2020年春八年级数学期中考试试题含答案
2020春八年级下期中数学试卷13含答案
八年级(下)期中数学试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1D.+=﹣13.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣28.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12D.249.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg10.如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()A.0<x<2B.﹣3<x<0或x>2C.0<x<2或x<﹣3D.﹣3<x<0二、填空题(每小题3分,共15分)11.计算()﹣1+()0=12.如图,在▱ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE=°.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG 交CE于F,交AD于G.求证:AE=DG.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.20.(10分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?23.(11分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x>0时,直接写出y1>y2时自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在所列代数式中,分式有、、﹣这3个,故选:C.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式是解答此题的关键.2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1D.+=﹣1【分析】A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式=,错误;D、原式===﹣1,正确;故选:D.【点评】此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.3.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.【点评】本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题.4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 05=5×10﹣11,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个【分析】根据题意可得出点P在第三象限,从而列出不等式组求解即可.【解答】解:∵点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,∴,由①得,a>﹣,由②得,a<2,∴a=1或0.故选:B.【点评】本题考查了关于原点对称的点的坐标,以及一元一次不等式组的整数解,是基础知识要熟练掌握.6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2B.﹣1或2C.1或2D.0或﹣2【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(x+1),得x2﹣(m+1)=(x+1)2∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1,当x=0时,m=﹣2,当x=﹣1时,m=0,故m的值可能是﹣2或0.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12D.24【分析】由于在平行四边形中,对边分别平行且相等,对角线相互平分,图中的线条把平行四边形分成5组全等三角形,通过仔细观察分析图中阴影部分,可得出每组全等三角形中有一个带阴影,所以阴影部分的面积是平行四边形的面积的一半.=×6×4=12.【解答】解:通过观察结合平行四边形性质得:S阴影故选:C.【点评】本题考查的是平行四边形的性质,平行四边形的对角线相互平分.9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg【分析】根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.【解答】解:设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=20.故选:A.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.10.如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()A.0<x<2B.﹣3<x<0或x>2C.0<x<2或x<﹣3D.﹣3<x<0【分析】根据两函数的交点A、B的横坐标和图象得出答案即可.【解答】解:∵反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点,A、B两点的横坐标分别为2,﹣3,∴通过观察图象,当y1>y2时x的取值范围是0<x<2或x<﹣3,故选:C.【点评】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图形的能力,用了数形结合思想.二、填空题(每小题3分,共15分)11.计算()﹣1+()0=3【分析】根据负整数指数幂和零指数幂的意义计算.【解答】解:原式=2+1=3.故答案为3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,在▱ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE=35°.【分析】根据平行四边形性质及直角三角形的角的关系,即可求解.【解答】解:∵四边形平ABCD是平行四边形,∴AD∥BC,∴∠B=180°﹣∠A=55°,又∵CE⊥AB,∴∠BCE=35°.故答案为:35.【点评】本题考查了平行四边形的性质,用的知识点有:平行四边形的对边互相平行、平行线的性质以及直角三角形的两个锐角互余.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3.【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为6.【分析】设B点坐标为(a,b),根据等腰直角三角形的性质得OA=AC,AB=AD,OC=AC,AD=BD,则OA2﹣AB2=12变形为AC2﹣AD2=6,利用平方差公式得到(AC+AD)(AC﹣AD)=6,所以(OC+BD)•CD=6,则有a•b=6,根据反比例函数图象上点的坐标特征易得k=6.【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.【分析】根据分式的除法和减法可以化简题目中的式子,再根据|x﹣2|+(3﹣y)2=0可以求得x、y的值,然后代入化简后的式子即可解答本题.【解答】解:1﹣=1﹣=1﹣==,∵|x﹣2|+(3﹣y)2=0,∴x﹣2=0,3﹣y=0,解得,x=2,y=3,∴原式=﹣=﹣3.【点评】本题考查分式的化简求值、非负数的性质,解答本题的关键是明确分式化简求值的方法.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据分式除法和减法可以解答本题.【解答】解:(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)=a﹣2b2•2﹣2a﹣4b4÷(a﹣4b2)=;(2)===0.【点评】本题考查分式的混合运算、整式的混合运算、负整数指数幂,解答本题的关键是明确它们各自的计算方法.18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG 交CE于F,交AD于G.求证:AE=DG.【分析】由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG =DE,从而证得AE=DG.【解答】证明:∵四边形ABCD是平行四边形(已知),∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)∴∠GBC=∠BGA,∠BCE=∠CED(两直线平行,内错角相等)又∵BG平分∠ABC,CE平分∠BCD(已知),∴∠ABG=∠GBC,∠BCE=∠ECD(角平分线定义)∴∠ABG=∠AGB,∠ECD=∠CED.∴AB=AG,CD=DE(在同一个三角形中,等角对等边)∴AG=DE,∴AG﹣EG=DE﹣EG,即AE=DG.【点评】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG =DE是关键.运用平行四边形的性质和等腰三角形的知识解答.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.20.(10分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.【分析】(1)由函数解析式y =2x +3,令y =0求得A 点坐标,x =0求得B 点坐标;(2)有两种情况,若BP 与x 轴正方向相交于P 点,则AP =3OA ;若BP 与x 轴负方向相交于P 点,则AP =OA ,由此求得△ABP 的面积.【解答】解:(1)令y =0,得x =﹣1.5,∴A 点坐标为(﹣1.5,0),令x =0,得y =3,∴B 点坐标为(0,3);(2)设P 点坐标为(x ,0),∵OP =2OA ,A (﹣1.5,0),∴x =±3,∴P 点坐标分别为P 1(3,0)或P 2(﹣3,0).∴S △ABP 1=×(1.5+3)×3=6.75,S △ABP 2=×(3﹣1.5)×3=2.25,∴△ABP 的面积为6.75或2.25.【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积,关键是能求出符合条件的两种情况.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x 天. 根据题意,得:×20+(+)×24=1.解这个方程得:x =90.经检验,x =90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.23.(11分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x>0时,直接写出y1>y2时自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【分析】(1)由A在反比例函数图象上,把A的坐标代入反比例解析式,确定出k的值,从而得出反比例函数解析式,又B也在反比例函数图象上,把B的坐标代入确定出的反比例解析式即可确定出m的值,从而得到B的坐标,由A和B都在一次函数图象上,故把A和B都代入到一次函数解析式中,得到关于a与b的方程组,求出方程组的解得到a与b的值,从而确定出一次函数解析式;(2)根据图象结合交点坐标即可求得;(3)由点C与点A关于x轴对称可得AC,AC边上的高为A,B两点横坐标绝对值的和,代入三角形的面积公式即可.【解答】解:(1)∵函数y=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解得.∴y2=2x+2,综上可得y1=,y2=2x+2;(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,∴0<x<1;(3)过B作BD⊥AC于D,由图形及题意可得:AC=4+4=8,BD=|﹣2|+1=3,∴s=AC•BD=×8×3=12.△ABC【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.。
2020春八年级下册期中质量数学试卷(有答案)
八年级(下)期中数学试卷一、选择题(每题4分,共40分)1.下列式子是最简二次根式的是()A.B.C.D.2.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±43.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.184.若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.605.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3B.2C.D.46.如图,正方形ABCD的边长为6,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH 的面积是()A.14B.16C.18D.207.将函数y=3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=3x+2B.y=3x﹣2C.y=3(x+2)D.y=3(x﹣2)8.一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.510.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为18cm2,则S的值为()△DGFA.4cm2B.5cm2C.6cm2D.7cm2二、填空题(每题4分,共24分)11.命题“同位角相等,两直线平行”的逆命题是:.12.函数中,自变量x的取值范围是.13.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.14.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=°.15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为.16.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB =90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.三、解答题(共86分)17.(8分)计算:2÷×.18.(8分)一根垂直于地面的电线杆AC=8m,因特殊情况,在点B处折断,顶端C落在地面上的C′处,测得AC′的长是4m,求底端A到折断点B的长.19.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.20.(8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形.21.(8分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.22.(8分)某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?23.(12分)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.24.(13分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.25.(13分)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.下列式子是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式进行分析即可.【解答】解:A、不是最简二次根式,故此选项错误;B、不是最简二次根式,故此选项错误;C、不是最简二次根式,故此选项错误;D、是最简二次根式,故此选项正确;故选:D.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.2.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4【分析】直接利用二次根式的性质分别分析得出答案.【解答】解:A、=3,故此选项错误;B、(﹣)2=2,正确;C、÷=,故此选项错误;D、=4,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.3.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.18【分析】利用勾股定理将AC2+BC2转化为AB2,再求值.【解答】解:∵Rt△ABC中,AB为斜边,∴AC2+BC2=AB2,∴AB2+AC2=AB2=32=9.故选:B.【点评】本题考查了勾股定理;熟练掌握勾股定理,由勾股定理得出AC2+BC2=AB2是解决问题的关键.4.若△ABC的三边分别为5、12、13,则△ABC的面积是()A.30B.40C.50D.60【分析】根据三边长度判断三角形为直角三角形.再求面积.【解答】解:∵△ABC的三边分别为5、12、13,且52+122=132,∴△ABC是直角三角形,两直角边是5,12,则S==30.△ABC故选:A.【点评】本题主要考查了勾股定理的逆定理和直角三角形的面积公式,关键是根据三边长度判断三角形为直角三角形.5.如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是()A.3B.2C.D.4【分析】根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【解答】解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB==,∵四边形OABC是矩形,∴AC=OB,∴AC=,故选:C.【点评】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.6.如图,正方形ABCD的边长为6,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH 的面积是()A.14B.16C.18D.20【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为6,AE=BF=CG=DH=4,可得AH=2,由勾股定理得EH,得正方形EFGH的面积.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=6,AE=BF=CG=DH=4,∴AH=BE=DG=CF=2,∴EH=FE=GF=GH==2,∴四边形EFGH的面积是:2×2=20,故选:D.【点评】本题主要考查了正方形的性质和判定定理全等三角形的判断和性质以及勾股定理的运用,证得四边形EFGH是正方形是解答此题的关键.7.将函数y=3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=3x+2B.y=3x﹣2C.y=3(x+2)D.y=3(x﹣2)【分析】根据“上加下减”,即可找出平移后的函数关系式,此题得解.【解答】解:根据平移的性质可知:平移后的函数关系式为y=3x+2.故选:A.【点评】本题考查了一次函数图象与几何变换,牢记“左加右减,上加下减”是解题的关键.8.一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题意,易得k>0,且kb异号,即k>0,而b<0,结合一次函数的性质,可得答案.【解答】解:根据题意,一次函数y=kx+b的值随x的增大而增大,即k>0,又∵b<0,∴这个函数的图象经过第一三四象限,∴不经过第二象限,故选:B.【点评】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.9.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2B.3C.4D.5【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.【点评】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.10.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积的值为()为18cm2,则S△DGFA.4cm2B.5cm2C.6cm2D.7cm2【分析】作GH⊥BC于H交DE于M,根据三角形中位线定理得到DE∥BC,DE=BC,证明△GDF∽△GBC,根据相似三角形的性质、三角形的面积公式计算.【解答】解:作GH⊥BC于H交DE于M,∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∵F是DE的中点,∴DF=BC,∵DF∥BC,∴△GDF∽△GBC,∴==,∴=,∵DF=FE,=×△CEF的面积=6cm2,∴S△DGF故选:C.【点评】本题考查的是相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.二、填空题(每题4分,共24分)11.命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.【分析】把一个命题的题设和结论互换就得到它的逆命题.【解答】解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.函数中,自变量x的取值范围是x≥3.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为5.【分析】由条件可知AB∥CD,AD∥BC,可证明四边形ABCD为平行四边形,可得到AD=BC.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.14.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD=35°.【分析】根据三角形内角和定理得到∠A=35°,根据直角三角形的性质解答即可.【解答】解:∵∠ACB=90°,∠B=55°,∴∠A=35°,∵∠ACB=90°,D是AB的中点,∴DA=DC,∴∠ACD=∠A=35°,故答案为:35.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为x <1.【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【解答】解:∵直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),∴当x=1时,y1=y2=2;而当y1<y2时,x<1.故答案为x<1.【点评】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.16.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB =90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为79.【分析】根据图形表示出小正方形的边长为(b﹣a),再根据四个直角三角形的面积等于大正方形的面积减去小正方形的面积求出2ab,然后利用完全平方公式整理即可得解.【解答】解:由图可知,(b﹣a)2=5,4×ab=42﹣5=37,∴2ab=37,(a+b)2=(b﹣a)2+4ab=5+2×37=79.故答案为79.【点评】本题考查了勾股定理的证明,完全平方公式的应用,仔细观察图形利用小正方形的面积和直角三角形的面积得到两个等式是解题的关键.三、解答题(共86分)17.(8分)计算:2÷×.【分析】直接利用二次根式乘除运算法则计算得出答案.【解答】解:原式=4÷×3=8×3=24.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.18.(8分)一根垂直于地面的电线杆AC=8m,因特殊情况,在点B处折断,顶端C落在地面上的C′处,测得AC′的长是4m,求底端A到折断点B的长.【分析】电线杆折断后刚好构成一直角三角形,设电线杆底端A到折断点B的长为x米,则斜边为(8﹣x)米.利用勾股定理解题即可.【解答】解:设电线杆底端A到折断点B的长为x米,则斜边为(8﹣x)米,根据勾股定理得:x2+42=(8﹣x)2解得:x=3.故底端A到折断点B的长为3m.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S=AB•BC+AC•CD,四边形ABCD=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.20.(8分)如图,平行四边形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形.【分析】由平行四边形ABCD的对角线AC、BD相交于点O,可得OA=OC,OB=OD,点E、F、G、H分别是AO、BO、CO、DO的中点,即可得OE=OG,OF=OH,即可证得四边形EFGH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E、F、G、H分别是AO、BO、CO、DO的中点,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题比较简单,注意数形结合思想的应用.21.(8分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【解答】解:(1)(2)如图所示:【点评】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.22.(8分)某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家1000米,从出发到学校,王老师共用了25分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?【分析】(1)由于步行前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t (分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.【解答】解:(1)学校距他家1000米,王老师用25分钟;(2)王老师吃早餐用了20﹣10=10(分钟);(3)吃完早餐以后速度快,(1000﹣500)÷(25﹣20)=100(米/分).答:吃完早餐后的平均速度是100米/分.【点评】考查了函数的图象,此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.23.(12分)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.【点评】本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.24.(13分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S=×6×4=12;△OAC(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.25.(13分)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.【分析】(1)根据点P在线段AO上时,利用三角形的全等判定可以得出PE⊥PD,PE=PD;(2)利用三角形全等得出,BP=PD,由PB=PE,得出PE=PD,要证PE⊥PD;从三方面分析,当点E在线段BC上(E与B、C不重合)时,当点E与点C重合时,点P恰好在AC中点处,当点E在BC的延长线上时,分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB 为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.【解答】解:(1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,过点P做PM⊥CD,于点M,作PN⊥BC,于点N,∵PB=PE,PN⊥BE,∴BN=NE,∵BN=DM,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE,NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90°,∴∠DPE=90°,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD.(i)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.(ii)当点E在BC的延长线上时,如图.∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综合(i)(ii),PE⊥PD;(3)同理即可得出:PE⊥PD,PD=PE.【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识,此题涉及到分类讨论思想,这是数学中常用思想同学们应有意识的应用.。
