于都市初三数学竞赛选拔试题

合集下载

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题一、选择题: (每题5分,共 35分)1 .2022减去它的21,再减去剩余的,31再减去剩余的,41……依次类推,一直减去剩余的,20031那么最后剩下的数是〔 B 〕 〔A 〕20031 〔B 〕1 〔C 〕20021〔D 〕无法计算2. 假设 x 3+ax 2+bx+8有两个因式x+1和x+2,那么a+b 的值是 ( D ) 〔A 〕 7 〔B 〕 8 〔C 〕 15 〔D 〕213. ΔABC 的周长是24,M 是AB 的中点,MC=MA=5,那么ΔABC 的面积是〔 C 〕〔A 〕 12 〔B 〕 16 〔C 〕 24 〔D 〕304. DE 为∆ABC 中平行于AC 的中位线,F 为DE 中点,延长AF 交BC 于G ,那么∆ABG 与∆ACG 的面积比为 ( A )〔A 〕1:2〔B 〕2:3〔C 〕3:5〔D 〕4:75. 三角形三条高线的长为3,4,5,那么这三角形是〔 C 〕〔A 〕锐角三角形〔B 〕直角三角形〔C 〕钝角三角形〔D 〕形状不能确定6. 关于x 的方程022=+++m mx x 有不同的实数根,其中m 为整数,且仅有一个实根的整数局部是2,那么m 的值 为〔 A 〕 〔A 〕–2〔B 〕–3〔C 〕–2或–3〔D 〕不存在7. 在凸四边形ABCD 中,DA=DB=DC=BC ,那么这个四边形中最大角的度数是〔 A 〕〔A 〕 120º 〔B 〕 135º 〔C 〕 150º 〔D 〕 165ºC二、填空题: (每题5分,共 35分)1. 假设在方程 y(y+x)=z+120 中, x,y,z 都是质数,而z 是奇数,那么x= 2 .y= 11 .z= 23 .2. 将 2022x 2-(20222-1)x-2022 因式分解得 (x-2022)(2022x+1) .3.正三角形ABC 所在平面内有一点P,使得⊿PAB 、⊿PBC 、⊿PCA 都是等腰三角形,那么这样的P 点有 10 个4.直角梯形ABCD 中,AD ∥BC,AB =BC,∠A =o 90,∠D =o 45,CD 的垂直平分线交CD_________________学区 ___________________中学 姓名_________________ 准考证号_________________………………………………装………………………………订………………………………线………………………………于E,交BA于的延长线于F,假设AD=9cm,那么BF=9 cm;5.四边形的四个顶点为A〔8,8〕,B〔-4,3〕,C〔-2,-5〕,D〔10,-2〕,那么856四边形在第一象限内的局部的面积是156.小明和小刚在长90米的游泳池的对边上同时开始游泳,小明每秒游3米,小刚每秒游2米,他们往返游了12分钟,假设不计转向的时间,那么他们交汇的次数是20.7.一副扑克牌有54张,最少抽取16 张,方能使其中至少有2张牌有相同的点数?三、(此题总分值15分)下表是某学校参加一次数学竞赛中参赛同学做对题目的情况记录表,第一行的值表示做对的题目的题数,第二行的值表示做对相应题目的同学人数.对此次竞赛的情况有如下统计:〔1〕本次竞赛共有12道题目;〔2〕做对3题和3题以上的同学每人平均做对6题;〔3〕做对10题和10题以下的同学每人平均做对5题;问:参加本次竞赛的同学共有多少人?解:设共有x名同学参加了本次竞赛.做对3题和3题以上的人数为x-(1+3)=x-4, 那么,所有同学做对6(x-4)+1⨯1+2⨯3=6x-17题;做对10题和10题以下的人数为x-(1+1)=x-2, 那么,所有同学做对5(x-2)+11⨯1+12⨯1=5x+13题.又做对的总题数相等,所以6x-17=5x+13.解这个方程得 x=30.答:共有30名同学参加了本次竞赛.如图:菱形PQRS 内接于矩形ABCD,使得P 、Q 、R 、S 为AB 、BC 、CD 、DA 上的内点.PB=15、BQ=20、PR=30、QS=40、假设既约分数n m为矩形ABCD 的周长,求m +n.设AS=x 、AP=y ……(2分),由菱形性质知PR SQ,且互相平分,这样得到8个直角三角形,易知PR 与SQ 的交点是矩形ABCD 的中央.由可得其中6个三角形的边长分别为15、20、25.由对称性知CQ 、CR 的长为x 、y .那么Rt △ASP 和Rt △CQR 的三边长分别为x 、y 、25,矩形面积等于8个Rt △的面积之和.那么有:(20+x )(15+y )=6×21×20×15+2×21xy 〔8分〕那么有 3x +4y =120 (1)又 x 2+y 2=625 (2) (2分)得 x 1=20 x 2=544y 1=15 y 2=5117(5分) 当x=20时 BC=x +BQ=40 这与PR=30不合 故 x =544 y =5117 (2分) ∴矩形周长为2(15+20+x +y )= 5672(5分)即:m+n=677 (1分)1、试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上要求分成31个正方形?2、试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同).1、容易把一个正方形分成42=16个正方形,再把其中位于一角的9个拼成一个正方形,共得:16-9+1=8个正方形 . (6分)分成16个正方形后,把其中任意5个分成4个小正方形,共有16-5+5×4=31个正方形. (6分)2、把立方体分割成33=27个立方体,再把其中4个各分成23=8个立方体,共27-4+4×23=55个立方体. 〔8分〕。

