最小二乘自适应滤波(Least-Squares Adaptive Filters)

第六章最小二乘自适应滤波(Least-Squares Adaptive

Filters)

MMVCLAB

Motivation

?LMS失调较大;.

?非平稳时存在较大的跟踪误差,因此要求信号平稳或在较长的时间内具有平稳性

--------》不要用误差的样本值代替误差的统计均值

一种解决途径:以时间均值代替统计均值

MMVCLAB

6.1最小二乘法(Method of Least-Squares)

MMVCLAB

1

1

==n n n n

1

1

∑==n n n n

MMVCLAB

y

y y y n n n n n n n n n n n n J J n e n y n y ~min min ~222

2

1

2

1

21

)

()(~

)(εεεε?=?+=+=∑∑∑======

MMVCLAB

三正则方程(Normal Equation)

∑?=??=?=10

)

()()(~)()(N k k k n x h n y n y n y n e 1

,...,1,0,0)()(21?==?∑==N k n e k n x n n n n 1

,...,1,0,)()()()(21

21

1

?=?=??∑∑∑====?=N k n y k n x m n x k n x h n n n n n n n n N m m

1

,...,1,0),(),(1

?=?=Φ∑?=N k k z k m h N m m

Normal Equation

z

ΦH z ΦH 1

?=?=LS

MMVCLAB

1

,...,1,0,)()()(1

,...,1,0,,)()(),(21

21

?=?=

??=??=Φ∑∑====N k n y k n x k z N k m m n x k n x k m n n n n n n n n T

N

N N z z z k m )]

1(),...,1(),0([)],([+??=Φ=×z Φ

min

)]()([()()(1

1

=?==∑∑==n n n n n y n y n e J H

6.2标准RLS自适应滤波器(Standard RLS Adaptive Filters)

MMVCLAB

k k ∑=)

1(?n x +?N n x 1

1

==n n n n

()()()()() ==

H x x H

y i n i i n

y

i e?

i

=

)(

)(~

)(i

y

1[n

n

n?

(

)

(

)1

(

)]

)()1()(y n n n x z z +?=λ)]

()1()(1[n n n x P x ?+λ

min y

)

()1()(n n n x P k ?=λ

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程 作者:阿Q在江湖 先从一般最小二乘法开始说起 已知x和y的一系列数据,求解参数theta的估计。用矩阵的形式来表达更方便一些: 其中k代表有k组观测到的数据, 表示第i组数据的输入观测量,yi表示第i组数据的输出观测量。令: ,则最小二乘的解很简单, 等价于即参数解为:如果数据是在线的不断的过来,不停的采用最小二乘的解法来解是相当消耗资源与内存的,所

以要有一种递推的形式来保证对的在线更新。 进一步推导出递推最小二乘法(RLS) 我们的目的是从一般最小二乘法的解 推导出 的递推形式。一定要理解这里的下标k代表的意思,是说在有k组数据情况下的预测,所以k比k-1多了一组数据,所以可以用这多来的一组数据来对原本的估计进行修正,这是一个很直观的理解。下面是推导过程: 先看一般最小二乘法的解 下面分别对 和 这两部分进行推导变换,令

得到下面公式(1) 下面来变换得到公式(2) 下面再来,根据一般最小二乘法的解,我们知道下式成立,得到公式(3)(注:后续公式推导用到) 好了,有了上面最主要的三步推导,下面就简单了,将上面推导的结果依次代入公式即可:

至此,终于变成 的形式了。 通过以上推导,我们来总结一下上面RLS方程: 注:以上公式7中,左边其实是根据公式1,右边I为单位矩阵

公式(5)和(7)中,有些文献资料是用右边的方程描述,实际上是等效的,只需稍微变换即可。例如(5)式右边表达式是将公式(1)代入计算的。为简化描述,我们下面还是只讨论左边表达式为例。 上面第7个公式要计算矩阵的逆,求逆过程还是比较复杂,需要用矩阵引逆定理进一步简化。 矩阵引逆定理: 最终RLS的方程解为:

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

递推最小二乘法算法

题目: (递推最小二乘法) 考虑如下系统: )()4(5.0)3()2(7.0)1(5.1)(k k u k u k y k y k y ξ+-+-=-+-- 式中,)(k ξ为方差为0.1的白噪声。 取初值I P 610)0(=、00=∧ )(θ。选择方差为1的白噪声作为输入信号)(k u ,采用PLS 法进行参数估计。 Matlab 代码如下: clear all close all L=400; %仿真长度 uk=zeros(4,1); %输入初值:uk(i)表示u(k-i) yk=zeros(2,1); %输出初值 u=randn(L,1); %输入采用白噪声序列 xi=sqrt(0.1)*randn(L,1); %方差为0.1的白噪声序列 theta=[-1.5;0.7;1.0;0.5]; %对象参数真值 thetae_1=zeros(4,1); %()θ初值 P=10^6*eye(4); %题目要求的初值 for k=1:L phi=[-yk;uk(3:4)]; %400×4矩阵phi 第k 行对应的y(k-1),y(k-2),u(k-3), u(k-4) y(k)=phi'*theta+xi(k); %采集输出数据 %递推最小二乘法的递推公式 K=P*phi/(1+phi'*P*phi); thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1); P=(eye(4)-K*phi')*P; %更新数据 thetae_1=thetae(:,k); for i=4:-1:2 uk(i)=uk(i-1); end uk(1)=u(k); for i=2:-1:2 yk(i)=yk(i-1);

最小二乘自适应滤波器

最小二乘自适应滤波器 前面所研究的自适应滤波算法根据的最佳准则为最小均方误差准则。自适应算法的目标 在于,使滤波器输出与需要信号的误差的平方的统计平均值最小。这个准则根据输入数据的 长期统计特性寻求最佳滤波。然而,我们通常已知的仅是一组数据,因而只能对长期统计特 性进行估计或近似。LMS算法、格形梯度算法都是这样。能否直接根据一组数据寻求最佳 呢?最小二乘算法就可解决这个问题。换句话说,根据最小均方误差准则得到的是对一类数 据的最佳滤波器,而根据最小二乘法得到的是对一组已知数据的最佳滤波器。对同一类数据 来说,最小均方误差准则对不同的数据组导出同样的“最佳”滤波器;而最小二乘法对不同 的数据组导出不同的“最佳”滤波器。因而常说最小二乘法导出的最佳滤波器是“精确”的。 本章首先叙述最小二乘法的基础,并推导递推最小二乘(RLS)算法;然后介绍线性空间 的概念,并在此基础上讨论两种重要的最小二乘自适应算法——最小二乘格形(LSL)算法和快速横式滤波器(FTT)算法。 4.1 4.1.1

设已知n个数据x (1), …, x (i), …, x (n),我们要根据这些数据,利用图4.1的m阶线性滤波器来估计需要信号d(1) , …, d (i), …, d (n)。对d (i)的估计式可表为 m ?d(i),w(n)x(i,k,1) (4.1.1) ,mk,1k 估计误差 m? e(i),d(i),d(i),d(i),w(n)x(i,k,1) (4.1.2) ,mk,1k 若假设i<1及i

维纳自适应滤波器设计及Matlab实现

维纳自适应滤波器设计及Matlab实现

摘要 本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB 编程实现。接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE 准则下得到了明显的改善。最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。 关键字:退化图像维纳滤波自适应滤波最陡下降法LMS

Abstract This paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter. We also simply analyses the wiener2 () which is a adaptive filter in MATLAB. Keywords: degrade image;wiener filter;adaptive filter;ADF;LMS algorithm

最小二乘自适应滤波器

第四章 最小二乘自适应滤波器 前面所研究的自适应滤波算法根据的最佳准则为最小均方误差准则。自适应算法的目标在于,使滤波器输出与需要信号的误差的平方的统计平均值最小。这个准则根据输入数据的长期统计特性寻求最佳滤波。然而,我们通常已知的仅是一组数据,因而只能对长期统计特性进行估计或近似。LMS 算法、格形梯度算法都是这样。能否直接根据一组数据寻求最佳呢?最小二乘算法就可解决这个问题。换句话说,根据最小均方误差准则得到的是对一类数据的最佳滤波器,而根据最小二乘法得到的是对一组已知数据的最佳滤波器。对同一类数据来说,最小均方误差准则对不同的数据组导出同样的“最佳”滤波器;而最小二乘法对不同的数据组导出不同的“最佳”滤波器。因而常说最小二乘法导出的最佳滤波器是“精确”的。 本章首先叙述最小二乘法的基础,并推导递推最小二乘(RLS)算法;然后介绍线性空间的概念,并在此基础上讨论两种重要的最小二乘自适应算法——最小二乘格形(LSL)算法和快速横式滤波器(FTT)算法。 §4.1 最小二乘滤波器 4.1.1 最小二乘滤波方程 设已知n 个数据x (1), …, x (i ), …, x (n ),我们要根据这些数据,利用图4.1的m 阶线性滤波器来估计需要信号d (1) , …, d (i ), …, d (n )。对d (i )的估计式可表为 ∑=+-=m k mk k i x n w i d 1 )1()()(? (4.1.1) 估计误差 ∑=+--=-=m k mk k i x n w i d i d i d i e 1 )1()()()(?)()( (4.1.2) 若假设i <1及i

