数据结构程序设计报告(平衡二叉树)(内容清晰)

数据结构程序设计报告(平衡二叉树)(内容清晰)
数据结构程序设计报告(平衡二叉树)(内容清晰)

数学与计算机科学学院数据结构程序设计报告

平衡二叉树

学生姓名:

学号:

班级:

指导老师:

报告日期:

1.题目与要求

1). 问题的提出

编写已个平衡二叉树,主要是对插入一个元素导致树不平衡的情况进行平衡化处理以及相关的处理。

2)设计的知识点

队列的插入,删除,二叉树的建立于销毁,平衡树的平衡化,以及C语言中基础应用于结构等。

3)功能要求

(1).通过不断插入的方式创建一棵平衡二叉树,包括输入结点的关键字和相关信息。

(2)按要求输出创建的平衡二叉树结点,包括顺序(中序)输出和按层次输出。

(3)插入新增的结点,若结点不存在则插入平衡二叉树,并进行相关调整。

(4)销毁二叉树。

(5)退出

菜单界面如下:

2.功能设计

算法设计

选择创建平衡二叉树后,利用循环不断插入结点,并进行调整,当输入节点为0时停止进入菜单界面。

在平横二叉树排序树BSTree上插入一个新的数据元素e的递归算法可如下描述:

(1)若BSTree为空树,则插入一个数据元素为e的新结点作为BSTree的根结点,树的深度增1;

(2)若e的关键字和BSTree的根节点的关键字相等,则不进行插入;

(3)若e的关键字小于BSTree的根结点的关键字,而且在其左子树中不存在和e形同的关键字的结点,则将e插入在其左子树

上,并且当插入之后的左子树的深度加1时,分别就下列不同

情况处理之:

a.BSTree的跟结点的平衡因子为-1(右子树的深度大于左子树

的深度):则将跟结点的平衡因子更改为0,BBST的深度不

变;

b.BBST的根结点的平衡因子为0(左,右子树的深度相等):

则将根结点的平衡因子更改为1,BBST的深度增1;

c.BBST的根结点的平衡因子为1(左子树的深度大于右子树

的深度):若BBST的左子树根结点的平衡因子为1,则需进

行向左旋平衡处理,并且在右旋之后,将根节点和其右子树

根节点的平衡因子更改为0,树的深度不变;

若BBST的左子树根结点的平衡因子为-1,则需进行向左,向

右的双向旋转平衡处理,并且在旋转处理之后,修改根结点

和其左右子树的平衡因子,数的深度不变;

(4)若e的关键字大于BBST的根结点的关键字,而且在BBST的右子树中不存在和e有相同的关键字的的节点,则将e插入在

BBST的右子树上,并且当插入之后的右子树深度增加(+1)

时,分别就不同情况处理之。

3.详细设计

1)结点类型定义:

typedef struct ElemType{

KeyType Key; //键值类型

char info[20];

}ElemType;

Typedef struct BSTNode{

ElemType data;

int bf ; //结点的平衡因子

数据结构平衡二叉树的操作演示

平衡二叉树操作的演示 1.需求分析 本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。具体功能: (1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。每种操作均提示输入关键字。每次插入或删除一个结点后,更 新平衡二叉树的显示。 (2)平衡二叉树的显示采用凹入表现形式。 (3)合并两棵平衡二叉树。 (4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。 如下图: 2.概要设计 平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

具体步骤: (1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点; (2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点; (3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。 流程图 3.详细设计 二叉树类型定义: typedef int Status; typedef int ElemType; typedef struct BSTNode{

