606060 ++++++++++++++++【例6】(第8届“希望杯”)计算:11111111111111(1)()(1)()23200923420102320092010232009--+-+++---+--+++【例7】请你从下表归纳出333331234n +++++的公式并计算出:33333123450+++++的值。
七年级数学《有理数》经典培优(含答案)
1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。
有理数的计算七年级数学培优专题
有理数的运算法则及简便运算一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大数的符号,并用较大绝对值减较小绝对值;一个数同零相加得原数。
(2)减法法则:减去一个数等于加上这个数的相反数。
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。
二、【典型例题解析】:1、计算:351 0.752(0.125)124478⎛⎫⎛⎫⎛⎫+-+++-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、计算:(1)、()()560.9 4.48.11+-++-+(2)、(-18.75)+(+6.25)+(-3.25)+18.25(3)、(-423)+111362324⎛⎫⎛⎫⎛⎫-+++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3、计算:①()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②111142243⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3、化简:计算:(1)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)35123.7540.1258623⎡⎤⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(4)()()340115477⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(5)235713346⎛⎫⎛⎫⎛⎫-⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)-4.035×12+7.535×12-36×(79-57618+)4、计算: (1)()()()3242311-+⨯---(2)()()219981110.5333⎡⎤---⨯⨯--⎣⎦(3)22831210.52552142⎛⎫⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5、计算:()3413312100.51644⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭6、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++-一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
七年级数学尖子生培优竞赛专题辅导第一讲有理数的巧算
第一讲有理数的巧算趣题引路】(第6届“希望杯"竞赛试题改编)计算:2004 X 20032003+2005 X 20042004 一 2003 X 20042004 一 2004 X 20052005解析 原式=2004 X 20032003 一 2003 X 20042004+2005 X 20042004一2004 X 20052005=(2004 X 2003 X 10001-2003 X 2004 X 10001)+(2005 X 2004 X 10001- 2004 X 2005 X 10001) =0点评:赢赢型式子通常将它化成^cXlOOl 型式子,有的问题还利用到1001=7X11X13这一特点 来进行考査,有理数的运算有许多技巧和方法,是中考和竞赛的热点。
知识延伸】 一、 巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。
7113 1 1例 1 计算:(1)-1999- X 16: (2)(-一一一 +二一一)-(——)86 36 4 12 48解析⑴原式=-(2000-])><168= -(3200-2) = -31998(2)原式=一(一丄一丄 + 丄)><48=—(一8 — 已 +36—4)=一 22?・6 36 4 12 3 37 1点评:⑴像1999_、2003等数字在参与运算时,往往将其写成2000--、2000+3的形式:(2)利用乘8 8法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。
二、 有理数大小的比较有理数大小比较的一般规律:正数>零>负数:两个负数比较大小,绝对值大的反而小:两个正数比较 大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运 用一些熟知的规律进行比较.1991 QI log? 09例2 (1992年"缙云杯“初中数学邀请赛试题)把-四个分数按从小到大的顺序1992 92 1993 93排列是 __________________________________ •a 疋1992(1 92 ,1 1993(1 93(11991 1991 91 91 1992 1992 92 92点评:比较分数的大小通常可以将分子化成相同或分母化成相同,再进行比较,除了通分外,倒数法也 是经常用到的方法•实际上,此类习题具有-般规律;弓<角⑴是正整数),如!|<|斗…199991一'921 1<922 311999999而丄9191-92< >丄9292-939391-92, < 92-9192一93 <一93一921,, < 9 9 ^911919 9 9 9 9 1 1 << 2 3929999 19'- 9 1 1三. 有理数巧算的几种特殊方法有理数运算时,经常会出现一些较大或较多的数求和的问题,仔细观察它们的特点,探求英中的规律, 往往可以为解题开辟新的途径.1 •倒序相加法例 3 计算:(1)1+2 + 3 + ・・・+2003 + 2004:(2)1 — 2 + 3—4+・・・ + 2003 — 2004・解析(1)设S=l+2+3 + ・・・ + 2003+2004 ①则 S=2004+2003 +…+3+2+1 ②①+②,得2S=(l+2004)+(2+2003)+・・・+(2004+l) =2005 + 2005 +…+2005 (共 2004 个 2005)=2005X2004,即原式=2009010・(2)原式=(1 一2)+(3—4)+・・・ + (2003 — 20Q4)= -1-1 ------------- 1(共 1002 个一 1) = -1002.点评:(1)式的特点是:后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项, 通常用“I 表示;最后一项叫末项,通常用血表示;相等的差叫公差,通常用d 表示。