递推阻尼最小二乘法辨识算法公式的详细推导与说明

控制理论与控制工程 学位课程《系统辨识》考试报告 递推阻尼最小二乘法公式详细 推导 专业:控制理论与控制工程 班级:2011双控(研) 学生姓名:江南 学号:20110201016 任课教师:蔡启仲老师 2012年06月29 日

摘要 在参数辨识中,递推最小二乘法是用得最多的一种算法。但是,最小二乘法存在一些缺点,如随着协方差矩阵的减小,易产生参数爆发现象;参数向量和协方差矩阵的处置选择不当会使得辨识过程在参数收敛之前结束;在存在随机噪声的情况下,参数易产生漂移,出现不稳定等。为了防止参数爆发现象,Levenberg 提出在参数优化算法中增加一个阻尼项,以增加算法的稳定性。本文在一般的最小二乘法中增加了阻尼因子,构成了阻尼最小二乘法。又根据实时控制的要求,详细推到了递推阻尼最小二乘公式,实现在线辨识。 关键字:系统辨识,最小二乘法,递推算法 正文 1.题目的基本要求 已知单入单出系统的差分方程以及噪声,在应用最小二乘法进行辨识的时候,在性能指标中加入阻尼因子,详细推导阻尼最小二乘法的递推公式。 2.输入辨识信号和系统噪声的产生方法和理论依据 2.1系统辩识信号输入选择准则 (1)输入信号的功率或副度不宜过大,以免使系统工作在非线性区,但也不应过小,以致信噪比太小,直接影响辩识精度; (2)输入信号对系统的“净扰动”要小,即应使正负向扰动机会几乎均等; (3)工程上要便于实现,成本低。 2.2白噪声及其产生方法 (1) 白噪声过程 (2)白噪声是一种均值为0、谱密度为非0常数的平稳随机过程。 (3)白噪声过程定义:如果随机过程 () t ω的均值为0,自相关函数为 ()()2 R t t ωσδ= (2.2.1) 式中()t δ 为狄拉克(Dirac) 分布函数,即 (){ (),00,0 1t t t dt δδ∞ ∞=≠∞ ==? -且t (2.2.2) 则称该随机过程为白燥声过程。 2.3白噪声序列 (1) 定义 如果随机序列{() }w t 均值为0,并且是两两不相关的,对应的自相关函数为 ()2 ,0,1,2w l R l l σδ==±± 式中{1,0 0,0 l l l δ=≠=则称这种随机序列{()}w t 为白噪声序列。 2.4白噪声序列的产生方法 (1) (0,1)均匀分布随机数的产生 在计算机上产生(0,1)均匀分布随机数的方法很多,其中最简单、最方便的是数学方法。产生伪随机数的数学方法很多,其中最常用的是乘同余法和混合同余法。 ①乘同余法。