(实用)人教版2020八年级下册数学期中(附答案)
2020年春期中考试八年级数学(时间:120分钟 满分:120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑 1.化简:()22-A.-2B.-4C.2D.42.如果三条线段长a,b,c 满足222b -c a =,则这三条线段组成的三角形是 A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定3.在平行四边形ABCD 中,已知AB=5,BC=3,则它的周长为 A.8 B.10 C.14 D.164.如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为第4题 第8题 第10题 A.41 B.35 C.29 D.135.计算:()=+532A.105+B.76+C.75+D.106+ 6.已知菱形的两条对角线的长分别是6和8,则菱形的周长和面积分别是 A.20,12 B.20,24 C.28,12 D.28,247.计算:=⨯10352A.156B.306C.230D.5308.如图,一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,此时AO=2.4m,若梯子的顶端A 沿墙下滑0.5m,那么梯子底端B 外移了(参考数据2取1.4,3取1.7,15.3取1.8) A.0.8m B.1.5m C.0.9m D.0.4m9.如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图性,若第n 个图案中有2020个白色纸片,则n 的值为A.674B.673C.672D.67110.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM,连BN,若DM=1,则△ABN 的面积是 A.15136 B.17142 C.15146 D.17150二、填空题(共6小题,每小题3分,共18分) 11.计算:=72-76_______.12.命题:“同旁内角互补,两直线平行”的逆命题是_______________.13.如图,在平行四边形ABCD 中,AC=8cm,BD=14cm,则△DBC 的周长比△ABC 的周长多___cm.第13题 第14题 第16题14.如图,△ACB 和△ECD 都是等腰直角三角形,△ACB 的锐角顶点A 在△ECD 的斜边DE 上,若AE=3,AC=5,则DE=____________.15.已知:m+n=10,mn=9,则=+nm n -m _______.16.已知:如图,在平行四边形ABCD 中,AB=4,BC=9,∠BAD=120°,点O 为平行四边形ABCD 的对角线的交点,直线l 为过点O 的任意一条直线,则点C 到直线l 的最大距离为______. 解答题(共8小题,共72分 17.(本题8分)计算:(1)a 2a 6÷ (2)()222-63÷18.(本题8分)如图,在△ABC 中,AB=AC=6,BC=4,AD 为△ABC 的高,求: (1)AD 的长 (2)△ABC 的面积19. (本题8分)已知:如图,AC,BD 是平行四边形ABCD 的对角线,且AC=BD,若AB=4,BD=8,求:平行四边形ABCD 的周长.20.(本题8分)如图,在4×4正方形的网格中,线段AB,CD如图位置,每个小正方形的边长都是1.(1)求线段AB、CD的长度.(2)在图中画出线段EF,使EF=5,并判断以AB,CD,EF三条线段组成的三角形的形状,请说明理由。
【2020春】八年级下册期中数学试卷及答案
八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= .9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为,频率为.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= °.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是.(直接写出答案,不需要证明)22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.25.阅读下面的解题过程,然后解题:题目:已知(a、b、c互相不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a)于是,x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,依照上述方法解答下列问题:已知: ==(x+y+z≠0),求的值.26.如图①,已知△ABC是等腰三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系为;(2)如图②,将正方形DEFG绕点D按逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立,证明你的结论.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列图形中,是中心对称但不是轴对称的图形是()A.等边三角形 B.正方形C.圆 D.平等四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是()A.①②③B.①②④C.②③④D.②④【考点】X3:概率的意义;V2:全面调查与抽样调查;X1:随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解:①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选C.【点评】此题考查了概率的意义、抽样调查和全面调查和随机事件,不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列各式从左到右的变形正确的是()A. =1 B. =C. =x+y D. =【考点】65:分式的基本性质.【专题】11 :计算题;513:分式.【分析】原式变形变形得到结果,即可作出判断.【解答】解:A、原式==1,正确;B、原式=,错误;C、原式为最简结果,错误;D、原式=,错误,故选A【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.下列命题中,假命题是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等且互相平分的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相平分的四边形是平行四边形【考点】O1:命题与定理;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解:对角线互相垂直平分且相等的四边形是正方形,所以A为假命题;对角线相等且互相平分的四边形是矩形,所以B为真命题;对角线互相垂直平分的四边形是菱形,所以C为真命题;对角线互相平分的四边形为平行四边形,所以D为真命题.故选A.【点评】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【考点】X8:利用频率估计概率.【专题】1 :常规题型.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.【点评】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.6.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种【考点】L6:平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.二、填空题(共10小题,每小题2分,共20分.请把答案直接填写在答题纸相应位置上)7.若分式有意义,则x的取值范围是x≠﹣1 .【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可得1+x≠0,再解即可.【解答】解:由题意得:1+x≠0,解得:x≠﹣1,故答案为:x≠﹣1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.8.平行四边形ABCD中,∠A比∠B小20°,那么∠C= 80°.【考点】L5:平行四边形的性质.【专题】11 :计算题.【分析】根据平行四边形的性质分别求出∠A和∠B的度数,然后根据平行四边形对角相等的性质可得∠C=∠A,即可求解.【解答】解:∵四边形ABCD为平行四边形,∴,解得:,∴∠C=∠A=80°.故答案为:80°.【点评】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:求摸到白球的概率.【考点】X2:可能性的大小;X1:随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解:一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为: =<,故答案为:求摸到白球的概率.【点评】本题考查了可能性的大小的知识,解题的关键是能够根据题意确定摸到红球和摸到白球的概率,难度不大.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20 ,频率为0.4 .【考点】V6:频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、5,共(2+8+15+5)=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=0.4.故答案为20,0.4.【点评】本题考查频率、频数的关系:频率=,同时考查频数的定义即样本数据出现的次数.11.如图,在矩形ABCD中,对角线AC、BD交于点O,已知∠AOB=60°,AC=8,则BC的长为4 .【考点】LB:矩形的性质.【分析】由矩形的性质可得到OA=OB,于是可证明△ABO为等边三角形,于是可求得AB=4,然后依据勾股定理可求得BC的长.【解答】解:∵四边形ABCD为矩形,∴OA=OB=AC=4.∵OA=OB,∠AOB=60°,∴△OAB为等边三角形.∴AB=4.在Rt△ABC中,BC==4.故答案为:4.【点评】本题主要考查的是矩形的性质、等边三角形的性质和判定、勾股定理的应用,求得AB的长是解题的关键.12.如图,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,若∠AMF=50°,则∠A= 65 °.【考点】L5:平行四边形的性质.【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A,又由平角的定义,根据∠AMF=50°,求得∠DMF的度数,然后可求得∠A 的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∴∠DMN=∠FMN=∠A,∵∠AMF=50°,∴∠DMF=180°﹣∠AMF=130°,∴∠FMN=∠DMN=∠A=65°,故答案为:65.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质,注意数形结合思想的应用以及折叠中的对应关系,难度适中.13.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=3,则菱形ABCD的周长是24 .【考点】L8:菱形的性质.【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=3,∴AB=6,∴菱形ABCD的周长是:4×6=24,故答案为:24【点评】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等.14.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【考点】L6:平行四边形的判定.【专题】26 :开放型.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解:答案不唯一,如两组对角分别相等的四边形是平行四边形等;理由:∵∠B=∠D,∠A=∠C,∠B+∠C+∠D+∠A=360°,∴∠B+∠C=180°,∠A+∠D=180°,∴AB∥CD,AD∥BC,∴四边行ABCD是平行四边形.故答案为:答案不唯一,如两组对角分别相等的四边形是平行四边形等.【点评】此题主要考查了平行四边形的判定,熟练掌握相关判定定理是解题关键.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】LN:中点四边形;LC:矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故答案为:对角线互相垂直.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.16.已知在平面直角坐标系中,点A、B、C、D的坐标依次为(﹣1,0),(m,n),(﹣1,10),(﹣7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是2,5,18 .【考点】L9:菱形的判定;D5:坐标与图形性质.【分析】利用菱形的性质结合A,C点坐标进而得出符合题意的n的值.【解答】解:如图所示:当C(﹣7,2),C′(﹣7,5)时,都可以得到以A、B、C、D四个点为顶点的四边形是菱形,同理可得:当D(﹣7,8)则对应点C的坐标为;(﹣7,18)可以得到以A、B、C、D四个点为顶点的四边形是菱形,故n的值为:2,5,18.故答案为:2,5,18.【点评】此题主要考查了菱形的判定以及坐标与图形的性质,利用菱形的性质得出C点坐标是解题关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)•(2)﹣﹣3.【考点】6C:分式的混合运算.【分析】(1)先约分,再计算即可;(2)化为同分母的分式,再进行相加即可.【解答】解:(1)原式=﹣;(2)原式=﹣﹣===﹣2.【点评】本题考查了分式的混合运算,掌握分式的约分和通分是解此题的关键.18.先化简,再求值:÷(﹣1),然后从2,1,﹣1,﹣2中选一个你认为合适的数作为a 的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的a的值代入进行计算即可.【解答】解:原式=÷=•=﹣,当a=﹣2时,原式=﹣=1.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.证明矩形的判定定理:对角线相等的平行四边形是矩形.【考点】LC:矩形的判定.【分析】由全等三角形的判定定理SSS证得△ABC≌△DCB,则∠ABC=∠DCB=90°,所以“有一内角为直角的平行四边形是矩形”.【解答】已知:四边形ABCD是平行四边形,AC、BD是两条对角线,且AC=BD.求证:平行四边形ABCD是矩形.证明:如图,∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.在△ABC与△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB.又∵∠ABC+∠DCB=180°,∴∠ABC=∠DCB=90°,∴平行四边形ABCD是矩形.【点评】本题考查了矩形的判定.此题通过全等三角形的性质得到同旁内角互补,结合平行线的性质证得平行四边形的两个内角为直角.20.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1(点A的对应点为A1).(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】R8:作图﹣旋转变换.【分析】(1)连接AA1、BB1,再分别作AA1、BB1中垂线,两中垂线交点即为点O;(2)根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解:(1)如图,点O即为所求;(2)OA=OA1、∠AOA1=∠BOB1.【点评】本题主要考查旋转变换的作图,熟练掌握旋转变换的性质:①对应点到旋转中心的距离相等(意味着:旋转中心在对应点所连线段的垂直平分线上),②对应点与旋转中心所连线段的夹角等于旋转角,③旋转前、后的图形全等.21.在平行四边形ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,GE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)若四边形EHFG是矩形,则平等四边行ABCD应满足的条件是平行四边形ABCD是矩形,并且AB=2AD .(直接写出答案,不需要证明)【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)解:当平行四边形ABCD是矩形,并且AB=2AD时,平行四边形EHFG是矩形.理由如下:连接EF,如图所示:∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=AB,这时,EF=AE=AD=DF=AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是矩形;故答案为:平行四边形ABCD是矩形,并且AB=2AD.【点评】本题考查了平行四边形的判定与性质,矩形的判定,注意找准条件,有一定的难度.22.某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到如图表(频数分布表中部分划记被墨水盖住):某校100名学生上学方式频数分布表方式划记频数步行正正正15骑车正正正正正29乘公共交通工具正正正正正正30乘私家车其它合计100(1)本次调查的个体是每名学生的上学方式;(2)求频数分布表中,“乘私家车”部分对应的频数;(3)请估计该校2 000名学生中,先把骑车和步行上学的一共有多少人?【考点】V7:频数(率)分布表;V3:总体、个体、样本、样本容量;V5:用样本估计总体.【分析】(1)每一个调查对象称为个体,据此求解;(2)首先求得私家车部分所占的百分比,然后乘以总人数即可求得对应频数;(3)用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解:(1)本次调查的个体是每名学生的上学方式,故答案为:每名学生的上学方式;(2)由扇形统计图知,“乘私家车”部分对应的百分比为1﹣15%﹣29%﹣30%﹣6%=20%,则“乘私家车”部分对应的频数为100×20%=20;(3)2000×(15%+29%)=880人.答:估计该校2000名学生中,选择骑车和步行上学的一共有880人.【点评】本题考查了频率分布表、用样本估计总体及扇形统计图的知识,解题的关键是能够读懂统计图,并从统计图中整理出进一步解题的有关信息.23.如图,在正方形ABCD,M、N是对角线AC上的两点,且AM=CN,连接DM并延长,交AB 于点F,连接BN并延长,交DC于点E.连接BM、DN.(1)求证:四边形MBND为菱形;(2)求证:△MFB≌△NED.【考点】LE:正方形的性质;KB:全等三角形的判定;LA:菱形的判定与性质.【分析】(1)连接BD交AC于O,先证明四边形BMDN是平行四边形,再根据NM⊥BD即可证明.(2)先证明四边形BFDE是平行四边形,得到∠BFM=∠DEN,再证明BM=DN,∠BMF=∠DNE即可解决问题.【解答】(1)证明:连接BD交AC于O.∵四边形ABCD是正方形,∴OA=OC,OB=OD,AC⊥BD,∵AM=CN,∴OM=ON,∵OB=OD,∴四边形MBND是平行四边形,∵MN⊥DB,∴四边形MBND是菱形.(2)证明:∵四边形MBND是菱形,∴DM∥NB,BM=DN,∠DMB=∠DNB,∴∠BMF=∠DNE,∵BF∥DE,∴四边形BFDE是平行四边形,∴∠BFM=∠DEN,在△MFB和△NED中,,∴△MFB≌△NED.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题.24.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度:放热水的是a升/分,放冷水的速度是b升/分,下面有两种放水方式:方式一:先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二:前一半时间让热水龙头注放,后一半时间让冷水龙头注放.(1)在方式一中:设浴缸容积为V升,则先开热水,热水注满浴缸一半所需的时间为分;(2)两种方式中,哪种方式更节省时间?请说明理由.【考点】6C:分式的混合运算.【分析】(1)根据题意即可得到结论;(2)首先浴缸容积为V,然后求出方式一和方式二注满时间为t、t′,最后作差比较.【解答】解:(1)先开热水注满浴缸一半所需的时间为分;故答案为:;(2)方式一:设浴缸容积为V,注满时间为t,依题意,得t=+,方式二:同样设浴缸容积为V,注满总时间为t′,依题意得t′a+t′b=V所以t′=,故t﹣t′=+﹣==,分类讨论:(Ⅰ)当a=b时,t﹣t′=0,即t=t′(Ⅱ)当a≠b时,>0,即t>t′综上所述:(1)当放热水速度与放冷水速度不相等时,选择方式二节约时间.(2)当两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水的时间相等.。
2020年八年级数学上期中试卷及答案【可修改文字】
