弹簧问题解题方法

合集下载

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

解题技巧如何计算弹簧的弹性系数

解题技巧如何计算弹簧的弹性系数

解题技巧如何计算弹簧的弹性系数弹簧是一种常见的力学元件,广泛应用于机械和工程领域。

了解弹簧的弹性系数是解决相关问题的关键。

在本文中,我们将讨论如何计算弹簧的弹性系数,并提供一些解题技巧。

一、什么是弹性系数弹性系数是描述弹簧材料抵抗形变的能力的物理量。

通常用弹簧的切线斜率来表示,也称为弹簧的刚度。

弹簧的弹性系数可以用下列公式表示:F = k * x其中,F表示弹簧受力,k表示弹簧的弹性系数,x表示弹簧的形变量。

二、计算弹簧的弹性系数的方法1. 钢丝直径法弹簧的弹性系数与钢丝直径有关。

该方法适用于弹簧直径较大的情况。

计算公式如下:k = (G * d^4) / (8 * n^3 * D)其中,k表示弹簧的弹性系数,G表示材料的剪切模量,d表示钢丝直径,n表示弹簧的圈数,D表示弹簧的直径。

2. 矩形截面法弹簧的形状对弹性系数也有影响。

对于矩形截面的弹簧,可以使用以下公式计算弹性系数:k = (G * b * h^3) / (3 * L)其中,k表示弹簧的弹性系数,G表示材料的剪切模量,b表示弹簧截面的宽度,h表示弹簧截面的高度,L表示弹簧长度。

3. 螺旋线截面法弹簧的截面形状不一定是矩形,有时也可以是螺旋线截面。

对于螺旋线截面的弹簧,可以使用以下公式计算弹性系数:k = (G * d^4) / (8 * n^3 * A)其中,k表示弹簧的弹性系数,G表示材料的剪切模量,d表示钢丝直径,n表示螺旋线圈数,A表示螺旋线截面的面积。

三、解题技巧1. 了解弹簧的材料特性,包括剪切模量等参数。

2. 确定弹簧的形状和截面特征,选择合适的计算方法。

3. 计算前要确保使用的单位一致,如长度单位、面积单位等。

4. 使用计算器或电脑进行计算,减少计算错误。

5. 多做练习题,掌握计算弹性系数的方法。

四、举例说明假设有一根钢丝直径为0.4 mm,螺旋线圈数为10,螺旋线截面的面积为2 mm²,剪切模量为80 GPa。

弹簧连接体问题解题思路

弹簧连接体问题解题思路

弹簧连接体问题解题思路
弹簧连接体问题一般可以通过以下步骤来解决。

Step 1: 理清问题条件
首先,要明确问题中给出的条件,包括弹簧的初始长度、劲度系数、外力等。

理解问题条件有助于正确理解问题,并为后续计算提供必要的信息。

Step 2: 确定平衡条件
弹簧连接体问题通常要求找出弹簧达到平衡的位置或最大伸缩位移。

为了做到这一点,需要找出使得合力为零的位置。

根据牛顿第三定律,弹簧的弹性力与外力之和必须为零。

Step 3: 应用弹簧公式
根据弹簧的劲度系数和伸缩位移量,可以使用胡克定律来计算弹簧的伸缩力。

弹簧公式为:
F = -kx
其中F是伸缩力,k是劲度系数,x是伸缩位移量。

通过求解这个方程,可以找出使得合力为零的伸缩位移量。

Step 4: 检查解的合理性
对于弹簧连接体问题,解可以是正数或负数。

正数表示弹簧被拉伸,负数表示弹簧被压缩。

需要检查解是否符合实际情况,比如弹簧是否可伸缩到给定的位移范围内。

Step 5: 解释解的物理意义
最后,需要解释解的物理意义。

这可能涉及到伸缩位移对系统其他部分的影响,比如连接物体的位移、速度和加速度等等。

通过以上步骤,可以解决弹簧连接体问题并得出准确的答案。

需要注意的是,问题的复杂程度可能不同,可能需要更多的计算或考虑更多的物理因素。

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

高中物理-弹簧问题

高中物理-弹簧问题

弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

弹簧振子模型解题赏析

弹簧振子模型解题赏析

OAD h m 弹簧振子模型解题赏析弹簧振子问题中涉及力和位移、力和运动、功和能等关系问题,能很好的考查学生对相关知识点的掌握及分析问题的能力以及迁移能力。

基本知识点:(1)平衡位置处合力为零,加速度为零,速度达到最大。

(2)正负最大位移处合力最大,加速度最大且方向相反,速度为零。

(3)振动过程具有对称性 1.如图,在一直立的光滑管内放置一劲度系数为k 的轻质弹簧,管口上方O 点与弹簧上端初位置A 的距离为h ,一质量为m 的小球从O 点由静止下落,压缩弹簧至最低点D ,弹簧始终处于弹性限度内,不计空气阻力。