RLS自适应滤波

RLS 自适应滤波 一、RLS 自适应算法 最小二乘(LS)法是一种典型的有效的数据处理方法,既可用于静态系统,又可用于动态系统:既可用于线性系统,又可用于非线性系统;既可用于离线估计,又可用于在线估计。递归最小二乘(Recursive Least Square ,RLS)是最小乘法的一种快速算法,它包含时间递归最小二乘(TRLS)算法和阶数递归最小二乘(ORES)算法两方面内容,一般前者适用于动态系统辨识和在线估计,后者适用于静态系统辨识和离线估计。与LMS 算法相比,RLS 算法有着非常快的收敛速度。 在快速收敛算法的推导中,我们采用最小二乘法。因此,将直接处理接收数据,使二次性能指数最小,而以前是使平方误差的期望值最小。这意味着,用时间平均而不是统计平均来表示性能指数。 基于时间平均的最小平方误差被定义如下: ()2 1)(i e n J i n n i -=∑=λ (1) 式中,λ是接近1,但是小于1的加权因子,称作遗忘因子。其中估计误差定义为 ()()())(i x n w i d i e H -= n i ≤≤0 (2) 且 ()()()()[]T N i x i x i x i x 1,,1,+--= (3) 式中,x(i)是i 时刻的输入数据向量,w(n)是n 时刻的新的抽头增益向量。因而e(i)是用n 时刻的抽头增益向量测试i 时刻的旧数据所得的误差,J(n)是在所有旧数据上用新抽头增益所得的累计平方误差。 要完成RLS 算法就要找到均衡器的抽头增益向量w(n),使得累计平方误差J(n)最小。为了测试新的抽头增益向量,会用到那些先前的数据。而因子λ会在计算时更依赖于新近的数据,也就是说,J(n)会丢掉非稳定环境中的较旧的数据。如果信道是稳定的,那么λ可以设为1。 为了获得J(n)的最小值,可使J(n)的梯度为0,即() ()0=?? n J n w ,通过运算可知: ()()()n r n w n R =∧ (4) 式中,()n w ∧ 是RLS 均衡其的最佳抽头增益向量。

用matlab实现最小二乘递推算法辨识系统参数

自动化专业综合设计报告 设计题目:最小二乘递推算法辨识系统参数所在实验室:自动化系统仿真实验室 指导教师: 学生姓名 班级计082-2 班 学号 撰写时间:2012-3-1 成绩评定:

一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用; 二.设计要求 最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1.5*z(k-1)+0.7*z(k-2)=1*u(k-1)+0.5*u(k-2)+v(k); 选择如下形式的辨识模型: z(k)+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k); 三.实验程序 m= 3; N=100; uk=rand(1,N); for i=1:N uk(i)=uk(i)*(-1)^(i-1); end yk=zeros(1,N); for k=3:N yk(k)=1.5*yk(k-1)-0.7*yk(k-2)+uk(k-1)+0.5*uk(k-2); end %j=100;kn=0; %y=yk(m:j)'; %psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j-2)]'; %pn=inv(psi'*psi); %theta=(inv(psi'*psi)*psi'*y); theta=[0;0;0;0]; pn=10^6*eye(4); for t=3:N ps=([yk(t-1);yk(t-2);uk(t-1);uk(t-2)]); pn=pn-pn*ps*ps'*pn*(inv(1+ps'*pn*ps)); theta=theta+pn*ps*(yk(t)-ps'*theta); thet=theta'; a1=thet(1); a2=thet(2); b1=thet(3); b2=thet(4); a1t(t)=a1; a2t(t)=a2;b1t(t)=b1;b2t(t)=b2; end t=1:N; plot(t,a1t(t),t,a2t(t),t,b1t(t),t,b2t(t));

自适应滤波器原理-带图带总结word版

第二章自适应滤波器原理 2.1 基本原理 2.1.1 自适应滤波器的发展 在解决线性滤波问题的统计方法中,通常假设已知有用信号及其附加噪声的某些统计参数(例如,均值和自相关函数),而且需要设计含噪数据作为其输入的线性滤波器,使得根据某种统计准则噪声对滤波器的影响最小。实现该滤波器优化问题的一个有用方法是使误差信号(定义为期望响应与滤波器实际输出之差)的均方值最小化。对于平稳输入,通常采用所谓维纳滤波器(Wiener filter)的解决方案。该滤波器在均方误差意义上使最优的。误差信号均方值相对于滤波器可调参数的曲线通常称为误差性能曲面。该曲面的极小点即为维纳解。 维纳滤波器不适合于应对信号和/或噪声非平稳问题。在这种情况下,必须假设最优滤波器为时变形式。对于这个更加困难的问题,十分成功的一个解决方案使采用卡尔曼滤波器(Kalman filter)。该滤波器在各种工程应用中式一个强有力的系统。 维纳滤波器的设计要求所要处理的数据统计方面的先验知识。只有当输入数据的统计特性与滤波器设计所依赖的某一先验知识匹配时,该滤波器才是最优的。当这个信息完全未知时,就不可能设计维纳滤波器,或者该设计不再是最优的。而且维纳滤波器的参数是固定的。 在这种情况下,可采用的一个直接方法是“估计和插入过程”。该过程包含两个步骤,首先是“估计”有关信号的统计参数,然后将所得到的结果“插入(plug into)”非递归公式以计算滤波器参数。对于实时运算,该过程的缺点是要求特别精心制作,而且要求价格昂贵的硬件。为了消除这个限制,可采用自适应滤波器(adaptive filter)。采用这样一种系统,意味着滤波器是自设计的,即自适应滤波器依靠递归算法进行其计算,这样使它有可能在无法获得有关信号特征完整知识的环境下,玩完满地完成滤波运算。该算法将从某些预先确定的初始条件集出发,这些初始条件代表了人们所知道的上述环境的任何一种情况。我们还发现,在平稳环境下,该运算经一些成功迭代后收敛于某种统计意义上的最优维纳解。在非平稳环境下,该算法提供了一种跟踪能力,即跟踪输入数据统计特性随时间的变化,只要这种变化时足够缓慢的。 40年代,N.维纳用最小均方原则设计最佳线性滤波器,用来处理平稳随机