初三数学几何竞赛试题及答案

初三数学几何竞赛试题及答案

初三数学几何竞赛试题及答案一、选择题(每题3分,共15分)1. 在直角三角形ABC中,∠C=90°,若a=6,c=10,则b的长度为多少?A. 8B. 9C. 10D. 112. 圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是?A. 相切B. 相交C. 相离D. 内切3. 一个正六边形的边长为a,其外接圆半径为多少?A. aB. √3aC. 2aD. a√34. 已知点P在圆O的内部,PA和PB是点P到圆O的两条切线,PA=PB,圆的半径为r,那么PA的长度为?A. rB. 2rC. √2rD. √3r5. 在三角形ABC中,若∠A=30°,∠B=45°,AB=1,求BC的长度。

A. √2B. √3C. 2D. 3√2二、填空题(每题2分,共10分)6. 已知三角形ABC的三边长分别为a, b, c,且a^2 + b^2 = c^2,那么三角形ABC是_________三角形。

7. 一个圆的直径为10cm,那么它的面积是_________平方厘米。

8. 一个正方体的体积为27立方厘米,它的边长是_________厘米。

9. 如果一个多边形的内角和为900°,那么这个多边形的边数是_________。

10. 在一个直角三角形中,如果一个锐角的度数是另一个锐角的两倍,那么较小的锐角的度数是_________。

三、解答题(每题5分,共20分)11. 在三角形ABC中,已知∠A=60°,∠B=45°,AB=2,求AC的长度。

12. 已知圆O的半径为r,点P在圆O上,PA是点P到圆心O的半径,求点P到圆O的切线长度。

13. 一个正五边形的外接圆半径为R,求正五边形的边长。

14. 已知点M在圆O的直径AB上,且OM=1/3AB,求点M到圆O的切线长度。

四、综合题(每题10分,共20分)15. 已知正方形ABCD的边长为1,E是CD边上的一点,F是BC边上的一点,且CE=CF=1/3。

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】

九年级数学竞赛初赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 一个等差数列的首项为2,公差为3,则第10项为()。

A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(3)的值为()。

A. 6B. 9C. 12D. 155. 在直角坐标系中,点(3, 4)关于y轴的对称点为()。

A. (-3, 4)B. (3, -4)C. (-3, -4)D. (4, 3)二、判断题(每题1分,共5分)1. 两个等腰三角形一定是相似的。

()2. 任何数乘以0都等于0。

()3. 二次函数的图像一定是一个抛物线。

()4. 平行四边形的对角线互相平分。

()5. 一元一次方程的解一定是整数。

()三、填空题(每题1分,共5分)1. 若一个圆的半径为r,则它的周长为______。

2. 若等差数列的首项为a,公差为d,则第n项为______。

3. 若函数f(x) = ax² + bx + c,则它的顶点坐标为______。

4. 在直角坐标系中,点(2, -3)关于原点的对称点为______。

5. 若一个平行四边形的面积为S,底为b,高为h,则S =______。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述二次函数的图像特点。

3. 简述勾股定理。

4. 简述平行线的性质。

5. 简述一元二次方程的解法。

五、应用题(每题2分,共10分)1. 已知一个正方形的边长为10cm,求它的对角线长。

2. 已知等差数列的首项为3,公差为2,求第10项。

3. 已知函数f(x) = 3x² 12x + 9,求它的顶点坐标。

4. 在直角坐标系中,已知点A(2, 3)和点B(4, 7),求线段AB的长度。

2023年全国初中数学竞赛试题

2023年全国初中数学竞赛试题

2023年全国初中数学竞赛试题一、选择题:1.已知实数a ≠b, 且满足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2 。

则b +a 旳值为( ) A.23; B.-23; C-2; D-132、若直角三角形旳两条直角边长为a 、b, 斜边长为c, 斜边上旳高为h, 则有( ) A.ab=h ; B. + = ; C. + = ; D.a2 +b2=2h23、一条抛物线y=ax2+bx+c 旳顶点为(4, -11), 且与x 轴旳两个交点旳横坐标为一正一负, 则a 、b 、c 中为正数旳( )A.只有a;B.只有b;C.只有c;D.只有a 和b 4.如图所示, 在△ABC 中, DE ∥AB ∥FG, 且FG 到DE 、AB 旳距离之比为1: 2。

若△ABC 旳面积为32, △CDE 旳面 积为2, 则△CFG 旳面积S=( ) A.6; B.8; C.10; D.125、假如x 和y 是非零实数, 使得∣x ∣+y=3和∣x ∣y+x3=0, 那么x+y 等于( ) A.3; B 、 ; C 、 ; D 、4- 二、填空题:6.如图所示, 在△ABC 中, AB=AC, AD=AE, ∠BAD=600, 则∠EDC=_____________(度)。

7、据有关资料记录, 两个都市之间每天旳 通话次数T 与这两个都市旳人口数m 、n (单位: 万人)以及两个都市间旳距离d (单位: km )有T= 旳关系(k为常数)。

