章电解与极化作用学时
第10章电解与极化作用
a H
a4 O2
此电池的可逆电动势 ( 当 pH2 = pO2 = pθ 时 )
E H ,O2 0.05915lg aH
1
1
0.05915lg aH 0.05915lg
pH2 P
2
pO2 p
4
H ,O2 1.229V
结论:
实际分解电压( E 分解)=理论分解电压 ( E 可逆) + 超电势 ( △E )
6
注意:
如果外电压再增大,则此 电压只增加溶液中的电位降, 从而使电流急剧增加。如图中 的 2 ~ 3 段。
此时
( E外 - E分解 ) = I R
3
1.229 V 1
1.70 V 2
E分解
2~3 直线外延至 I=0 处所得的电压,即 E 分解. ——— 使电解质溶 液能连续不断发生电解时所必须的最小外加电压,称为该电解质溶液的
注意:在实际电解时,
外加于阳极上的电势要比可逆电极电势要正一些; 外加于阴极上的电势要比可逆电极电势要负一些。
10
1、浓差极化 当电流通过电极时,如果在电极与溶液界面处化学反应的速度较快,
而离子在溶液中的扩散速率相对较慢,则在电极表面附近处有关离子的浓 度将会与远离电极的本体溶液有差别。这种差别造成了浓差极化。
22
析出电势
析出电势(deposition potential)指物质在电极上开始放电并从溶 液中析出时所需施加的电位。
Note: 电流密度很小时接近于可逆的电极电势; 电流密度增大时,就有超电势存在。
1、阴极上金属的析出和氢超电势
离子的析出电势 阴,析出=阴,可逆-阴
当电解质中含有多种金属离子时,电极电势越高的离子越容易获 得电子还原成金属。阴极电势逐渐由高变低。
物化教案新部编本电解与极化作用
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第37 次课 2 学时注:本页为每次课教案首页第十章电解与极化作用使电能转变成化学能的装置称为电解池。
当一个电池与外接电源反向对接时,只要外加的电压大于该电池的电动势E一个无限小值时,电池接受外界所提供的电能,电池反应发生逆转,原电池就变成了电解池。
但实际上要使电解池能连续正常工作,所加的电压要比电动势E大很多,这些多出来的电能有的用来克服电阻的电压降,有的消耗在克服电极的极化作用上。
无论是电解池还是原电池,只要有电流通过,就有极化作用发生。
这样的过程就是不可逆过程。
研究电化学中的不可逆过程及其规律性对电化学工业是十分重要的。
在本章中除了讨论电解池中的极化作用外,还简要介绍一些电解在工业上的应用以及金属的防腐和化学电源等。
§10-1 分解电压上面我们研究的电池热力学要求电池都是可逆电池,也就是说通过电池的电流趋于零,而在实际使用化学电源或进行电解时,都有一定的电流通过,因而都是不可逆过程,例如氢-氧燃料电池的可逆电动势为1.229V,其电池的实际工作电压为0.9V以下,而电解水的电压则需2V以上,那么如何使实际工作电压接近可逆电动势,就要借助于化学动力学。
在这部分我们主要讨论电解时的极化作用。
一、分解电压及其测定例如:用Pt 作为电极电解1 mol·dm-3的Na2SO4溶液。
电解反应为阴极(负极) 2H++ 2e-→H2(g)阳极(正极) H2O →(1/2)O2(g) + 2H++2e-总反应为H2O →H2(g) +(1/2) O2(g)测定分解电压的装置测定分解电压的电流-电压曲线实验装置如图所示。
逐渐增加外加电压,由安培计G和伏特计V分别测定线路中的电流强度I 和电压E,画出I-E曲线。
从电压-电流曲线可看出,当电压很小时,几乎没有电流通过电路,电压增加,电流略有增加,随着E的增大,电极表面产生少量氢气和氧气,但压力低于大气压,无法逸出。
10电解和极化作用
Pt │ H2(g) │ H+(aq) │O2(g) │ Pt
RT 1 E反 E ln pH2 pO2 2F p p
V实 际 V理 论
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势 (阴) 和 (阳) ,以及克服电
H 高的金属:Pb, Cd , Hg , Zn, Bi , Sn 2 H 2 居中的金属:Fe , Co, Ni , Cu,W , Au H 2 低的金属:Pt , Pd
