汽轮机控制系统

合集下载

汽轮机控制原理

汽轮机控制原理

汽轮机控制原理一、汽轮机的基本原理汽轮机是一种利用高速旋转的转子带动涡轮叶片工作,从而将热能转化为机械能的热力学装置。

其基本原理是利用高温高压的蒸汽或气体驱动涡轮旋转,使得涡轮带动发电机或其他设备工作。

二、汽轮机控制系统的组成汽轮机控制系统主要由以下几个部分组成:1. 传感器:用于测量汽轮机运行状态参数,如温度、压力、转速等;2. 控制器:根据传感器采集到的数据,对汽轮机进行控制和调节;3. 执行器:根据控制器发出的指令,对汽轮机进行操作和调整;4. 监测系统:对汽轮机运行状态进行监测和诊断,及时发现故障并处理。

三、汽轮机控制系统的功能1. 调节蒸汽流量:通过调节蒸汽阀门开度来控制蒸汽流量,以满足负荷需求。

2. 调节燃料供给:通过调节燃料阀门开度来控制燃料供给量,以满足负荷需求。

3. 调节转速:通过调节蒸汽阀门和燃料阀门的开度,控制涡轮旋转速度,以满足负荷需求。

4. 控制温度和压力:通过控制蒸汽流量、燃料供给和排气温度等参数,控制汽轮机的温度和压力。

5. 监测和诊断:对汽轮机运行状态进行监测和诊断,及时发现故障并处理。

四、汽轮机控制系统的工作原理1. 蒸汽流量控制:当负荷需求增加时,传感器检测到蒸汽流量下降,控制器会发出指令,使蒸汽阀门开度增加,增加蒸汽流量。

反之亦然。

2. 燃料供给控制:当负荷需求增加时,传感器检测到燃料供给不足,控制器会发出指令,使燃料阀门开度增加,增加燃料供给。

反之亦然。

3. 转速调节:当负荷需求增加时,传感器检测到涡轮转速下降,控制器会发出指令同时调节蒸汽阀门和燃料阀门的开度,以增加蒸汽流量和燃料供给,从而提高涡轮转速。

4. 温度和压力控制:当负荷需求增加时,传感器检测到温度和压力下降,控制器会发出指令调节蒸汽流量、燃料供给和排气温度等参数,以提高温度和压力。

5. 监测和诊断:通过监测各种参数,如振动、温度、压力等,及时发现汽轮机故障,并进行诊断和处理。

五、汽轮机控制系统的优点1. 自动化程度高:汽轮机控制系统能够自动进行负载调节、转速调节等操作,减少了人工干预。

汽轮机控制及保护系统

汽轮机控制及保护系统

气轮机控制及保护系统第一节S—DEHG系统1、S—DEHG控制系统由高压抗燃油伺服及供油系统和DEHG数字电液控制器组成。

其主要设计特点如下:●数字电液控制器S—DEHG为双机冗余,能快速,精确灵敏地响应转速变化。

●为了减少热应力和延长机组寿命,采用了复合调节的进汽方式。

●具有足够多的接口,可与其他自动控制装置接口(如CCS协调控制器接口等)。

●在额定蒸汽参数下甩满负荷,危机遮断器不跳闸。

●危机遮断器最高动作转速不超过110—112%额定转速。

●停机上时,机组速度不等率可在3—5%范围内可调。

●同步转速调整范围为±6%。

●包括调节阀在内的调速系统的迟缓率不大于0.06%。

具有负荷限制功能,可使高压调节阀的开度被限制在设定值内。

●在甩负荷时(≥20%额定负荷),DEHG中的加速继电器可快速关闭中压调节阀。

●在甩负荷时(≥40%额定负荷),DEHG中的超速保护继电器可快速关闭高中压调节阀。

2、S—DEHG的调节特性:●速度不等率可在3—5%范围内调整。

●同步器调整转速范围为6%。

●调速系统的迟缓率不大于0.06%3、S—DEHG的主要功能●汽机在冷态/温态/热态/极热态条件下,从盘车、冲转、自动升速、转速调节、并网、带初负荷,直至带目标负荷的负荷限制,并能按联合调节的方式进行阀门控制,阀门管理,负荷的变化过程中,接受HITASS—200E来的速率,负荷率控制。

●可在操作盘上限制负荷和选择寿命消耗率。

●具有转速和负荷自动控制功能。

负荷从满负荷甩至零负荷的瞬间变化情况下防止机组达到超速跳闸点,或在正运行期间参加电网一、二次调频。

●备用超速跳闸和电超速保护功能。

●阀门门杆活动试验。

●自动同期方式并网。

●高压缸暖机运行控制。

●与HITASS的信号联锁。

4、危机保安装置中的主要遮断设备及控制值(1)、带有隔离阀和油座遮断阀机械式危机遮断器偏心飞环式机械危机遮断器动作转速为110—111%额定转速(3300—3330r/min),可在带负荷时通过喷油电磁阀进行喷油试验,使危机遮断器跳闸及复位。