小球自O 点下落到最低点D 的过程中,下列说法中正确的是A .小球最大速度的位置随h 的变化而变化B .小球的最大速度与h 无关C .小球的最大加速度大于重力加速度D .弹簧的最大压缩量与h 成正比答案:C 【解析】:小球从O 到A 做自由落体运动,刚接触弹簧时加速度为g 且有一定的速度,此后弹力逐渐增大合力逐渐减小,小球做加速度减小的加速运动,直至弹力与重力相等时速度达到最大故最大速度的位置为平衡位置与初始高度h 无关故A 错误。

因系统的机械能守恒故初始高度h 越大其最大速度越大故B 错误。

若小球从A 处由静止下落则初速度为零加速度为g 由对称性可知其最低点比D 点要高,此时加速度最大为g 方向向上;而此问题小球下落到A 时已有一定的速度故运动到最低点D 时其最大加速度要比重力加速度大,故C 正确。

最大压缩量与h 有关但不成正比故D 错误。

2.如图2所示,小球从高处下落到竖直放置的轻弹簧上,从接触弹簧开始到将弹簧压缩到最短的过程中,下列叙述中正确的是( )A .小球的速度一直减小B .小球的加速度先减小后增大C .小球加速度的最大值一定大于重力加速度D .在该过程的位移中点上小球的速度最大 图2答案:BC 【解析】:小球接触弹簧后,所受弹力逐渐增大,弹力大于重力时,小球加速度向下,仍加速.当弹力大于重力,合力向上,小球向下减速运动,加速度变大,速度变小,直到速度为零,可知BC 正确.3.如图所示,轻质弹簧上端悬挂于天花板,下端系有质量为M 的圆板,处于平衡状态.开始一质量为m 的圆环套在弹簧外,与圆板距离为h ,让环自由下落撞击圆板,碰撞时间极短,碰后圆环与圆板共同向下运动,使弹簧伸长。