数据结构二叉树习题含答案

2.1 创建一颗二叉树 创建一颗二叉树,可以创建先序二叉树,中序二叉树,后序二叉树。我们在创建的时候为了方便,不妨用‘#’表示空节点,这时如果先序序列是:6 4 2 3 # # # # 5 1 # # 7 # #,那么创建的二叉树如下: 下面是创建二叉树的完整代码:穿件一颗二叉树,返回二叉树的根 2.2 二叉树的遍历 二叉树的遍历分为:先序遍历,中序遍历和后序遍历,这三种遍历的写法是很相似的,利用递归程序完成也是灰常简单的: 2.3 层次遍历 层次遍历也是二叉树遍历的一种方式,二叉树的层次遍历更像是一种广度优先搜索(BFS)。因此二叉树的层次遍历利用队列来完成是最好不过啦,当然不是说利用别的数据结构不能完成。 2.4 求二叉树中叶子节点的个数 树中的叶子节点的个数= 左子树中叶子节点的个数+ 右子树中叶子节点的 个数。利用递归代码也是相当的简单, 2.5 求二叉树的高度 求二叉树的高度也是非常简单,不用多说:树的高度= max(左子树的高度,右子树的高度) + 1 2.6 交换二叉树的左右儿子 交换二叉树的左右儿子,可以先交换根节点的左右儿子节点,然后递归以左右儿子节点为根节点继续进行交换。树中的操作有先天的递归性。。 2.7 判断一个节点是否在一颗子树中 可以和当前根节点相等,也可以在左子树或者右子树中。 2.8 求两个节点的最近公共祖先 求两个节点的公共祖先可以用到上面的:判断一个节点是否在一颗子树中。(1)如果两个节点同时在根节点的右子树中,则最近公共祖先一定在根节点的右子树中。(2)如果两个节点同时在根节点的左子树中,则最近公共祖先一定在根节点的左子树中。(3)如果两个节点一个在根节点的右子树中,一个在根节点的

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertAVL(BSTree &T,int e,bool &taller); //插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); //删除结点时左平衡旋转处理 void RightBalance_div(BSTree &p,int &shorter); //删除结点时右平衡旋转处理 void Delete(BSTree q,BSTree &r,int &shorter); //删除结点 int DeleteA VL(BSTree &p,int x,int &shorter); //平衡二叉树的删除操作 void PrintBST(BSTree T,int m); //按树状打印输出二叉树的元素 2.主程序的流程 3.各模块之间的层次调用

数据结构课程设计---二叉排序树和平衡二叉树的判别

数据结构课程设计---二叉排序树和平衡二叉树的判别

二叉排序树和平衡二叉树的判别 1引言 数据结构是软件工程的一门核心专业基础课程,在我们专业的课程体系中起着承上启下的作用,学好数据结构对于提高理论认知水平和实践能力有着极为重要的作用。学习数据结构的最终目的是为了获得求解问题的能力。对于现实世界中的问题,应该能从中抽象出一个适当的数据模型,该数学模型在计算机内部用相应的数据结构来表示,然后设计一个解此数学模型的算法,在进行编程调试,最后获得问题的解答。 本次课程设计的题目是对二叉排序树和平衡二叉树的扩展延伸应用。首先我们得建立一个二叉树,二叉树有顺序存储结构和链式存储结构两种存储结构,此次我选用的是二叉链表的存储结构。对于判断平衡二叉树,需要求出其每个叶子结点所在的层数,这里我采用的边遍历边求的方式,遍历采用的是先序遍历。二叉树的建立以及二叉排序树和平衡二叉树的判别中都用到了递归思想。 2需求分析 2.1在日常生活中,人们几乎每天都要进行“查找”工作。所谓“查找”即为 在一个含有众多的数据元素(或记录)的查找表中找出某个“特定的”数据元素(或记录),即关键字。 2.2本程序意为对一个已经建立的动态查找表——二叉树——判断其是否是二 叉排序树和平衡二叉树。 3数据结构设计 3.1抽象数据类型二叉树的定义如下: ADT BinaryTree{ 3.1.1数据对象D:D是具有相同特性的数据元素的集合。 3.1.2数据关系R: 若D=NULL,则R=NULL,称BinaryTree为空的二叉树; 若D!=NULL,则R={H},H是如下的二元关系: 3.1.2.1在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; 3.1.2.2若D-{root}!=NULL,则存在D-{root}={Dl,Dr},且Dl与Dr相交为空; 3.1.2.3若Dl!=NULL,则Dl中存在唯一的元素xl,属于H,且存在Dl上的关系Hl属于H;若Dr!=NULL,则Dr中存在唯一的元素xr,