汽轮机功率控制系统

汽轮机功率控制系统

目录前言 (3)1. 汽轮机功率控制系统概述 (4)1.1 汽轮机电液调节系统的功能 (4)1.2 APC模式、BRU-K与汽轮机控制系统的对应关系 (4)1.3 汽轮机电液调节系统的主要功能和组成 (5)1.3.1 汽轮机电液调节系统的电子部分组成 (5)1.3.2 汽轮机电液调节系统的慢速作用通道 (6)1.3.3 汽轮机电液调节系统的快速作用通道 (6)1.3.4 同步器电机的控制方式 (7)1.3.5 同步器电机控制方式的转换 (8)1.3.6 同步器电机转速的选择 (10)2. 汽轮机转速调节系统(1MAX51DS001) (12)2.1 概述 (12)2.2汽轮机转速调节器(1MAX51DS001)的工作原理 (12)2.3 汽轮机速度给定值的设置 (13)3. 汽轮机功率控制器(1MAX51DE001) (16)3.1 概述 (16)3.2 汽轮机功率调节器1MAX51DE001工作原理 (17)3.3 压力修正和频率修正 (19)3.3.1 压力修正 (19)3.3.2频率修正值 (19)4. 主汽母管压力调节器(1LBA00DP001) (20)4.1主汽母管压力调节器(1LBA00DP001)工作原理 (20)4.2 调节器小结 (20)5. 主汽母管最小压力调节器1LBA00DP002 (21)6. 中间强制甩负荷(RELAY FORCING)通道 (21)7. 微分通道1MAY10EK002 (22)8. 汽轮机超速预保护1MAY10EK003 (23)9. 甩负荷550MW保护MAY10EK004 (23)10. 快速压力控制器1 LBA00DP003 (24)11. 汽轮机启动阶段保护1MA Y10EK005 (24)12. 甩负荷到600MW/800MW/500MW保护 (25)13. 汽水分离再热器(MSR)加热蒸汽温度控制原理 (26)14. 汽轮机停机保护 (27)14.1汽轮机保护停机命令动作的条件 (27)14.2 工艺信号引起的汽轮机保护信号流程 (29)14.3 超速和联锁信号引起的汽轮机保护信号流程 (29)15. 汽轮发电机功率控制相关限值与逻辑 (32)15.1 汽轮-发电机目标给定值(MAA00DE002、MAA00DE002C/ZQ21) (33)15.2 汽轮-发电机目标功率给定值上限(MAA00DE002A/XQ41) (34)15.3 汽轮-发电机目标功率给定值下限(MAA00DE002B/XQ31) (35)15.4 汽轮-发电机负荷变化速率(MAA00DE002D/XQ51和MAA00DE003) (35)15.5 升功率限制信号1MAA00EG001 和降功率限制信号1MAA00EG002 (36)15.6 汽轮发电机升功率程序1 MAA01 EC002 (37)前言本教材是按照《操纵人员基础理论培训教材编写大纲》之《核电厂仪表与控制》(编号TP052711)的要求编写完成。

主汽轮机控制系统(MTC)功能简介

主汽轮机控制系统(MTC)功能简介

主汽轮机控制系统(MTC)功能简介主汽轮机控制系统是通过自动调节进入汽轮机的蒸汽流量来控制汽轮机转速及负荷的设备。

它具有升速控制、阀门切换控制、关闭所有阀门、调节器控制以及快速减负荷等控制功能。

标签:主汽轮机控制系统(MTC);可视化操作平台(VDU);控制功能1 概述主汽轮机控制系统(MTC)是通过自动调节进入汽轮机的蒸汽流量,来控制汽轮机的转速及负荷的设备。

MTC 通过位于主控室的可视化操作平台(VDU)控制汽轮机的转速和输出功率。

MTC 具有升速控制功能、阀门切换控制功能、关闭所有阀门功能、调节器控制功能、调节器自动跟踪器功能、负荷限制器控制功能、超速保护(OPC)控制功能、自动负荷调节(ALR)功能以及快速减负荷(Runback)控制功能等。

2 操作对象MTC的控制及操作对象是主汽阀(MSV),调节阀(GV),再热主汽阀(RSV)和再热调节阀(ICV)。

如图1所示。

3 控制功能3.1 升速控制功能升速控制是通过MSV控制进入高压汽轮机的主蒸汽量,按照设定的升速率,使汽轮机升速的功能。

MSV 的预启阀用于升速控制。

由于进入高压汽轮机的主蒸汽量在汽轮机升速过程中较低,因此,在控制机组从盘车转速到额定转速过程中,使用MSV 的小流量的预启阀比使用大流量的GV进行升速控制具有更好的效果。

根据规程HYG-MTS-GJP-101附件2(汽机启动):在VDU 操作屏幕上选择目标转速并选定升速率后,通过选择程序运行“GO”,使汽轮机以选定的升速率升速到目标转速。

汽轮机达到目标转速后,将自动选择程序中的“HOLD”,汽轮机转速保持不变。

可选的升速率如图2所示。

汽轮机是通过控制MSV的阀位来升速的,MSV的阀位是通过比例反馈来控制的,以便使实际转速与由目标转速和升速率确定的转速参考值一致。

由于升速控制是比例控制,会出现控制偏差。

因此,在MSV 阀位指令上叠加了作为转速参考值函数的偏差补偿,以尽可能减小转速参考值与实际转速间的偏差。

汽轮机控制系统

汽轮机控制系统

汽轮机控制系统包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。

控制系统的内容和复杂程度依机组的用途和容量大小而不同。

各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。

现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。

调节系统用来保证机组具有高品质的输出,以满足使用的要求。

常用的有转速调节、压力调节和流量调节3种。

①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。

早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。

这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。

20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。

图 1 [液压式调速器]为两种常用的液压式调速器的工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速器])或旋转阻尼(图1b[液压式调速器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。

②压力调节:用于供热式汽轮机。

常用的是波纹管调压器(图 2 [波纹管调压器])。

调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。

③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。

流量信号通常用孔板两侧的压力差(1-2)来测得。

图3 [压差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。

汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。

通常采用的是机械式(采用机械和液压元件)调节系统。

而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。

汽轮机控制

汽轮机控制

负荷扰动
从CCS来 TD指令
给 定 处 理 回 路
+ + K1 频率 校正
调 频 投 入
阀 门 管 理
动电 机液 及转 阀换 门、 油
蒸 汽 容 积
机 械 功 率
高 压 缸 +
电功率
发电机
+ 3000r/min

转速 测量
图3—16参加机组协调控制时的汽轮机控制系统结构
在协调控制方式下,禁止负荷控制投 入和做阀门试验。 当有以下条件产生时协调控制方式被切除: 1. CCS请求信号消失; 2. 从CCS来的给定信号故障; 3. 油开关跳闸; 4. 汽机已跳闸; 5. 操作人员将CCS控制切除; 等。
四、协调控制(CCS)
协调控制方式一般须满足下列条件: (1)机组已并网; (2)收到协调允许信号。
第四节 控制功能与控制系统特性
一、控制功能
1.转速控制
OA手动给定
ATC自动给定 同步信号
给 定 处 理 回 路
转速 调节器
+ -
阀 门 管 理
动电 机液 及转 阀换 门、 油
转速
汽轮发电机 组
转速测量
一次调频的投入条件如下: 1. 机组已并网; 2. 控制系统在“操作员自动”状态; 3. 负荷大于10%额定负荷。
3. 协调控制
汽轮发电机组一般满足以下条件时可投 入协调控制: 1. 机组已并网; 2. 接收到CCS请求信号; 3. 由CCS来的给定信号正常; 等。
中 间 再 热 器
中 、 低 压 缸
T T T
×
f (x) T × ∑
阀门试 验逻辑 顺序阀系数
f(x)
阀门试 验逻辑 顺序阀系数
f(x)