现测得A.B.C 三个都市旳人口及它们之间旳距离如图所示, 且已知A.B 两个都市间每天旳 通话次数为t, 那么B.C 两个都市间每天旳 次数为 次(用t 表达)。

8、已知实数a 、b 、x 、y 满足a+b=x+y=2 , ax+by=5 , 则(a2+b2)xy+ab(x2+y2)= 。

9、如图所示, 在梯形ABCD 中, AD ∥BC (BC >AD ), ∠D=900, BC=CD=12, ∠ABE=45, 若AE=10, 则CE 旳长度为 。

成都初三数学竞赛试题及答案

成都初三数学竞赛试题及答案

成都初三数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是实数?A. √2B. -3C. πD. i2. 如果一个二次方程的判别式小于0,那么它:A. 有一个实数根B. 有两个实数根C. 没有实数根D. 有无穷多个实数根3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π4. 以下哪个是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 1, 1, 1, ...D. 以上都是5. 如果一个函数f(x) = 2x + 3,那么f(-1)的值是:A. -1B. 1C. 3D. 5二、填空题(每题4分,共20分)6. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为______。

7. 一个数的平方根是4,那么这个数是______。

8. 如果一个数列的前5项是2, 4, 6, 8, 10,那么这个数列的第6项是______。

9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是______。

10. 一个圆的周长是44π,那么它的半径是______。

三、解答题(每题10分,共65分)11. 解方程:3x^2 - 5x - 2 = 0。

12. 证明:如果一个三角形的两边长分别是a和b,且a < b,那么这个三角形的第三边c满足|b - a| < c < a + b。

13. 一个工厂每天生产x个产品,每个产品的成本是10元,售价是20元。

如果工厂每天的利润是1000元,求x。

14. 一个圆环的外圆半径是10,内圆半径是5,求圆环的面积。

15. 一个班级有50名学生,其中30名学生参加了数学竞赛。

如果班级平均分是80分,参加竞赛的学生平均分是85分,求未参加竞赛的学生平均分。

答案:一、选择题1. D2. C3. B4. D5. A二、填空题6. 5(根据勾股定理)7. 168. 129. 24(长方体体积公式:V = 长× 宽× 高)10. 11(圆的周长公式:C = 2πr)三、解答题11. 解:(3x + 1)(x - 2) = 0x = -1/3 或 x = 212. 证明:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

初中九年级数学竞赛试题

初中九年级数学竞赛试题

初中九年级数学竞赛试题一、选择题(每题5分,共30分)1. 若关于公式的一元二次方程公式的常数项为公式,则公式的值等于()A. 公式B. 公式C. 公式或公式D. 公式解析:对于一元二次方程公式,常数项公式。

因为常数项为公式,所以公式。

分解因式得公式,解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式。

所以公式,答案为B。

2. 抛物线公式与公式轴的交点坐标为()A. 公式和公式B. 公式和公式C. 公式和公式D. 公式和公式解析:要求抛物线与公式轴的交点,令公式,即公式。

分解因式得公式。

解得公式或公式。

所以交点坐标为公式和公式,答案为A。

3. 已知反比例函数公式的图象经过点公式,则这个函数的图象位于()A. 第一、三象限B. 第二、三象限C. 第二、四象限D. 第三、四象限解析:因为反比例函数公式的图象经过点公式,把公式代入公式得公式。

因为公式,所以函数图象位于第二、四象限,答案为C。

二、填空题(每题5分,共30分)1. 方程公式的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为______。

解析:解方程公式,分解因式得公式,解得公式或公式。

当底为公式,腰为公式时,满足三角形三边关系(公式),此时周长为公式。

当底为公式,腰为公式时,公式,不满足三角形三边关系,舍去。

所以周长为公式。

2. 若公式,公式,则公式______。

解析:根据完全平方公式公式。

已知公式,公式,则公式。

三、解答题(每题20分,共40分)1. 已知二次函数公式的图象经过点公式,公式,公式。

(1)求二次函数的表达式。

(2)设该二次函数的对称轴与公式轴交于点公式,连接公式,求公式的面积。

解析:(1)因为二次函数公式的图象经过点公式,公式,公式。

把公式,公式,公式分别代入公式得:公式将公式代入公式由公式得公式,将其代入公式得:公式公式公式,解得公式。

把公式代入公式得公式。

所以二次函数的表达式为公式。

(2)对于二次函数公式,对称轴为公式,所以公式。

初三数学竟赛试题及答案

初三数学竟赛试题及答案

初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 22/7B. πC. 0.33333...D. √4答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定答案:B3. 已知方程x² - 5x + 6 = 0的两个根为x₁和x₂,则x₁ + x₂的值为:A. 1B. 2C. 3D. 5答案:D4. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 如果一个数的立方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是答案:D7. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 36C. 48D. 52答案:A8. 一个正五边形的内角和是多少度?A. 540B. 720C. 900D. 1080答案:B9. 已知a、b、c是△ABC的三边,且满足a² + b² = c²,那么△ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B10. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 无法确定答案:A二、填空题(每题4分,共20分)11. 一个数的绝对值是5,那么这个数可以是________。