阳极上的反应 电解时阳极上发生氧化反应。发生 氧化的物质通常有:(1)阴离子,如 Cl , OH 等, (2)阳极本身发生氧化。 (1) 金属的溶解反应顺序直接以φe判断(不考虑超电势) (2) 析氧反应:要考虑超电势 当i=10A∙m-2时,析氧的超电势在不同金属上的超电势
+
(1) 金属的析出反应顺序直接以φe判断(不考虑超电势) (2) 析氢反应:要考虑超电势
氢超电势的Tafel方程:η= a + b lg J 式中,a、b为经验常数,称为Tafel常量。其中, a与电极材料、表面状态、溶液组成、温度等有关。 b对大多数金属来说,值相近,约为0.116V。 所以,氢超电势的大小主要由a决定。a越大,氢 超电势越大。
大小顺序如下:Co<Fe<Cu<Ni<Cd<Pt
从超电势的大小来看,用Pt作为阴阳极的电极材料,可 以有效阻止析氧反应和析氢反应的发生,尽可能保证 金属的溶解和析出反应顺序不受干扰。
三 电解过程的应用 注意事项:
①考虑阴阳极的所有反应
②随电解的进行,溶液浓度改变, 电极电势会随之 发生变化, 实际分解电压也会有相应变化
电解与极化作用
第九章 电解与极化作用前边讨论的电池与电极都是可逆的,那么应用能斯特公式来处理电化学体系时,它的前提就是该体系必须是处于热力学平衡态,但是对于一些现实的电化学过程来说一般都是不可逆过程,因此应用Nernst 公式研究电化学问题就具有很大的局限性。
事实上当原电池或电解池,只要有电流通过,就有极化作用发生,该过程就是不可逆过程。
研究不可逆电极反应及其规律性对电化学工业是十分重要的,所以我们要讨论不可逆电极过程。
在这一部分除了讨论电解池中的极化作用外,还要简单介绍一些电解在工业上的应用上及金属的防腐和化学电源等。
§9-1 电极的极化1、不可逆条件下的电极电势一个不可逆电池所具备的条件有两个:①电池反应在充电与放电时互为逆反应;②通过电池的电流I →0,即没有电流通过电池。
显然组成可逆电池的两个电极都是可逆电极,那么可逆电极的电极反应都是在可逆的条件下发生的。
这时电极所具有的电势就称为可逆电极电势。
可逆电极电势对许多电化学和热力学问题的解决是相当重要的。
但是在实践当中许多电化学过程,如进行电解和使用化学电源做电功时,并不是在可逆情况下进行的,也就是说要有电流通过电池或电解池,此时的电极反应就是不可逆的了,不可逆电极的电极电势用“I ϕ”表示,当然这个电极电势与可逆电极的电极电势r ϕ是不相同的,那么我们就把电极在有限电流通过时所表现的电极电位I ϕ与可逆电极电势产生偏差的现象叫做电极的极化。
偏差的大小(绝对值),称为“过电势”。
用“η”表示,||r I ηϕϕ=-,对于原电池,在可逆放电时,两电极的端电压是最大的,这个端电压就是电动势E ,它等于两个可逆电极的电位差。
()()()()r r r r E ϕϕϕϕ=-=-正阳阴负在不可逆条件下进行放电,两电极的端电压用E I 表示,它一定要小于原电池的电动势E ,E I <E ,E I =E-△E其电动势的降低主要是由于两个因素引起的,当有电流通过时, ①电池具有一定的内阻R 的消耗电位降IR ;②不可逆条件电极要产生极化,也会造成电动势下降,所以不可逆电池两电极的电位差通常就叫端电压。
物理化学10章_电解与极化作用
对于在阳极、阴极均有多种反应可以发主的情况
下,在电解时,阳极上总是极化电极电势最低的反应
优先进行,阴极上总是极化电极电势最高的反应优先
进行。
阴,1
阳,1
阴,2
阴 = 阴,可逆 – 阴 阳 = 阳 – 阳,可逆
阳,2
故 阴= 阴,可逆– 阴 阳 = 阳,可逆+ 阳
上一内容 下一内容 回主目录
返回
2020/9/6
E(分解) E(可逆) E(不可逆) IR
E(不可逆) (阳) (阴)
显然分解电压的数值会随着通入电流强度的增 加而增加。
上一内容 下一内容 回主目录
返回Biblioteka 2020/9/6§10.2 极化作用
电流通过电极时,电极电势偏离平衡电极电势的
现象称为电极的极化。
超电势
= | –可逆 |
(1)浓差极化
E(理论分解 ) E(可逆)
上一内容 下一内容 回主目录
返回
2020/9/6