初中数学培优:有理数的简便计算
初中数学培优:有理数的简便计算一、倒序相加法【典例】阅读理解:高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.解:设s=1+2+3+…+100,①则s=100+99+98+…+1,②①+②,得2s=101+101+101+ (101)(两式左右两端分别相加,左端等于2S,右端等于100个101的和)所以2s=100×101,s=12×100×101=5050③所以1+2+3+…+100=5050.后来人们将小高斯的这种解答方法概括为“倒序相加法”.请解答下面的问题:(1)请你运用高斯的“倒序相加法”计算:1+2+3+ (200)(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:1+2+3+…+n=.(3)计算:101+102+103+ (2018)【解答】解:(1)s=1+2+3+…+200①,则s=200+199+198+…+1②,①+②,得2s=201+201+201+ (201)所以2s=200×201,s=12×200×201=20100,所以1+2+3+…+200=20100;(2)猜想:1+2+3+…+n=12n(n+1);故答案为:12n(n+1);(3)s=101+102+103+…+2018①,则s=2018+2017+2016+…+101②,①+②,得2s=2119+2119+2119+ (2119)所以2s=(2018﹣100)×2119,s=12×1918×2119=2032121,所以101+102+103+…+2018=2032121.【巩固】【解析】设原式之和为s,对每个括号内的各项倒序相加,得原式与倒序相加得.二、裂项相消形如可写成①②.【典例】观察下面的变形规律:11×2=1−12,12×3=12−13,13×4=13−14,…解答下面问题:(1)若n为正整数请你猜想1or1)=;(2)证明你猜想的结论;(3)利用这一规律化简:1(r1)(r2)+1(r2)(r3)+1(r3)(r4)+⋯+1(r2009)(r2010).(4)尝试完成.(直接写答案)1or2)+1(r2)(r4)+1(r4)(r6)+1(r6)(r8)+⋯+1(r2014)(r2016)=.【解答】解:(1)猜想:1or1)=1−1r1;故答案为:1−1r1;(2)等式右边=r1or1)−or1)=r1−or1)=1or1)=左边,得证;(3)原式=1r1−1r2+1r2−1r3+⋯+1r2009−1r2010=1r1−1r2010=2009(r1)(r2010);(4)原式=12(1−1r2+1r2−1r4+⋯+1r2014−1r2016)=12(1−1r2016)=1008or2016).故答案为:1008or2016)【巩固】计算下面各题(1)计算:11×2+12×3+13×4+⋯+198×99+199×100(2)计算:1+11+2+11+2+3+11+2+3+4+⋯+11+2+3+⋯+2015.【解答】解(1)原式=1−12+12−13+13−14+⋯+198−199+199−1100,=1−1100=99100;(2)1+11+2+11+2+3+11+2+3+4+⋯+11+2+3+⋯+2015=21×2+22×3+23×4+⋯+22015×2016=2(11×2+12×3+13×4+⋯+12015×2016)=2(1−12+12−13+13−14+⋯+12015−12016)=2(1−12016)=20151008.三、利用图形进行简便计算【典例】数学问题:计算1+12+13+⋯⋯+1(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算12+122+123+⋯⋯+12.第1次分割,把正方形的面积二等分,其中阴影部分的面积为12;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+122;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分;所有阴影部分的面积之和为12+122+123+⋯+12,最后空白部分的面积是12.根据第n次分割图可得等式:12+122+123+⋯+12=1−12.探究二:计算13+132+133+⋯+13.第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23+232;第3次分割,把上次分割图中空白部分的面积继续三等分…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为23+ 232+233+⋯+23,最后空白部分的面积是13.根据第n次分割图可得等式23+232+233+⋯+23=1−13.两边同除以2,得13+132+133+⋯+13=12−12×3.探究三:计算14+142+143+⋯+14.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并填写探究过程和结果)第n次分割所有阴影部分的面积之和为;最后的空白部分的面积是;根据第n次分割图可得等式;两边同除以,得;解决问题:计算1+12+13+⋯+1.根据第n次分割图可得等式,所以1+12+13+⋯+1=.拓广应用:直接写出运算结果:5−15+52−152+53−153+⋯+5−15.【解答】解:探究三:第n次分割图如图所示:所有阴影部分的面积之和为1;最后的空白部分的面积是14;根据第n次分割图可得等式34+342+⋯+34=1−14;两边同除以3,得14+142+143+⋯+14=13−13×4;故答案为:1,14,式34+342+⋯+34=1−14,3,14+142+143+⋯+14=13−13×4;解决问题:计算1+12+13+⋯+1.根据第n次分割图可得等式,K1+K12+K12+⋯+K1=1−1,所以1+12+13+⋯+1=1K1−1(K1)⋅.故答案为:K1+K12+K12+⋯+K1=1−1,1K1−1(K1)⋅.拓广应用:直接写出运算结果:5−15+52−152+53−153+⋯+5−15=1−15+1−152+1−153+⋯+1−15=n﹣(14−14×5)=n−14+14×5.巩固练习1.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m 的值是()A.46B.45C.44D.43【解答】解:23=3+5,第一项为22﹣2+1,最后一项为3+2×133=7+9+11,第一项为32﹣3+1,最后一项为7+2×243=13+15+17+19,第一项为42﹣4+1,最后一项为13+2×3…453的第一项为452﹣45+1=1981,最后一项为1981+2×44=2069,1981到2069之间有奇数2019,∴m的值为45.