汽轮机控制系统..课件

汽轮机控制系统..课件

03
拓展应用领域
汽轮机控制系统广泛应用于电力、化 工、冶金等领域。在未来的工作中, 我将积极拓展应用领域,为更多行业 的生产和发展提供支持和服务。
THANKS FOR WATCHING
感谢您的观看
关键问题及解决方案
关键问题1
01
控制系统稳定性不足。解决方案:采用先进控制算法,如模糊
控制、神经网络控制等,提高系统稳定性。
关键问题2
02
参数整定困难。解决方案:运用智能优化算法,如遗传算法、
粒子群算法等,进行参数自动寻优。
关键问题3
03
系统安全性有待提高。解决方案:引入故障诊断与容错控制机
制,实时监测系统运行状况,确保安全可靠运行。
未来发展趋势预测与展望
趋势1
智能化。随着人工智能技术的发展,汽轮机控制系统将更加智能化,实现自适应、自学习、自优化等功能。
趋势2
数字化。数字化技术将进一步普及,推动汽轮机控制系统向数字化、网络化、信息化方向发展,提高系统集成度和信 息共享水平。
趋势3
绿色化。节能减排、低碳环保是未来汽轮机控制系统发展的重要方向,通过优化控制策略、降低能耗、 减少排放等措施,实现绿色可持续发展。
定义
汽轮机控制系统是用于控制汽轮机运 行的一套系统,包括传感器、控制器 和执行器等组成部分。
作用
通过监测汽轮机的运行状态和参数, 实现对汽轮机的启动、停机、负荷调 节和安全保护等功能,确保汽轮机的 安全、稳定和高效运行。
汽轮机控制系统的发展历史
早期机械式控制系统
采用机械式调速器和离心式调速器等控制设备,实现对汽轮机的 简单控制。
CHAPTER 03
汽轮机控制系统的功能实现
启动与停机控制

汽轮机DEH控制系统

汽轮机DEH控制系统

PPT文档演模板
汽轮机DEH控制系统
汽机的启动方式
¨ 冷态启动 又叫BYPASS OFF(旁路关闭) 方式启动。当高压主器阀前的压力和温 度达到要求时(以300MW汽轮机为例, 主 气 压 4.2MP, 主 气 温 350 摄 氏 度 ) , RSV、GV、IV均开启。由GV控制汽机 转速从盘车转速上升到2900 r/min.在2900 r/min 时,进行阀切换。GV 全开,由TV 控制汽机继续升速。
PPT文档演模板
汽轮机DEH控制系统
¨ 参与一次调频 DEH系统均设计有一次调 频回路,其工作原理是:机组转速以 3000 r/min为目标值,频差以一定的函 数对应为负荷指令叠加到目标值上。为 防止反复调节引起目荡,应设置一定的 频差控制死区。
PPT文档演模板
汽轮机DEH控制系统
¨ 参与协调控制 大型机组的协调控制是 机组必备的功能之一。协调控制的实现, 综合考虑了机组与炉膛不同被控对象的 特性,在很大程度上改善了机组的负荷 响应能力,也减少了运行人员由于负荷 变动进行的运行操作,降低了劳动强度。
PPT文档演模板
汽轮机DEH控制系统
¨ 单阀/顺序阀切换 机组运行过程中可工 作在“单阀”或“顺序阀”两种阀门控 制方式。
在“顺序阀”控制方式下,机组升降负 荷时,应按阀门流量特性要求依次开启 或关闭相应阀门,以减小截流损失,提 高机组运行的稳定性。
在“单阀”控制方式下,各阀门恢复开 度一致。切换过程中,应尽量保持功率 值无扰。
¨ 以汽机为主 这种运行方式是以汽机调功率, 汽机可以参加一次调频。这时,可以投入主蒸 汽压力低保护功能。保护的原理是:当主蒸汽 压力降到设定值的90%时,汽轮机自动降低负 荷,以保持锅炉的出口压力。注意,最多降到 20%额定负荷为止。

汽轮机DEH系统介绍

汽轮机DEH系统介绍

汽轮机DEH系统介绍汽轮机DEH系统介绍---------------------------------------------------------1.引言在汽轮机发电厂中,DEH (Digital ElectroHydraulic Governors)系统是一种广泛应用的控制系统,它采用数字化电液控制技术,用于调节汽轮机的运行参数,实现稳定的发电过程。

本文将对汽轮机DEH系统的功能、组成、工作原理以及常见问题进行详细介绍。

2.DEH系统概述DEH系统是汽轮机的核心控制系统,主要用于控制并维持汽轮机运行在稳定的工作状态。

该系统通过电液传动装置实现对汽轮机的转速、负荷、汽门、调速器等参数的精确控制。

3.DEH系统组成3.1 数字控制器:DEH系统的控制核心,负责处理各类输入信号,并通过输出信号控制电液传动装置。

3.2 电液传动装置:将数字控制器输出的电信号转换为液压信号,通过推杆或伺服阀控制汽轮机的调节部件,如汽门等。

3.3 传感器及信号输入模块:收集汽轮机运行相关参数的传感器,如转速传感器、温度传感器等,并将传感器信号转换为数字信号输入给数字控制器。

3.4 接口模块:负责数字控制器与其他系统的通信,如监控系统、SCADA系统等。

4.DEH系统工作原理4.1 模式选择:DEH系统根据运行需求选择适当的模式,如恒速模式、恒功率模式等。

4.2 信号采集与处理:DEH系统通过传感器采集汽轮机运行参数的实时信号,并经过数字控制器进行处理。

4.3 控制信号计算:根据信号处理结果,数字控制器计算出相应的控制信号,并输出给电液传动装置。

4.4 电液传动装置控制:电液传动装置将数字控制器输出的电信号转换为液压信号,并通过推杆或伺服阀实现对汽轮机调节部件的精确控制。

4.5 参数反馈与调整:DEH系统根据反馈的参数值对控制信号进行调整,以保持汽轮机运行在稳定的工作状态。

5.DEH系统常见问题5.1 故障诊断:DEH系统能够实时监测汽轮机运行状态,并对故障进行诊断,提供相应的故障信息。

汽轮机旁路控制系统(BPC)