§10.2 极化作用
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电势降 IR。这三者的加和就称为实 际分解电压。
上一内容 下一内容 回主目录
返回
2020/9/6
§10.1 分解电压
在大气压力下于l mol·m–3盐酸溶液中放入两个铂 电极,将这两个电极与电源相连接。如图:
氯气
氢气
上一内容 下一内容 回主目录
分解电压
返回
2020/9/6
§10.1 分解电压
理论分解电压 使某电解质溶液能连续不断发生 电解时所必须外加的最小电压,在数值上等于该电 解池作为可逆电池时的可逆电动势:
物理化学课件6.3章电解与极化作用
实验材料
电解槽、电极、电源、电解质溶液等。
电解实验的设计与操作
实验步骤 1. 准备实验材料,配置电解质溶液。
2. 将电极插入电解槽中,连接电源。
电解实验的设计与操作
3. 观察并记录电极反应现象,测量电流和电压。 4. 分析实验数据,得出结论。
极化作用的实验研究方法
实验目的
通过实验研究,探究极化作用对电极反应的影响,理解极化作用的原理。
电解分离与提纯
总结词
电解分离和提纯是利用电解的原理将混 合物中的不同组分进行分离或提纯的方 法。
VS
详细描述
电解分离是通过电解过程中不同物质在电 极上的吸附、氧化还原反应等特性差异实 现分离。电解提纯则是利用电解过程将杂 质去除,实现物质的纯化。
05 极化作用的应用
电化学反应器
电解槽
利用电解原理进行物质转 化的设备,如氯碱工业中 的隔膜电解槽和电解水制 氢装置。
详细描述
电镀是将金属离子在电场作用下还原成金属并沉积在阴极表面,用于表面防护和装饰。电冶金则是利 用电解过程提取金属,从矿石或盐类等原料中分离和提纯金属。
电解制取气体
总结词
电解水是制取氢气和氧气的常用 方法,具有清洁、高效的特点。
详细描述
通过电解水可以将水分子分解成 氢气和氧气,分别在阴极和阳极 析出。电解水制取的气体可用于 燃料电池、医疗、潜水等领域。
电极反应的极化曲线
极化曲线是描述电极电势与电流密度之间关系的曲线,可以用来研究电极反应的动 力学过程和机理。
在极化曲线上,可以根据电流密度的大小来判断电极反应的速率快慢,以及电极电 势偏离可逆电势的程度。
通过测量不同温度下的极化曲线,可以研究电极反应的热力学性质和动力学过程。
2010 第十章电解与极化作用
A
电位计
辅助电极
待测电极
甘汞电极
j
j
η阳
η阴
阳,可逆
阴,可逆
(b)阴极极化曲线
(a)阳极极化曲线
阳 = 阳,不可逆 - 阳,可逆
阴 = 阴,可逆 - 阴,不可逆
阳,析出 = 阳,可逆 +阳
阴,析出 = 阴,可逆 - 阴
电极电势
பைடு நூலகம்E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴
电解质 HCl HNO3 H2SO4 NaOH CdSO4 NiCl2 浓度 c / mol · -3 dm 1 1 0.5 1 0.5 0.5 电解产物 H2 + Cl2 H2 + O2 H2 + O2 H2 + O2 Cd + O2 Ni + Cl2 E分解 /V 1.31 1.69 1.67 1.69 2.03 1.85 E理论/ V 1.37 1.23 1.23 1.23 1.26 1.64
a b ln( j /[ j ])
单位电流密度 时的超电势 电流密度
j 很小时:
j
10.3 电解时电极上的竞争反应
阴极上的反应
阳极上的反应
金属离子的分离
分解电压 E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴 E理论分解= E可逆
一、阴极上的反应
物理化学—第十章
电极电势
电极电势
第十章 电解与极化作用
10.1 分解电压
10.2 极化作用 10.3 电解时电极上的竞争反应
10.1 分解电压
HCl
分解电压 使某电解质溶液能连续不断发生电解时所必
物理化学——第10章-电解和极化
Zn2++2eZn2++2e-
§10.2 极化作用
由此可见: (1) 电化学极化的原因:当I≠0时,电极上的 电化学反应具有阻力,使电极上的带电 情况发生变化,从而使值与平衡值产 生偏离。