故选:B.2.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【解答】解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.3.211×(﹣455)+365×455﹣211×545+545×365=.【解答】解:211×(﹣455)+365×455﹣211×545+545×365=455×(﹣211+365)+545×(﹣211+365)=(﹣211+365)(455+545)=154×1000=154000.故答案为:154000.4.37.9×0.0038+1.21×0.379+6.21×0.159=.【解答】解:原式=37.9×0.0038+0.0121×37.9+6.21×0.159,=37.9×(0.0038+0.0121)+6.21×0.159,=37.9×0.0159+6.21×0.159,=0.159×(3.79+6.21),=0.159×10,=1.59.故答案为:1.59.5.计算:111×13×15+113×15×17+⋯+129×31×33=.【解答】解:∵1(K2)or2)=18(1K2+1r2−2),∴原式=18(111+115−213+113+117−215+⋯+129+133−231)=18(111−113−131+133)=18×2×(111×13−131×33)=14×31×33−11×1311×13×31×33=14×88011×13×31×33=2013×31×33=2013299.故答案是2013299.6.计算:191919767676−76761919=.【解答】解:191919767676−76761919,=19×1010176×10101−76×10119×101,=14−4,=−334.7.在1到100这100个数中,任找10个数,使其倒数之和等于1.【解答】解:∵1=1−12+12−13+13−14+⋯+19−110+110=(1−12)+(12−13)+(13−14)+…+(19−110)+110=12+16+112+120+130+142+156+172+190+110.∴这10个数可以是:2、6、10、12、20、30、42、56、72、90(答案不唯一).8.自选题:如图,显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x的值.【解答】解:这9个数的积为14×12×1×2×4×8×16×32×64=643,所以,每行、每列、每条对角线上三个数字积为64,得ac=1,ef=1,ax=2,a,c,e,f分别为14,12,2,4中的某个数,对a进行讨论,只有当a=14时,x不是14,12,2,4中某个数;推得x=8.9.规定:正整数n的“H运算”是①当n为奇数时,H=3n+13;②当n为偶数时,H=n×12×12×⋯(其中H为奇数).如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过257次“H运算”得到的结果.(2)若“H运算”②的结果总是常数a,求a的值.【解答】解:(1)1次=3×257+13=7842次=784×0.5×0.5×0.5×0.5=493次=3×49+13=1604次=160×0.5×0.5×0.5×0.5×0.5=55次=3×5+13=286次=28×0.5×0.5=77次=3×7+13=348次=34×0.5=179次=3×17+13=6410次=64×0.5×0.5×0.5×0.5×0.5×0.5=1,11次=3×1+13=16,12次=16×0.5×0.5×0.5×0.5=1=第10次,所以从第10次开始,偶数次等于1,奇数次等于16,257是奇数所以第257次是16.(2)若对一个正整数进行若干次“H操作”后出现循环,此时“H”运算的结果总是a,则a一定是个奇数.那么,对a进行H运算的结果a×3+13是偶数,再对a×3+13进行“H运算”,即:a×3+13乘以12的结果仍是a,于是(a×3+13)×12=a,也即a×3+13=A×2k即a(2k﹣3)=13=1×13,因为a是正整数所以2k﹣3=1或2k﹣3=13,解得k=2或k=4,当k=2时,a=13;当k=4时,a=1,所以a为1或13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………………………………………………最新资料推荐………………………………………
七年级数学培优(2)——有理数的巧算 班级:________ 姓名:_________ 知识点精析:
“算对与算巧”
求10099321+++++ 的和,从左到右逐次相加似乎很安稳的事,其实这样算下来不仅工作量很大,而且运算的次数太多,出错的可能性也大,聪明的高斯没有这样做,他把这个算式头尾倒过来写成129899100+++++ 然后将两个式子的对应项相加得到100个101,101乘100再除以2便得到所求的和。
这样不但算得对,而且算得快,这是一个脍炙人口的故事,它告诉我们数学运算不仅要算对更要算巧。
有理数运算是代数中最基本的运算,若能根据题目特点灵活掌握运用一些技巧,不仅可提高运算速度和准确率,还可培养学生善于思考的好习惯,有利于思维能力的培养,现介绍几种有理数运算中的解题技巧。
例题精讲:
一. 巧用运算律
例1. 计算12345678201220132014S
变式题:计算
1121231279()()()23344
4808080
二. 巧添辅助数 例2. 计算:
三. 巧用倒序相加法 例3、计算:
123
4027
2014201420142014 四. 巧用拆项法
例4计算
1
1
1
112233420132014
变式:.
111
1
1447710
20112014
五、巧用错位相加减法 例5、计算22013201412222
变式:22013201415555 六、巧用整体换元法 例6、
111
111111111
1123
2015
23
2014
23
2015
23
2014
七、巧用倒数法 例7、计算:
......................................................最新资料推荐 (111171111711)
36
461218364612183636
练习反馈:
1. 计算:
1111
11
111111
1
1
23
1997231997231997231996
2、计算:12112
3031065
3、求和
()()()()12131415916023242525926034343635936058595960
++-+++++++++++++++++ (分析:由加法交换律和结合律将分母相同的数结合相加,可改变原式繁难的计算。
)
4、计算:
)2005
20041
200420031431321211(2005⨯+⨯++⨯+⨯+⨯⨯。