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

数据结构中二叉树各种题型详解及程序

树是一种比较重要的数据结构,尤其是二叉树。二叉树是一种特殊的树,在二叉树中每个节点最多有两个子节点,一般称为左子节点和右子节点(或左孩子和右孩子),并且二叉树的子树有左右之分,其次序不能任意颠倒。二叉树是递归定义的,因此,与二叉树有关的题目基本都可以用递归思想解决,当然有些题目非递归解法也应该掌握,如非递归遍历节点等等。本文努力对二叉树相关题目做一个较全的整理总结,希望对找工作的同学有所帮助。 二叉树节点定义如下: structBinaryTreeNode { intm_nValue; BinaryTreeNode* m_pLeft; BinaryTreeNode* m_pRight; }; 相关链接: 轻松搞定面试中的链表题目 题目列表: 1. 求二叉树中的节点个数 2. 求二叉树的深度 3. 前序遍历,中序遍历,后序遍历 4.分层遍历二叉树(按层次从上往下,从左往右) 5. 将二叉查找树变为有序的双向链表 6. 求二叉树第K层的节点个数 7. 求二叉树中叶子节点的个数 8. 判断两棵二叉树是否结构相同 9. 判断二叉树是不是平衡二叉树 10. 求二叉树的镜像 11. 求二叉树中两个节点的最低公共祖先节点 12. 求二叉树中节点的最大距离 13. 由前序遍历序列和中序遍历序列重建二叉树 14.判断二叉树是不是完全二叉树 详细解答 1. 求二叉树中的节点个数 递归解法: (1)如果二叉树为空,节点个数为0 (2)如果二叉树不为空,二叉树节点个数= 左子树节点个数+ 右子树节点个数+ 1 参考代码如下: 1.int GetNodeNum(BinaryTreeNode * pRoot) 2.{ 3.if(pRoot == NULL) // 递归出口 4.return 0; 5.return GetNodeNum(pRoot->m_pLeft) + GetNodeNum(pRoot->m_pRight) + 1; 6.}

数据结构 二叉树实验报告

一、需求分析: 编写一段程序,对二叉树进行复合操作,包括创建一棵二叉树,显示二叉树的树型结构,对创建的二叉树进行先根、中根、后根三种方式进行遍历,并且打印出叶子结点,并且可以随时删除我们创建的二叉树,然后用循环语句将上述的操作封装起来,使之能够进行可重复、连续的操作。输入为a-z或者是A-Z之间的字符,用‘@’字符作为结束当前结点的标识符。 二、概要设计: 本程序要用到的数据类型 struct BinTreeNode { DataType info; PBinTreeNode llink; PBinTreeNode rlink; }; 然后定义我们需要的指针类型 typedef struct BinTreeNode *PBinTreeNode; /* 定义指向二叉树结点的指针类型*/ typedef PBinTreeNode *PBinTree; /*定义指向树型结点的指针类型*/ 程序需要用到的自定义函数 1.创建一个二叉树根节点 PBinTree Create_BinTreeRoot(void) 2.创建一个二叉树的节点 PBinTreeNode Create_BinTreeNode(void) 3.创建一棵二叉树 PBinTreeNode Create_BinTree(void) 4.用先根的方法遍历一棵二叉树 void preOrder(PBinTreeNode pbnode) 5.用中根的方法遍历一棵二叉树 void inOrder(PBinTreeNode pbnode) 6.用后根的方法遍历一棵二叉树 void postOrder(PBinTreeNode pbnode) 7.打印出我们创建的二叉树的树型结构 void outputTree(PBinTreeNode pbnode,int totalSpace) 8.打印出二叉树的叶子结点 void leaves(PBinTreeNode pbnode) 9.释放我们所申请的所有结点空间 void freeAllNodes(PBinTreeNode pbnode) 10.判断我们输入的是否是合格的字符 int isalphabet(char i)