(2) 电化学极化结果: 阴↓, 阳↑。
(3) 除Fe、Co、Ni等少数金属外,其他金属 电极的电化学极化程度都很小,而气体 电极的电化学极化程度一般都很大。
如
Ag析出, Ag+ Ag(s)
此时该电极的φir就是Ag +的析出电势
注意:析出电势不是φθ和φr 阴极:Φir = φr - η 阳极:Φir = φr + η
§10.3 电极上的竞争反应
离子在电极上的析出顺序 E(分解) = φir(阳极) - φir(阴)
φir(A-) > φir(B-) > φir(C-) 阳级:
浓差极化
例:电池 Zn|Zn2+(b1)||Cu2+(b2)|Cu
阴极: Cu2+(b2)|Cu
I→0, Cu2+(b2)+2eθ
Cu
RT 1 r ,阴= 阴 ln θ (为简单,=1) 2 F b2 b
I≠0, Cu2+(b2´)+2e- Cu
RT 1 ir ,阴= 阴 ln ' θ r ,阴 2F b 2 b
第电能的装置 电解池:将电能转变为化学能的装置 可逆电池和可逆电解池互为逆反应。
本章主要讨论不可逆的原电池和电解池
可逆电极:平衡,I→0, r 实际电极:I≠0,不平衡,不可逆电极过程, ir 本章讨论: (1) r与ir的区别。以及由此引起 的不可逆电池和电解池与可逆电池 和电解池的区别. (2) 当电解池中多种电极可能成为 阳极(或阴极)时,到底哪个是真正的 阳极(或阴极)。
10章_电解与极化作用[1].1ppt
所产生的氢气和氯气构
2
成了原电池,外加电压必须
1
克服原电池产生的反电动势,
E分解
电压E
继续增加电压,I 有少许增 加,如图中1-2段
测定分解电压时的电流-电压曲线
当外压增至2-3段,氢
气和氯气的压力等于大气
电 流
压力,呈气泡逸出,反电 I
动势达极大值 Eb,max。
3
再增加电压,使I 迅速增 加。将直线外延至I = 0 处, 得E(分解)值,这是使电解池 不断工作所必需外加的最小 电压,称为分解电压。
以Re表示电极表面层的电阻,I表示通过的电流, 则 η电阻=ReI
三 超电势
在某一电流密度下,实际发生电解的电极电势 不 可 逆 与可逆电极电势 可 逆 之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于 超电势使电极电势变小。
为了使超电势都是正值,把阴极超电势 阴 和阳 极超电势 阳 分别定义为:
随着电流密度的增加,阳极析出电势变大, 阴极析出电势变小。
由于极化,使原电池的做功能力下降。
利用这种极化降低金属的电化腐蚀速度。
极化曲线(polarization curve)
η阳
E可逆 -ΔE不可逆
η阴
j(电流密度)
E可逆
电极电势
原电池中两电极的极化曲线
E端 = φ不可逆,阴 -φ不可逆,阳 = E可逆 - η阴 - η阳
10章_电解与极化作用[1].1ppt
第十章 电解与极化作用
§10.1 分解电压 §10.2 极化作用 §10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源 *§10.5 电有机合成简介
207-223 第十章电解与极化作用
为了不使 H2 析出,问溶液的 pH 值应控制在多少为好?
解:若 E(Zn2+|Zn)>E(H+|H2),则 Zn(S)析出而 H2 不能析出.
即: -0.763V+ 0.5916V lg10−5 >-0.05916V pH-0.75V 2
pH>2.72.
例 3 25°时,用 Zn 电极作为阴极,电解 a±=1 的 ZnSO4 水溶液。
( ) 阳极
H2O ⎯⎯→ 2H+
aH+
+
1 2
O2
(g
)
+
2e−
E阳,析出
=
E O2 H2O H+
+
RT 2F
ln
a2 H+
+O2
= 1.23
V+ RT 2F
ln (0.01)2
+ 0.5
V = 1.612
V
( ) E分解 = E阳,析出 − E阴,析出 = 1.612 + 0.17 V=1.782 V
(1)已知,水溶液为中性,则 Zn2+在 Zn 的平衡电极电势 Ee(Zn2+|Zn)及 H2 在 Zn 电 极上析出的平衡电极电势 Ee(H+|H2)各位多少?