答案:±512. 如果一个角的补角是120°,那么这个角的度数是________。

答案:60°13. 一个直角三角形的两条直角边长分别为6和8,那么它的斜边长是________。

答案:1014. 函数y = -2x + 1与x轴的交点坐标是________。

答案:(1/2, 0)15. 一个数的平方是25,那么这个数是________。

九年级数学竞赛试题及答案

九年级数学竞赛试题及答案

九年数学竞赛试题一、选择题(每小题7分,共42分)1.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点.设k 为整数,当直线y=x-2与y=kx+k的交点为整点时,k的值可以取( )(A)4个(B)5个(C)6个(D)7个2.如图,AB是⊙O的直径,C为AB上的一个动点(C点不与A、B重合),CD⊥AB,AD、CD分别交⊙O于E、F,则与AB·AC相等的一定是( )(A)AE·AD(B)AE·ED(C)CF·CD(D)CF·FD3.在△ABC与△A′B′C′中,已知AB<A′B′,BC<B′C′,CA<C′A′.下列结论:(1)△ABC的边AB上的高小于△A′B′C′的边A′B′上的高;(2)△ABC的面积小于△A′B′C′的面积;(3)△ABC的外接圆半径小于△A′B′C′的外接圆半径;(4)△ABC的内切圆半径小于△A′B′C′的内切圆半径.其中,正确结论的个数为( )(A)0 (B)1 (C)2 (D) 44.设,那么S与2的大小关系是( )(A)S=2 (B)S<2(C)S>2 (D)S与2之间的大小与x的取值有关5.折叠圆心为O、半径为10cm的圆纸片,使圆周上的某一点A与圆心O重合.对圆周上的每一点,都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线上点的全体为( )(A)以O为圆心、半径为10cm的圆周(B)以O为圆心、半径为5cm的圆周(C)以O为圆心、半径为5cm的圆内部分 (D)以O为圆心,半径为5cm的圆周及圆外部分6.已知x,y,z都是实数,且x2+y2+z2=1,则m=xy+yz+zx( )(A)只有最大值 (B)只有最小值(C)既有最大值又有最小值 (D)既无最大值又无最小值二、填空题(每小题7分,共56分)7.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于______.8.如图3,在△ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N,则AN:AB的值为______.9.如图,取一张长方形纸片,它的长AB=10cm,宽BC=5cm,然后以虚线CE(E点在AD上)为折痕,使D点落在AB边上.则AE=_____cm,∠DCE=______°.10.如图4,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD:DB=2:3,AC=10,sinB的值为_____11.直角三角形ABC中,∠A=90°,AB=5cm,AC=4cm,则∠A的平分线AD的长为______cm.12.如图,⊙C通过原点,并与坐标轴分别交于A,D两点.已知∠OBA=30°,点D的坐标为(0,2),则点A,C的坐标分别为A( , );C( , ).13.若关于x的方程rx2-(2r+7)x+(r+7)=0的根是正整数,则整数r的值可以是______.14.将2,3,4,5,…,n(n为大于4的整数)分成两组,使得每组中任意两数之和都不是完全平方数.那么,整数n可以取得的最大值是______.三、解答题(每题13分,共52分)15.九年(1)班尚剩班费m(m为小于400的整数)元,拟为每位同学买1本相册.某批发兼零售文具店规定:购相册50本起可按批发价出售,少于50本则按零售价出售,批发价比零售价每本便宜2元,班长若为每位同学买1本,刚好用完m元;但若多买12本给任课教师,可按批发价结算,也恰好只要m元.问该班有多少名同学?每本相册的零售价是多少元?16.已知关于x的方程x2+4x+3k-1=0的两个实根的平方和不小于这两个根的积;反比例函数的图像的两个分支在各自的象限内,点的纵坐标y随点的横坐标x的增大而减小.求满足上述条件的k的整数值.17.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.18.如图,在△ABC中,BC=6,AC=4,∠C=45°,P为BC上的动点,过P作PD∥AB交AC于点D,连结AP,△ABP、△APD、△CDP的面积分别记为S1,S2,S3,设BP=x.(1)试用x的代数式分别表示S1,S2,S3;(2)当P点位于BC上某处使得△APD的面积最大时,你能得出S1、S2、S3之间或S1、S2、S3两两之间的哪些数量关系(要求写出不少于3条)?九年数学竞赛试题答案一、选择题1.A2.A3.A4.D5.D6.C二、填空题7.377 8.1:39.,30 10.11.12.(,0),(,1) 13.0,1或7 14.2815.设该班共有x名同学,相册零售价每本y元.由题设,得xy=(x+12)(y-2),①且整数x满足38<x<50.②由①得12y-2x-24=0,y=+2,xy=+2x.③由③及xy=m为整数,知整数x必为6的倍数,再由②,x只可能为42或48.此时相应的y为9或10.但m<400,∴x=42,y=9.答:(略).16.由题意,方程x2+4x+3k-1=0①有实数根,故△=42-4(3k-1)≥0,解之,得k≤.②设x1,x2为①的根,由根与系数关系知x1+x2=-4,x1·x2=3k-1,因≥x1x2,故(x1+x2)2-3x1x2≥0,即(-4)2-3(3k-1)≥0,∴k≤.③又由当x>0或x<0时,分别随x值增大而减小,知1+5k>0,即k>-.④综合②③④,得-<k≤.∴满足题中条件的k可取整数值为0, 1.17.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529.②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5.③由①,②,③得:④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186.得54<y<.由于y是整数,得y=55,从而得x=76.答:略.18.(1)由题意知:BP=x,0<x<6,且有,故AD=·BP=x=x.过P作PM⊥AC交AC于M点,过A作AN⊥BC交BC于N点,则PM=PC·sinC=(BC-PB)sin45°=(6-x),S2=S△APD=AD·PM=·x·(6-x)=2x-x2;又AN=AC·sinC=4·sin45°=4,故S1=S△ABP=BP·AN=2x;S3=S△CDP=CD·PM=(AC-AD)·PM=(4-x)·(6-x)=(6-x)2.(2)因为S2=2x-x2=3-(x-3)2,所以当x=3时,S2取最大值S2=3,此时S1=6,S3=3,因此,S1,S2,S3之间的数量关系有S1=S2+S3,S2=S3,S1=2S2,S1=2S3.(以上4个关系只要写出3个即可)。