物理弹簧类问题解题技巧

物理弹簧类问题解题技巧

物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。

在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。

因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。

弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。

4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。

有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

弹簧连接体问题解题思路

弹簧连接体问题解题思路

弹簧连接体问题解题思路弹簧连接体问题解题思路1. 引言弹簧连接体是一个常见的物理问题,涉及到材料力学和弹性力学的知识。

在这篇文章中,我们将探讨弹簧连接体问题的解题思路。

通过深入研究和广泛阐述,希望能对读者深刻理解这一主题,为解决类似问题提供指导。

2. 弹簧连接体的定义和基本原理弹簧连接体是指通过弹簧将两个物体连接起来的装置。

在该装置中,弹簧起到了连接、支撑和调节的功能。

弹簧连接体的设计和使用都涉及到力的平衡和弹性力学的基本原理。

3. 弹簧连接体问题的解题思路弹簧连接体问题的解题思路应该从简到繁、由浅入深,以便更好地理解和应用。

下面是解题思路的几个关键步骤:3.1 研究弹簧的材料力学性质弹簧的材料力学性质是解决弹簧连接体问题的基础。

对于不同类型的弹簧,其材料力学性质存在差异,因此需要先研究和了解弹簧的材料力学特性。

3.2 确定弹簧连接体的力学模型根据具体问题的要求,确定弹簧连接体的力学模型。

可以根据弹簧的形状、材料和受力情况,选择适当的力学模型,以便更好地描述和分析问题。

3.3 列出受力方程根据弹簧连接体的力学模型,列出受力方程。

在列出受力方程时,要考虑弹簧连接体的各个部分之间的相互作用,并考虑到外界的施加力和约束条件。

3.4 解方程求解未知量根据列出的受力方程,解方程求解未知量。

可以使用数值计算、近似方法或解析解等方式进行求解,以获得问题中需要的参数或结果。

4. 解决实际问题的案例分析在此部分,我们将通过一个实际问题的案例分析来展示弹簧连接体问题解题思路的应用。

假设我们需要设计一个承重弹簧连接体,使得在受到外界力的作用下,弹簧连接体能保持稳定并承受最大的力量。

案例分析的具体步骤如下:4.1 确定弹簧连接体的形状和材料我们需要确定弹簧连接体的形状和材料。

根据设计要求,选择适当的弹簧形状和材料,以满足承重和稳定性的要求。

4.2 建立弹簧连接体的力学模型根据确定的形状和材料,建立弹簧连接体的力学模型。

重点高中物理必修一弹簧问题

重点高中物理必修一弹簧问题

精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。

二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。

三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。

2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。

而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。

(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。

3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。

本模型它涉及到力和运动、动量和能量等问题。

本问题对过程分析尤为重要。

1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。

今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。

若是平衡时弹簧产生的弹力和外力大小相等。

主要看能使弹簧发生形变的力就能分析出弹簧的弹力。

高中物理弹簧突变问题解题方法

高中物理弹簧突变问题解题方法

高中物理弹簧突变问题解题方法当弹簧两端都连接物体时,弹簧的弹力是不会发生突变的剪断弹簧,弹簧的弹力瞬间突变为零明确以上两句话的基础上,高中物理对其考察的题目类型我将其称为“弹簧的突变问题”。

很多同学及时理解了这两句话,做题仍然不会怎么利用起来那我们就直接一点,直接根据我给你的步骤来做题,看能不能帮你解决此类问题这篇文章我们主要解决其中的一类,即单个物体,受力一般为三个。

例如这个题目在动摩擦因数μ=0.2的水平面上有一个质量为m=2kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g=10m/s2,以下说法正确的是A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间小球的加速度为0题目配图这类题型的解法要看“剪断”后剩余的是哪一类,从而采用不同的步骤1、剩余为绳类:先判断物体的加速度方向,根据加速度方向求解绳类弹力和加速度大小2、剩余为弹簧类:对原状态受力分析,弹簧弹力不突变,物块加速度为撤去力除质量。

(注意是否新增突变力)说白了,一种是由运动分析力,一种是由力分析运动用上面的解题步骤我们看一下题目的选项首先看AB选项,他是建立在原题的假设上的,即“剪断轻绳”所以剩余的为弹簧,做题采用第2条策略对原状态受力分析,得到弹簧弹力为mgtanθ=20N(A正确),绳子拉力为mg/cosθ求加速度时不要忽略“注意是否新增突变力”这句话,由于有地面,按原方法他的加速度与绳子拉力反向,则会对地面产生挤压,所以地面会突变出一个力不让他有向下运动的情况,所以小球就只能水平运动了,重力和支持力竖直方向抵消,水平方向弹簧弹力为合外力产生加速度(B错误)再来看CD选项,此时是“剪断弹簧”所以剩余的为绳子,做题采用第1条策略那就直接先分析小球会有怎样的加速度,也就是把小球放在那个位置看小球会怎么运动如果没有水平面,小球会在绳子拉力下摆动,加速度应该是垂直绳子向下;但有了水平面,小球就不会运动了,所以没有加速度(C错误,D正确)对于这类问题的这类考法就是采用这种方法就可以搞定了,你学会了吗?。

高中物理弹簧弹力问题(含答案)

高中物理弹簧弹力问题(含答案)

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

弹簧弹力问题概述

弹簧弹力问题概述

弹簧弹力问题概述弹簧类问题专题练习轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.b5E2RGbCAP一、弹簧弹力及做功与弹性势能等特点:(1)弹力的大小与形变量大小成正比(胡克定律)(2)方向具有双向性(3)是一种渐变弹力(当外界条件发生变化的瞬间,弹力保持不变)(4)弹力做功在数值上等于弹性势能的变化,可以用弹力平均力求功。

(5)弹性势能的大小与形变量大小有关。

二、处理弹簧问题的一般方法(1)弹簧的弹力是一种由形变而决定大小和方向的力,当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题解题时,一般应从弹簧的形变分析入手,先确定弹簧原长位置,再确定其初状态位置,末态位置,找出各个位置对应的形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动的位移及运动状态的变化.尤其是坚直弹簧问题涉及重力势能的变化,可以通过弹簧形变量的变化确物体高度的变化。

plEanqFDPw(2)因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.DXDiTa9E3d(3)在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理、功能关系、能量转化和守恒定律求解。