可编辑修改精选全文完整版2020年八年级数学上期中试卷及答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A .100B .80C .50或80D .20或80 3.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =14.下列分式中,最简分式是( )A .B .C .D .5.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 6.分式可变形为( ) A . B . C . D .7.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )A .7B .8C .6D .5 8.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b) 10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)11.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3 B .2 C .1D .1- 12.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.当x =_____时,分式293x x -+的值为零. 15.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________. 18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.20.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.三、解答题21.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.解方程:.24.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】.解答此类题目的关键是要注意分类讨本题考查等腰三角形的性质及三角形的内角和定理论,不要漏解.3.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式; B.,分式的分子与分母含公因式2,不是最简分式; C.,分式的分子与分母含公因式x -2,不是最简分式; D.,分式的分子与分母含公因式a ,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.C解析:C【解析】【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.10.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.11.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 12.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.二、填空题13.15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm 时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm .故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x 的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k 的值【详解】方程两边都乘(x+1)(x ﹣1)得2(x+1)+kx =3(x ﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】方程两边都乘(x +1)(x ﹣1),得2(x +1)+kx =3(x ﹣1),即(k ﹣1)x =﹣5,∵最简公分母为(x +1)(x ﹣1),∴原方程增根为x =±1, ∴把x =1代入整式方程,得k =﹣4.把x =﹣1代入整式方程,得k =6.综上可知k =﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.cm 【解析】【分析】【详解】∵AD 是BC 边上的中线∴BD=CD∵△ABC 的周长为27cmAC =9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm .【解析】【分析】【详解】∵AD 是BC 边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB ∥CD ,∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°. 20.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅,由此推出50 4.545.5ADM ADF ADG EFD SS S S ==-=-=,从而得出 45.5 4.541AED ADF EFD S S S =-=-=.【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅,∴50 4.545.5ADM ADF ADG EFD SS S S ==-=-=, ∴45.5 4.541AED ADF EFD S S S =-=-=.故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅是解此题的关键.三、解答题21.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.22.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去).代入化简后的式子得原式1125x ==+. 【点睛】 此题考查分式的化简求值,掌握运算法则是解题关键23.无解.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:15x-12=4x+10-3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键. 25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y本科普书.依题意得550×8+12y≤10000,解得24663y ,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.。
2020春八年级下册期中数学试卷(含答案)
八年级(下)期中数学试卷一.选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.若a>b,则下列不等式变形错误的是()A.a+1>b+1B.C.3a﹣4>3b﹣4D.4﹣3a>4﹣3b2.下列电视台的台标,是中心对称图形的是()A.B.C.D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.4.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB =∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)7.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<18.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°二.填空题(共6小题,每小题3分,计18分)9.不等式3(x﹣1)≤5﹣x的非负整数是.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为.12.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.13.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.14.在数学活动课上,张林提出这样一个问题:如图,在三角形纸片ABC中,已知∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.小贝经过思考第一个得出正确答案,是三.解答题(共7小题,计58分,解答应写出过程)15.(6分)解不等式组,并把它的解集在数轴上表示出来.16.(6分)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A,B两点作AC⊥l,BD⊥l,垂足分别为点C,D.求证:AC=OD.17.(8分)如图,在△ABC中,∠C=90°,∠A=30°.(1)用尺规作AB的垂直平分线分别交AB,AC于点D,E;(2)求证:AE=2CE.18.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.19.(8分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?20.(10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△AOC是边长为2的等边三角形.(1)写出△AOC的顶点C的坐标:.(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是度(4)连接AD,交OC于点E,求∠AEO的度数.21.(12分)如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.八年级(下)期中数学试卷参考答案与试题解析一.选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.若a>b,则下列不等式变形错误的是()A.a+1>b+1B.C.3a﹣4>3b﹣4D.4﹣3a>4﹣3b【分析】根据不等式的基本性质进行解答.【解答】解:A、在不等式a>b的两边同时加上1,不等式仍成立,即a+1>b+1.故本选项变形正确;B、在不等式a>b的两边同时除以2,不等式仍成立,即.故本选项变形正确;C、在不等式a>b的两边同时乘以3再减去4,不等式仍成立,即3a﹣4>3b﹣4.故本选项变形正确;D、在不等式a>b的两边同时乘以﹣3再减去4,不等号方向改变,即4﹣3a<4﹣3b.故本选项变形错误;故选:D.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.下列电视台的台标,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选:D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选:B.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A.SAS B.ASA C.AAS D.SSS【分析】根据∠1=∠2,求出∠BCA=∠DCE,根据SAS证△ABC≌△ECD即可.【解答】解:∵∠1=∠2,∴∠1+∠DCA=∠2+∠DCA,即∠BCA=∠DCE,在△ABC和△ECD中,∴△ABC≌△ECD(SAS),故选:A.【点评】本题考查了全等三角形的判定的应用,关键是找到证明△ABC和△ECD全等的三个条件,题目比较好,培养了学生运用定理进行推理的能力.5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB =∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【解答】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选:C.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)【分析】四边形ABCD与点A平移相同,据此即可得到点A′的坐标.【解答】解:四边形ABCD先向左平移3个单位,再向上平移2个单位,因此点A也先向左平移3个单位,再向上平移2个单位,由图可知,A′坐标为(0,1).故选:B.【点评】本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<1【分析】直接根据函数的图象与y轴的交点为(0,1)进行解答即可.【解答】解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选:B.【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故选:A.【点评】该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.二.填空题(共6小题,每小题3分,计18分)9.不等式3(x﹣1)≤5﹣x的非负整数是0、1、2.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:3(x﹣1)≤5﹣x,去括号,得:3x﹣3≤5﹣x,移项,得:3x+x≤5+3,合并同类项,得:4x≤8,系数化为1,得:x≤2,则不等式3(x﹣1)≤5﹣x的非负整数解是0、1、2.故答案为:0、1、2.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E 的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.11.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为x <1.【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【解答】解:∵直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),∴当x=1时,y1=y2=2;而当y1<y2时,x<1.故答案为x<1.【点评】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.12.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,则△A′B′C的周长为12.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=2,∴B′C=BC﹣BB′=4.由平移性质,可知A′B′=AB=4,∠A′B′C=∠ABC=60°,∴A′B′=B′C,且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=12.故答案为:12.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.13.小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买3瓶甲饮料.【分析】首先设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小宏能买x瓶甲饮料,则可以买(10﹣x)瓶乙饮料,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小宏最多能买3瓶甲饮料.故答案为:3.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.14.在数学活动课上,张林提出这样一个问题:如图,在三角形纸片ABC中,已知∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,点A与BC延长线上的点D重合,求CE的长.小贝经过思考第一个得出正确答案,是【分析】由题意可知∠ABC=60°,由翻折的性质可知∠DBE=∠ABE=30°,所以tan30°=,从而可求出CE的值.【解答】解:∵∠ACB=90°,BC=3,AB=6,∴∠A=30°,∴∠ABC=60°,由翻折的性质可知:∠DBE=∠ABE=30°,∴tan30°=,∴CE=BC tan30°=故答案为:【点评】本题考查翻折变换,解题的关键是根据题意得出∠A=30°,从而利用锐角三角函数的定义即可求出CE的值,本题属于中等题型.三.解答题(共7小题,计58分,解答应写出过程)15.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.要注意不等式解集中的>和≥的表示方法.【解答】解:由①得x≥﹣2,由②得x<,∴不等式组的解集为>x≥﹣2.不等式组的解集在数轴上表示如下:.【点评】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16.(6分)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A,B两点作AC⊥l,BD⊥l,垂足分别为点C,D.求证:AC=OD.【分析】根据同角的余角相等求出∠A=∠BOD,再利用“角角边”证明△AOC和△OBD全等,然后根据全等三角形对应边相等证明即可.【解答】证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键,本题关键在于求出∠A=∠BOD.17.(8分)如图,在△ABC中,∠C=90°,∠A=30°.(1)用尺规作AB的垂直平分线分别交AB,AC于点D,E;(2)求证:AE=2CE.【分析】(1)利用基本作图作AB的垂直平分线;(2)根据线段垂直平分线的性质得到EA=EB,则∠EBA=∠A=30°,再计算出∠ABC=60°,则∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2CE,从而得到AE=2CE.【解答】(1)解:如图,DE为所作;(2)证明:∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBE=30°,∴BE=2CE,∴AE=2CE.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了含30度的直角三角形三边的关系.18.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.【分析】由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.【解答】证明:∵Rt△ACD中,CE⊥AD,∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,∴∠F=∠ADC,在△ACD和△CBF中,,∴△ACD≌△CBF(AAS),∴CD=BF,∵D为BC中点,∴CD=BD,∴BF=CD=BD=BC=AC,则AC=2BF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.19.(8分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?【分析】(1)根据总价=单价×数量就可以表示出y与x之间的函数关系式;(2)根据(1)的解析式建立不等式求出其解即可.【解答】解:(1)由题意,得y=2x+8(x>0)(2)由题意,得解得:x≤6,∴x最多=6∴每月的用水量最多为14m3.【点评】本题考查了总价=单价×数量的运用,一次函数的解析式的运用及列不等式解实际问题的运用,解答时求出一次函数的解析式是关键.20.(10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△AOC是边长为2的等边三角形.(1)写出△AOC的顶点C的坐标:(﹣1,).(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是2(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转角可以是120度(4)连接AD,交OC于点E,求∠AEO的度数.【分析】(1)过C作CH⊥AO于H,利用勾股定理即可得到点C的坐标为(﹣1,);(2)依据对应点的位置,即可得到平移的距离;(3)依据旋转的方向以及对应点的位置,即可得到旋转角的度数;(4)判定△ACE≌△DOE,即可得到CE=OE,依据三线合一可得AD⊥CO.【解答】解:(1)如图,过C作CH⊥AO于H,则HO=AO=1,∴Rt△COH中,CH==,∴点C的坐标为(﹣1,),故答案为:(﹣1,);(2)由平移可得,平移的距离=AO=2,故答案为:2;(3)由旋转可得,旋转角=∠AOD=120°,故答案为:120;(4)如图,∵AC∥OD,∴∠CAE=∠ODE,∠ACE=∠DOE,又∵AC=DO,∴△ACE≌△DOE,∴AD⊥CO,即∠AEO=90°.【点评】本题主要考查了坐标与图形变化以及等边三角形的性质,解题时注意:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.21.(12分)如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【分析】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的中点时,AB=2BD =2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC =30°,又∠A=30°且ED⊥AB,可证:D为AB的中点;(2)在Rt△ADE中,根据∠A,ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB 的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S=AC×BC△ABC进行求解即可.【解答】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD==,∴AB=2,∵∠A=30°,∠C=90°,∴BC=AB=.在Rt△ABC中,AC==3,∴S=×AC×BC=.△ABC【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.。
2020年春学期八年级期中调研测试 数学试卷 含答案
2020年春学期八年级期中调研测试数学试卷(考试用时:120分钟满分:150分)说明:1.本试卷考试用时120分钟,满分150分,共13页.2.答题前,考生务必将本人的学校、班级、姓名、考试号填写在答题纸相应位置上.3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(共6小题,每小题3分,满分18分)1.下列调查中,最适合采用普查的是( ▲ )A.长江中现有鱼的种类;B.八年级(1)班36名学生的身高;C.某品牌灯泡的使用寿命;D.某品牌饮料的质量.2.为了解2020年春学期兴化市八年级学生的视力水平,从中随机抽取了500名学生进行检测.下列说法正确的是( ▲ )A.2020年春学期兴化市八年级学生的全体是总体;B.其中的每一名八年级学生是个体;C.被抽取的500名学生是总体的一个样本;D.样本容量是500.3.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ▲ )A.1 B.12C.13D.04.下列图案中,是中心对称图形的是( ▲ )A.B.C.D.5.满足下列条件的四边形,不一定是平行四边形的是( ▲ )A.两组对边分别平行 B. 两组对边分别相等C. 一组对边平行且相等D. 一组对边平行,另一组对边相等6.将下列分式中x,y (0xy≠)的值都扩大为原来的2倍后,分式的值一定不变的是( ▲ )A.312xy+B.232xyC.232xxyD.3232xy二、填空题(共10小题,每小题3分,满分30分)7.不透明的袋子里装有3只相同的小球,给它们分别标上序号1、2、3后搅匀.事件“从中任意摸出1只小球,序号为4”是▲事件 (填“必然”、“不可能”或“随机”) .8.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性▲摸出的是白球的可能性(填“大于”、“小于”或“等于”) .9.在英文单词tomato中,字母o出现的频数是▲(第10题图) (第12题图) (第13题图)10.如图,D、E分别是△ABC的边AB、AC的中点.若BC=6,则DE的长为▲.11.小明用a元钱去购买某种练习本.这种练习本原价每本b元(b > 1),现在每本降价1元,则他现在可以购买到这种练习本的本数为▲.12.如图,菱形ABCD的对角线AC、BD相交于点O,∠OBC=30°,则∠OCD= ▲°.13.如图,小正方形方格的边长都是1,点A、B、C、D、O都是小正方形的顶点.若△COD是由△AOB绕点O按顺时针方向旋转一次得到的,则至少需要旋转▲°.14.若分式33xx--的值为0,则x的值应为▲.15.平行四边形ABCD中,对角线AC、BD相交于点O,AC=6,BD=8,则AB边长度的取值范围是 ▲ .16. 已知2222114a b a b +=+(0ab ≠),则代数式20192020b a a b ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为 ▲ .三、解答题(共10小题,满分102分)17. (本题12分)解下列方程(1)9633x x=+- (2)241111x x x -+=-+18. (本题8分)自2009年以来,“中国·兴化千垛菜花旅游节”享誉全国.“河有万湾多碧水,田无一垛不黄花”所描绘的就是我市发达的油菜种植业.为了解某品种油菜籽的发芽情况,农业部门从该品种油菜籽中抽取了6批,在相同条件下进行发芽试验,有关数(1) (2) 请根据以上数据,直接写出....该品种油菜籽发芽概率的估计值(精确到0.1); (3) 农业部门抽取的第7批油菜籽共有6000粒.请你根据问题(2)的结果,通过计算来估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数.19. (本题8分)先化简:22241a a a a a+--÷-,再从-1、0、1、2中选一个你喜欢的数作为a 的值代入求值.20.(本题8分)如图,已知在□ABCD中,点E,F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.(第20题图)21.(本题10分)某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用1 00元购进第二批该款套尺,所购到的数量比第一批还多1套.(1) 求第一批套尺购进时的单价;(2) 若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?22.(本题10分)如图,□ABCD中,已知BC=10,CD=5.(1) 试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰..的作图痕迹);(2) 求△ABE的周长.(第22题图)23.(本题10分)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组.学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1) 求参加这次问卷调查的学生人数;(2) 补全条形统计图;(3) 若该校共有1200名学生,请你过计算估计选择“围棋”课外兴趣小组的学生有多少人.(第23题图)24.(本题10分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1) 求证:四边形ADCF是菱形;(2) 若AC=6,AB=8,求菱形ADCF的面积.(第24题图)25.(本题12分)如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1) 当∠BEA=55°时,求∠HAD的度数;(2) 设∠BEA=α,试用含α的代数式表示∠DF A的大小;(3) 点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.(第25题图)26.(本题14分)如图1,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(6,8).D是AB边上一点(不与点A、B重合),将△BCD沿直线CD翻折,使点B落在点E处.(1) 求直线AC所表示的函数的表达式;(2) 如图2,当点E恰好落在矩形的对角线AC上时,求点D的坐标;(3) 如图3,当以O、E、C三点为顶点的三角形是等腰三角形时,求△OEA的面积.图1 图2 图3(第26题图)2020年春学期八年级期中调研测试数学试卷参考答案一、选择题(共6小题,每小题3分,满分18分)BDCADC二、填空题(共10小题,每小题3分,满分30分)27. 不可能 28. 大于 29. 2 30. 3 31.1a b 32. 60 33. 90 34. -335. 1<AB <736. 0或-2 说明:多写或少写或写错一个都不得分三、解答题(共10小题,满分102分)37. (本题12分)解下列方程(1)9633x x=+- 解: 方程两边同乘(3+x )(3-x ),得 9(3-x)=6(3+x) 【2分】解这个方程,得x=35【2分】检验:当x=35时,(3+x)(3-x)≠0,x=35是原方程的解. 【2分】 (2)241111x x x -+=-+ 解: 方程两边同乘(x+1)(x-1),得 2241(1)x x +-=-【2分】 解这个方程,得x=-1 【2分】检验:当x=-1时,(x+1)(x-1)=0,x=-1是增根.【1分】 原方程无解. 