初三数学竟赛试题及答案

初三数学竟赛试题及答案

初三数学竟赛试题及答案初三数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 如果x² + 4x - 5 = 0,那么x的值是?A. -5B. 1C. -1D. 54. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 23B. 21C. 19D. 175. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8二、填空题(每题2分,共10分)6. 一个数的平方根是4,那么这个数是________。

7. 一个数的立方根是2,那么这个数是________。

8. 如果一个数的相反数是-7,那么这个数是________。

9. 一个分数的分子是7,分母是14,化简后是________。

10. 一个数的绝对值是5,那么这个数可以是________。

三、解答题(每题5分,共20分)11. 证明:对于任意实数a和b,(a+b)² = a² + 2ab + b²。

12. 解方程:2x + 5 = 3x - 2。

13. 一个等比数列的首项是2,公比是3,求前5项的和。

14. 一个长方体的长、宽、高分别是2,3,4,求它的体积。

四、综合题(每题10分,共20分)15. 一个圆内接于一个等边三角形,求这个圆的半径。

16. 在一个平面直角坐标系中,点A(-1,2)和点B(3,-1),求直线AB 的方程。

五、附加题(每题5分,共5分)17. 一个数列的前5项是1, 1, 2, 3, 5,求第6项。

答案:1. D2. B3. B4. A5. A6. 167. 88. 79. 1/210. ±511. 证明:(a+b)² = (a+b)(a+b) = a² + ab + ab + b² = a² + 2ab + b²。

初三数学竞赛试题(含答案)

初三数学竞赛试题(含答案)

初三数学竞赛试题(含答案) 初三数学竞赛试题一、选择题(共8小题,每小题5分,共40分)1.要使方程组 $3x+2y=a$,$2x+3y=2$ 的解是一对异号的数,则 $a$ 的取值范围是()。

A) $4\sqrt{3}<a<3$B) $a<4\sqrt{3}$C) $a>3$D) $a>3$ 或 $a<4\sqrt{3}$2.一块含有 $30^\circ$ 角的直角三角形(如图),它的斜边 $AB=8$ cm,里面空心 $\triangle DEF$ 的各边与 $\triangle ABC$ 的对应边平行,且各对应边的距离都是 $1$ cm,那么$\triangle DEF$ 的周长是()。

A) $5$ cmB) $6$ cmC) $(6-3)$ cmD) $(3+3)$ cm3.将长为 $15$ cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()。

A) $5$ 种B) $6$ 种C) $7$ 种D) $8$ 种4.作抛物线 $A$ 关于 $x$ 轴对称的抛物线 $B$,再将抛物线 $B$ 向左平移 $2$ 个单位,向上平移 $1$ 个单位,得到的抛物线 $C$ 的函数解析式是 $y=2(x+1)^2-1$,则抛物线$A$ 所对应的函数表达式是()。

A) $y=-2(x+3)^2-2$B) $y=-2(x+3)^2+2$C) $y=-2(x-1)^2-2$D) $y=-2(x+3)^2+2$5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是()。

A) $\frac{2}{11}$B) $\frac{3}{32}$C) $\frac{3}{26}$D) $\frac{3}{26}$6.如图,一枚棋子放在七边形 $ABCDEFG$ 的顶点处,现顺时针方向移动这枚棋子 $10$ 次,移动规则是:第 $k$ 次依次移动 $k$ 个顶点。