RTCrpUDGiT一、弹簧读数问题1.如图所示,弹簧秤、绳和滑轮的重力及摩擦力均可不计,物体重量都为G在甲、乙、丙三种情况下,弹簧的读数分别是F1、F2、F3,则A.F3>F1=F2B.F1=F2=F3C.F3=F1>F2D.F1>F2=F32.实验室常用的弹簧秤如图1甲所示,连接有挂钩的拉杆与弹簧相连,并固定在外壳一端O上,外壳上固定一个圆环,可以认为弹簧秤的总质量主要集中在外壳(重力为G)上,弹簧和拉杆的质量忽略不计,现将该弹簧秤5PCzVD7HxA以两种方式固定于地面上,如图乙、内所示,分别用恒力F0竖直向上拉弹簧秤,静止时弹簧秤的读数为A.乙图读数F0-G,内图读数F0+GB.乙图读数F0-G,内图读数F0C.乙图读数F0,内图读数F0-GD.乙图读数F0+G内图t^数F0-G3、如图所示,轻杆AB=14.10cm,AC=10cm,当B端挂1N重物时,BC水平;当B端挂2N 重物时,AB水平.求:jLBHrnAILg(1)这两种情况下弹簧的拉力分别为多少?(2)弹簧的原长是多少?(3)弹簧的劲度系数k为多少?答案(1)1N3.46N(2)7.03cm(3)33N/m(xHAQX74J0X4.如图1所示,L1、L2是径度系数均为k的轻质弹簧,A、B两只钩码均重G,则静止时两弹簧伸长量之和为()LDAYtRyKfEA.3G/kB.2G/kC.G/kD.G/2k9.(2002广东物理7)图中a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态。

初中常见问题分析:弹簧问题分析

初中常见问题分析:弹簧问题分析

三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。

分析这类题型对训练学生的分析综合能力很有好处。

例题分析:例1:劲度系数为K 的弹簧悬挂在天花板的O 点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a 由静止开始匀加速下降,求物体匀加速下降的时间。

分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G –KX=ma X=1/2at 2解以上两式得:t=kaa g m )(2例2:一质量为 M 的塑料球形容器,在A 处与水平面接触。

它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。

分析:由题意知弹簧正好在原长时小球恰好速度最大,所以: 对小球 qE=mg (1) 小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时:对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得: 小球的加速度为:a=mMg 由振动的对称性可知: 小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N =Mg+Kx=2Mg例3:已知弹簧劲度系数为K ,物块重G ,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。

现给物块一向下的压力F ,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘, 求:(1)给物块的向下的压力F 。

(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1) 由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得:F=mgA(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。