【1分】 38. (本题8分)解: (1) 1000.85085a =⨯=16040.8022000b == 【3分】(2) 0.8 【2分】 (3) 60000.84800⨯= 【2分】 答:估计第7批油菜籽在相同条件下进行发芽试验时的发芽粒数为4800. 【1分】 39. (本题8分)解: 原式=2(1)1(2)(2)a a a a a a +--⨯+- =112a a --- =12a -- 【4分】∵ a ≠0,1,2.∴ 当a=-1时,原式=112---=13【4分】40. (本题8分)证明: 连接BD ,交AC 于点O ∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO【3分】∵AE=CF ∴EO=FO【3分】∵BO=DO ,EO=FO∴四边形BEDF 是平行四边形【2分】(第20题图)41. (本题10分) 解: (1) 设第一批套尺购进时单价为x 元,由题意得10012010.8x x-= 【3分】解得x=5 【3分】经检验,x=5是原方程的解,且符合题意. 【1分】 答: 第一批套尺购进时单价为5元 【1分】 (2) 第二批套尺购进时单价为5×0.8=4元. 【1分】全部售出后的利润为 100÷4×(5.5-4) 【1分】 = 25×1.5 = 37.5 【1分】答: 可以盈利37.5元. 【1分】42. (本题10分)如图,(1) 如右图【5分】 (2) 解: 连接BE ∵四边形ABCD 是平行四边形∴AD=BC=10,AB=CD=5【2分】又由(1)知BE=DE∴△ABE 的周长=AB+AE+BE=AB+AE+ED=AB+AD=15【3分】(第22题图)43. (本题10分)解: (1) 参加问卷调查的人数为30÷0.2=150人 【3分】 (2) 如图 【3分】 (3) 241200192150⨯= 【3分】答: 估计参加“围棋”兴趣小组的有192人.【1分】44. (本题10分)(1)证明: 连接DF ,交AC 于点O ∵AF ∥BC ∴∠AFE=∠DBE ∵E 是AD 中点 ∴AE=DE 又∵∠AEF=∠DEB ∴△AEF ≌△DEB ∴AF=BD ∴四边形ABDF 是平行四边形 【3分】 ∵D 是BC 中点 ∴CD=BD=AF ∴四边形ADCF 是平行四边形 ∵AB ∥DF ∴DOB=∠BAC=90°,即AC ⊥DF ∴平行四边形ADCF 是菱形. 【3分】(2) ∵四边形ABDF 是平行四边形 ∴DF=AB=8又∵AC=6,AC ⊥DF∴68242ADCF S ⨯==菱形 【4分】解: (1) ∵四边形ABCD是正方形∴∠EBA=∠BAD=90°∴∠EAB=90°-∠BAE=90°-55°=35°∴∠HAD=∠BAD-∠EAF-∠EAB=90°-45°-35°=10°【4分】(2) (法一)∵四边形ABCD是正方形∴∠EBA=∠BAD=∠ADF=90°∴∠EAB=90°-∠BAE=90°-α∴∠DAF=∠BAD-∠EAF-∠EAB=90°-45°-(90°-α)=α-45°∴∠DFA=90°-∠DAF=90°-(α-45°)=135°-α【4分】(法二)∵四边形ABCD是正方形∴∠C=90°,CB=CD∴∠CDB=∠CBD=45°在△GHA与△GEB中∵∠EAF=∠CBD=45°,∠HGA=∠EGB∴∠GHA=∠BEA=α∴∠FHD=α∴∠DFA=180°-∠CDB-∠FHD=180°-45°-α=135°-α(3)∠BEA=∠FEA.【1分】理由如下:延长CB至I,使BI=DF,连接AI.∵四边形ABCD是正方形∴AD=AB,∠ADF=∠ABC=90°∴∠ABI=90°又∵BI=DF∴△DAF≌△BAI∴AF=AI,∠DAF=∠BAI∴∠EAI=∠BAI +∠BAE =∠DAF+∠BAE=45°=∠EAF又∵AE是△EAI与△EAF的公共边∴△EAI≌△EAF∴∠BEA=∠FEA 【3分】解: (1) ∵点B 的坐标为(6,8)且四边形OABC 是矩形 ∴点A 、C 的坐标分别为(6,0)、(0,8)设AC:y kx b =+,把A 、C 两点的坐标分别代入,得068k b b =+⎧⎨=⎩,求得438k b ⎧=-⎪⎨⎪=⎩,即483y x =-+ 【4分】 (2) ∵点A 的坐标为(6,0),点C 的坐标为(0,8)∴OA=6,OC=8. ∴Rt △AOC 中,AC=226810+= ∵四边形OABC 是矩形 ∴∠B =90°,BC=6,AB=8 ∵沿CD 折叠∴∠CED=90°,BD=DE ,CE=6,AE=4 ∴∠AED=90°设BD=DE=a ,则AD=8-a∵Rt △AED 中222AE DE AD +=∴2224(8)a a +=-,解得a=3所以点D 的坐标为(6,5) 【4】 (3) 过点E 分别作x 、y 轴的垂线,垂足分别为M 、N ∵EN ⊥OC ,EM ⊥OA ,OC ⊥OC ∴∠ENO=∠NOM=∠OME=90° ∴四边形OMEN 是矩形①当EC=EO 时 ∵EC=EO ,NE ⊥OC ∴ON=2OC=4 ∴EM=4 ∴64122OEAS ∆⨯== 【3分】 ②当OE=OC 时 ∵EN ⊥OC∴∠EMC=∠EMO=90° 设ON=b ,则CN=8-b∵Rt △ENC 中222NE EC CN =- Rt △ENO 中222NE EO NO =- ∴22226(8)8b b --=-,解得234b = ∴EM=ON=234∴231696424OEA S ∆=⨯⨯= 【3分】所以,△OEA 的面积为12或694。
2020春八年级下册期中数学试卷及答案
八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.703.(3分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D 4.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.(3分)如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④6.(3分)若关于x的方程mx2﹣mx+2=0有两个相等的实数根,则m的值为()A.0 B.8 C.4或8 D.0或87.(3分)利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°8.(3分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.109.(3分)摩拜共享单车计划2017年10、11、12月连续3月对深圳投放新型摩拜单车,计划10月投放深圳3000台,12月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程()A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1﹣x)2=6000D.3000+3000(1+x)+3000(1+x)2=600010.(3分)如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE等于()A.AB B.AC C. AB D. AC二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:(+)×= .12.(3分)已知一组数据:3,3,4,5,5,则它的方差为.13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= .14.(3分)某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为.15.(3分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.16.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为°.18.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、解答题(本大题共7小题,19-23每题6分,24-25每题8分,共46分)19.(6分)计算:(1)3﹣﹣(2)(2+4﹣3)20.(6分)解方程:(1)3(x﹣1)2=x(x﹣1)(2)x2+1=3x.21.(6分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,9,8,8;乙:9,6,10,8,7;平均数中位数方差甲8乙82(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会.(填“变大”或“变小”或“不变”)22.(6分)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%,从六月起强化管理,该厂产量逐月上升,七月份产量达到648吨.(1)该厂五月份的产量为吨;(直接填结果)(2)求六、七两月产量的平均增长率.23.(6分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.24.(8分)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.25.(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.四、附加题(本题有2小题,每题10分,共20分)26.(10分)如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.27.(10分)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)方程x(x﹣2)=3x的解为()A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5【解答】解:x(x﹣2)=3x,x(x﹣2)﹣3x=0,x(x﹣2﹣3)=0,x=0,x﹣2﹣3=0,x1=0,x2=5,故选:B.成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.3.(3分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D【解答】解:A、“AB∥CD,AD=BC”是四边形ABCD的一组对边平行,另一组对边相等,该四边形可以是等腰梯形,不可以判定四边形ABCD是平行四边形.故本选项符合题意;B、根据“AB∥CD,∠A=∠C”可以判定AD∥BC,由“两组对边相互平行的四边形为平行四边形”可以判定四边形ABCD为平行四边形.故本选项不符合题意;C、“AD∥BC,AD=BC”是四边形ABCD的一组对边平行且相等,可以判定四边形ABCD是平行四边形.故本选项不符合题意;D、“∠A=∠C,∠B=∠D”是四边形ABCD的两组对角相等,可以判定四边形ABCD是平行四边形;故本选项不合题意;故选:A.4.(3分)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.(3分)如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.6.(3分)若关于x的方程mx2﹣m x+2=0有两个相等的实数根,则m的值为()A.0 B.8 C.4或8 D.0或8【解答】解:根据题意得△=(﹣m)2﹣4•m•2=0,解得m1=0,m2=8,而m≠0,所以m的值为8.故选:B.7.(3分)利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.8.(3分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.10【解答】解:∵四边形ABCD是平行四边形,周长为18,∴AB=CD,BC=AD,OA=OC,AD∥BC,∴CD+AD=9,∠OAE=∠OCF,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF=1.5,AE=CF,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+CD+EF=AD+CD+EF=9+3=12.故选:C.9.(3分)摩拜共享单车计划2017年10、11、12月连续3月对深圳投放新型摩拜单车,计划10月投放深圳3000台,12月投放6000台,每月按相同的增长率投放,设增长率为x,则可列方程()A.3000(1+x)2=6000B.3000(1+x)+3000(1+x)2=6000C.3000(1﹣x)2=6000D.3000+3000(1+x)+3000(1+x)2=6000【解答】解:设增长率为x,由题意得3000(1+x)2=6000.故选:A.10.(3分)如图,△ABC中,D是AB的中点,E在AC上,且∠AED=90°+∠C,则BC+2AE 等于()A.AB B.AC C. AB D. AC【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+∠C)=90°﹣∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:(+)×= 13 .【解答】解:原式=(2+)×=×=13.故答案为13.12.(3分)已知一组数据:3,3,4,5,5,则它的方差为.【解答】解:这组数据的平均数是:(3+3+4+5+5)÷5=4,则这组数据的方差为: [(3﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(5﹣4)2]=.故答案为:13.(3分)已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q= 8 .【解答】解:x2+6x+9=8,(x+3)2=8.所以q=8.故答案为8.14.(3分)某公司前年缴税200万元,今年缴税338万元,则该公司这两年缴税的年均增长率为30% .【解答】解:设该公司这两年缴税的年均增长率为x,依题意得:200(1+x)2=338,解得x=0.3=30%.故答案是:30%.15.(3分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△A DE的面积是 6 .【解答】解:∵D、E分别为AC、AB的中点,∴AD=AC=4,DE=BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=×AD×DE=6,故答案为:6.16.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.17.(3分)如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为95 °.【解答】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°﹣50°﹣35°=95°,∴∠D=360°﹣100°﹣70°﹣95°=95°.故答案为:95.18.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12 .【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD =2S△ABD,又∵BD=DC,∴S△ABC =2S△ABD,∴S四边形AFBD =S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:12三、解答题(本大题共7小题,19-23每题6分,24-25每题8分,共46分)19.(6分)计算:(1)3﹣﹣(2)(2+4﹣3)【解答】解:(1)原式=6﹣3﹣=;(2)原式=(4+﹣12)=(﹣8)=2﹣8.20.(6分)解方程:(1)3(x﹣1)2=x(x﹣1)(2)x2+1=3x.【解答】解:(1)方程整理,得3(x﹣1)2﹣x(x﹣1)=0因式分解,得(x﹣1)[3(x﹣1)﹣x]=0于是,得x﹣1=0或2x﹣3=0,解得x1=1,x2=;(2)方程整理,得x2﹣3x+1=0∵a=1,b=﹣3,c=1,∴△=b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴x==,即x1=,x2=.21.(6分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,9,8,8;乙:9,6,10,8,7;平均数中位数方差甲8 80.4乙88 2(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会变小.(填“变大”或“变小”或“不变”)【解答】解:(1)甲平均数为(8+7+9+8+8)÷5=8,甲的方差为: [(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4,乙的环数排序后为:6,7,8,9,10,故中位数为8;故答案为:8,0.4,8;(2)选择甲.理由是甲的成绩较稳定.(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差为:[(9﹣8)2+(6﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(8﹣8)2]=<2,∴方差会变小.故答案为:变小.22.(6分)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%,从六月起强化管理,该厂产量逐月上升,七月份产量达到648吨.(1)该厂五月份的产量为450 吨;(直接填结果)(2)求六、七两月产量的平均增长率.【解答】解:(1)500(1﹣10%)=450(吨),故答案为:450;(2)设六、七两个月的产量平均增长率为x,依题意得:450(1+x)2=648,(1+x)2=1.44,解得x1=0.2=20%,x2=﹣2.2=﹣220%(不合题意舍去),答:六、七两月产量的平均增长率为20%.23.(6分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.24.(8分)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中位线,∴D,E是AB,AC的中点,∴DE∥BC,DE=BC,同理:FG∥BC,FG=BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.25.(8分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.【解答】解:(1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.四、附加题(本题有2小题,每题10分,共20分)26.(10分)如图所示中的几个图形是五角星和它的变形.(1)图甲中是一个五角星形状,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图甲中的点A向下移到BE上时(如图乙)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?试说明理由(3)把图乙中的点C向上移动到BD上时(如图丙所示),五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化?试说明理由.【解答】解:(1)如图:由三角形外角的性质,得∠C+∠E=∠1,∠B+∠D=∠2.由三角形的内角和定理,得∠A+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(2)如图:由三角形外角的性质,得∠C+∠E=∠1,∠A+∠D=∠2,由三角形的内角和定理,得∠B+∠1+∠2=180°,等量代换,得∠A+∠B+∠C+∠D+∠E=180゜;(3)∵∠ECD是△BCE的一个外角,∴∠ECD=∠B+∠E(三角形的一个外角等于它不相邻的两个内角的和),∴∠CAD+∠B+∠ACE+∠D+∠E=∠CAD+∠ACE+∠D+∠ECD=∠CAD+∠ACD+∠D=180°,故∠CAD+∠B+∠ACE+∠D+∠E等于180°,没有变化.27.(10分)如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠EBC=75°,∠DCE=10°,求∠DAB的度数.【解答】(1)证明:∵BF=BE,CG=CE,∴BC为△FEG的中位线,∴BC∥FG,BC=FG,又∵H是FG的中点,∴FH=FG,∴BC=FH.又∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,∵CE=CB,∴∠BEC=∠EBC=75°,∴∠BCE=180°﹣75°﹣75°=30°,∴∠DCB=∠DCE+∠BCE=10°+30°=40°,∴∠DAB=40°.。
2020年初二数学上期中试卷(带答案)
2020年初二数学上期中试卷(带答案)一、选择题1.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,bab+.A.2 B.3 C.4 D.52.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°3.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④4.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C.40004000210x x-=-D.40004000210x x-=-5.小淇用大小不同的 9 个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是()A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1) 6.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC的周长是( )A .8B .9C .10D .117.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7 9.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=- 10.已知x+y=5,xy=6,则x 2+y 2的值是( ) A .1 B .13 C .17 D .2511.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x =2012.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .15.分式2311,26x y xy 的最简公分母是____________________. 16.若a+b=17,ab=60,则a-b 的值是__________. 17.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 18.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.19.因式分解:x 2y ﹣y 3=_____.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.22.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =. 23.先化简22169(1)24a a a a -+-÷--,然后a 在﹣2,0, 1,2,3中选择一个合适的数代入并求值.24.先化简,再求值:(a+b )(a ﹣b )+(a+b )2﹣2a 2,其中a=3,b=﹣13. 25.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】22a b +, a b π+的分母中均不含有字母,因此它们是整式,而不是分式; b a 的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B.【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a b π+不是分式,是整式. 2.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.3.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD =AE =EC .③正确;④过E 作EG ⊥BC 于G 点,∵E 是∠ABC 的角平分线BD 上的点,且EF ⊥AB ,∴EF =EG (角平分线上的点到角的两边的距离相等),∵在Rt △BEG 和Rt △BEF 中,BE BE EF EG =⎧⎨=⎩, ∴Rt △BEG ≌Rt △BEF (HL ),∴BG =BF ,∵在Rt △CEG 和Rt △AFE 中,AE CE EF EG =⎧⎨=⎩, ∴Rt △CEG ≌Rt △AEF (HL ),∴AF =CG ,∴BA +BC =BF +FA +BG−CG =BF +BG =2BF ,④正确.故选D .【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.4.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.6.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.7.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.8.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.9.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.12.A解析:A【解析】【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【详解】在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.15【解析】【分析】题目给出等腰三角形有两条边长为6cm和3cm而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.15.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解:6x y解析:23【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解:分式2311,26x y xy的最简公分母为236x y , 故答案是:236x y .【点睛】本题考查了最简公分母,确定最简公分母的方法一定要掌握.16.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 17.a <-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a 的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a <-2且a ≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a 的范围即可.【详解】 解:方程22x a x -+=1, 去分母得:2x-a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a <-2且a≠-4,故答案为:a <-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.18.37【解析】【分析】先判断出∠AEC=90°进而求出∠ADC=∠C=74°最后用等腰三角形的外角等于底角的2倍即可得出结论【详解】解:∵AD=AC 点E 是CD 中点∴AE ⊥CD ∴∠AEC=90°∴∵AD【解析】【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【详解】解:∵AD=AC ,点E 是CD 中点,∴AE ⊥CD ,∴∠AEC=90°,∴9074C CAE ∠=︒-∠=︒,∵AD=AC ,∴∠ADC=∠C=74°,∵AD=BD ,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为:37°.【点睛】此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出∠ADC=74°是解本题的关键.19.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将3221-利用平方差公式分解因式,根据3221-可以被10到20之间的某两个整数整除,即可得到两因式分别为15和17.【详解】因式分解可得:3221-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得611161 x x2x⎛⎫++=⎪⎝⎭,解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有11y13060⎛⎫+=⎪⎝⎭,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.22.22x-,12-.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式()()()22228222x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦()2228422x x x x -+=÷-- ()28242x x -=⋅- =22x -. ∵2x =,∴2x =±,舍去2x =,当2x =-时,原式21222==---. 点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.23.化简得:原式=23a a +-;当0a =时,原式=23﹣. 【解析】【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a =0代入计算即可求出值.【详解】 原式=()()()23322+2a a a a a --÷-- =()()()22+2323a a a a a --⨯-- =+23a a -. 当a 取﹣2,2,3,分式无意义. 当0a =时,+23a a -=23﹣. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.24.-2.【解析】试题分析:解题关键是化简,然后把给定的值代入求值.试题解析:(a+b )(a-b )+(a+b )2-2a 2,=a 2-b 2+a 2+2ab+b 2-2a 2,=2ab ,当a=3,b=-13时, 原式=2×3×(-13)=-2. 考点:整式的混合运算—化简求值.25.见解析【解析】【分析】根据全等三角形的判定即可判断△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).。