九年级数学竞赛训练题以及答案

九年级数学竞赛训练题以及答案

九年级数学竞赛训练题(一)一、选择题(共5小题,每小题7分,共35分. 每道小题有且只有一个选项是正确的. 请将正确选项代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c ++的值为 ( ) (A )1121 (B )21011 (C )11021 (D )21112.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( )(A )a ≤2- (B )a ≥4 (C )2-≤a ≤4 (D )a ≤2-或 a ≥43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =BC =4-CD =则AD 边的长为 ( )(A )(B )64 (C )622+(D )64+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是 ( ) (A )(2010,2) (B )(2012,2-)(C )(2010,2-) (D )(0,2) 二、填空题(共5小题,每小题7分,共35分)6.已知a =5-1,则2a 3+7a 2-2a -11 的值等于 .7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AEAD= . 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 . 三、解答题(共4题,每题20分,共80分)11.设实数a ,b 满足:2231085100a ab b a b -++-=,求u =29722a b ++的最小值.12.如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,FB 是⊙O 的切线交AD 的延长线于点F . (1)求证:DE 是⊙O 的切线. (2)若DE = 3,⊙O 的半径为5,求BF 的长.13.设1x ,2x ,…,008 2x 是整数,且满足下列条件: (1)21≤≤-n x (n =1,2,…,2 008); (2)++21x x …+008 2x =200;(3)++2221x x …+2008 2x =2 008. 求++3231x x …+3008 2x 的最小值和最大值.14.如图,已知直线b x y l +=31:经过点)41 0(,M ,一组抛物线的顶点11(1, y )B ,22(2, y )B ,33(3, y )B ,…,n (, y )n B n (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11(, 0)A x ,22(, 0)A x ,33(, 0)A x ,…,11(,0)n n A x ++(n 为正整数),设d x =1(0<d <1). (1)求经过点1A 、1B 、2A 的抛物线的解析式(用含d 的代数式表示);(2)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”. 探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在“美丽抛物线”?若存在,请求出相应的d 的值.九年级数学竞赛训练题(二)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题2分,满分16分) 1.一元二次方程042=-x 的解是( )A .2=xB .2-=xC .21=x ,22-=xD .21=x ,22-=x 2.在△ABC 中,∠C =90O ,BC :CA =3:4,那么SinA 等于( )A .43 B.34 C.53 D.543.小明从上面观察下图所示的两个物体,看到的是( )A B C D4.二次函数y =ax 2+bx +c 的图像如图所示: 根据图像可得a ,b ,c 与0的大小关系是( )A.a>0,b<0,c<0B.a>0,b>0,c>0C.a<0,b<0,c<0D.a<0,b>0,c<05函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .54 B .35 C .43 D .457.已知二次函数y =x 2+(2a+1)x+a 2-1的最小值为O ,则a 的值是( )A .43 B.43- C.45 D.45-8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A .154 B .31 C .51 D .152二、填空题(本大题共7个小题,每小题3分,满分21分)9.∠A 和∠B 是一直角三角形的两锐角,则tan 2BA +=_________。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333...D. -12. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是4. 某工厂生产的产品数量y与时间x(小时)成正比,已知2小时生产了40个产品,那么4小时生产的产品数量是:A. 80B. 100B. 120D. 1605. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 下列哪个是二次根式的化简结果?A. \(\sqrt{48}\)B. \(\sqrt{64}\)C. \(\sqrt{81}\)D. \(\sqrt{144}\)二、填空题(每题4分,共20分)1. 一个数的立方根是2,这个数是________。

2. 若一个等差数列的第3项是10,第5项是14,那么这个等差数列的公差是________。

3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是________cm³。

4. 一个多项式\(ax^2 + bx + c\)的系数a、b、c满足\(a + b + c = 6\),且\(a - b + c = 0\),那么\(2a - 2b + 2c\)的值是________。

5. 若一个二次方程\(x^2 - 4x + 4 = 0\),那么这个方程的判别式Δ是________。

三、解答题(每题15分,共50分)1. 已知一个直角三角形的两条直角边分别为3和4,求这个直角三角形的斜边长。

2. 一个水池的底部有一个排水口,水池的容积是100立方米。

如果打开排水口,水池的水在2小时内可以排完。

现在同时打开排水口和进水口,进水口每小时可以注入20立方米的水。

初三数学竞赛试卷(有答案)

初三数学竞赛试卷(有答案)