(2)又知在某一电流密度下,H2 在 Zn 极上的超电势为 0.7 V,则 H2 在 Zn 上实际析出 的电势 EH2=?
(3) 若 Zn 在 Zn 电极上的超电势可忽略不计,则上述电解过程中在 Zn 极上优先析出的 是什么?
E 分解=E 可逆+△E 不可逆+IR 2.产生极化作用的原因主要有哪几种?原电池和电解池的极化现象有何不同? 答:产生极化作用的主要原因是电化学极化和浓差极化。电解时,电流密度愈大,超电 势愈大。外加电压也要增大,所消耗能量越多。原电池放电时,有电流在电极上通过,随着 电流密度增大。由于极化作用,正极比可逆电视愈来愈小,负极比可逆电势愈来愈大,原电 池的电动势逐渐减小,它所能作的电功逐渐减小。 3.什么叫超电势?它是怎样产生的?如何降低超电势的数值? 答:把某一电流密度下的电势 φ 与 不可逆 φ 可逆之间的差值称为超电势,超电势产生的原因 有,电化学极化和浓差极化,及电解过程中,在电极表面形成一层氧化膜或其他物质,从而 对电流的通过产生阻力(电阻超电势),在外加电压不大的情况下,把溶液剧烈搅动可以降 低浓差极化,但由于电极表面扩散层的存在,不可能把浓差极化完全除去。除此之外,还可 以加入去极化剂和减小体系的阴值 R 来减低超电势的值。 4.析出电势与电极的平衡电势有何不同?由于超电势的存在,使电解池阴、阳极的析出
10章_电解与极化作用
§10.4 金属的电化学腐蚀、防腐与金属的钝化
金属腐蚀分两类:
(1)化学腐蚀 金属表面与介质如气体或非电 解质液体等因发生化学作用而引起的腐蚀,称为化 学腐蚀。化学腐蚀作用进行时无电流产生。
(2)电化学腐蚀 金属表面与介质如潮湿空气或 电解质溶液等,因形成微电池,金属作为阳极发生 氧化而使金属发生腐蚀。这种由于电化学作用引起 的腐蚀称为电化学腐蚀。
• 大部分金属离子的超电势很小,可忽略不计,析出 电势等于可逆电极电势。
• H+析出的超电势较大,其析出电势甚至小于Zn、 Cd、Ni等金属离子的析出电势。可以利用氢超电势 进行电镀、制备金属。
例:用Pt电极电解含CuSO4(0.1 mol dm-3), ZnSO4(0.1 mol dm-3)和H2SO4(0.1 mol dm-3)的混合溶液, (1)电解时那种物质先析出,初始电压是多少?
将含有杂质的粗锌放入稀硫酸中,腐蚀速度 比纯锌快
既有化学腐蚀,又有电化学腐蚀
H2 (气泡)
H2SO4
Zn
杂质
金属的电化学腐蚀 铜板上的铁铆钉为什么特别容易生锈? 暴露在空气中,表面 被潮湿空气或雨水浸润, 空气中的 CO2,SO2 和海边 空气中的NaCl溶解其中, 形成电解质溶液,这样组 成了原电池
用搅拌和升温的方法可以减少浓差极化
也可以利用滴汞电极上的浓差极化进行极谱分析。
§10.2 极化作用
例如电解一定浓度的硝酸银溶液
阴极反应
Ag+ (mAg+ ) e Ag(s)
电解时
可逆
Ag |Ag
RT F
ln
1 aAg+
不可逆
Ag |Ag
RT F
ln
1 ae,Ag
第十章电解与极化作用
第十章电解与极化作用教学目的与要求:使学生了解和掌握在非可逆的条件下的一些电化学的基本概念, 电解池的电流和电势之间的关系, 电极电势和电池的电动势, 非可逆条件下的电极反应,电极电位和电池的电动势,以及金属的电化学腐蚀与金属的腐蚀的防护等内容。
在理论上,当一个电池和一个电源反向对接时,只要外加电压比对电池的可逆电动势大一个无穷小,原电池就变成电解池。
但在实际的电解工作中,外加的电压要比电池的可逆电动势大得多,这一方面是由于电极的极化,另一方面是由于电解池的内阻对电压的消耗。
研究不可逆的电极过程对电化学工业具有重要的应用意义,本章讨论电解在工业中的应用以及金属的腐蚀与防护,以及化学电源等。
重点与难点:电解池的电流和电势之间的关系, 电极电势和电池的电动势, 非可逆条件下的电极反应,以及金属的电化学腐蚀与金属的腐蚀的防护。