汽轮机旁路控制系统(BPC)

摘要大型机组是电力工业生产的主要力量,随着世界性能源紧张和环保意识日益提高,高效低排放的超临界和超超临界机组已经成为世界上主要机型,大型机组代表着当今世界先进热工理论、材料科学和自动化技术,旁路系统与大型机组协调运行控制与安全、高效、低排放和经济效益密切相关。

旁路系统是大型机组运行的重要辅助设备,具有协调启动、回收工质、减少损耗、降低胖放功能。

旁路系统具有减压、减温等多道工艺过程,采用自动控制方式在不同模式下运行。

典型大型机组旁路系统有高压旁路和低压旁路组成,分别在机组运行中执行不同的功能。

旁路系统需要与机组控制系统协调运行,并带有连锁装置。

增设旁路系统是一项系统工程,通过旁路系统设计、运行控制模式选择、关键元件选型、系统配套和安装调试,知道与机组相互协调启动,完成相应的功能。

旁路系统在国内大型机组已经得以比较广泛的应用,在机组运行安全、并网负载协调和经济效益方面都获得一定的效果,同时也暴露出一些问题有待于解决。

深入进行大型机组旁路系统热工理论、热工材料、基础元件和自动控制等方面研究,在实践工程中摸索经验,不断提高设计水平和配套设备质量,是逐步完善旁路系统、提高运行安全可靠性、获得更高经济效益的必然途径。

关键词大型火电机组,旁路控制,运行调试AbstractLarge-unit is the main power of electricity industry, along with global energy Insufficiency and progress of environment consciousness, now surpercritical and ultra-supercitical units that are high efficiency and low emission have been outstanding epquipmengts in the world. large –unit reprsents the tadvanced thermal process theoty, material science and automatic technology. cooperating control between bypass system and large-unit. with safety, high efficiency, low emission, which have close relationship with economic benefit[17].Bypass system is important auxiliary equipment of operation of large-unit, and has many funcions, such as coopreating startup, recycling process fluid, reducing consumption, decreasing emission. Bypass system has several process steps, including pressure reduction, desuperheating etc, and adopts automatic control method under different operation modes.Typical big unti bypass system comprises of high pressure bypass and low pressure bypass, individually executes different functions in unti operation. Bypass system operation control shall correspond with unit control system operation, and equip interlock device.Adding-bypass system is a system project, through bypass design, operation control mode selection, key element choice, system match, installation and commission, excellent cooperati ve startup among untis, to complete relevant functions.Bypass system has achieved widely domestic appliance, and achieves some effect on safety opreation, combined load cooperation and economic benefit, while unveiling some problems to be resolved[19].Further research of large-unit bypass system thermal process theory, thermal process matri al, fundamental element and automatic control, and accumulating exprerience during practice, co ntunuously improving design level and matching quality, are necessary route for gradually perfecting bypass system functions, improving operation safety and reliability, achieving higher economic benefit.Key Words Large Power Unit, Bypass Control, Cooperative Regulation目录摘要 (I)Abstract (II)目录............................................................................................................................................. I II 1引言.. (1)1.1旁路控制系统的简介 (1)1.2旁路控制系统的功能 (2)2旁路控制系统 (4)2.1旁路控制系统的组成 (4)2.1.1旁路调节阀 (4)2.1.2液压动力单元和液压执行机构 (5)2.2旁路控制系统的工作方式 (5)2.2.1启动方式 (5)2.2.2运行方式 (5)2.2.3启动方式和运行方式的选择逻辑 (7)2.3旁路控制系统的控制方式 (8)3分散控制系统 (9)3.1 分散控制系统简述 (9)3.2 Symphony控制系统设计中采用的各种模件及其介绍 (9)3.3针对硬件的说明 (10)3.4设计中用到的部分功能码 (11)4防城港#2机组旁路控制系统设计 (13)4.1设计思想 (13)4.2高压旁路控制系统 (13)4.2.1高压旁路控制系统的主要作用 (13)4.2.2高压旁路控制系统的工作原理 (13)4.2 低压旁路控制系统 (17)5防城港#2机组旁路控制系统分析 (19)5.1高压旁路压力控制分析 (19)5.1.1自动控制分析 (19)5.1.2手动控制分析 (20)5.2高压旁路温度控制分析 (21)5.2.1自动控制分析 (21)5.2.2手动控制分析 (21)5.3低压旁路温度控制分析 (22)5.3.1自动控制分析 (22)5.3.2手动控制分析 (23)5.4低压旁路压力控制分析 (23)5.4.1自动控制分析 (23)5.4.2手动控制分析 (24)6结论 (25)致谢 (26)参考文献 (27)附录A1.1 (28)附录A1.2 (29)附录A1.3 (30)附录A1.4 (31)附录A1.5 (32)附录A1.6 (33)附录A1.7 (34)附录A1.8 (35)附录A1.9 (36)1引言1.1旁路控制系统的简介汽轮机旁路控制系统(BPC)是指与汽轮机并联的蒸汽减温减压系统。