2020年春八年级数学期中考试试题含答案
2020年春期中考试八年级数学试题(满分120分,考试时间:120分钟)一、选择题(每题3分,共30分)1、如果二次根式有意义,那么x的取值范围是()A.x≥3 B.x≥0 C.x>3 D.x≠32、如图,一场暴雨过后,垂直于地面的一棵树在距地面2 m处折断,树尖B恰好碰到地面,经测量AB=4 m,则树高为()A.2B.C.(23+2) m D.2) m3、下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CD C.AB=CD,AD=BC D.AB∥CD,AD=BC4、在式子,,,,(x≤0)中,一定是二次根式的有()A.1个B.2个C.3个D.4个5、如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.6、如图,在Rt△ABC中,∠ACB=90°,点E,点F分别是AC,BC的中点,D是斜边AB上一点,则添加下列条件可以使四边形DECF成为矩形的是( )A.AD=BD B.∠ACD=∠BCD C.CD⊥AB D.CD=AC7、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(1) B.(2,1)C.(1) D.(28、下列二次根式的运算:①6÷(3+2)=2+3;③1239)33(2=+=+其中运算正确的有()A.1个B.2个C.3个D.4个9、有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为()A.8−4B.4−2.−6 D. 3.二、填空题(每题3分,共18分)11、已知是正整数,则满足条件的最小整数n为.12、直角三角形中,两条边的边长分别为6和8,则斜边上的中线长是.13、命题“平行四边形的对角线互相平分”的逆命题是.14、已知﹣1<a<0,化简得.15、如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OD,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=5,则线段BC的长为.16、已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线BC分别交X 轴、Y轴于B、C(0,323)两点,四边形ABCD为菱形.∠D=60°,如图,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,则AF2+EF2的值是.第(7)题第(10)题第(9)题H三、解答题(17~20每题8分,21~22每题9分,23题10分,24题12分,共72分) 17、(8分)计算:(1(2)318、(8分)如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.19、(8分)如图,▱ABCD 中,E ,F 分别是AD ,BC 中点,AF 与BE 交于点G ,CE 和DF 交于点H ,求证:四边形EGFH 是平行四边形.20、(8分)已知a =6+2,b =6-2,求下列代数式的值:(1)a 2b +b 2a ;(2)a 2-ab+b 2.21、(9分)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=190米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一直线上)问:(1)楼高多少米?(用准确值表示)(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:22、(9分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形; (2)已知∠DAB =60°,AF 是∠DAB 的平分线,若AD =3,求DC 的长度.23、(10分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论. (3)在(2)的条件下,若AB=8,AC=6,求BF 的长。
江苏省无锡经济开发区2020学年八年级下学期期中考试数学试题附答案
2020年春学期期中考试试卷初二数学本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为100分钟,试卷满分120分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、考试号填写在答题卡的相应位置上. 2.答选择题将答题卡上对应题目中的选项填写在对应的表格之中.答非选择题必须用0.5毫米黑色墨水 签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效. 3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确的选项填在答题卡上相应的表格中..........) 1.下列图形中,既是轴对称图形又是中心对称图形的是…………………………………………………( ▲ )2.2020是5G大发展的一年,移动通讯行业人员想了解5G 手机的使用情况,在某高校随机对500位大学生进行了问卷调查,下列说法正确的是………………………………………………………………( ▲ ) A .该调查方式是普查B .该调查中的个体是每一位大学生C .该调查中的样本容量是500位大学生D .该调查中的样本是被随机调查的500位大学生5G 手机的使用情况3.在体育考核中,成绩分为优秀、合格、不合格三个档次,某班有48名学生,达到优秀的有15人,合 格的有21人,则这次体育考核中,不合格人数的频率是…………………………………………( ▲ ) 4.要反映经开区2019年4月份每天的最高气温的变化情况,宜采用………………………………( ▲ ) A .统计表 B .折线统计图 C .条形统计图 D .扇形统计图5.要使分式2x +1 有意义,x 的取值是……………………………………………………………………( ▲ )A .x ≠1B .x >1C .x ≠-1D .x >-16.不能..判定四边形ABCD 为平行四边形的条件是………………………………………………………( ▲ ) A .AB ∥CD ,AD =BC B .AB ∥CD ,∠A =∠C C .AD ∥BC ,AD =BC D .∠A =∠C ,∠B =∠D A . B . C . D .2020.5.137.检查一个门框(已知两组对边分别相等)是矩形,不.能.用的方法是………………………………( ▲ ) A .测量两条对角线是否相等 B .用重锤线检查竖门框是否与地面垂直 C .测量门框的三个角是否都是直角 D .测量两条对角线是否互相平分8.如图,在矩形ABCD 中,AB =4,BC =6,过对角线交点O 作EF ⊥AC 交AD 于点E ,交BC 于点F , 连接CE ,△DEC 的周长为……………………………………………………………………………( ▲ ) A .10 B .11 C .12 D .139.如图,在平面直角坐标系xOy 中,点A 、C 、F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形,若点C 的坐标为(3,0),则点D 的坐标为…………………………………( ▲ ) A .(1,2.5)B .(1,1+3)C .(1,3)D .(3-1,1+3)10.在平面直角坐标系xOy 中,点A (4,3),点B 为x 轴正半轴上一点,将△AOB 绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有………( ▲ ) A .5个B .4个C .3个D .2个二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题..卡上相应的位置.......) 11.约分:4ab 32a 2b = ▲ .12.若分式2x -1x 2+1的值为0,则x 的值为 ▲ .13.在一个不透明的袋子里装有白球和黄球共12个,这些球除颜色不同外其余均相同,每次从袋子中摸 出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中黄球(第8题) (第10题)OF EDC BA在y轴上,则点C的坐标是▲.17.如图,在△ABC中,点M为BC的中点,AD为△ABC的外角平分线,且AD⊥BD,若AB=6,AC=9,则MD的长为▲.18.点C是线段AB上的动点,分别以AC,BC为边向上方作正方形ACDE,正方形CBGF,连接AD,AD,BF的中点M,N,若AB=4,则MN的最小值为▲.三、解答题(本大题共10小题,共74分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分) 计算:(1)ab-a-bb-a;(2)1-a2a+2+a-2.20.(本题满分8分)先化简,再求值:1x-1+x2-3xx2-1,其中x=-2.21.(本题满分8分)如图,在□ABCD中,点E,F分别在边CB,AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H.求证:AG=CH.AB C D FEGH(第17题)(第18题)MDCBA22.(本题满分8分)由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A 、B 、C 三家快餐店,对每家快餐店随机选择1000条网络评价统 计如下:五星四星三星及三星以下合计A 412 388 x 1000B 420 390 190 1000 C4053752201000(1)求x 值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A 、B 、C 中推荐一家快 餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.23.(本题满分8分)某组织全校3000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和频数分布直方图(不完整):根据所给信息,回答下列问题(1)补全频数分布表; (2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数. 成绩分组 频数 频率 50.5~60.5 200.05 60.5~70.5▲0.1570.5~80.5 76 ▲80.5~90.5104 0.2690.5~100.5 140▲合计▲1评价条数等级 快餐店抽取部分学生成绩的频率分布表抽取部分学24.(本题满分8分)如图,在“筝型”ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是平行四边形;(2)“筝型”ABCD满足条件▲时,四边形EFGH是菱形.25.(本题满分8分)已知,如图,四边形ABCD是矩形,AD>AB.(1)请用无刻度的直尺和圆规在AD上找一点E,使得EC平分∠BED;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=3,DE=1,求△BEC的面积.26.(本题满分8分)如图,菱形ABCD中,∠B=60°,点E,F分别在AB,AD上,且BE=AF.(1)求证:△ECF为等边三角形;(2)连接AC,若AC将四边形AECF的面积分为1∶2两部分,当AB=6时,求△BEC的面积.FB EDCACABF DEGHAB CD(第25题)27.(本题满分10分)如图,正方形OABC 的顶点 B 的坐标为(2,2),D (m ,0)为x 轴上的一个动点 (m >2),以BD 为边作正方形BDEF ,点E 在第四象限. (1)试判断线段AD 与CF 的数量关系,并说明理由;(2)设正方形BDEF 的对称中心为M ,直线CM 交y 轴于点G .随着点D 的运动,点G 的位置是否会发生变化?若保持不变,请求出点G 的坐标;若发生变化,请说明理由.2020春学期八年级数学期中试卷参考答案答案仅供参考,如有其它解法,相应给分.一、选择题(本大题共10小题,每小题3分,共30分.)1.C ;2.D ;3.B ;4.B ;5.C ;6.A ;7.D ;8.A ;9.C ;10.A . 二、填空题(本大题共8小题,每小题2分,共16分.)11.2b 2a ;12.12;13.9;14.40°;15.8;16.(5,4);17.7.5;18.2. 三、解答题(本大题共10小题,共74分.) 19.(本题满分8分)解:(1)原式=a -b b -a ……………………………………………………………………………………………2分 =-1 ……………………………………………………………………………………………4分 (2)原式=1-a 2a +2+(a -2)(a +2)a +2 …………………………………………………………………………2分 =1-a 2+a 2-4a +2 …………………………………………………………………………………3分 =-3a +2…………………………………………………………………………………………4分解:1x -1+x 2-3x x 2-1=x +1 (x +1)(x -1)+x 2-3x(x +1)(x -1) ………………………………………………………………………2分 =x +1+x 2-3x(x +1)(x -1) ……………………………………………………………………………………………3分 =(x -1)2(x +1)(x -1) ………………………………………………………………………………………………4分 =x -1x +1 ………………………………………………………………………………………………………6分 当x =-2时,原式=-2-1-2+1 ………………………………………………………………………………7分 =3.……………………………………………………………………………………8分 21.(本题满分8分)证明:∵四边形ABCD 是平行四边形∴AD =BC ,AD ∥BC ,∠A =∠C ……………………………………………………………………1分 ∴∠F =∠E ……………………………………………………………………………………………2分 ∵BE =DF∴AF =EC ……………………………………………………………………………………………4分在△AFG 和△CEH 中,⎩⎪⎨⎪⎧∠F =∠EAF =AE ∠A =∠C……………………………………………………………6分∴△AFG ≌△CEH (ASA ) …………………………………………………………………………7分 ∴AG =CH ……………………………………………………………………………………………8分 22.(本题满分8分)(1)412+388=1000,x =200;………………………………………………………………………………2分 (2)推荐从A 家快餐店订外卖. ……………………………………………………………………………3分从样本看,A 家快餐店获得良好用餐体验的比例为80%, B 家快餐店获得良好用餐体验的比例为81%, C 家快餐店获得良好用餐体验的比例为78%,A 家快餐店获得良好用餐体验的比例最高, …………………………………………………………7分 由此估计,A 家快餐店获得良好用餐体验的比例最高. ……………………………………………8分 23.(本题满分8分)(1)60,0.19,0.35,400;………………………………………………………………………………4分 (2)60.5~70.5频数分布直方图小长方形高度为60; ………………………………………………6分 (3)400名学生中成绩在90.5~100.5分之间的学生比例为35%,由此估计全校3000名学生中成绩在90.5~100.5分之间的学生比例也是35%,故全校获奖学生的人数约为3000×35%=1050.…8分24.(本题满分8分)(1)证明:连接AC ,在△ABC 中,E ,F 分别为AB ,BC 的中点,∴EF ∥AC 且EF =12AC ,……2分同理GH ∥AC 且GH =12AC , ………………………………………………………………3分 ∴EF ∥GH 且EF =GH , ……………………………………………………………………4分 ∴四边形EFGH 是平行四边形;……………………………………………………………6分(2)AC =BD .………………………………………………………………………………………………8分 25.(本题满分8分)(1)以B 为圆心,BC 长为半径画弧交AD 于点E ; …………………………………………………2分 (2)由(1)可知BC =BE ,设BC =x ,则AE =x -1,………………………………………………3分在△ABE 中,∠A =90°,∴AB 2+AE 2=BE 2,……………………………………………………4分 故32+(x -1)2=x 2,解得x =5, …………………………………………………………………6分 ∴△BEC 的面积为12×5×3=7.5 …………………………………………………………………8分26.(本题满分8分)(1)连接AC ,∵四边形ABCD 是菱形,∴BA =BC =AD =DC ,又∵∠B =60°,∴△ABC 和△ADC都是等边三角形,∴∠CAD =∠ACB =∠ACD =60°,在△CBE 和△CAF 中,CB =AC ,∠B =∠CAD =60°,BE =AF ,∴△CBE ≌△CAF ,……1分 ∴CE =CF ,∠BCE =∠ACF ,∴∠ECF =60°,∴△ECF 为等边三角形……………………………………………………………………………2分 (2)由(1)可知△CBE ≌△CAF ,∴S △CBE =S △CAF ,∴S 四边形AECF =S △ABC ,………………………4分作AH ⊥BC ,在△ABH 中,∠B =60°,AB =6,∴BH =3,∴AH =33,∴S △ABC =12×6×33=93…………………………………………………………………………5分 当S △CBE :S △CAE =1:2时,S △BEC 的面积=13S △ABC =33;………………………………………7分 当S △CBE :S △CAE =2:1时,S △BEC 的面积=23S △ABC =63;………………………………………8分 综上,△BEC 的面积为33或6 327.(本题满分10分)(1)AD =CF ,……………………………………………………………………………………………1分∵四边形ABCO 和四边形BDEF 都是正方形,∴AB =BC ,BD =BF ,∠ABC =∠FBD =90°,∴∠ABD =∠FBD ,∴△ABD ≌△CBF ,∴AD =CF ;…………………………………………2分(2)点G 的位置不发生变化,…………………………………………………………………………3分作FH 垂直CB 的延长线于点H ,可证△BCD ≌△FHB ,∴CD =BH =m -2,BC =FH =2,∴F (4,-m ),………………………………………………4分 又D (m ,0),∴M (2+m 2,-m2),…………………………………………………………5分 作MN ⊥x 轴,在△CMN 中,MN =m 2,CN =m2,∴△AMN 是等腰直角三角形,……………7分 ∴△OCG 也是等腰直角三角形,∴OG =OC =2,∴G (0,2)……………………………………………………………………8分。
2020年八年级数学下期中试卷(及答案)
2020年八年级数学下期中试卷(及答案)一、选择题1.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.222a b+D.222a b-2.下列二次根式中,最简二次根式是( )A.10B.12C.12D.83.已知,如图,长方形ABCD中,AB=5cm,AD=25cm,将此长方形折叠,使点D与点B 重合,折痕为EF,则△ABE的面积为()A.35cm2B.30cm2C.60cm2D.75cm24.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,905.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A .5B .3C .5+1D .36.正方形具有而菱形不具有的性质是( ) A .四边相等 B .四角相等C .对角线互相平分D .对角线互相垂直7.如图,ABC V 中,CD AB ⊥于,D E 是AC 的中点.若6,5,AD DE ==则CD 的长等于( )A .5B .6C .8D .108.下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形. A .1个B .2个C .3个D .4个9.如图,在菱形ABCD 中,BE ⊥CD 于E ,AD =5,DE =1,则AE =( )A .4B .5C .34D .4110.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1511.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155°12.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃二、填空题13.(1)计算填空:24= ,20.8 = ,2(3)-= , 223⎛⎫- ⎪⎝⎭= (2)根据计算结果,回答:2a 一定等于a 吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:2( 3.15)π-14.如图,△ABC 中,∠ACB =90°,CD 是斜边上的高,AC =4,BC =3,则CD =______.15.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____. 16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.18.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,对角线AC ,BD 满足________,才能使四边形EFGH 是矩形.19.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是_____________。
2020春八年级下册期中考试数学试卷(有答案)