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级13007102,姓名庞文正,学号1300710226 实验完成的时间3:00 ****************************** 一、实验目的 1,掌握二叉树链表的结构和二叉树的建立过程。 2,掌握队列的先进先出的运算原则在解决实际问题中的应用。 3,进一步掌握指针变量、指针数组、动态变量的含义。 4,掌握递归程序设计的特点和编程方法。 二、实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。(所谓层次遍历,是指从二叉树的根结点开始从上到下逐层遍历二叉树,在同一层次中从左到右依次访问各个节点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加深对算法的理解。 三、算法设计与编码 1.本实验用到的理论知识 总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,最好能加上自己的解释。 本算法要采用一个循环队列que,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。2.算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; //数据域 struct node *lchild,*rchild; //左孩子右孩子链 }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素bitree 指针类型 int front=0, rear=0; //初始化循环列队 bitree *creat() //建立二叉树的递归算法 {bitree *t; int x; scanf("%d",&x); if(x==0) t=NULL; //以x=0 表示输入结束 else {t=malloc(sizeof(bitree)); //动态生成节点t,分别给节点t 的数据域,t->data=x; //左右孩子域赋值,给左右孩子赋值时用到 t->lchild=creat(); // 了递归思想 t->rchild=creat(); }

平衡二叉树(AVL)的查找、插入和删除

平衡二叉树(AVL)查找、插入和删除 小组成员: 陈静101070009 陈丹璐101070006 陈娇101070008

目录 平衡二叉树(AVL) (1) 查找、插入和删除 (1) 问题描述 (2) 设计说明 (3) (一)ADT (3) (二)算法思想 (5) (三)数据结构 (12) (四)程序结构与流程 (13) 运行平台及开发工具 (15) I/O格式 (15) 算法复杂度分析 (18) 源代码 (18) 小结 (37) 问题描述 利用平衡二叉树实现一个动态查找表。

(1)实现动态查找表的三种基本功能:查找、插入和删除。 (2)初始时,平衡二叉树为空树,操作界面给出创建、查找、插入和删除和退出五种操作供选择。每种操作均要提示输入关键字。创建时,根据提示输入数据,以-1为输入数据的结束标志,若输入数据重复,则给出已存在相同关键字的提示,并不将其插入到二叉树中。在查找时,如果查找的关键字不存在,则显示不存在查找的关键字,若存在则显示存在要查找的关键字。插入时首先检验原二叉树中是否已存在相同第3 页共38 页- 3 -的关键字,若没有则进行插入并输出二叉树,若有则给出已有相同关键字的提醒。删除时首先检验原二叉树中是否存在要删除的关键字,若有则进行删除后并输出二叉树,若没有则给出不存在要删除的关键字的提醒。 (3)平衡二叉树的显示采用中序遍历的方法输出,还可以根据输出数据是否有序验证对平衡二叉树的操作是否正确。 设计说明 (一)ADT ADT BalancedBinaryTree{ 数据对象D:D是具有相同特性的数据元素的集合。各个数据元素均含有类型相同,可唯一标志的数据元素的关键字。 数据关系R:数据元素同属一个集合。 基本操作P: void R_Rotate(BSTree &p); 初始条件:二叉树存在,且关键字插入到以*p为根的二叉树的左子树的左孩子上; 操作结果:对以*p为根的二叉排序树作右旋处理

数据结构-二叉树的建

数据结构-二叉树的建立与遍历

《数据结构》实验报告 ◎实验题目:二叉树的建立与遍历 ◎实验目的:1、掌握使用Visual C++6.0上机调试程序的基本方法; 2、掌握二叉树的存储结构和非递归遍 历操作的实现方法。 3、提高自己分析问题和解决问题的能 力,在实践中理解教材上的理论。 ◎实验内容:利用链式存储结构建立二叉树,然后先序输出该二叉树的结点序列,在在本实验中不使用递归的方法,而是用一个栈存储结点的指针,以此完成实验要求。 一、需求分析 1、输入的形式和输入值的范围:根据提示,输入二叉树的括号表示形式,按回车结束。 2、输出的形式:输出结果为先序遍历二叉树所得到的结点序列。 3、程序所能达到的功能:输入二叉树后,该程序可以建立二叉树的链式存储结构,之后按照一定的顺序访问结点并输出相应的值,从而完成二叉树的先序遍历。 4、测试数据:

输入二叉树的括号表示形式:A(B(D(,G)),C(E,F)) 先序遍历结果为:ABDGCEF 是否继续?(是,输入1;否,输入0):1 输入二叉树的括号表示形式: 二叉树未建立 是否继续?(是,输入1;否,输入0):0 Press any key to continu e 二概要设计 1、二叉树的链式存储结构是用一个链表来存储一棵二叉树,二叉树中每一个结点用链表中的一个链结点来存储。 每个结点的形式如下图所示。 其中data表示值域,用于存储对应的数据元素,lchild和rchild分别表示左指针域和右指针域,用于分别存储左孩子结点和右孩子结点的存储位置。 2、二叉树的建立

本程序中利用数组存储所输入的二叉树,然后从头到尾扫描数组中的每一个字符根据字符的不同分别执行不同的操作,并用一个存储结点指针的栈辅助完成。在扫描前先申请一个结点作为根结点,也是当前指针所指结点,在二叉树的建立的过程中,每次申请一个新结点,需对其进行初始化,即令lchild域和rchild域为空。按照本程序的思路,二叉树A(B(D(,G)),C(E,F))的链式存储结构如下图所示。二叉树建立的具体过程见详细设计部分。 3、二叉树的先序遍历 在二叉树的先序遍历过程中也需利用一个存储结点指针的栈辅助完成,初始时栈为空,二叉树遍历结束后栈也为空,所以在开始时将头结点入栈,之后根据当前指针所指结点的特性的不同执行不同的操作,以栈空作为二叉树遍历的结束条件。二叉树先序遍历的具体过程见详细设计部分。

数据结构程序报告(平衡二叉树的操作)

数据结构程序报告(平衡二叉树的操作)

计算机科学学院数据结构课程设计报告 平衡二叉树操作 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.需求分析 1.建立平衡二叉树并进行创建、查找、插入、删除等功能。 2.设计一个实现平衡二叉树的程序,可进行创建、查找、插入、删除等操作,实现动态的输入数据,实时的输出该树结构。 3.测试数据:自选数据 2.概要设计 1.抽象数据类型定义: typedef struct BSTNode { int data; int bf; //节点的平衡因子 struct BSTNode *lchild,*rchild; //左右孩子指针 }BSTNode,*BSTree; void CreatBST(BSTree &T); //创建平衡二叉树 void R_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void L_Rotate(BSTree &p); //对以*p 为根的二叉排序树作左旋处理 void LeftBalance(BSTree &T); //对以指针T所指结点为根的二叉树作左平衡旋转处理void RightBalance(BSTree &T); //对以指针T所指结点为根的二叉树作右平衡旋转处理bool InsertA VL(BSTree &T,int e,bool &taller);

//插入结点e bool SearchBST(BSTree &T,int key); //查找元素key是否在树T中 void LeftBalance_div(BSTree &p,int &shorter); void RightBalance_div(BSTree &p,int &shorter);

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

北邮数据结构平衡二叉树报告概论

数据结构 实 验 报 告 实验名称:平衡二叉树

1.实验目的和内容 根据平衡二叉树的抽象数据类型的定义,使用二叉链表实现一个平衡二叉树。 二叉树的基本功能: 1、平衡二叉树的建立 2、平衡二叉树的查找 3、平衡二叉树的插入 4、平衡二叉树的删除 5、平衡二叉树的销毁 6、其他:自定义操作 编写测试main()函数测试平衡二叉树的正确性。 2. 程序分析 2.1 存储结构 struct node { int key; //值 int height; //这个结点的父节点在这枝最长路径上的结点个数 node *left; //左孩子指针 node *right; //右孩子指针 node(int k){ key = k; left = right = 0; height = 1; } //构造函数}; 2.2 程序流程