汽轮机调节系统

汽轮机调节系统

汽轮机调节系统汽轮机调节系统是指自动化的控制系统,用于控制、监测和调节汽轮机的运行状态和性能。

它由一系列传感器、执行器、逻辑控制器和人机界面组成,可以自动实现汽轮机的启动、运行及停机等过程,并保证汽轮机的稳定运行和安全性能。

一、汽轮机调节系统的组成1. 传感器汽轮机传感器主要包括温度传感器、压力传感器、转速传感器等。

这些传感器可以监测汽轮机的运行状态和性能,输出运行参数的信号给控制系统,以进行调节和控制。

2. 执行器汽轮机执行器包括流量控制阀、进气阀、汽门调节器、涡轮控制器等。

这些执行器根据控制信号,对汽轮机的进气量、排气量、转速等进行调节,以保证汽轮机的运行稳定。

3. 逻辑控制器汽轮机逻辑控制器是汽轮机调节系统的核心部件,它根据传感器和执行器的信号,利用控制算法和逻辑关系,控制汽轮机的运行状态和性能。

它可以自动控制汽轮机的启动、运行、停机等过程,并保证汽轮机的安全性能。

4. 人机界面汽轮机人机界面是指操作员通过控制系统进行监测和操作的界面,通常使用触摸屏、显示屏、键盘等。

它可以显示汽轮机的运行状态、报警信息等,同时也可以进行参数设置、运行模式切换、系统调试等操作。

二、汽轮机调节系统的工作原理1. 自动控制模式汽轮机调节系统采用自动控制模式,即汽轮机运行过程中,系统自动调节汽轮机的运行参数,以保证汽轮机的稳定运行。

它通过控制汽轮机的进气量、排气量、转速等参数,实现对汽轮机的控制和调节。

2. 开环控制和闭环控制汽轮机调节系统采用开环控制和闭环控制相结合的方式来控制汽轮机的运行参数。

在汽轮机启动的初期,采用开环控制来控制汽轮机的进气量、排气量等参数,以获得稳定的运行状态。

后期,采用闭环控制来进行精细控制,根据传感器的反馈信号进行调节,保证汽轮机的稳定运行。

3. 报警保护汽轮机调节系统采用多级报警保护措施,当汽轮机出现故障或超过安全范围时,及时发出报警信号,以保障汽轮机的安全性能。

同时,系统还具有自动停机和自动断电保护功能,确保汽轮机及周边设备的安全运行。

汽轮机调节系统详细概述

汽轮机调节系统详细概述

汽轮机调节系统详细概述汽轮机调节系统是一种通过控制汽轮机的燃料供给和汽轮机负荷来实现对汽轮机运行状态进行调节的系统。

它是汽轮机控制系统的一个重要组成部分,主要用于实现汽轮机的稳定运行、负荷调节和应对突发负荷变化等功能。

下面将对汽轮机调节系统的工作原理、组成以及关键技术进行详细概述。

汽轮机调节系统的工作原理主要包括测量和控制两个过程。

首先,通过各种传感器对汽轮机的运行参数进行实时测量,包括汽轮机的转速、温度、压力、燃料供给量等。

这些测量值会被送至汽轮机调节系统中的控制器,用于分析和判断汽轮机的运行状态。

控制的过程是汽轮机调节系统的核心部分,主要包括燃料控制和负荷调节。

燃料控制是通过控制汽轮机的燃料供给量来调节汽轮机的输出功率,实现负荷的调节。

燃料控制系统通常由燃气喷嘴、燃气调节阀、燃气控制系统等组成。

当负荷增加时,系统会向燃料控制系统发送信号,要求增加燃料供给量;当负荷减少时,系统则会减少燃料供给量。

这样可以确保汽轮机在不同负荷下的运行稳定。

负荷调节是指根据负荷需求实时调整汽轮机的输出功率。

负荷调节系统通常由减压器、逆功率装置、液力偶合器等组成。

当外部负荷变化时,系统会自动调整汽轮机输出功率,以满足负荷需求。

例如,当外部负荷减少时,逆功率装置会减小汽轮机的负荷,以防止汽轮机速度过高;当外部负荷增加时,逆功率装置则会增加汽轮机的负荷,以保证汽轮机的稳定运行。

汽轮机调节系统还包括一些附属部件,如漏气阀、排泄系统等,用于处理汽轮机在运行过程中可能出现的问题。

漏气阀用于控制汽轮机排气,保证系统的安全稳定。

排泄系统用于排除系统中积累的气体和杂质,以确保系统的正常工作。

汽轮机调节系统的关键技术主要包括传感技术、控制算法以及安全保护技术等。

传感技术负责实时获取汽轮机运行参数的测量值,并将其传输至控制器进行处理。

控制算法根据传感器传来的信号,利用各种控制策略进行运算和判断,并得出控制命令。

安全保护技术用于监测汽轮机运行状态,一旦检测到异常情况,系统将会采取相应的保护措施,避免发生事故。

汽轮机调节控制系统试验导则

汽轮机调节控制系统试验导则

汽轮机调节控制系统试验导则一、前言汽轮机调节控制系统是汽轮机的重要组成部分,它对汽轮机的运行稳定性和安全性有着至关重要的影响。

为了保证汽轮机调节控制系统的正常运行,需要进行试验验证。

本文将介绍汽轮机调节控制系统试验导则。

二、试验前准备1.试验前必须对汽轮机调节控制系统进行全面检查,确保各个部件安装正确,接线牢固,无松动现象。

2.试验前应对汽轮机各个部件进行清洗和检查,确保其无损坏、漏油等现象。

3.试验前应对润滑油、冷却水等液体进行检查和更换。

4.试验前应按照规定程序进行预热和启动。

三、试验内容1.静态调整试验静态调整试验是指在不改变汽轮机负荷条件下,通过手动或自动方式对汽轮机进行调整。

该试验主要包括以下内容:(1)手动调整:通过手动操作各个阀门和执行器来实现对汽轮机的控制。

(2)自动调整:通过自动控制系统来实现对汽轮机的控制,包括PID 控制、模糊控制等。

2.动态调整试验动态调整试验是指在改变汽轮机负荷条件下,通过手动或自动方式对汽轮机进行调整。

该试验主要包括以下内容:(1)手动调整:通过手动操作各个阀门和执行器来实现对汽轮机的控制。

(2)自动调整:通过自动控制系统来实现对汽轮机的控制,包括PID 控制、模糊控制等。

3.故障检测试验故障检测试验是指在正常运行状态下,人为模拟汽轮机各个部件的故障情况,通过自动控制系统进行检测和报警。

该试验主要包括以下内容:(1)人为模拟故障:通过人为操作来模拟汽轮机各个部件的故障情况。

(2)自动检测:通过自动控制系统来检测和报警。

四、试验结果分析1.静态调整试验结果分析静态调整试验的结果主要表现在汽轮机转速、压力和温度等方面。

根据实际测试数据进行分析,确定是否达到设计要求。

2.动态调整试验结果分析动态调整试验的结果主要表现在汽轮机负荷变化时的响应速度、稳定性和控制精度等方面。

根据实际测试数据进行分析,确定是否达到设计要求。

3.故障检测试验结果分析故障检测试验的结果主要表现在自动控制系统对故障的检测和报警能力。

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍1: TSI系统介绍1.1 TSI系统概述TSI(Turbine Supervisory Instrumentation)系统,又称为汽轮机监控系统,是用于对汽轮机性能进行监测和控制的关键系统。