八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣4.下列约分中,正确的是()A.=x3B.=0C.D.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.68.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x时,分式有意义.10.点P(3,﹣4)关于原点对称的点的坐标是.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=.12.用科学记数法表示:0.000204=.13.反比例函数y=的图象经过点(﹣2,3),则k的值为.14.若关于x的方程有增根,m.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.18.(10分)解下列分式方程(1)=1(2)=19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在答题卡对应题目上.(注意:在试题卷上作答无效).1.下列各式中,属于分式的是()A.B.C.D.﹣【分析】根据分式的定义,可得答案.【解答】解:A、是整式,故A错误;B、是分式,故B正确;C、是整式,故C错误;D、﹣是整式,故D错误;故选:B.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意π是常数不是字母.2.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.下列计算正确的是()A.2﹣2=﹣4B.2﹣2=4C.2﹣2=D.2﹣2=﹣【分析】2﹣2表示2的平方的倒数,依据表示的意义即可求解.【解答】解:2﹣2==.故选:C.【点评】本题只需熟练掌握:负整数指数幂应把其化为正整数指数幂的倒数,进行计算即可.4.下列约分中,正确的是()A.=x3B.=0C.D.【分析】根据分式的基本性质,分别对每一项进行解答,即可得出答案.【解答】解:A、=x4,故本选项错误;B、=1,故本选项错误;C、==,故本选项正确;D、=,故本选项错误;故选:C.【点评】本题考查了约分,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.5.王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中.下面图形表示王大爷离时间x(分)与离家距离y(米)之间的关系是()A.B.C.D.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走20分钟到离家900米的公园,与朋友聊天20分钟后,用20分钟返回家中,故本选项错误;B、从家中走20分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;C、从家中走30分钟到离家900米的公园,与朋友聊天0分钟后,用20分钟返回家中,故本选项错误;D、从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中,故本选项正确.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.如果分式的值为零,则a的值为()A.±1B.2C.﹣2D.以上全不对【分析】根据分式的值为零的条件可得:|a|﹣2=0且a+2≠0,从而可求得a的值.【解答】解:由题意得:|a|﹣2=0且a+2≠0,解得:a=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,则S1+S2阴影=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.8.如图,直线y=x﹣1与x轴交于点B,与双曲线y=(x>0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A.2B.3C.4D.6【分析】由题意得:BC垂直于x轴,点A在BC的垂直平分线上,则B(2,0)、C(2,),A (4,),将A点代入直线y=x﹣1求得k值.【解答】解:由于AB=AC,BC垂直于x轴,则点A在BC的垂直平分线上,由直线y=x﹣1,可得B(2,0),A、C均在双曲线y=上,则C(2,),A(4,),将A点代入直线y=x﹣1得:k=4.故选:C.【点评】本题考查了反比例函数系数k的几何意义,这里AB=AC是解决此题的突破口,题目比较好,有一定的难度.二、填空题:(每小题3分,共24分)请把答案直接填在答题卡对应题中横线上.9.当x≠1时,分式有意义.【分析】根据分式有意义的条件:分母≠0可得:x﹣1≠0,解可得答案.【解答】解:分式有意义,则x﹣1≠0,解得:x≠1,故答案为:≠1.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【解答】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.若函数y=(a+3)x+a2﹣9是正比例函数,则a=3.【分析】由正比例函数的定义可得a2﹣9=0,a+3≠0,再解可得a的值.【解答】解:∵函数y=(a+3)x+a2﹣9是正比例函数,∴a2﹣9=0,a+3≠0,解得:a=3.故答案为:3.【点评】此题主要考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.12.用科学记数法表示:0.000204= 2.04×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示:0.000204=2.04×10﹣4.故答案为:2.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.14.若关于x的方程有增根,m3.【分析】分式方程去分母转化为整式方程,将x=5代入整式方程即可求出m的值.【解答】解:去分母得:2﹣x+m=0,将x=5代入得:2﹣5+m=0,解得:m=3.故答案为:3.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.符号“”称为二阶行列式,规定它的运算法则为:=ad﹣bc,请你根据上述规定求出下列等式中x的值.若,那么x=4.【分析】根据已知得出分式方程﹣=1,求出分式方程的解,再代入x﹣1和1﹣x进行检验即可.【解答】解:∵,∴﹣=1,方程两边都乘以x﹣1得:2+1=x﹣1,解得:x=4,检验:当x=4时,x﹣1≠0,1﹣x≠0,即x=4是分式方程的解,故答案为:4.【点评】本题考查了分式方程的应用,解此题的关键是根据材料得出分式方程,题目具有一定的代表性,是一道比较好的题目.16.如图,过x轴正半轴上的任意一点P作y轴的平行线交反比例函数y=和y=﹣的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为3.【分析】设P(a,0),由直线APB与y轴平行,得到A和B的横坐标都为a,将x=a代入反比例函数y=和y=﹣中,分别表示出A和B的纵坐标,进而由AP+BP表示出AB,三角形ABC 的面积=×AB×OP,求出即可.【解答】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=中得:y=,故A(a,);将x=a代入反比例函数y=﹣中得:y=﹣,故B(a,﹣),∴AB=AP+BP=+=,=AB•OP=××a=3.则S△ABC故答案为3.【点评】此题考查了反比例函数系数k的几何意义,以及坐标与图形性质,其中设出P的坐标,表示出AB是解本题的关键.三、解答题:本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(10分)计算:①﹣4×()﹣2+|﹣5|+(π﹣3)0②﹣.【分析】(1)根据负整数指数幂、绝对值、零指数幂可以解答本题;(2)先对原式通分然后再化简即可解答本题.【解答】解:①﹣4×()﹣2+|﹣5|+(π﹣3)0=3﹣4×4+5+1=3﹣16+5+1=﹣7;②﹣=====.【点评】本题考查实数的运算、分式的加减法、负整数指数幂、零指数幂,解题的关键是明确它们各自的计算方法.18.(10分)解下列分式方程(1)=1(2)=【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4﹣1=x﹣1,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4+x2+5x+6=x2﹣3x+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)先化简,再求值:,当a=﹣3时,求代数式的值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=﹣3时,原式==﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌分式的混合运算顺序和运算法则.20.(7分)蓬溪芝溪玉液酒厂接到生产480件芝溪玉液酒的订单,为了尽快完成任务,该厂实际每天生产的件数比原来每天多50%,提前10天完成任务.原来每天生产多少件?【分析】直接根据题意表示出原计划和实际生产的件数,进而利用提前10天完成任务得出等式求出答案.【解答】解:设原来每天生产x件,根据题意可得:=+10,解得:x=16,检验得:当x=16是原方程的根,答:原来每天生产16件.【点评】此题主要考查了分式方程的应用,根据题意利用生产的天数得出等式是解题关键.21.(8分)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?【分析】(1)根据函数图象的纵坐标,可得答案;(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,克的答案;(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;(4)根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得速度.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停留的时间为从(8分)到(12分),故小明在书店停留了4分钟.(3)一共行驶的总路程=1200+(1200﹣600)+(1500﹣600)=1200+600+900=2700米;共用了14分钟.(4)由图象可知:0~6分钟时,平均速度==200米/分,6~8分钟时,平均速度==300米/分,12~14分钟时,平均速度==450米/分,所以,12~14分钟时速度最快,不在安全限度内.【点评】本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,又利用了路程与时间的关系.22.(8分)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?【分析】(1)设出成本y(元/kg)与进货量x(kg)的函数解析式,由图象上的点的坐标利用待定系数法即可求得结论;(2)令成本y=9.6,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设成本y(元/kg)与进货量x(kg)的函数解析式为y=kx+b,由图形可知:,解得:.故y关于x的函数解析式为y=﹣0.1x+11,其中10≤x≤30.(2)令y=﹣0.1x+11=9.6,即0.1x=1.4,解得:x=14.故该商场购进这种商品的成本为9.6元/kg,则购进此商品14千克.【点评】本题考查了一次函数的图象以及用待定系数法求函数解析式,解题的关键:(1)设出解析式在图象上找出点的坐标利用待定系数法去求系数;(2)令y=9.6,得出关于x的一元一次方程.本题属于基础题,难度不大,解决该类题型的方法是利用图象得出点的坐标,结合待定系数法求出结论.23.(10分)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【分析】(1)分别令直线解析式中x=0、y=0求出相对于的y、x值,由此即可得出点A、B的坐标,再利用三角形的面积公式即可得出结论;(2)找出线段OA的中点C,连接BC,设直线BC的解析式为y=kx+b(k≠0),由点A的坐标可得出点C的坐标,结合点B、C的坐标利用待定系数法即可得出结论.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S=OA•OB=×2×3=3.△AOB(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式以及待定系数法求出函数解析式,解题的关键是:(1)求出点A、B的坐标;(2)利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,再利用待定系数法求出函数解析式是关键.24.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【分析】(1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;+S (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC进行计算;△BOC(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得,解得,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点评】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。
2020春八年级下期中数学试卷2含答案
八年级(下)期中数学试卷一、选择题(本大题共12小题,共36.0分) 1. 下列说法正确的是( )A. 任何数都有两个平方根B. 若a 2=b 2,则a =bC. √4=±2D. −8的立方根是−2 2. 下列二次根式中,能与√3合并的是( )A. √24B. √12C. √32D. √183. 数轴上点A 表示的数为-√105,点B 表示的数为√77,则A 、B 之间表示整数的点有( )A. 21个B. 20个C. 19个D. 18个 4. 不等式9-3x <x -3的解集在数轴上表示正确的是( )A.B.C. D.5. 如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是( ) A. 48 B. 60 C. 76 D. 80 6. 等式√x −1•√x +1=√x 2−1成立的条件是( ) A. x >1 B. x <−1 C. x ≥1 D. x ≤−1 7. 下列各式计算正确的是( )A. √102−82=√102−√82=10−8=2B. √(−4)×(−9)=√−4×√−9=(−2)×(−3)=6C. √14+19=√14+√19=12+13=56D. −√1916=−√2516=−458. 在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是√3和-1,则点C 所对应的实数是( ) A. 1+√3 B. 2+√3 C. 2√3−1 D. 2√3+19. 在△ABC 中,BC =8cm ,AC =5cm ,若△ABC 的周长为xcm ,则x 应满足( )A. 15<x <24B. 18<x <21C. 10<x <26D. 16<x <2610. 如图,每个小正方形的边长都为1,A 、B 、C 是小正方形各顶点,则∠ABC 的度数为( ) A. 90∘ B. 60∘ C. 45∘ D. 30∘11. 已知关于x 的不等式组的{2x −a <2b +1x−a≥b解集为3≤x <5,则b a 的值为( )A. −2B. −12C. −4D. −1412. 如图,ABCD 是一张矩形纸片,AB =3cm ,BC =4cm ,将纸片沿EF 折叠,点B 恰与点D 重合,则折痕EF 的长等于( ) A. 3.25cm B. 3.5cm C. 3.6cmD. 3.75cm二、填空题(本大题共6小题,共18.0分) 13. 已知533=148877,那么5.33等于______.14. 已知x -2=√5,则代数式(x +2)2-8(x +2)+16的值等于______.15. 设√10的整数部分为a ,小数部分为b ,则b (√10+a )的值为______.16. 已知关于x 的不等式组{5−2x >1x−a≥0只有四个整数解,则实数a 的取值范是______. 17. 已知实数a 、b 、c 在数轴上的位置如图所示,化简代数式|a |-√(a +c)2+√(c −a)2-√−b 33的结果等于______. 18. 观察下列式子:当n =2时,a =2×2=4,b =22-1=3,c =22+1=5 n =3时,a =2×3=6,b =32-1=8,c =32+1=10 n =4时,a =2×4=8,b =42-1=15,c =42+1=17…根据上述发现的规律,用含n (n ≥2的整数)的代数式表示上述特点的勾股数a =______,b =______,c =______.三、计算题(本大题共1小题,共12.0分)19. 实验中学计划从人民商场购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元. (1)求购买一块A 型小黑板、一块B 型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号的小黑板总费用不超过5240元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20. (1)已知a 、b 为实数,且√1+a +(1-b )√1−b =0,求a 2017-b 2018的值;(2)若x 满足2(x 2-2)3-16=0,求x 的值.21. 计算下列各题(1)√−0.1253+√3116+3(78−1)2-|−112|(2)(√7+√3)(√7−√3)2(3)(2√27+14√48-6√13)÷√1222. (1)解不等式组:{1−x+12≤x +2x(x −1)>(x +3)(x −3)并把解集在数轴上表示出来.(2)解不等式组:{3x −4(x −2)≥3x 2−1<2x−1323. 如图,四边形ABCD 中,AD =4,AB =2√5,BC =8,CD =10,∠BAD =90°.(1)求证:BD ⊥BC ;(2)计算四边形ABCD 的面积.24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点C 在直径DE上.已知AB =8cm ,CD =2cm (1)求⊙O 的面积;(2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF 的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】【解答】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.【分析】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8=76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S菱形BFDE=EF×BD=BF×CD,∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1. 则实数a 的取值范围是:-3<a≤-2. 故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a 的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 17.【答案】a +b -2c【解析】解:原式=|a|-|a+c|+|c-a|+b , =a-(a+c )+(a-c )+b , =a-a-c+a-c+b , =a+b-2c .故答案为:a+b-2c .根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可. 此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质. 18.【答案】2n ;n 2-1;n 2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5 n=3时,a=2×3=6,b=32-1=8,c=32+1=10 n=4时,a=2×4=8,b=42-1=15,c=42+1=17… ∴勾股数a=2n ,b=n 2-1,c=n 2+1. 故答案为:2n ,n 2-1,n 2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n ,b=n 2-1,c=n 2+1,满足勾股数. 此题主要考查了数据变化规律,得出a 与b 以及a 与c 的关系是解题关键. 19.【答案】解:(1)设一块A 型小黑板x 元,一块B 型小黑板y 元.则{5x +4y =820x−y=20,解得{y =80x=100.答:一块A 型小黑板100元,一块B 型小黑板80元.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块 则{100m +80(60−m)≤5240m ≥13×60, 解得20≤m ≤22, 又∵m 为正整数 ∴m =20,21,22则相应的60-m =40,39,38 ∴共有三种购买方案,分别是方案一:购买A 型小黑板20块,购买B 型小黑板40块; 方案二:购买A 型小黑板21块,购买B 型小黑板39块; 方案三:购买A 型小黑板22块,购买B 型小黑板38块.方案一费用为100×20+80×40=5200元; 方案二费用为100×21+80×39=5220元; 方案三费用为100×22+80×38=5240元. ∴方案一的总费用最低,即购买A 型小黑板20块,购买B 型小黑板40块总费用最低,为5200元 【解析】(1)设购买一块A 型小黑板需要x 元,一块B 型为y 元,根据等量关系:购买一块A 型小黑板比买一块B 型小黑板多用20元;购买5块A 型小黑板和4块B 型小黑板共需820元;可列方程组求解.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块,根据需从公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,列出不等式组求解.20.【答案】解:(1)∵a ,b 为实数,且√1+a +(1-b )√1−b =0,∴1+a =0,1-b =0, 解得a =-1,b =1, ∴a 2017-b 2018=(-1)2017-12018 =(-1)-1 =-2;(2)2(x 2-2)3-16=0, 2(x 2-2)3=16, (x 2-2)3=8, x 2-2=2, x 2=4, x =±2. 【解析】(1)根据+(1-b )=0和二次根式有意义的条件,可以求得a 、b 的值,从而可以求得所求式子的值;(2)根据立方根的定义求出x 2-2=2,再根据平方根的定义即可解答本题.本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)√−0.1253+√3116+3(78−1)2-|−112|=-0.5+74-12-32=-34;(2)(√7+√3)(√7−√3)2 =(√7+√3)×(√7-√3)×(√7-√3) =4√7-4√3;(3)(2√27+14√48-6√13)÷√12=(6√3+√3-2√3)÷2√3 =52. 【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案; (2)直接利用平方差公式计算得出答案; (3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1){1−x+12≤x +2①x(x −1)>(x +3)(x −3)②, 解不等式①得x ≥-1, 解不等式②得x <9,故不等式的解集为-1≤x <9, 把解集在数轴上表示出来为:(2){3x −4(x −2)≥3①x 2−1<2x−13②, 解不等式①得x ≤5, 解不等式②得x >-4,故不等式的解集为-4<x ≤5. 【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可; (2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD =4,AB =2√5,∠BAD =90°, ∴BD =√AB 2+AD 2=6.又BC =8,CD =10, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =12×4×2√5+12×6×8 =4√5+24. 【解析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ; (2)根据图形得到四边形ABCD 的面积=2个直角三角形的面积和即可求解.此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA ,如图1所示∵C 为AB 的中点,AB =8cm , ∴AC =4cm 又∵CD =2cm设⊙O 的半径为r ,则(r -2)2+42=r 2 解得:r =5∴S =πr 2=π×25=25π(2)OC =OD -CD =5-2=3 EC =EO +OC =5+3=8∴EA =√AC 2+EC 2=√42+82=4√5∴EF =EA2=4√52=2√5∴OF =√EO 2−EF 2=√25−20=√5 【解析】(1)连接OA ,根据AB=8cm ,CD=2cm ,C 为AB 的中点,设半径为r ,由勾股定理列式即可求出r,进而求出面积.(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF⊥AE,FE=FA,利用勾股定理求出OF的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.11。
2020春八年级 下册期中数学试卷及答案 (2)