§10.1分解电压以电极电解溶液的装置(如右图所示)来说明,在电解时的电极反应是阴极:阳极:在电解时外加电压E和电流之间的关系(右图所示),电解时需要明确的几个问题:1.在电解时,在阳极上会产生氯气,在阴极会产生氢气,电解池实际上构成了一个电池。
2.当外加电压很小时,通过的电流很小。
在阴阳两极不会产生和气泡,产生的和以扩散的形式进入溶液。
3.当外加电压增大到一定数值的时候,产生的和的压力和大气压力相等,此时和会在电极上产生气泡,并且不断逸出,通过的电流也相应增大。
4.继续增大电压,电流也相应增大。
5.在曲线上的直线部分外推到时的电压值称为该电解质溶液的分解电压分解,这个数值具有实际的应用价值,但不具有理论的意义,和对应的电池的可逆电动势也无什么严格的联系。
但对电解过程来说,分解可以看作欲使某一溶液顺利电解所需要的施加的电压。
§10. 2极化作用当电解池通过一定的电流时,所加的外加电压要大于由电解池构成的电池的可逆电动势,这是由于:1.在电解池中内阻的存在引起的电压降,2.不可逆的情况下,电池的电动势偏离该电池的可逆电动势()。
物理化学第十章 电解与极化作用
3、析出电势 :
ϕ阳,不可逆 = ϕ阳,析出 = ϕ阳,可逆 + η阳 ϕ阴,不可逆 = ϕ阴,析出 = ϕ阴,可逆 − η阴
三、极化曲线-超电势的测定 1、测定超电势的装置
2、电解池中两电极的极化曲线
j(电流密度)
阴极曲线
阳极曲线
E可逆+ΔE不可逆
E可逆
η阴
η阳
电
−ϕ
+ϕ
电解池中两电极的极化曲线
正极: 负极:
LiCoO 2 , LiNiO 2 , LiMn 2 O 2
石墨,焦炭
2
正极反应: L i C o O
+
充 + Z Z Z X L i C o O + x L i + YZ Z Z 1 -x 2 放 −
充 ZZZ X Li C 负极反应: C+xLi + xe YZZ Z x 放
总反应:
Ag + (a ) Ag ( s ) Ag + (a ) + e − → Ag ( s ) RT 没有电流通过时 : ϕ Ag + / Ag (可逆) = ϕ + + ln a Ag + Ag / Ag F RT θ 有电流通过时:ϕ Ag + / Ag (不可逆) =ϕ + + ln a’ + Ag / Ag Ag F 扩散速度小于电极反应速度,a’ + < a Ag +
3、原电池中两电极的极化曲线
η阳
j(电流密度)
E可逆 -ΔE不可
η阴
负 极 曲 线 E可逆
正 3;ϕ
电解池中两电极的极化曲
4、氢超电势
第十章 电解与极化作用
2017/11/22
Shenming
6
第十章 电解与极化作用
当 外 压 增 至 23 段 , 氢气和氧气的压力等于 大气压力,呈气泡逸出, 反电动势达极大值 Eb,max。 再增加电压,使I 迅速增加。将直线外延 至 I =0 处,得 E( 分解 ) 值,这是使电解池不断 工作所必需外加的最小 电压,称为分解电压。
物理化学
Physical Chemistry
第十章 电解与极化作用
在实际的电化学过程中,无论是把电能转 变成化学能,还是把化学能转变成电能,即不
论是电解池还是原电池,都不可能在没有电流
通过的情况下运行,因为 I→0意味着没有任何 生产价值。因此,实际过程中的电极是有电流 通过的,即实际的电极过程是不可逆电极过程, 这种情况下的电极电势叫不可逆电极电势。 2017/11/22
见教材p126-129。
Shenming
27
第十章 电解与极化作用
§10.3 电解时电极上的竞争反应 一、 析出电势
在一个指定的电解池中,每一种离子从溶液中析出 时的电极电势称为相应物质的析出电势。它所对应的是 实际电极电势,在一定温度下析出电势既与溶液的浓度 有关,也与超电势有关。因而析出电势是前面所讲的不 可逆电极电势或实际电解时的电极电势。 实际分解电压 确定了阳极、阴极析出的物质后,将两 者的析出电势相减,就得到了实际分解电压。因为电解 池中阳极是正极,电极电势较高,所以用阳极析出电势 减去阴极析出电势。