它通过对汽轮机的各项性能参数进行实时监测和分析,确保汽轮机的运行安全稳定,并及时发现并修复潜在的故障。

1.2 TSI系统功能- 实时监测汽轮机的振动、温度、压力等关键参数;- 分析并预测汽轮机的运行状态,并给出相应的报警和建议;- 调整汽轮机的控制参数,以优化汽轮机的性能;- 存储和记录汽轮机的历史运行数据,方便后续分析和评估。

1.3 TSI系统组成TSI系统由传感器、数据采集设备、监控软件和人机界面等多个组件组成。

其中传感器用于对汽轮机各项参数进行实时监测,数据采集设备用于将传感器采集到的数据传输给监控软件,监控软件用于分析和处理数据,并通过人机界面向操作人员提供有关汽轮机状态的信息。

2: DEH系统介绍2.1 DEH系统概述DEH(Digital Electro-Hydraulic)系统,即数字电液系统,是一种用于汽轮机控制的先进技术。

它通过传感器采集汽轮机的各项参数,并根据这些参数通过数字信号控制液压装置,从而实现对汽轮机的精确控制。

2.2 DEH系统功能- 实时监测汽轮机的转速、压力、温度等参数,并将其进行数字化处理;- 根据监测结果自动调节液压装置,控制汽轮机的转速、负荷和压力等;- 对汽轮机的运行状态进行模拟和优化,并给出相应的报警和建议;- 存储和记录汽轮机的控制参数和历史运行数据,方便后续分析和评估。

2.3 DEH系统组成DEH系统由传感器、控制器、液压装置和人机界面等多个组件组成。

其中传感器用于对汽轮机各项参数进行实时监测,控制器用于数字化处理监测数据并根据算法控制液压装置,液压装置用于实现对汽轮机的精确控制,人机界面用于向操作人员提供有关汽轮机控制的信息和操作界面。

汽轮机的控制系统说明书

汽轮机的控制系统说明书

汽轮机的控制系统说明书1. 前言本说明书介绍的是该汽轮机的控制系统,以及如何操作和维护它。

控制系统是确保汽轮机正常运行的关键部分。

为了确保操作者和设备的安全,必须严格按照说明书中的要求进行操作。

2. 控制系统概述该汽轮机的控制系统采用PLC(可编程逻辑控制器)控制,通过传感器和执行机构实现对汽轮机的监控和控制。

PLC控制器负责对汽轮机的负载、温度、转速等参数进行监控,并通过执行机构和电磁阀等设备实现对汽轮机的调节和控制。

3. 操作指南3.1 开机操作(1)检查汽轮机周围环境是否安全,清理杂物和障碍物。

(2)检查汽轮机运行前的准备工作是否完成,如润滑油和冷却水是否充足。

(3)打开汽轮机控制箱门,并按照控制箱上的操作指南操作。

(4)在PLC控制器的屏幕上设置负载、温度等参数,并按下“启动”按钮。

3.2 运行操作(1)在汽轮机运行过程中,应事先设置好各项参数,如负载、温度、转速等。

(2)应每隔一段时间对汽轮机的运行情况进行监控,以确保其正常运转。

如发现异常,应及时采取处理措施。

(3)定期检查和维护汽轮机控制系统,确保各部件的正常运转。

3.3 关机操作(1)在汽轮机运行结束时应先调整到低负载,然后再按下“停止”按钮。

(2)将各设备逐一关闭,如切断汽轮机供电。

(3)清理现场,关闭控制箱门。

4. 维护指南4.1 日常维护(1)保持汽轮机周围环境的清洁,避免杂物和灰尘进入汽轮机内部。

(2)定期清洗控制系统设备和维护电线连接器;如有锈蚀、损坏等情况应及时更换或修理。

(3)检查润滑油和冷却水是否充足,如不足应及时添加。

4.2 周期性维护(1)定期更换油、滤芯等易损件。

(2)对控制器进行定期检查和维护,确保其正常运行。

(3)按照规定周期检查和维护汽轮机原有的操作和维护手册。

5. 故障排除如果发现汽轮机出现故障,首先应该检查控制系统和各部件的连接是否正常、设备是否缺损或损坏。

如果无法解决,则应及时联系制造商或售后服务商进行处理。

汽轮机控制系统

汽轮机控制系统

图3-7中的高压调节阀的顺序阀开启顺序
可设计为GV1/GV2,GV3 GV4,即GV1和
GV2同时开启,然后是GV3,GV4最后开
启。关闭顺序与此相反。 高压缸配汽
高压调节阀GV2
高压调节阀GV4


高压调节阀GV3


高压调节阀GV1
高压主汽阀TV1
高压主汽阀TV2
过热器蒸汽 图3—7汽轮机阀门布置图
4
4
4
LiSIN LiSEQ Li
i 1
i 1
i 1
显然,这个问题有很多解。为简化问题, 可以设定边界条件:
Li Fi (LiSIN , LiSEQ )
满足该边界条件的最简单解是
Li kSIN LiSIN kSEQ LiSEQ
式中:kSIN为单阀系数;kSEQ为顺序阀系数。 当阀门处于单阀方式时:kSIN =1, kSEQ=0 当阀门处于顺序阀方式时: kSIN =0, kSEQ=1
图3-9 顺序阀控制各阀位计算
高压调节阀阀位指令及阀切换
在单阀/顺序阀方式切换时,一个很重 要的问题是尽量避免阀门的抖动和负荷的 波动,做到均衡平稳地切换。为此,要求 阀门管理回路在实现方式切换期间,保持 通过阀门的总流量不变。为此,把整个切 换分成若干步进行,经过若干个有限的控 制周期完成切换。