初二物理弹簧类问题解题技巧

初二物理弹簧类问题解题技巧

初二物理弹簧类问题解题技巧
解决弹簧类问题的关键是理解弹簧的特性和应用弹簧的力学原理。

下面是解决弹簧类问题的一些技巧:
1. 弹簧的胡克定律:了解胡克定律,即弹簧伸长或压缩的力与其伸长或压缩的长度成正比。

公式为 F = kx,其中 F 是作用在弹簧上的力,k 是弹簧的劲度系数,x 是弹簧伸长或压缩的长度。

2. 弹簧的劲度系数:弹簧的劲度系数是衡量其硬度和弹性的指标。

在解题时,需要根据题目给出的信息或通过实验得到的数据来确定弹簧的劲度系数。

3. 弹簧并联和串联:当多个弹簧连接在一起时,可以采用并联和串联的方法进行分析。

对于并联弹簧,它们的劲度系数相加;对于串联弹簧,它们的伸长或压缩长度相等。

4. 力的平衡:解决弹簧类问题时,通常要考虑力的平衡条件。

例如,如果一个物体挂在弹簧上,弹簧的伸长或压缩长度要平衡物体所受的重力。

5. 重力和弹簧力的平衡:在解决一些常见问题时,需要考虑重力和弹簧力的平衡条件。

例如,当一个物体挂在弹簧上并达到静止时,弹簧力和重力大小相等。

6. 弹性势能和机械能守恒:在弹簧类问题中,可以利用弹性势能和机械能守恒原理来解题。

例如,当一个物体从某一高度落下并撞击到一个弹簧时,可以利用机械能守恒来计算弹簧的伸长长度。

7. 注意单位和符号:在解决弹簧类问题时,要注意使用正确的
单位和符号。

确保力的单位与弹簧劲度系数的单位相匹配,并使用统一的正负符号规定。

以上是解决弹簧类问题的一些基本技巧,希望对你有所帮助!。

弹簧类问题的求解

弹簧类问题的求解

弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。

下面我们归纳六类问题探求解法。

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。

弹簧一端受力为F ,另一端受力一定也为F 。

若是弹簧秤,则弹簧秤示数为F 。

例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。

二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。

因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。

例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。

弹簧弹力作用下的动态运动问题解读

弹簧弹力作用下的动态运动问题解读

弹簧弹力作用下的动态运动问题解读河北省鸡泽县第一中学 许童钰 057350由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家和物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。

弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。

因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。

物理动态命题以动态模型为基础,突出考查考生综合分析、严密推理、灵活运用所学知识解决实际问题的综合能力,充分暴露考生思维的深刻性、全面性等品质,是高考突出能力考查的命题设计方向之一.突破该类命题的关键在于首先区分出变量和不变量,挖掘变量间的相互依赖相互制约关系;其次通过统筹分析,依据物理规律判断预测变量的变化趋势,进而找出解题思路. 对于动力学类动态问题宜采用“逐段分析法”及“临界分析法”.其基本思路为:①深入分析物理过程;②挖掘物理过程中的临界状态及临界条件,将过程分为不同阶段;③明确不同阶段的变化量与不变量;④结合物理规律依物理量的变化先后进行逻辑推理或计算,得出结论.一、弹簧弹力作用下的动态运动基本问题模型母题 如图1所示,一个小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,分析小球运动状态的变化。

【分析】如图2所示,A 位置为小球释放点,B 位置为小球刚接触弹簧的位置,C 位置为弹簧弹力与小球重力相等的位置,D 位置为小球下落的最低点,此时小球的速度为零。