EF 图( 4)B 3 4初三数学竞赛试卷(时间 100 分钟,满分 100 分)一. 填空:(每小题 2 分,共 30 分) 1. 2 300 + (-2 301 ) =____________.2.比较 2100 与 375 的大小________________.3.已知 y 1=x 2-7x+6,y 2=7x-3,且 y=y 1+xy 2,当 x=2 时,y=________.4.如图(1)已知 AB ∥DE,则∠B+∠C+∠D=___________.A BE 图(1) DC5.一个角比它的补角的一半还小 18º24’36’’,则这个角是_________.6.(1)小明今天买了 5 本书;(2)2002 年美国在阿富汗的战争每月耗费 10 亿美元;(3)有关 部门预测:2002 年以 DVD 形式出售的影片将首次超过盒式录象带,达到 95 亿美元;(4) 人的大脑有 10000000000 个细胞.(5)这次测验小红得了 92 分.(6)地球上煤储量为 15 万亿吨以上.上述数据中,精确的有_________,近似的有_____________(填序号).7.如果 4x 2-axy+9y 2 是一个完全平方式,则 a 的值是________. A D8.已知 1+x+x 2+x 3=0,则 x+x 2+x 3+……+x 2004 的值是_________. 9.a,b,c 是ΔABC 的三边,且满足 a 2+b 2=25,a 2-b 2=7,c=5,则ΔABC 最大边上的高是_________. B C10.如图(2)矩形 ABCD 中,DE ⊥AC 于 E,设∠ADE=α , 图( 2) 且 cos α = 3,AB=4,则 AD=_______.5B11.如图(3)有一个圆柱形的油桶,它的高是 80,底面直径是 50. 在圆柱下底面的 A 点有一只蚂蚁,它想吃到上底面与 A 点在同侧的 B 点处的食物,但由于 A,B 两点间有障碍,不能直接到达 , 蚂蚁只能沿桶壁爬行 , 则蚂蚁需要爬行的最短路程是_________(π 取整数 3).A12.如果方程 x 2+px+1=0(p>0)的两根之差是 1,则 p=________.13. 若 a 为整数 , 且点 M(3a-9,2a-10)在第四象限 , 则 a 2+1 的值是_______.图( 3 )A D14.如图(4)在正方形 ABCD 中,点 E 在 AB 边上,且 AE ∶EB=2∶1,AF ⊥DE 于 G,交 BC 于 F,则ΔAEG 的面积与四边形 BEGF的面积比是_________.E G15.已知圆内接四边形 ABCD 中,对角线 AC ⊥BD,AB>CD,若 CD=4, C 则 AB 的弦心距是____.二. 选择:(每小题 3 分,共 15 分)( )1.一辆汽车在广场上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐 50º,第二次向左拐 130º;B.第一次向左拐 30º,第二次向右拐 30 º;C.第一次向右拐 60º,第二次向右拐 120º;D.第一次向左拐 40º,第二次向左拐 40º.( )2.在 M 1=2.02 ⨯ 10-6, M 2=0.0000202, M =0.00000202, M =6.06 ⨯ 10-5 四个数中,存在两个数,其中一个数是另一个数的 3 倍,这两个数为A.M 2 与 M 4,且 M 4=3M 2;B.M 1 与 M 3,且 M 3=3M 1;C.M 1 与 M 4,且 M 4=3M 1;D.M 2 与 M 3,且 M 3=3M 2. E BDOAC 图(5)13()3.无论m为何值时,二次函数y=x2+(2-m)x+m的图象总过的点是A(1,3)B(1,0)C(-1,3)D(-1,0).()4.关于x的方程(m-2)x2-2x+1=0有实根,则m的取值范围是A.m<3;B.m≤3;C.m<3且m≠2;D.m≤3且m≠2.()5.如图(5)在RtΔABC中,∠C=90º,AC=4,BC=3,以BC上一点O为圆心作⊙O与AC,AB 相切,又⊙O与BC的另一交点为D,则线段BD的长为A.1;B.11; C.; D..24三.解答:(每小题4分,共20分)1.已知m=11,n=3-23+2,求(m-n mn+n2mn-)⋅m2-2mn+n2m2-n2n-1的值.2.某市为了改变市容市貌,提高人民的生活水平,市政府投入巨额资金拆掉大批小平房,建成风景秀丽的无业小区,如图(6)所示是四个物业小区,分别用A,B,C,D表示.为了使四个小区中的孩子能就近上学,市政府准备修建一所小学H,问H应建在何处,才能使四个小区的孩子上学走路的总和最小,请你找出H的位置,并说明理由.ABD图(6)C3.如图(7)A市气象站测得台风中心在A市的正东方向300千米的B处,以107千米/时的速度向北偏西60º的BF方向移动.距台风中心200千米范围内是受台风影响的区域.(1)A市是否会受到这次台风的影响?请你写出结论并给以证明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?北FA图(7)B东cos240︒+4.计算:sin50︒1+cot45︒tan230︒-sin260︒.5.已知a,b是整数,x2-ax+3-b=0有两个不相等的实数根,x2+(6-a)x+7-b=0有两个相等的实数根,x2+(4-a)x+5-b=0没有实数根,求a,b的值.四.(1小题5分,2小题6分,共11分)1.解方程2(x2+11)-3(x+)-1=0 x2x2.如图(8)在ΔABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD 相交于点F.(1)求证:ΔABC∽ΔFCD;(2)若SΔFCD=5,BC=10,求DE的长.AEB D图(8)C五.应用题(7分)根据有关信息,有一批货物,如果本月出售,可获利100元,然后可将本利都存入银行,已知银行每月利率是0.5%;如果下月初出售,可获利120元,但要付5元的保管费,试问这批货x 和 y = - x + 物何时出售好?六.