线性自适应滤波算法综述

线性自适应滤波算法综述 作者简介蔡卫菊(1981.4-),女,汉族,硕士,讲师。现工作于长江大学电信学院,研究领域为信号处理。 摘要:分析了最小均方误差滤波和基于最小二乘准则滤波算法、变换域自适应滤波算法、仿射投影算法、共轭梯度算法、基于子带分解的自适应滤波算法、基于qr分解的自适应滤波算法优缺点,并对自适应滤波算法的发展进行了展望。 关键词:自适应滤波算法;最小均方误差算法;最小二乘算法;变换域;仿射投影;共轭梯度;子带分解 中图分类号:tn911文献标识码:a 文章编号: 1672-3791(2011)12(c)-0000-00 随着信号处理理论和技术的迅速发展,自适应信号处理理论和技术已经发展成为这一领域的一个新分支,并且在通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等领域获得越来越广泛的应用。对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。 1变步长自适应滤波算法 最小均方误差lms算法最早由widrow和hoff于20世纪60年代提出,由于其结构简单,性能稳定,计算复杂度低,便于硬件实现等特点,一直是自适应滤波经典算法之一。lms算法的优点是结构简单,鲁棒性强,其缺点是收敛速度很慢。固定步长的自适应滤波

算法在收敛速度、时变系统跟踪速度与收敛精度方面对算法调整步长因子的要求是相互矛盾的。为了克服这一矛盾,人们提出了许多变步长自适应滤波算法。yasukawa等[1]提出了使步长因子正比于误差信号的大小。吴光弼[2]提出了在初始收敛阶段或未知系统参数发生变化时,步长比较大,以便有较快的收敛速度和对时变系统的跟踪速度;而在算法收敛后,不管主输入端干扰信号有多大,都应保持很小的调整步长以达到很小的稳态失调噪声,根据这一步长调整原则,许多学者设计了多种变步长自适应滤波算法,分别能够满足不同场合的应用。 2基于最小二乘准则的rls算法 基于最小二乘准则rls算法对输入信号的自相关矩阵的逆进行递推估计更新,收敛速度快,其收敛性能与输入信号的频谱特性无关。但是,rls算法的计算复杂度很高,不利于适时实现。许多文献提出了改进的rls算法,如快速rls算法[6],快速递推最小二乘格型算法[7] 等。这些算法的计算复杂度低于rls算法,但它们都存在数值稳定性问题。文献[7]为避免rls类算法递推估计更新自相关矩阵的逆的不足,基于最小二乘准则,利用最陡下降法,得到一种新的梯度型自适应滤波算法,该算法计算复杂度较低,收敛性能良好。 3变换域自适应滤波算法 对于强相关的信号,lms算法的收敛性能降低,这是由于lms算