2.3 关键算法分析(由于函数过多,在此只挑选部分重要函数) 算法1:void AVL_Tree::left_rotate(node *&x) [1] 算法功能:对 R-R型进行调整 [2] 算法基本思想:将结点右孩子进行逆时针旋转 [3] 算法空间、时间复杂度分析:都为0(1) [4] 代码逻辑 node *y = x->right; y为x的右孩子 x->right = y->left; 将y的左孩子赋给x的右孩子 y->left = x; x变为y的左孩子 fixheight(x); 修正x,y的height值 fixheight(y); x = y; 使x的父节点指向y 算法2:void A VL_Tree::right_rotate(node *&x) [1] 算法功能:对L-L型进行调整 [2] 算法基本思想:将左孩子进行顺时针旋转 [3] 算法空间、时间复杂度分析:都为0(1) [4] 代码逻辑 node *y = x->left; //y为x的左孩子 x->left = y->right; y的右孩子赋给x的左孩子

数据结构练习(二叉树)

数据结构练习(二叉树) 学号31301374 姓名张一博班级软件工程1301 . 一、选择题 1.按照二叉树定义,具有3个结点的二叉树共有 C 种形态。 (A) 3 (B) 4 (C) 5 (D) 6 2.具有五层结点的完全二叉树至少有 D 个结点。 (A) 9 (B) 15 (C) 31 (D) 16 3.以下有关二叉树的说法正确的是 B 。 (A) 二叉树的度为2 (B)一棵二叉树的度可以小于2 (C) 至少有一个结点的度为2 (D)任一结点的度均为2 4.已知二叉树的后序遍历是dabec,中序遍历是debac,则其前序遍历是 D 。 (A)acbed (B)decab (C) deabc (D) cedba 5.将一棵有1000个结点的完全二叉树从上到下,从左到右依次进行编号,根结点的编号为1,则编号为49的结点的右孩子编号为 B 。 (A) 98 (B) 99 (C) 50 (D) 没有右孩子 6.对具有100个结点的二叉树,若有二叉链表存储,则其指针域共有 D 为空。 (A) 50 (B) 99 (C) 100 (D) 101 7.设二叉树的深度为h,且只有度为1和0的结点,则此二叉树的结点总数为 C 。 (A) 2h (B) 2h-1 (C) h (D) h+1 8.对一棵满二叉树,m个树叶,n个结点,深度为h,则 D 。 (A) n=h+m (B) h+m=2n (C)m=h-1 (D)n=2h-1 9.某二叉树的先序序列和后序序列正好相反,则下列说法错误的是 A 。 (A) 二叉树不存在 (B) 若二叉树不为空,则二叉树的深度等于结点数 (C) 若二叉树不为空,则任一结点不能同时拥有左孩子和右孩子 (D) 若二叉树不为空,则任一结点的度均为1 10.对二叉树的结点从1开始进行编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用 A 遍历实现编号。 (A) 先序(B)中序(C)后序(D)层序 11.一个具有1025个结点的二叉树的高h为 C 。 (A) 10 (B)11 (C)11~1025 (D)10~1024 12.设n,m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 C 。 ( A) n在m右方(B)n是m祖先 (C) n在m左方(D) n是m子孙 13.实现对任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳方案是二叉树采用 C 存储结构。 (A) 二叉链表(B) 广义表(C)三叉链表(D)顺序 14. 一棵树可转换成为与其对应的二叉树,则下面叙述正确的是 A 。 (A) 树的先根遍历序列与其对应的二叉树的先序遍历相同 (B) 树的后根遍历序列与其对应的二叉树的后序遍历相同 (C) 树的先根遍历序列与其对应的二叉树的中序遍历相同 (D) 以上都不对 二、填空题 1.对一棵具有n个结点的二叉树,当它为一棵完全二叉树时具有最小高度;当它为单分支二叉树时,具有最大高度。