调 节 投 入级 压 力
并 网
机 及 阀 门
液 转 换 、 油

蒸 汽 容 积







K1

频率 校正
调节级压 力测量
功率 测量


中 间 再 热 器

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍⒈汽轮机TSI系统介绍⑴ TSI系统概述汽轮机TSI(Turbine Supervisory Instrumentation)系统是一个监控和控制汽轮机运行的关键系统。

它主要由传感器、仪表、控制器和监控软件组成,用于实时监测和记录汽轮机的各种参数,以确保其安全可靠运行。

⑵ TSI系统功能TSI系统的功能包括:●监测并记录汽轮机的转速、温度、压力等参数。

●实时显示汽轮机的运行状态。

●报警和保护措施,一旦出现异常情况,系统会发出警报并采取相应的保护措施。

⑶ TSI系统组成TSI系统由以下几个主要组成部分组成:●传感器:用于测量汽轮机的各种参数,如转速、温度、压力等。

●仪表:用于显示汽轮机的运行状态和相关参数。

●控制器:用于实时监控和控制汽轮机的运行。

●监控软件:用于记录和分析汽轮机运行数据。

⒉ DEH系统介绍⑴ DEH系统概述DEH(Digital Electro-Hydraulic)系统是一种数字化电液控制系统,用于控制汽轮机的调速、负荷控制和安全保护。

它通过电信号与液压系统进行交互,实现对汽轮机的精确控制。

⑵ DEH系统功能DEH系统的功能包括:●汽轮机的精确调速控制。

●负荷控制,根据电网需求自动调整汽轮机的负荷。

●安全保护,监测并保护汽轮机免受过载、过热等危险情况。

⑶ DEH系统组成DEH系统由以下几个主要组成部分组成:●控制器:负责接收和处理控制信号,并控制液压系统。

●电液伺服阀:通过控制液压系统,实现对汽轮机调速和负荷的精确控制。

●传感器:用于测量汽轮机的转速、负荷等参数。

●人机界面设备:用于显示和操作DEH系统。

⒊ ETS系统介绍⑴ ETS系统概述ETS(Emergency Trip System)系统是一种紧急停机保护系统,用于监测和保护汽轮机在紧急情况下的安全停机。

⑵ ETS系统功能ETS系统的功能包括:●监测和检测汽轮机运行中的紧急情况。

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍

汽轮机TSI、DEH、ETS系统介绍汽轮机TSI、DEH、ETS系统介绍1.汽轮机TSI系统介绍1.1 TSI系统概述汽轮机TSI(Turbine Supervisory Instrumentation)系统是用于监测和控制汽轮机运行状态的关键系统。

它通过实时监测和分析多个关键参数,提供对汽轮机性能、可靠性和安全性的综合评估。

1.2 TSI系统功能TSI系统具有以下功能:- 监测和显示汽轮机的关键参数,如转速、温度、压力等。

- 进行故障诊断和报警,提供对可能的故障情况进行实时预警。

- 控制汽轮机的运行状态,在必要时进行自动调节和保护处理。

2.DEH系统介绍2.1 DEH系统概述DEH系统(Digital Electro-Hydraulic Control System)是一种数字电液控制系统,用于控制汽轮机的调节和保护。

它通过电子和液压技术的结合,实现对汽轮机的精确调节和可靠保护。

2.2 DEH系统功能DEH系统具有以下功能:- 实现对汽轮机负荷的自动调节,保持稳定的负荷输出。

- 监测和控制汽轮机的转速、压力等参数,确保汽轮机的安全运行。

- 实时诊断和记录汽轮机的工况数据,用于分析和故障排除。

3.ETS系统介绍3.1 ETS系统概述ETS系统(Emergency Trip System)是一种紧急停机系统,用于保护汽轮机在可能发生危险情况时的快速停机。

3.2 ETS系统功能ETS系统具有以下功能:- 在检测到危险情况(如高温、高压等)时,迅速切断汽轮机的供电和燃料供应,使其停机。

- 提供对汽轮机停机过程的监测和报警功能,确保停机过程的安全和可靠性。

- 可选装备自动复位功能,使系统在危险消失后能够自动恢复到正常运行状态。

附件:本文档附带以下资料:- 汽轮机TSI系统的技术规范书- DEH系统的操作手册- ETS系统的安装和维护指南法律名词及注释:- TSI:Turbine Supervisory Instrumentation,汽轮机监控仪表系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机控制系统
包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。

控制系统的内容和复杂程度依机组的用途和容量大小而不同。

各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。

现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。

调节系统用来保证机组具有高品质的输出,以满足使用的要求。

常用的有转速调节、压力调节和流量调节3种。

①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。

早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。

这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。

20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。

图 1 [液压式调速
器]为两种常用的液压式调速器的
工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速
器])或旋转阻尼(图1b[液压式调速
器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。