自适应滤波器翻译作业

第八章快速横向LMS滤波算法 8.1 简介 在大量的算法解决最小二乘问题递归形式的方法中快速横向递归最小二乘(FTRLS)算法是非常具有吸引力,因为其能减少计算复杂度。 FTRLS算法可以通过求解同时向前和向后的线性预测问题,连同其他两个横向过滤器:过程估计量和一个辅助滤波器的期望信号向量有一个作为其第一和唯一的非零元素(例如,d(0)= 1)。与格型算法相比,FTRLS算法只需要时间递归方程。然而,需要得到一些FTRLS算法的关系,可参考前面一章LRLS算法。FTRLS算法考虑快速的横向滤波器RLS的算法更新的解决方法。因为顺序固定,更新横向自适应滤波器系数向量在每个计算中都迭代。 格型算法的向后和向前的派生关系可以用于预测所派生的FTRLS算法。由此产生的算法计算复杂度在实际中实现N使它们特别具有吸引力。相比格型算法,FTRLS算法的计算复杂度较低,由于没有权向量更新方程。特别是,FTRLS算法通常需要7 n到11 n 每输出样本,乘法和除法则需要LRLS 14n到29 n计算。因此,FTRLS 算法被认为是最快的解决方案的实现RLS的问题[1]-[7]。 在工程实践领域相继提出几种不同的FTRLS算法,所谓的快速卡尔曼算法[1],这的确是一个早期的快速横向RLS算法,计算11n次乘法和除法的复杂运算在每次输出示例。在后面的研究阶段开发领域的

快速横向算法,快速后验误差序列的技术(fa)[2],快速横向滤波器(FTF)[3]算法提出了要求,同样需要7n乘法和每次除法的输出样本。FTF算法是具有最低的复杂性的RLS算法,不幸的是,这些算法对量子化效应非常敏感,如果有一些步骤没被采取将会变得不稳定。 在这一章,FTRLS算法的一种特殊形式将被提到,基于那些被提的网格算法所派生出来的。众所周知,量子化错误在FTRLS算法 中是指数发散[1]-[7]。自从FTRLS算法不稳定的行为用有限精度算法实现的时候,我们讨论实现FTRLS数值稳定的算法,并提供一个特定算法的描述[8],[10]。 8.2 递归最小二乘预测 快速算法探索一些结构性的信息数据以达到低计算的复杂性。在特定情况下的快速RLS算法本文中讨论达到减少计算复杂度的情况下,由输入信号连续推迟样本中相同的信号。在本例中,模式的快速算法是相似的,向前和向后预测这些过滤器是必不可少的部分算法。建模的预测执行任务的输入信号,因此允许替换矩阵方程的矢量和标量关系。 派生的FTRLS算法,解决方案的RLS向前和向后的预测问题需要权向量递归方程。在本节中,这些解决方案进行了综述强调FTRLS算法相关的结果。如前所述,我们将借一些派生的前一章对点阵算法。是值得的提及,FTRLS可以被介绍通过一个独立的推导,基于格型的推导在这点可能更加深刻的当然更直截了当的。

应用最小二乘一次完成法和递推最小二乘法算法的系统辨识讲解

1最小二乘法的理论基础 1.1最小二乘法 设单输入单输出线性定长系统的差分方程表示为: 其中δ(k)为服从N(0,1)的随机噪声,现分别测出n+N 个输出输入值y(1),y(2),…,y(n+N),u(1),u(2),…,u(n+N),则可写出N 个方程,写成向量-矩阵形式 (4.1.1) ()()()()()()()() 1201121n n y k a y k a y k a y k n b u k b u k b u k n k ξ=-------+ +-+ +-+()()()()()()101122,,n n a y n n y n a n y b y n N n N b ξξθξξ?? ??++????????????++? ???===??????????????++?????????? ???? ()()()()()()()()() () ()()()() ()( )()()10111121222112n n y n y n y u n u y n y n y u n u y n N y n N y N u n N u N a n a n b n N b ξξξ+--+???? ????+-+-+???? =?????????+-+--+???? ?? ???? ??+?? ??????+??+??????? ???+??????????

则式(1.1.1)可写为 (4.1.2) 式中:y 为N 维输出向量;ξ为N 为维噪声向量;θ为(2n+1)维参数向量;Φ为N ×(2n+1)测量矩阵。因此,式(4.1.1)是一个含有(2n+1)个未知参数,由N 个方程组成的联立方程组。 11y θφφξ--=- 在给定输出向量y 和测量矩阵Φ的条件下求参数θ的估计,这就是系统辨识问题。 设 表示 θ 的估计值,?表示y 的最优估计,则有 (4.1.3) 式中: ()()()10??1??2??,???n n a y n a y n y b y n N b θ???? +????????+????==????????+?????? ???? 设e(k)=y(k)- ?(k), e(k)称为残差,则有e=y- ?=y-Φθ 最小二乘估计要求残差的平方和最小,即按照指数函数 (4.1.4) 求J对 的偏导数并令其等于0可得: (4.1.5) 由式(4.1.5)可得的 θ 最小二乘估计: (4.1.6) J 为极小值的充分条件是: 即矩阵ΦT Φ为正定矩阵,或者说是非奇异的。 1.1.1最小二乘法估计中的输入信号 当矩阵ΦT Φ的逆阵存在是,式(1.1.6)才有解。一般地,如果u(k)是随机序列或伪随机二位式序列,则矩阵ΦT Φ是非奇异的,即(ΦT Φ)-1存在,式(1.1.6)有解。 现在从ΦT Φ必须正定出发,讨论对u(k)的要求。 y φθξ=+?θ??y θ=Φ()() ??T T J e e y y θ θ==-Φ-Φ?θ() ?20?T J y θ θ ?=-Φ-Φ=??T T y θ ΦΦ=Φ()1 ?T T y θ -=ΦΦΦ220?T J θ ?=ΦΦ>?1 n N yy yu T +-ΦΦ??