从A 到B 的过程中,由于小球只受重力作用,所以小球做自由落体运动,到达B 点时小球具有竖直向下的速度,小球会继续向下运动;随着小球不断向下运动,弹簧的压缩量越来越大,弹簧弹力由零逐渐增大,但在到达C 点以前,小球的重力都大于弹簧的弹力,小球所受合外力向下,加速度向下,加速度大小mF mg a -=,由表达式可知,随弹簧弹力的增大,加速度在逐渐减小,但由于在从B 到C 的过程中,小球加速度方向与速度方向始终相同,故小球做加速度减小的变加速运动; 小球经过C 点后继续向下运动,弹簧弹力也继续增加,弹力大于小球的重力,加速度方向向上,加速度大小mmg F a -=,由表达式可知,随弹簧弹力的增大,加速度在逐渐增大,但由于在从C 到D 的运动过程中,小球加速度方向与速度方向始终相反,故小球做加速度增大的变减速运动,直到速度减为零到达最低点D 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• •
• 例1.质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天 花板下,开始系统处于静止。下列说法中正确的是 A.若突然剪断细 线,则剪断瞬间P、Q的加速度大小均为g • B.若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和g • C.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小均为g • D.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0
五.弹簧振子的简谐运动 弹簧振子的简谐运动
• 轻弹簧一端固定,另一端系一个小球,便组成一个弹簧振子。 无论此装置水平放置还是竖直放置,在忽略摩擦阻力和空气阻 力的情况下,弹簧振子的振动都是简谐运动。 • 弹簧振子做简谐运动过程中机械能守恒。水平放置的弹簧振子 的总机械能E等于弹簧的弹性势能Ep和振子的动能Ek之和,还等 于通过平衡位置时振子的动能(即最大动能),或等于振子位 于最大位移处时弹簧的弹性势能(即最大势能),即 E=Ep+Ek=Epm=Ekm • 简谐运动的特点之一就是对称性。振动过程中,振子在离平衡 位置距离相等的对称点,所受回复力大小、位移大小、速度大 小、加速度大小、振子动能等都是相同的。
解:剪断d瞬间弹簧b对小球的拉力大小和方 向都未来得及发生变化,因此重力和弹簧拉力 的合力与剪断前d对P的拉力大小相等,为 0.75mg,因此加速度大小为0.75g,水平向右; 剪断e前c的拉力大小为1.25mg,剪断e后,沿细 线方向上的合力充当向心力,因此c的拉力大小 立即减小到0.8mg。选B。
四.临界问题
• 两个相互接触的物体被弹簧弹出,这两个物体在什 么位置恰好分开?这属于临界问题。“恰好分开” 既可以认为已经分开,也可以认为还未分开。认为 已分开,那么这两个物体间的弹力必然为零;认为 未分开,那么这两个物体的速度、加速度必然相等。 同时利用这两个结论,就能分析出当时弹簧所处的 状态。这种临界问题又分以下两种情况:
解:振动能量等于振子在最远点处时弹簧的弹性势能。在B或C射入,不改变最 大弹性势能,因此不改变振动能量,也不改变振幅;但由于振子质量增大,加 速度减小,因此周期增大。 振动能量还等于振子在平衡位置时的动能。在O点射入,射入过程子弹和木块 水平动量守恒,相当于完全非弹性碰撞,动能有损失,继续振动的最大动能减 小,振动能量减小,振幅减小;简谐运动周期与振幅无关,但与弹簧的劲度和 振子的质量有关。子弹射入后,振子质量增大,因此周期变大。选D。
弹簧问题解题方法
一.考纲要求 考纲要求
• 轻弹簧是一种理想化的物理模型,以轻 质弹簧为载体,设置复杂的物理情景,考查 力的概念,物体的平衡,牛顿定律的应用及 能的转化与守恒,是高考命题的重点,此类 命题几乎每年高考卷面均有所见,应引起足 够重视.
二.解题突破点 解题突破点
• 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧 时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一 般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出 形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大 小、方向,以此来分析计算物体运动状态的可能变化. • 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在 瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力 . 大小不变,即弹簧的弹力不突变. • 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力, 再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守 恒定律求解.同时要注意弹力做功的特点:Wk=-( kx22- kx12),弹力的 功等于弹性势能增量的负值.弹性势能的公式Ep= kx2,高考不作定量要 求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以 能量的转化与守恒的角度来求解.
• 例3.如图5所示,轻弹簧的一端固定在地面上,另一端与木块B 相连,木块A放在木块B上,两木块质量均为m,在木块A上施有 竖直向下的力F,整个装置处于静止状态. • (1)突然将力F撤去,若运动中A、B不分离,则A、B共同运动 到最高点时,B对A的弹力有多大? • (2)要使A、B不分离,力F应满足什么条件?
1.仅靠弹簧弹力将两物体弹出,那么这两个物 体必然是在弹簧原长时分开的。
• 例1.如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下 端固定在水平面上,用竖直向下的力F压A,使弹簧压缩量足够大后, 停止压缩,系统保持静止。这时,若突然撤去压力F,A、B将被弹出 且分离。下列判断正确的是 • A.木块A、B分离时,弹簧的长度恰等于原长 B.木块A、B分离时, 弹簧处于压缩状态,弹力大小等于B的重力 • C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重 力 • D.木块A、B分离时,弹簧的长度可能大于原长