八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>25.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>28.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是度.12.“x与3的和不小于x的2倍”,用不等式表示为.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.20.解不等式组并把解集表示在数轴上..21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CD B. AD=BD C. AB=AC D. BD=AC考点:线段垂直平分线的性质.分析:根据线段的垂直平分线的性质进行判断即可.解答:解:∵DE是线段AB的垂直平分线,∴DB=DA,∴B正确,故选:B.点评:本题考查的是线段的垂直平分线的性质等几何知识.掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A. 7cm B. 9cm C. 12cm或者9cm D. 12cm考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.故选D.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.若x>y,则下列式子中错误的是()A. x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y考点:不等式的性质.分析:根据不等式的基本性质,进行判断即可.解答:解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A. x<4 B. x<2 C. 2<x<4 D. x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,△ABC与△ACD都是等边三角形,△ACD是由△ABC()A.绕点A顺时针旋转60°得到的B.绕点A顺时针旋转120°得到的C.绕点C顺时针旋转60°得到的D.绕点C顺时针旋转120°得到的考点:旋转的性质;等边三角形的性质.分析:根据旋转的定义和等边三角形的性质即可解答.解答:解:图中△ACD可以看作由△ABC绕A点顺时针旋转60°得到.故选A.点评:本题考查了旋转的性质和等边三角形的性质,对于旋转关键要确定旋转角,确定旋转角时一定要首先找到对应点.6.下列基本图形经过平移,旋转成轴对称变换后不能得到下图的是()A. + B. +++ C.D.考点:几何变换的类型.分析:根据平移、旋转和轴对称的性质即可得出正确结果.解答:解:A、经过平移可得到上图,故此选项错误;B、经过平移可得到上图,故此选项错误;C、经过平移、旋转或轴对称变换后,都不能得到上图,故此选项正确;D、经过旋转可得到上图,故此选项错误.故选:C.点评:本题考查平移、旋转和轴对称的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.轴对称的性质:①翻折变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②对称轴是任何一对对应点所连线段的垂直平分线.7.函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的不等式kx+b>0的解集为()A. x>0 B. x<0 C. x<2 D. x>2考点:一次函数与一元一次不等式.分析:从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.解答:解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值小于0,即关于x的不等式kx+b>0的解集是x<2.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,注意几个关键点(交点、原点等),做到数形结合.8.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A.至多6人B.至少6人C.至多5人D.至少5人考点:一元一次不等式的应用.专题:应用题.分析:本题可设参加合影的人数为x,根据平均每人分摊的钱不足0.5元,列出不等式,解出x即可.解答:解:设参加合影的人数为x,则有:0.35x+0.8<0.5x﹣0.15x<﹣0.8x>5所以至少6人.故应选B.点评:本题考查的是不等式的运用,解此类题目时常常是先设出未知数,再根据题意列出不等式、求解.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于()A. 2cm B. 3cm C. 4cm D. 5cm考点:角平分线的性质.专题:压轴题.分析:要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.解答:解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故选B.点评:此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.10.已知关于x的不等式组的解集为3≤x<5,则a,b的值为()A. a=﹣3,b=6 B. a=6,b=﹣3 C. a=1,b=2 D. a=3,b=6考点:解一元一次不等式组.分析:先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.解答:解:不等式组,由①得,x≥a+b,由②得,x<,∴,解得,故选A.点评:本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.二、填空题(每题3分,共24分)11.如果等腰三角形的一个底角是50°,那么它的顶角是80 度.考点:等腰三角形的性质.分析:由已知等腰三角形的一个底角是,50°,利用等腰三角形的性质得另一个底角也是50°,结合三角形内角和定理可求顶角的度数.解答:解:∵三角形是等腰三角形,∴两个底角相等,∵等腰三角形的一个底角是50°,∴另一个底角也是50°,∴顶角的度数为180°﹣50°﹣50°=80°.故答案为:80.点评:本题考查了等腰三角形的性质及三角形内角和定理;借助三角形的内角定理求解有关角的度数问题是一种很重要的方法,要熟练掌握.12.“x与3的和不小于x的2倍”,用不等式表示为x+3≥2x.考点:由实际问题抽象出一元一次不等式.分析:首先表示出“x与3的和”为x+3,再表示“不小于x的2倍”为x+3≥2x即可.解答:解:由题意得:x+3≥2x,故答案为:x+3≥2x.点评:此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.13.点A(﹣5,y1)、B(﹣2,y2)都在直线y=﹣2x上,则y1与y2的关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:根据一次函数的比例系数的符号以及相应自变量的大小可得所求结果.解答:解:∵比例系数为﹣2<0,﹣5<﹣2,∴y1>y2.故答案为y1>y2.点评:考查一次函数图象上点的坐标的特点;用到的知识点为:一次函数的比例系数小于0,y随x的增大而减小.14.如图,在等边三角形ABC中,D、E、F分别是边BC、AC、AB的中点,图中的四个小等边三角形可以看成是由△FBD平移得到的三角形是△AFE和△EDC .考点:平移的性质;等边三角形的性质.分析:根据三角形的中位线平行于第三边并且等于第三边的一半判断出△ABC被分成的四个小三角形是全等三角形,然后根据平移的性质解答.解答:解:∵D、E、F分别是边BC、AC、AB的中点,∴图中四个小等边三角形是全等三角形,∴可以看成是由△FBD平移得到的三角形是△AFE和△EDC.故答案为:△AFE和△EDC.点评:本题考查了平移的性质,等边三角形的性质,熟记性质并准确识图是解题的关键,难点在于先确定出四个等边三角形是全等三角形.15.如图,已知△ABC中,∠ABC=45°,AC=3,F是高AD和BE的交点,则线段BF的长度为 3 .考点:全等三角形的判定与性质.分析:求出∠BDF=∠ADC,∠DBF=∠DAC,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,即可得出答案.解答:解:∵AD⊥BC,BE⊥AC,∴∠BEA=∠ADC=∠ADB=90°,∴∠DAB=90°﹣45°=45°=∠ABD,∠C+∠CBE=90°,∠C+∠CAD=90°,∴BD=AD,∠DBF=∠CAD,∵在△BFD和△ACD中,∴△BFD≌△ACD(ASA),∴BF=AC=3,故答案为:3.点评:本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等.16.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13 道.考点:一元一次不等式的应用.专题:应用题.分析:根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.解答:解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13点评:解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.17.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= 70 °.考点:旋转的性质.专题:探究型.分析:直接根据图形旋转的性质进行解答即可.解答:解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.点评:本题考查的是旋转的性质,熟知图形旋转前后对应边、对应角均相等的性质是解答此题的关键.18.若关于x,y的方程组的解满足x+y<2,则a的取值范围为a>﹣4 .考点:解一元一次不等式;二元一次方程组的解.分析:把方程组的两个方程相加,即可求得x+y,则可以得到一个关于a的不等式,解不等式即可求得a的范围.解答:解:,①+②得:4(x+y)=4﹣a,则x+y=(4﹣a),则(4﹣a)<2,解得:a>﹣4.故答案是:a>﹣4.点评:本题是一个方程组与不等式的综合题目.转化为关于a的不等式是本题的一个难点.三、解答题(共46分)19.解不等式并把解集表示在数轴上.<x+5.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,移项,合并同类项,系数化成1即可.解答:解:<x+5,2+6x<2x+10,6x﹣2x<10﹣2,4x<8,x<2,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能根据不等式的基本性质求出不等式的解集是解此题的关键,难度适中.20.解不等式组并把解集表示在数轴上..考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:,解①得:x>1,解②得:x≥2.,则不等式组的解集是:x≥2.点评:本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC 沿顺时针旋转90°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:根据平移的性质:对应点所连的线段平行且相等,可得平移的图形;根据对应点与旋转中心的距离相等且旋转角相等,可得旋转的图形.解答:解:如图:.点评:本题考查了作图,利用了平移的性质作图,旋转的性质作图.22.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.考点:全等三角形的判定;平行线的性质.专题:证明题.分析:根据平行线的性质可知由∠B=∠DEF.BE=CF,∠ACB=∠F,根据ASA定理可知△ABC≌△DEF.解答:证明:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴,∴△ABC≌△DEF(ASA).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:A种产品 B种产品成本(万元∕件) 2 5利润(万元∕件) 1 2(1)若工厂投入资金不多于44万元,且获利多于14万元,问工厂会有哪几种生产方案?请说明理由.(2)在(1)的条件下,哪种生产方案获利最大?并求出最大利润.考点:一元一次不等式组的应用.分析:(1)根据计划投入资金不多于44万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数;(2)得出利润y与A产品数量x的函数关系式,根据增减性可得,B产品生产越多,获利越大,因而B 取最大值时,获利最大,据此即可求解.解答:解:(1)设应生产A种产品x件,则生产B种产品有(10﹣x)件,由题意有:解得:2≤x<6;所以可以采用的方案有:①A种产品2件,B种产品8件;②A种产品3件,B种产品7件;③A种产品4件,B种产品6件;④A种产品5件,B种产品5件;共4种方案;(2)设总利润为y万元,生产A种产品x件,则生产B种产品(10﹣x)件,则利润y=x+2(10﹣x)=﹣x+20,则y随x的增大而减小,即可得,A产品生产越少,获利越大,所以当A种产品2件,B种产品8件;时可获得最大利润,其最大利润为2×1+8×2=18万.点评:本题考查一元一次不等式组的实际运用,关键从表格种获得成本价和利润,然后根据利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.24.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE 全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.。
2020春八年级下期中数学试卷17含答案
八年级(下)期中数学试卷一、选择题(每题2分,共16分)1.二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥32.下列二次根式中属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.﹣=B.=2C.﹣=D.=2﹣4.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+5.下列各组数据中,能构成直角三角形的是()A.,,B.6,7,8C.2,3,4D.8,15,176.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm7.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1B.2C.3D.48.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=10,则EF的长为()A.1B.2C.3D.5二、填空题〔每题2分,共16分)9.(3+)(3﹣)=.10.如果最简二次根式与是同类二次根式,那么a=.11.如果两个最简二次根式与能够合并,那么a的值为.12.已知实数x,y满足+x2+4y2=4xy,则(x﹣y)2017的值为.13.一个直角三角形的两边长为3和5,则第三边为.14.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是.15.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=.16.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、(第17每小题16分、18题6分)17.求下列各式的值(1)4+﹣(2)(2+)(2)(3)÷×(4)+﹣(π﹣)0﹣|1﹣|+()﹣118.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.如果梯子的顶端A沿墙下滑0.4米(即AC =0.4米),则梯脚B将外移(即BD长)多少米?四、(第19题6分、20题8分)19.已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.20.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.五、(第21题8分、22题7分)21.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:①;②等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:(3).22.我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.六、(第23题7分)23.已知=,且x为奇数,求(1+x)•的值.七、(24题10分)24.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.2.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、是最简二次根式,此选项正确;B、=,此选项错误;C、=,此选项错误;D、=|x|,此选项错误;故选:A.【点评】本题主要考查最简二次根式,掌握(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式是解题的关键.3.下列运算正确的是()A.﹣=B.=2C.﹣=D.=2﹣【分析】根据二次根式的加减法对各选项进行逐一分析即可.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选:C.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.4.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选:A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.5.下列各组数据中,能构成直角三角形的是()A.,,B.6,7,8C.2,3,4D.8,15,17【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故选项错误;B、62+72≠82,不能构成直角三角形,故选项错误;C、22+32≠42,不能构成直角三角形,故选项错误;D、82+152=172,能构成直角三角形,故选项正确.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.7.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1B.2C.3D.4【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=10,则EF的长为()A.1B.2C.3D.5【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【解答】解:∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE﹣DF=2,故选:B.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题〔每题2分,共16分)9.(3+)(3﹣)=7.【分析】利用平方差公式计算.【解答】解:原式=32﹣()2=9﹣2=7.故答案为7.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.如果最简二次根式与是同类二次根式,那么a=1.【分析】根据同类二次根式的定义建立关于a的方程,求出a的值.【解答】解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.【点评】本题考查了同类二次根式,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.11.如果两个最简二次根式与能够合并,那么a的值为5.【分析】根据二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得3a﹣8=17﹣2a,再解即可.【解答】解:由题意得:3a﹣8=17﹣2a,解得:a=5,故答案为:5.【点评】此题主要考查了同类二次根式,关键是掌握同类二次根式定义.12.已知实数x,y满足+x2+4y2=4xy,则(x﹣y)2017的值为1.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算.【解答】解:∵+x2+4y2=4xy,∴+x2﹣4xy+4y2=0,即+(x﹣2y)2=0,则,解得:,∴(x﹣y)2017=(2﹣1)2017=1,故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.一个直角三角形的两边长为3和5,则第三边为4或.【分析】题目中告诉的直角三角形的两边可能是两直角边也可能是一条直角边和斜边,因此解决本题时需要分类讨论.【解答】解:当3和5是两直角边时,第三边为:=,当3和5分别是一条直角边和斜边时,第三边为:=4,故答案为4或.【点评】本题考查了勾股定理的应用,但解决本题的关键是根据两种不同情况分类讨论,学生们在解题时很容易忽略掉另一种情况.14.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为16,则AC与BD的和是20.【分析】由平行四边形的性质和已知条件易求DO+OC的值,再由AC=2OC,BD=2DO,即可求出AC 与BD的和.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为16,∴OD+OC=16﹣6=10,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=20,故答案为20.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.15.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=3cm.【分析】利用平行四边形的对边相等且平行以及平行线的基本性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.16.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为1.【分析】首先证明△AGF≌△ACF,则AG=AC=4,GF=CF,证明EF是△BCG的中位线,利用三角形的中位线定理即可求解.【解答】解:在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB﹣AG=6﹣4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案是:1.【点评】本题考查了全等三角形的判定以及三角形的中位线定理,正确证明GF=CF是关键.三、(第17每小题16分、18题6分)17.求下列各式的值(1)4+﹣(2)(2+)(2)(3)÷×(4)+﹣(π﹣)0﹣|1﹣|+()﹣1【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用平方差公式计算;(3)利用二次根式的乘除法则运算;(4)先利用零指数幂和负整数指数幂的意义计算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:(1)原式=4+3﹣2=5;(2)原式=12﹣6=6;(3)原式==;(4)原式=3+﹣1+1﹣+2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.如果梯子的顶端A沿墙下滑0.4米(即AC =0.4米),则梯脚B将外移(即BD长)多少米?【分析】直接利用勾股定理得出AE,DE的长,再利用BD=DE﹣BE求出答案.【解答】解:由题意得:AB=2.5米,BE=0.7米,∵在Rt△ABE中∠AEB=90°,AE2=AB2﹣BE2,∴AE==2.4(m);由题意得:EC=2.4﹣0.4=2(米),∵在Rt△CDE中∠CED=90°,DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=DE﹣BE=1.5﹣0.7=0.8(米),答:梯脚B将外移(即BD长)0.8米.【点评】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.四、(第19题6分、20题8分)19.已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.【分析】(1)求出x与y的和与积,代入计算即可;(2)首先通分,再运用完全平方公式进行计算即可.【解答】解:∵x=﹣2,y=+2,∴x+y=2,xy=3﹣4=﹣1,(1)原式=xy(x+y)=2×(﹣1)=;(2)原式====﹣14.【点评】本题考查了二次根式的化简与求值以及完全平方公式的运用;求出x、y的和与积是解决问题的关键.20.如图,已知ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.【分析】由四边形ABCD是平行四边形,AE平分∠BAD,CF平分∠BCD,易证得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=DF.∵AD=BC,∴AF=EC.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.五、(第21题8分、22题7分)21.阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:①;②等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:(3).【分析】(1)直接找出有理化因式,进而分母有理化得出答案;(2)利用已知分别化简各二次根式,进而求出答案;(3)利用已知分别化简各二次根式,进而求出答案.【解答】解:(1)==+;(2)=﹣1+﹣+﹣+…+﹣=﹣1;(3)=﹣1+﹣+﹣+…+﹣=﹣1.【点评】此题主要考查了分母有理化,正确找出有理化因式是解题关键.22.我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD 的面积就是所求的面积.【解答】解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积=24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用,关键是作出辅助线得到直角三角形.六、(第23题7分)23.已知=,且x为奇数,求(1+x)•的值.【分析】先根据二次根式的乘除法则求出x的值,再把原式进行化简,把x的值代入进行计算即可.【解答】解:∵=,∴,解得6≤x<9.又∵x是奇数,∴x=7.∴(1+x)•=(1+x)=(1+x)∴当x=7时,原式=(1+7)=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.七、(24题10分)24.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.【分析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE BC,∵延长BC至点F,使CF=BC,∴DE=FC;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【点评】此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.。
广西崇左市大新县2020年春季学期八年级数学期中测试卷 答案
26.(本题满分 10 分)某商场计划购进一批书包,经市场调查发现,当某种进货价格为 30 元 的书包以 40 元的价格出售时,平均每月售出 600 个,并且书包的售价每提高 1 元.每月 销售量就减少 10 个.