自适应滤波器 word

1自适应滤波器简介 最早人们根据生物能以各种有效的方式适应生存环境从而使生命力变强的特性引伸出自适应这个概念。自适应滤波器属于现代滤波器的范畴,它是40年代发展起来的自适应信号处理领域的一个重要应用。60年代,美国B.Windrow和Hoff首先提出了主要应用于随机信号处理的自适应滤波器算法,从而奠定自适应滤波器的发展。所谓自适应滤波器,即利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号与噪声未知的或随时间变化的统计特性,从而实现最优滤波。 自适应信号处理主要是研究结构可变或可调整的系统,它可以通过自身与外界环境的接触来改善自身对信号处理的性能。通常这类系统是时变的非线性系统,可以自动适应信号传输的环境和要求,无须详细知道信号的结构和实际知识,无须精确设计处理系统本身。自适应系统的非线性特性主要是由系统对不同的信号环境实现自身参数的调整来确定的。自适应系统的时变特性主要是由其自适应响应或自适应学习过程来确定的,当自适应过程结束和系统不再进行时,有一类自适应系统可成为线性系统,并称为线性自适应系统,因为这类系统便于设计且易于数学处理,所以实际应用广泛。本文研究的自适应滤波器就是这类滤波器。自适应信号处理的应用领域包括通信、雷达、声纳、地震学、导航系统、生物医学和工业控制等。自适应滤波器是相对固定滤波器而言的,固定滤波器属于经典滤波器,它滤波的频率是固定的,自适应滤波器滤波的频率则是自动适应输入信号而变化的,所以其适用范围更广。在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波。 自适应滤波器出现以后,发展很快。由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,也是数字滤波器研究的热点。主要自适应滤波器有:递推最小二乘(RLS)滤波器、最小均方差(LMS)滤波器、格型滤波器、无限冲激响应(IIR)滤波器。其中RLS滤波器具有稳定的自适应行为而且算法简单,收敛性能良好。 实际情况中,由于信号和噪声的统计特性常常未知或无法获知,这就为自适应滤波器提供广阔的应用空间、系统辨识、噪声对消、自适应谱线增强、通信信道的自适应均衡、线性预测、自适应天线阵列等是自适应滤波器的主要应用领域。 2自适应滤波器设计原理 自适应滤波器是以最小均方误差为准则,由自适应算法通过调整滤波器系数,以达到最优滤波的时变最佳滤波器. 设计自适应滤波器时,可以不必预先知道信号与噪声的自相关函数,在滤波过程中,即使噪声与信号的自相关函数随时间缓慢变化,滤波器也能自动适应,自动调节到满足均方误差最小的要求。自适应滤波器主要由参数可调的数字滤波器和调整滤波器系数的自适应算法两部分构成自适应滤波器的一般结构如图1所示。参数可调数字滤波器可以是FIR滤波器或IIR数字滤波器,也可以是格形滤波器。 图1中d(n)为期望响应,x(n)为自适应滤波器的输入,y(n)为自适应滤波器的输出,e(n)为估计误差,e(n)=d(n)-y(n),前置级完成跟踪信号的选择,确定是信号还是噪声;后置级根据前置级的不同选择对数字滤波器输出作不同的处理,以得到信号输出。自适应滤波器的滤波器系数受误差信号e(n)控制,e(n)通过某种自适应算法对l滤波器参数进行调整,最终使e(n)的均方值最小。因此,实际上,自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要实现知道关于输入信号和噪声的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波器、RLS自适应滤波器等等。

相关文档
最新文档