②压力调节:用于供热式汽轮机。

常用的是波纹管调压器(图 2 [波纹管调压
器])。

调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。

③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。

流量信号通常用孔板两侧的压力差(1-2)来测得。

图3 [压
差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。

汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。

通常采用的是机械式(采用机械和液压元件)调节系统。

而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。

70年代以前,不论机械式或电液式调节系统,所用信息全是模拟量;后来不少机组开始使用数字量信息,采用数字式电液调节系统。

汽轮机调节系统是一种反馈控制系统,是按自动控制理论进行系统动态分析和设计的。

发电用汽轮机的调节工业和居民用电都要求频率恒定,因此发电用汽轮机的调节任务是使汽轮机在任何运行工况下保持转速基本不变。

在图 4 [机械式调速系
统]的机械式调速系统中,当发电机负荷减小时机组转速便上升。

这时,调速器的位移输出通过连杆使滑阀相应上移,于是压力油进入油缸上部,推动活塞关小调节阀,汽轮机功率便随着进汽量的减少而减小。

最后,机组稳定在一个略高于原来的转速水平。

汽轮机功率的减小量与负荷的减小量相等。

图 5 [甩全负荷后的转速变化动态过程]
为负荷减小至空负荷(甩全负荷)的转速变化动态过程。

图6[调速静特
性]为转速与汽轮机功率N 对应的静态关系曲线,称为调速静特性。

不同曲线对应于不同给定值,即对应于同步器(通过它改变机组转速,使之同步并网)的不同位置。

图 5 [甩全负荷后的转速变化动态过程]
和图6[调速静特性]中0和1分别
表示额定转速和空负荷时的转速。

Δ是使汽轮机功率作业响应的最小转速变化量,比值
[0610-01]称为系统迟缓率。

[3fx]值取决于系统中各元件的迟缓率,即各元件的设计和制造精度。

一般机械系统的[3fx]值在0.3%左右,电液系统可以小到0.03%
左右。

同一曲线上从空载到额定功率N 0的转速变化(1-2)与额定转速0之比
[0610-02]称为转速不等率。

电网内多台机组并联运行通过调速系统调频
时,机组之间即按各台机的[610-03]比例分担负荷的变化量。

值的选定要兼顾动态和静
态性能的要求。

机械系统中一般取3~5%,电液系统中可以更小些。

供热式汽轮机的调节抽汽式汽轮机的调节任务是同时满足电负荷对频率和抽汽热负荷对汽压的要求。

图7 [一次抽汽式汽轮机复合调节系
统]是一次抽汽式汽轮机常用的转速调节与压力调节的复合系统。

当电负荷增加而使转速下降时,如实线箭头所示,调速器的位移输出通过连杆使滑阀分别作不同量的位移,压力油便进入油缸而分别把高压缸和低压缸的调节阀同时开大,直至汽轮机功率增加到满足电负荷为止。

若抽汽压力不受影响便可达到所谓的静态自治。

当热负荷增加而使抽汽压力下降时,如虚线箭头所示,调压器的位移输出使高压缸油动机把调节阀开大而增加高压缸进汽量,同时使低压缸油动机关小调节阀而减少低压缸进汽量。

一增一减,直至满足热负荷的汽量要求而保持抽汽压力基本不变为止。

若机组功率或转速保持不变,便是静态自治。

如达不到自治而同时引起转速和汽压的变化,转速调节和压力调节便协同工作,以保持转速和气压基本不变。

图8[调压静特
性]表示调压静特性,不同曲线
对应于不同的整定器位置。

压力变化不等率[0611-01],一般取8~
10%。

1、2分别为抽汽量为零及额定值时的抽汽压力。

用于发电的背压式汽轮机调节任务是满足热负荷对汽压的要求。

在这种场合,汽轮机进汽量完全取决于供汽量,汽轮机功率只随热负荷变化,毫无调节余地。

因此,机组必须并入电网运行。

但汽轮机除装有调压系统外仍装有调速系统。

后者用在机组启动、并网过程中和甩负荷后投入工作时。

变速汽轮机的调节通常要求生产流程所需的气体或液体在不同流量下压力保持不变,或在不同压力下流量保持不变。

当汽轮机用来驱动这样的压缩机或泵时,其调节任务是使机组转速随负荷作出相应的改变,以保持出口压力或输出流量不变。

这时,从空负荷到满负荷机组的转速变化很大。

调节系统常采用图9 [变速汽轮机多回路调节框
图]的多回路调节。

图[变速汽轮
机多回路调节框图]中调速回路起局部反馈作用,对来自汽源等的扰动直接作出响应,使汽轮机转速保持在与负荷相应的水平。

总回路若为压力调节,则保证在不同输出流量下压缩机或泵的出口压力基本不变;若为流量调节,则保证在不同负荷下输出流量基本不变。

这种功能是通过改变调速回路的给定值以改变机组转速来实现的。

这种调节称为串级调节。

监测保护系统用来保证机组的运行安全,具体项目因汽轮机的本体结构、机组功率和用途的不同而异。

监测项目通常有:转速,转子或轴承座的振动,转子的轴向位移,汽缸与转子的热膨胀差,汽缸壁温或一定部位之间的温差,汽压,背压(真空),润滑油压,油温以及轴瓦温度等。

当这些量值达到一定限度时,保护系统便发出警报信号;进一步到达危险极限时,保护系统便动作和关闭调节阀和主汽阀,迫使机组停机。

超速是各种机组最危险而又是随时可能发生的事故。

图10[超速危急遮断
器]是广泛采用的一种超速危急遮断器。

它直接装在汽轮机主轴上。

撞击子的重心 G与轴回转中心之间有一偏心距e,当转速升高达额定值的110~112%时,撞击子靠自身的离心力克服弹簧力而跳出一定距离,并撞开脱扣机构,使主汽阀和调节阀同时关闭。

中等功率以上的汽轮机常装有两只危急遮断器,并采用交错传动系统以提高可靠性。

更大的机组还设有其他超速保护。

甩负荷后迅速关断一切蒸汽通道如回热抽汽管道、供热抽汽管道等,是极为重要的防超速积极措施。

机组的振动一般以轴承座振幅为判断依据。

随着测量技术的改进,已可能在各部位进行详细的测量,而为监测保护提供更为切实可靠的信息。

自动起停和功率给定控制系统在现代大型汽轮发电机组中用以实现升速、同步并网、增减给定负荷和正常停机等操作的自动化。

汽轮机启动过程是机组寿命消耗率最大、事故发生率最高的工况,启动自动化就是为了保证操作正确和机组安全。

自动启动程序有两种:一种是在机组振动、金属温度、汽压和间隙等监视项目正常的条件下,按一定的时间表循序操作,直至带上预定的负荷;另一种是根据材料强度性能和检测到的数据,通过对要害部位工作应力状态的分析来确定随后的升速或加负过程。

理论上,后一种方式可以实现启动最佳化。

功率给定控制是指对并网运行各机组的功率的控制。

采取分等逐级控制的方式,由电站和电网调度所按照优化计算的结果,或预定的负荷曲线和其他条件,向各机组发出负荷分配的控制信号,并通过机、炉、电单元控制器指令各回路执行。

单元控制器保证回路之间的动作的协调。

发展趋势微型计算机将广泛用来完善和提高各方面的控制功能。

供热式汽轮机和大型发电用汽轮机将普遍使用微型机来实现数字式电液调节。

监测保护系统正逐步利用微型机进行分析诊断和趋势预测,进一步完善后将为实现机组寿命的科学管理提供可靠手段。

大型发电设备造价高昂,停机造成的损失更巨大。

机组起停和运行全盘自动化控制系统的研制,将有助于机组的安全运行,提高机组的经济性和利用率,是受到重视的发展方向。

相关文档
最新文档