数据结构实验报告—二叉树

算法与数据结构》课程实验报告

一、实验目的 1、实现二叉树的存储结构 2、熟悉二叉树基本术语的含义 3、掌握二叉树相关操作的具体实现方法 二、实验内容及要求 1. 建立二叉树 2. 计算结点所在的层次 3. 统计结点数量和叶结点数量 4. 计算二叉树的高度 5. 计算结点的度 6. 找结点的双亲和子女 7. 二叉树前序、中序、后序遍历的递归实现和非递归实现及层次遍历 8. 二叉树的复制 9. 二叉树的输出等 三、系统分析 (1)数据方面:该二叉树数据元素采用字符char 型,并且约定“ #”作为二叉树输入结束标识符。并在此基础上进行二叉树相关操作。 (2)功能方面:能够实现二叉树的一些基本操作,主要包括: 1. 采用广义表建立二叉树。 2. 计算二叉树高度、统计结点数量、叶节点数量、计算每个结点的度、结点所在层次。 3. 判断结点是否存在二叉树中。 4. 寻找结点父结点、子女结点。 5. 递归、非递归两种方式输出二叉树前序、中序、后序遍历。 6. 进行二叉树的复制。 四、系统设计 (1)设计的主要思路 二叉树是的结点是一个有限集合,该集合或者为空,或者是由一个根节点加上两棵分别称为左子树和右子树、互不相交的二叉树组成。根据实验要求,以及课上老师对于二叉树存储结构、基本应用的讲解,同时课后研究书中涉及二叉树代码完成二叉树模板类,并将所需实现各个功能代码编写完成,在建立菜单对功能进行调试。 (2)数据结构的设计 二叉树的存储结构有数组方式和链表方式。但用数组来存储二叉树有可能会消耗大量的存储空间,故在此选用链表存储,提高存储空间的利用率。根据二叉树的定义,二叉

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

数据结构实验二叉树

实验六:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。求二叉树的深度。十进制的四则运算的计算器可以接收用户来自键盘的输入。由输入的表达式字符串动态生成算术表达式所对应的二叉树。自动完成求值运算和输出结果。四、实验环境 PC微机 DOS操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; 4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、测试数据 1、输入数据:2.2*(3.1+1.20)-7.5/3 正确结果:6.96 2、输入数据:(1+2)*3+(5+6*7); 正确输出:56 七、表达式求值 由于表达式求值算法较为复杂,所以单独列出来加以分析: 1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。 例如有如下的中缀表达式: a+b-c 转换成后缀表达式为: ab+c- 然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。当然将原始的中缀表达式转换为后缀表达式比较关键,要同时考虑操作符的优先级以及对有括号的情况下的处理,相关内容会在算法具体实现中详细讨论。

数据结构程序设计报告(平衡二叉树)(内容清晰)

数学与计算机科学学院数据结构程序设计报告 平衡二叉树 学生姓名: 学号: 班级: 指导老师: 报告日期:

1.题目与要求 1). 问题的提出 编写已个平衡二叉树,主要是对插入一个元素导致树不平衡的情况进行平衡化处理以及相关的处理。 2)设计的知识点 队列的插入,删除,二叉树的建立于销毁,平衡树的平衡化,以及C语言中基础应用于结构等。 3)功能要求 (1).通过不断插入的方式创建一棵平衡二叉树,包括输入结点的关键字和相关信息。 (2)按要求输出创建的平衡二叉树结点,包括顺序(中序)输出和按层次输出。 (3)插入新增的结点,若结点不存在则插入平衡二叉树,并进行相关调整。 (4)销毁二叉树。 (5)退出 菜单界面如下:

2.功能设计 算法设计 选择创建平衡二叉树后,利用循环不断插入结点,并进行调整,当输入节点为0时停止进入菜单界面。 在平横二叉树排序树BSTree上插入一个新的数据元素e的递归算法可如下描述: (1)若BSTree为空树,则插入一个数据元素为e的新结点作为BSTree的根结点,树的深度增1; (2)若e的关键字和BSTree的根节点的关键字相等,则不进行插入; (3)若e的关键字小于BSTree的根结点的关键字,而且在其左子树中不存在和e形同的关键字的结点,则将e插入在其左子树 上,并且当插入之后的左子树的深度加1时,分别就下列不同 情况处理之: a.BSTree的跟结点的平衡因子为-1(右子树的深度大于左子树