26
第十章 电解与极化作用
历史上对氢的超电势研究较多的原因:
(1)在许多实际的电化学系统中均会遇到氢的 氧化还原反应; (2)在水溶液电镀工业中,氢在阴极上析出是 不可避免的副反应; (3)金属腐蚀过程与氢的氧化还原过程密切相关;
第十章电解与极化作用_311_new
第十章 电解与极化作用
标准氢电极 || 待定电极
若待定电极发生还原反应,则电极电势为正; 若待定电极发生氧化反应,则电极电势为负。
上述规定的电极电势是将待定电极作为还 原电极而确定出来的,故称为还原电极电势。
注意:电极的电极电势不是绝对电势,而是相 对于标准氢电极的电极电势规定为零的相对电 极电势。
Zn(s)|Zn2 (aZn2 )||Cu2 (aCu2 )|Cu(s)
()
Zn(s)
Zn
2
(a Zn
2
)
2e
() Cu2 (aCu2 ) 2e Cu(s)
净反应: Zn(s) Cu2 (aCu2 ) = Cu(s) Zn2 (aZn2 )
计算方法2(由电池Nernst方程计算):
E =
E
E RT ln aB
绝对值。 解决问题的办法:国际上统一(人为)规定:标准
氢电极的电极电势j 为零。(1958年IUPAC规定)
2
第十章 电解与极化作用
1. 标准氢电极
将镀有一层疏松铂黑的铂片插
入 a(H+) = 1 的酸溶液中。
在298.15K时不断通入 p(H2) =100kPa的纯氢气流,铂黑很
易吸附氢气达到饱和,同时对
6
标准氢电极第|十| 待章定电电极解与极化作用 j 增大
K | K(s)
Ca 2 | Ca(s)
Al3 | Al(s) Zn2 | Zn(s) Pb2 | Pb(s)
jOx | Red < 0
(非自发电池)
j Pt| H2 (p ) | H+ (aH+ =1)|| H2 (p ) | Pt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电极
电极反应(还原)
Cl (a )ㅣAgCl(s)ㅣAg(s)
AgCl(s) e Ag(s) Cl (a )
Cl
(a
)ㅣHg
2
Cl
2
(s)ㅣHg(l)
Hg2Cl2 (s) 2e
H
(a
)ㅣAg
2O(s)ㅣAg(s)
2Hg(l) 2Cl (a )
Ag
2
O(s)
2H
(a
)
2e
2Ag(s) H2O(l)
2
2
O (p) 2
4H (a )
4e
2H 2O(l)
O (p) 2H O 4e 4OH (a )
2
2
Cl (a )ㅣCl (p)ㅣPt
2
Na (a )ㅣNa(Hg)(a)
Cl (p) 2e 2Cl (a )
2
Na+ (a ) nHg(l) e Na(Hg)(a)
第二类电极的电极反应
作业问题
• 2(9) Pb(s) + HgO(s) = Hg(l) + PbO(s) • 很难发现电解质是什么 • 但是很容易判断电极的种类,显然为金属及金属氧
化物电极。则电解质既可以是酸也可以是碱。因为 Pb被氧化,所以做负极;HgO被还原,做正极。 • Pb(s)|PbO(s)|H+(a)|HgO(s)|Hg(l) • Pb(s)|PbO(s)|OH-(a)|HgO(s)|Hg(l)
OH
(a
)ㅣAg
2
O(s)ㅣAg(s)
Ag2O(s) 2H2O 2e
2Ag(s) 2OH (a )
第三类电极的电极反应
电极
电极反应(还原)
Fe3 (a1 ), Fe2 (a2 )|Pt Sn4 (a1 ), Sn2 (a2 )|Pt Cu2 (a1), Cu (a2 )|Pt
Fe3 (a1) e Fe2 (a2 ) Sn4 (a1) 2e Sn2 (a2 )
回顾:1、电池电动势的产生E 接触 液接
扩散双电层、液接电势 2、氢标还原电极电势
利用标准电动序,在原电池中,可以判断电 势小者易氧化,为负极;在电解池中,阳极上小 者先氧化,阴极上大者先还原。
3、电极还原电极电势的 Nernst 方程
(Ox|Red)