(1)当售价定为 42 元时,每月可售出多少个?
(2)若书包的月销售量为 300 个,则每个书包的定价为多少元?
A. x 32 20
B. x 32 2
C. x 32 2
D. x+32 20
6.已知关于 x 的方程 a 1 x2 2x 1 0有实数根,则 a 的取值范是
A.a 2
B.a 2
C.a 2且a 1
7.已一个直角三角形的两边长分别 3 和 4,则第三边长是
A.5
B. 7
C.25
八年级 数学 第 1 页 共 4 页
k=2 或 k=4 当 k=2 时,2k2+12k+2019=2051 当 k=4 时,2k2+12k+2019=2099
……………………5 分 ……………………6 分 ……………………7 分
24. 解:(1)梯子距离地面的高度 AO= AB2-OB2= 252 72 =24(米).
……………………2 分 答:这个梯子的顶端距地面有 24 米高.……………………3 分
2
1 2
18 2
8
20.(本题共 2 小题,每小题 4 分,满分 8 分)解下列方程:
1 x2 9 4x 3
23x2 x 1
21.(本题满分 7 分)已知: a 2 1,b 2 1
求:(1)a-b 的值;
(2)ab 的值;
(3) a b 的值. ba
22.(本题满分 8 分)如图,在 4x4 的正方形网格中,每个小正方形的边长都为 1.
2020春八年级下册期中质量数学试卷有答案
第二学期期中考试八年级数学科试卷考试时间:100分钟 满分:120分一、选择题:下列各题的四个备选答案中,只有一个答案是正确的,请把你认为正确的答案填在相应的括号内.(每小题3分,共42分)1. 4的值是( )A 、 2B 、 2C 、 ±2D 、 ±2 2.()23的值是( )A 、 3B 、 3C 、±3D 、 9 3. 下列二次根式中,属于最简二次根式的是( )A 、4a 4+B 、48C 、14D 、ba 4.b a +与b -a 互为倒数,则( )A 、a ﹦b -1B 、a +b ﹦1C 、 a ﹦b +1D 、a +b ﹦-1 5.若直角三角形的两直角边长分别为5 cm ,12 cm ,则这个直角三角形的斜边长是( ) A 、 13 cm B 、 13 cm C 、 12 cm D 、 169 cm 6.下列长度的三条线段可以组成直角三角形的是( )A 、3,4,2B 、12,5,6C 、3,3,4D 、3,4,5 7. 三角形的三边长分别为6,8,10,则它的最长边上的高为( ) A 、4.8 B 、 8 C 、6 D 、2.4 8.下列条件中,能判定四边形是平行四边形的是( )A 、一组对边平行B 、对角线互相平分C 、一组对边相等D 、对角线互相垂直9.如图,已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形ABCD 的面积为( ) A 、1 B 、 2 C 、3 D 、4第9题图 第10题图 10.如图所示,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,如果EF =2,那么菱形ABCD 周长是( )A 、4B 、 8C 、12D 、1611.若直角三角形的两条直角边的长分别是5和12,则斜边上的中线是( ) A 、13 B 、6 C 、6.5 D 、2.5班别_________________姓名__________________座号______________________密 封 线 内 不 要 答 题A B CD O A B CD E F12.如图所示,在矩形ABCD 的两条对角线AC ,BD 相交于点O ,∠AOB =60°, AB =2,则矩形的对角线AC 的长是( )A 、2B 、32C 、4D 、34第12题图 第13题图13.如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F ,那么∠AFC 的度数为( )A 、112.5°B 、 125°C 、135°D 、150°14.已知x <1,则1x 2-x 2+化简的结果是( )A 、x -1B 、x +1C 、-x -1D 、 1-x 二、填空题(每小题4分,共16分)15.若式子5x +在实数范围内有意义,则x 的取值范围是 . 16.若65-x =,则x = .17.如图,在菱形ABCD 中,AC =8,BD =6,则菱形ABCD 的面积是 .第17题图 第18题图18.如图所示,矩形ABCD 的对角线AC ﹦10,BC ﹦8,则图中五个小矩形的周长和是 三、解答题:(62分) 19.计算(每小题4分,共16分)(1)649⨯ (2) 218÷(3)()223+ (4)483316122+-20.(8分)计算:100991431321211++++++++Λ.21.(8分)如图,四边形ABCD 中,AB =3,BC =4,CD =12,DA =13,且 ∠ABC =900,求四边形ABCD 的面积。
2020学年第一学期八年级期中检测 数学答案
2020学年第一学期八年级期中检测数学参考答案一、选择题:本大题有10个小题,每小题3分,共30分. 题号 1 2 3 4 5 6 7 8 9 10 答案DABDBBADCB二、填空题:本题有6个小题,每小题4分,共24分. 11.如果a =0,则ab =0;12.91<<x ;13.140;14.4或5;15.9; 16.3.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分6分)AD ;AB ;两直线平行,同位角相等;AB ;DE ;SAS 18.(本题满分8分)证明:(1)...4分(2)∠B , ∠BAD , ∠EDC , ∠C....4分19.(本题满分8分)证明:(1)...5分(2)∵△ABC ≌△DCB ∴∠OBC =∠OCB =30°∴∠AOB =∠OBC +∠OCB =30°+30°=60° ...3分20.(本题满分10分)解:(1)作图略. ...4分 (2)由中垂线性质可得,DA =DB...2分 ∵∠C =RT ∠∴CD 2+BC 2=BD 2...2分设AD =x ,则BD =x ,CD =x -8∴2226)-8(x x =+ 解得 x =425 ∴AD =425...2分21.(本题满分10分)解:(1)∵△ABF ≌△CDE ∴∠B =∠D =30° ...2分∵∠DCF =40°∴∠EFC =∠D +∠DCF =30°+40°=70° ...2分 (2)∵△ABF ≌△DCE ∴DE =BF ...2分 ∴DE -EF =BF -EF即 BE =DF...1分 ∵BD =10,EF =2∴BE =DF =4 ...1分∴BF =BE +EF =4+2=6...2分22.(本题满分12分)解:(1) 25°;115°;小.... 3分,每空1分 (2)当DC =2时,△ABD ≌△DCE...1分...4分(3)110°或80°...4分23.(本题满分12分)证明:(1)① ∵BO 平分∠ABC ∴∠ABO =∠OBC ∵EF ∥BC ∴∠EOB =∠OBC∴∠EBO =∠EOB ∴OE =BE...3分 ②同理可得OF =CF...1分∴C △AEF =AE +EO +FO +AF=AE +EB +AF +FC =AB +AC ...1分∵AB +AC =C △ABC -BC =25-9=16∴C△AEF=16 ...1分(2)过点P作PE⊥AB,交BA的延长线于点E,过点P作PG⊥AC,交AC于点G,过点P作PF⊥BD,交BD于点F∵BP平分∠ABC,PE⊥AB,PF⊥BC∴PE=PF ...1分同理PG=PF ∴PE=PG ..1分又∵∠PEA=∠PGA=90°,PA=PA∴RT△PEA≌RT△PGA(HL) ...2分∴∠PAE=∠PAC ...1分∵∠BAC+∠CAP+∠PAE=180°∴∠BAC+2∠PAC=180°...1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年春期中考试八年级数学试题
(满分120分,考试时间:120分钟)
一、选择题(每题3分,共30分) 1、如果二次根式有意义,那么x 的取值范围是( ) A .x ≥3 B .x ≥0 C .x >3 D .x ≠3
2、如图,一场暴雨过后,垂直于地面的一棵树在距地面2 m 处折断,树尖B 恰好碰到地面,经测量AB =4 m ,则树高为() A .25m B .23m C .(23+2) m D .(25+2) m
3、下列条件中能判定四边形ABCD 是平行四边形的是( ) A .∠A =∠B ,∠C =∠D B .AB =AD ,CB =CD C .AB =CD ,AD =BC D .AB ∥CD ,AD =BC
4、在式子
,
,
,
,
(x ≤0)中,一定是二次根式的有( )
A .1个
B .2个
C .3个
D .4个
5、如图,在△ABC 中,∠ACB =90°,AC =8,AB =10,CD ⊥AB 于D ,则CD 的长是( ) A .6
B .
C .
D .
6、如图,在Rt △ABC 中,∠ACB =90°,点E ,点F 分别是AC ,BC 的中点,D 是斜边AB 上一点,则添加下列条件可以使四边形DECF 成为矩形的是( ) A .AD =BD B .∠ACD =∠BCD C .CD ⊥AB D .CD =AC
7、我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为() A .(3,1) B .(2,1) C .(1,3) D.(2,3)
8、下列二次根式的运算:
①6÷(3+2)=2+3;②18−8=2;③1239)
33(2
=+=+
;④2(2)-=−2 .
其中运算正确的有() A .1个 B .2个 C .3个 D .4个
9、有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF (如图①);再沿过
点D 的折痕将角A 翻折,使得点A 落在EF 的H 上(如图②),折痕交AE 于点G ,则EG 的长度为()
A .8−43
B .4−23
C .43−6
D .23−3
10、如图,在矩形ABCD 中,∠BAD 的平分线交BC 、BD 分别于点E 、H ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE=CD ;②∠DGF=135°;
③∠ABG+∠ADG=180°;④若AD AB =3
2
,则2S △BDG =13S △DGF .⑤222GH GF AH =+,其中
所有正确的结论个数是( )
A. 4
B. 3
C. 2
D. 1
.
二、填空题(每题3分,共18分) 11、已知
是正整数,则满足条件的最小整数n 为 .
12、直角三角形中,两条边的边长分别为6和8,则斜边上的中线长是 . 13、命题“平行四边形的对角线互相平分”的逆命题是 . 14、已知﹣1<a <0,化简
得 .
15、如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OD ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=5,则线段BC 的长为 .
16、已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线BC 分别交X
轴、Y 轴于B 、C (0,32
3
)两点,四边形ABCD 为菱形.∠D =60°
,如图,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB=60°,点E 在线段AP 上,点F 在线段BP 上,且BF=AE ,连接AF 、EF ,若∠AFE=30°,则AF 2+EF 2的值是 .
第(7)题 第(10)题 第(9)题 H
三、解答题(17~20每题8分,21~22每题9分,23题10分,24题12分,共72分)
17、(8分)计算:(1
)320
2
×(﹣
1
48
3
)÷
2
2
3
(2)3﹣3
1
3
﹣8+
1
12
2
+
1
50
5
.
18、(8分)如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角
的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.
19、(8分)如图,▱ABCD中,E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于
点H,求证:四边形EGFH是平行四边形.
20、(8分)已知a=6+2,b=6-2,求下列代数式的值:
(1)a2b+b2a;(2)a2-ab+b2.
21、(9分)小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=190米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:
(1)楼高多少米?(用准确值表示)
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:2≈1.41,3≈1.73)22、(9分)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,
BF.
(1)求证:四边形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.
23、(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
(3)在(2)的条件下,若AB=8,AC=6,求BF的长。
24、(12分)如图1,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,OA=8,∠OCA=30°,点P是射线CA上的动点,点Q是x轴上的动点,CP=3OQ,分别以AQ
和AP为边作平行四边形APEQ,设Q点的坐标是Q(t,0).
(1)①求矩形OABC的对角线AC的长;
②若以AC为对角线作正方形AMCN,其中点M在第一象限,试求M点坐标;(2)如图2,当点Q在线段OA上,且点E恰好在y轴上时,求t的值;
(3)在点P,Q的运动过程中,是否存在点Q,使▱APEQ是菱形?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.。