• 例1.如图所示,质量分别为m和2m的A、B两个木块间 用轻弹簧相连,放在光滑水平面上,A靠紧竖直墙。用 水平力F将B向左压,静止后弹簧储存的弹性势能为E。 若突然撤去F,那么A离开墙后,弹簧的弹性势能最大值 将是多大?
解:A离开墙前A、B和弹簧组成的系统机械能守恒,弹簧恢复 原长过程,弹性势能全部转化为B的动能,因此A刚离开墙时刻, B的动能为E。A离开墙后,该系统动量守恒,机械能也守恒。 当A、B共速时,系统动能最小,因此弹性势能最大。A刚离开 墙时刻B的动量和A、B共速时A、B的总动量相等,由动能和动 量的关系Ek=p2/2m知,A刚离开墙时刻B的动能和A、B共速时系 统的动能之比为3∶2,因此A、B共速时系统的总动能是2E/3, 这时的弹性势能最大,为E/3。
• 例3.如图9所示,一劲度系数为k=800N/m的轻弹簧两端各焊接 着两个质量均为m=12kg的物体A、B。物体A、B和轻弹簧竖立静 止在水平地面上,现要加一竖直向上的力F在上面物体A上,使 物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设 整个过程中弹簧都处于弹性限度内,取g=10m/s2 ,求: (1) 此过程中所加外力F的最大值和最小值。 • (2)此过程中外力F所做的功。
2.除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。那 除了弹簧弹力,还有其它外力作用而使相互接触的两物体分离。
么两个物体分离时弹簧必然不是原长。 么两个物体分离时弹簧必然不是原长 例4.如图所示,质量均为m=500g的木块A、B叠放在一起,轻弹簧的 劲度为k=100N/m,上、下两端分别和B与水平面相连。原来系统处于 静止。现用竖直向上的拉力F拉A,使它以a=2.0m/s2的加速度向上做匀 加速运动。求:⑴经过多长时间A与B恰好分离?⑵上述过程中拉力F 的最小值F1和最大值F2各多大?⑶刚施加拉力F瞬间A、B间压力多大?
解:剪断细线瞬间,细线拉力突然变为 零,弹簧对P的拉力仍为3mg竖直向上,因 此剪断瞬间P的加速度为向上2g,而Q的加 速度为向下g;剪断弹簧瞬间,弹簧弹力突 然变为零,细线对P、Q的拉力也立即变为 零,因此P、Q的加速度均为竖直向下,大 小均为g。选C。
• 例2、如图2所示,一个弹簧台秤的秤盘质量和弹簧 质量都不计,盘内放一个物体P处于静止,P的质量 m=12kg,弹簧的劲度系数k=300N/m。现在给P施加 一个竖直向上的力F,使P从静止开始向上做匀加速 直线运动,已知在t=0.2s内F是变力,在0.2s以后F是 恒力,g=10m/s2,则F的最小值是 ,F的最大值 是 。
六.弹性势能问题 弹性势能问题
• 机械能包括动能、重力势能和弹性势能。 其中弹性势能的计算式 高中不要求掌握, 但要求知道:对一根确定的弹簧,形变量 越大,弹性势能越大;形变量相同时,弹 性势能相同。因此关系到弹性势能的计算 有以下两种常见的模式:
1.利用能量守恒定律求弹性势能。 .利用能量守恒定律求弹性势能。
三.弹力的大小 弹力的大小
• • • 弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是 弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。 高中研究的弹簧都是轻弹簧(不计弹簧自身的质量)。 不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹 力一定等大反向。证明如下:以轻弹簧为对象,设两端受到的弹力分别为 F1、F2,根据牛顿第二定律,F1+F2=ma,由于m=0,因此F1+F2=0,即F1、F2 一定等大反向。 弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。 如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断, 那么弹簧两端的弹力都将立即变为零。 在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变 量x成正比。由于形变量的改变需要一定时间,因此这种情况下,弹力的大 小不会突然改变,即弹簧弹力大小的改变需要一定的时间。(这一点与绳 不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改 变可以是瞬时的。)
• 例1.如图所示,木块P和轻弹簧组成的弹簧振子在光滑水平面上做简 谐运动,O为平衡位置,B、C为木块到达的最左端和最右端。有一颗 子弹竖直向下射入P并立即留在P中和P共同振动。下列判断正确的是 A.若子弹是在C位置射入木块的,则射入后振幅不变,周期不变 • B.若子弹是在B位置射入木块的,则射入后振幅不变,周期变小 • C.若子弹是在O位置射入木块的,则射入后振幅不变,周期不变 • D.若子弹是在O位置射入木块的,则射入后振幅减小,周期变大
• 例2.如图所示,轻弹簧下端固定,竖立在水平面上。其正上方A位置 有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在C位 置小球所受弹力大小等于重力,在D位置小球速度减小到零。小球下 降阶段下列判断中正确的是 A.在B位置小球动能最大 • B.在C位置小球加速度最大 • C.从A→C位置小球重力势能的减少等于小球动能的增加 • D.从B→D位置小球重力势能的减少小于弹簧弹性势能的增加
解:A→C小球受的合力一直向下,对小球做正功,动能增加;C→D 小球受的合力一直向上,对小球做负功,使动能减小,因此在C位置小 球动能最大。从B到D小球的运动是简谐运动的一部分,且C为平衡位置, 因此在C、D间必定有一个B´点,满足BC=B´C,小球在B´点的速度和 加速度大小都和在B点时相同;从C到D位移逐渐增大,回复力逐渐增大, 加速度也逐渐增大,因此小球在D点加速度最大,且大于g。从A→C小 球重力势能的减少等于小球动能的增加和弹性势能之和,因此重力势能 的减少大于动能的增大。从B→D小球重力势能减小,弹性势能增加, 且B点动能大于D点动能,因此重力势能减少和动能减少之和等于弹性 势能增加。选D。
相关文档
最新文档