(Ox|Red) RT ln aRed zF aOx
新课:电池电动势测定的应用 5.测定溶液pH
pH的定义 pH lg aH
这样定义的pH只是一个近似值 ,因为单个离子 的活度因子及单个离子的活度均无法用实验来验证
原则上,要测定溶液的pH只需要设计如下的电池
Pt|H2 p |待测溶液pH x‖Cl(aCl )|Hg2Cl2(s)|Hg(l)
• 则电池为:Mg(s)|Mg(OH)2(s)|OH-(a)|O2(g,P)|Pt
作业问题
• 2(8)Mg(s)+1/2O2(g)+H2O = Mg(OH)2(s) • 电池:Mg(s)|Mg2+(a)||OH-(a)|O2(g,P)|Pt • 负极:Mg(s) - 2e = Mg2+(a) • 正极:1/2O2(g,P) + H2O + 2e = 2OH-(a) • 电池反应:
Cu2 (a1) e Cu (a2 )
作业问题:找 错
• 2(7)H2O(l) = H+(a) + OH-(a) • Pt|H2(P)|H+(a)|OH-(a)|H2O(l) • Pt|H2(P)|H+(a)||OH-(a)|Pt • Pt|H2(P)|H+(a)||O2(P)|Pt • Pt|H2(P)|H+(a)||H2O(l)|Pt
验证:
() Ag(s) Cl(aCl ) AgCl(s) e
() Ag (aAg ) e Ag(s)
净反应:
Ag (aAg ) Cl(aCl )AgCl(s)
作业问题:找错
• 2(8)Mg(s)+1/2O2(g)+H2O = Mg(OH)2(s) • 电池:Mg(s)| Mg(OH)2(s)|H2O(l)|O2(g,P)|Pt • Mg(s)| OH-(a)|O2(g,P)|Pt • Mg(s)| Mg(OH)2(s)|O2(g,P)|Pt • Mg(s)| Mg2+(a)||O2(g,P)|Mg(s)|Mg(OH)2(s)
第一类电极的电极反应
电极
电极反应(还原)
Mz (a )ㅣM(s)
H (a )ㅣH (p)ㅣPt
2
OH ( (a )ㅣO (p)ㅣPt
2
OH (a )ㅣO (p)ㅣPt
2
Mz (a ) ze M(s)
2H (a ) 2e H (p)
2
2H O 2e H (p) 2OH (a )
Ag∣ AgCl(s)∣ HCl(m)┋ 溶液(pH x) || Cl(aCl )∣ Hg2Cl2(s)∣ Hg(l)
作业问题
• 2(8)Mg(s)+1/2O2(g)+H2O = Mg(OH)2(s)
• 判断:(1)电解质不明显,但有水反应,有
Mg(OH)2,应该为碱性电解质;
•
(2)选择电极:碱性溶液中的氧气电极,O2
被还原,因此氧电极必为正极;
•
产物为Mg(OH)2难溶物,则负极为第
二类电极:
•
金属|金属难溶化合物|该难溶化合物的负离子
4、二级标准电极-甘汞电极
电极电势只与氯离子的浓度有关
5、 浓差电池和盐桥
• (1)电极浓差电池
(2)溶液浓差电池
6、电动势测定的应用
1) 求反应的热力学性质 2)判断氧化还原的方向 3)求电解质溶液的平均活度因子 4)求难溶盐的活度积
5)pH 的测定 6) 电势滴定 *电势—pH 图及其应用(了解)
• Mg(s) + 1/2O2(g,P) + H2O = Mg2+(a) + 2OH-(a) • 问题: Mg2+(a) 和 2OH-(a)位于不同的电解池,能否
生成Mg(OH)2(s)沉淀?
从化学反应设计电池
Ag (aAg ) Cl(aCl )AgCl(s)
Ags| AgCls| HClaq || AgNO3 aq| Ags
E 甘汞 H+|H2
甘汞
RT F
ln
aH+
甘汞 0.05916 pH
pH E 甘汞
0.059 16 V
5. pH的测定
Pt∣ H2(p )∣ 溶液(pH x) || Cl(aCl )∣ Hg2Cl2(s)∣ Hg(l)
氢电极使用不方便,常用玻璃电极测量, 而用甘汞电极作参比电极
待测液