的深度):则将跟结点的平衡因子更改为0,BBST的深度不 变; b.BBST的根结点的平衡因子为0(左,右子树的深度相等): 则将根结点的平衡因子更改为1,BBST的深度增1; c.BBST的根结点的平衡因子为1(左子树的深度大于右子树 的深度):若BBST的左子树根结点的平衡因子为1,则需进 行向左旋平衡处理,并且在右旋之后,将根节点和其右子树 根节点的平衡因子更改为0,树的深度不变; 若BBST的左子树根结点的平衡因子为-1,则需进行向左,向 右的双向旋转平衡处理,并且在旋转处理之后,修改根结点 和其左右子树的平衡因子,数的深度不变; (4)若e的关键字大于BBST的根结点的关键字,而且在BBST的右子树中不存在和e有相同的关键字的的节点,则将e插入在 BBST的右子树上,并且当插入之后的右子树深度增加(+1) 时,分别就不同情况处理之。 3.详细设计 1)结点类型定义: typedef struct ElemType{ KeyType Key; //键值类型 char info[20]; }ElemType; Typedef struct BSTNode{ ElemType data; int bf ; //结点的平衡因子

平衡二叉树-数据结构课程设计论文【可运行测试】

数据结构课程设计 课程名称:平衡二叉树的生成 院系:信息工程学院 年级专业:10级计科 学号: 学生姓名: 指导教师: 开题时间: 2010 年 12 月 01 日 完成时间: 2010 年 12 月 31 日 信息工程学院

X X X X X X X数据结构课程设计成绩评定表 院系:信息工程学院年级专业: 学号:姓名:

摘要 本篇论文系计科专业10年末课程设计论文,按照相应要求写作而成。 主要讨论的是平衡二叉树的生成问题,借助本程序可以由用户输入数值,并生成平衡二叉树,并可以对数据进行方便的修改和删除添加,任意插入或删除一个结点后仍然要求任然构成平衡二叉树,并按中序遍历输出这棵平衡二叉树。· 本论文共由五个章构成,每个内容独立成章,各章下设相应子章节。 各个章节逐渐递进,分别是: 第一章:需求分析 第二章系统设计 第三章编码 第四章测试 第五章维护 本论文特点: 1.论述清楚,目录详尽,可以方便的查询相应章节,方便使用。 2.图文结合,几乎没一个子程序模块都有相应的流程图与之对应,有利于读者理解每 个子程序的设计思路。 3.模块分化清晰,每个模块独立成节,又彼此联系,深化了C语言模块化编程的特点。 4.测试模块配合对应的运行截图,真实可信,对读者理解程序的运行情况起到了很大 作用。 5.程序清单完整详细,解释详细。

目录 第一章需求分析 (1) 1.1功能描述------------------------------------------------1 1.2数据词典------------------------------------------------1 第二章系统设计 (3) 2.1 基本概念介绍----------------------------------------------3 2.2 总体设计--------------------------------------------------8 2.3 插入结点-------------------------------------------------10 2.4 删除结点-------------------------------------------------11 2.5 中序遍历-------------------------------------------------11 第三章编码 (12) 3.1 总体编码------------------------------------------------12 3.2 总流程图------------------------------------------------15 3.3 以指针T所指结点为根的二叉树作右平衡旋转处理------------16 第四章测试 (17) 4.1 创建二叉树测试-------------------------------------------17 4.2 插入结点测试---------------------------------------------19 4.3 删除结点测试---------------------------------------------20 4.4中序遍历结点测试------------------------------------------21 4.5 先序遍历测试---------------------------------------------21 第五章维护 (22) 5.1维护----------------------------------------------------22

相关文档
最新文档