(8 分)如图(9)已知⊙O 1 和⊙O 2 外切于点 P,AB 是两圆的外公切线,A,B 为切点,AP 的延长线交⊙ O 1 于 C 点,BP 的延长线交⊙O 2 于 D 点,直线 O 1O 2 交⊙O 1 于 M,交⊙O 2 于 N,与 BA 的延长线交于 点 E.求证:(1) AB 2 = BC ⋅ DA ;(2)线段 BC,AD 分别是两圆的直径; (3) PE 2 = BE ⋅ AE .B AMOP O N E DC图( 9)七.(9 分) 如图(10)正方形 OABC 的顶点 O 在坐标原点,且 OA 与边 AB 所在直线的解析式分别为y = 3 3 254 4 3,D,E 分别为边 OC 和 AB 的中点,P 为 OA 边上的一动点(点 P 与点 O 不重合),连结 DE 和 CP,其交点为 Q.(1) 求证:点 Q 为ΔCOP 的外心; (2) 求正方形 OABC 的边长;(3) 当ΔCOP 的外接圆⊙Q 与 AB 相切时,求点 P 的坐标.yB CQEDPAO图( 10)x参考答案:一.填空:1.-2300;2.2100<375;3.18;4.360º;5.47º43’36’’;6.(1)(5);(2)(3)(4)(6);7. ± 12;8.0;9. 12 5 ;1610. ; 11.170; 12. 5 ; 13.17; 14.4∶9; 15.2.3二.选择: 1.B; 2.A; 3.A; 4.D; 5.C. 三.1.原式化简为 - mn 1 1; m = = -(2 + 3); n = = 2 - 3 ;m - n 3 - 2 3 - 2原式= - - (2 + 3)(2 - 3)- (2 + 3) - (2 - 3) 1 =- .42.学校应建在 AC,BD 的交点处.理由:任取一点 H ’,用三角形两边之和大于第三边易证.3.(1)过 A 作 AE ⊥BF,垂足是 E,在 Rt ΔABE 中,∠ABE=90º-60º=30º,AB=300,AE= 12AB=150<200,A 市将受到这次台风影响.(2)以点 A 为圆心,以 200 千米长为半径作弧,交 BF 于点 C,D,在 Rt ΔACE 中,AE=150,AC=200,∴ EC =AC 2 - AE 2 = 50 7, CD = 2 E C = 100 7;∴100 7 ÷ 10 7 = 10,∴A 市受这次台风影响的时间达 10 小时. 194. -;5意: ⎨∆ = (6 - a) 2 - 4(7 - b ) = 0(2)⎪ 2 2 ∵S ΔFCD =5,∴S ΔABC =20,又 BC=10,∴AM=4;∵DE ∥AM,∴ = ∴ AB∴ΔEPB ∽EAP,∴EP5. 设 已 知 三 个 方 程 的 判 别 式 依 次 是 Δ1, Δ 2, Δ 3; 由 题⎧∆ = a 2 - 4(3 - b ) 0(1) ⎪ 12⎩∆ 3 = (4 - a) 2 - 4(5 - b ) 0(3)5解之得: a 3 ,又 a 是整数,∴ a = 2 ,代人得 b = 3 ,∴ a = 2, b = 3.3 1四. 1 设 x + = y ,则原方程化为 2( y 2 - 2) - 3 y - 1 = 0 ,即: 2 y 2 - 3 y - 5 = 0x5 1解之得: y = -1; y = .分别代人得: x = 2; x = ,经检验都是原方程的根.1 2 1 22.(1)易证∠B=∠BCE,∠ADC=∠ACB,得证ΔABC ∽ΔFCD;S(2)过点 A 作 AM ⊥BC,垂足是 M, ΔABC ∽ΔFCD,BC=2CD,∴∆ABC= 4 ,S∆FCDDE BDAM BM1 5 1 ∵DM= CD= ,BM=BD+DM,BD= BC=5,∴2 2 2 DE 5 8= ,∴DE= .4 5 + 5/ 2 3五. 设这批货物的成本价为 a 元,赢利分情况考虑如下:5若本月出售,那么到下月初共赢利100 + (a + 100) ⨯ 0.5% = a + 100.5 元;1000若下月初出售,共赢利 120-5=115 元.(1) 当 5 1000a + 100.5 115 ,即 a >2900 时,本月初出售最好.5(2) 当 a + 100.5 = 115 即 a =2900 时,本月初或下月初出售都行.1000 5(3) 当 a + 100.5 115 即 a <2900 时,下月初出售最好.1000六.(1)∵BA 切⊙O 1 于 B,∴∠ABP=∠C,∵BA 切⊙O 2 于 A,∴∠BAP=∠D,∴ΔABC ∽ΔDAB,DA = ,∴ AB 2 = BC ⋅ DA ;BC AB(2)过 P 作两圆的内公切线交 A B 于 F,由切线长定理得:BF=PF,PF=AF,∴PF=BF=AF= 1 2AB∴∠BPA=90º,∴BP ⊥AP,∴∠BPC=∠APD=90º,∴BC,AD 分别是⊙O 1,⊙O 2 的直径. (3)∵PF 是⊙O 1 和⊙O 2 的公切线,∴PF ⊥O 1O 2,∴∠APF=∠APE=90º,∵∠APB=90º,∴∠ABP+∠BAP=90º,又∵PF=AF,∴∠BAP=∠APF,∴∠ABP=∠APE,∵∠E=∠EEB = ,∴ PE 2 = BE ⋅ AE . EA EP七.(1)∵D,E 分别为 OC,AB 的中点,∴DE ∥OA,Q 是 CP 的中点,又∵CP 是 Rt ΔCOP 的斜边,∴点 Q 是ΔCOP 的外心;⎧x = 4 ⎪⎪ 4(2)由 ⎨解得: ⎨ .∴点 A 的坐标为(4,3),∴OA=5, ⎩ y = 3 ⎪ y = - x + 25OP ⋅ OF OP ⋅ AF9⎩⎧3 y = x 4⎪ 3 3 正方形的边长是 5.(3)当ΔCOP 的外接圆⊙Q 与 AB 相切时,E 是切点,∵AE 和 APO 分别是⊙Q 的切线和割线,5 5 5 15∴ AE 2 = AP ⋅ AO ,即 ( ) 2 = 5 A P ,∴AP= ,∴OP=5- = .2 4 4 4OP OH PH分别作 PH ⊥x 轴,AF ⊥y 轴,垂足是 H,F,则 PH ∥AF.∴ = =OA OF AF15 15⨯ 4 ⨯ 3 ∴ OH = = 4 = 3. PH= = 4 = .OA 5 OA 5 49∴点 P 的坐标是(3, ).4。

2023年初三数学竞赛试卷

2023年初三数学竞赛试卷

九年级数学竞赛考试卷考号姓名一、选择题(每题3分, 共24分)每题只有一种答案是对旳旳, 请在答题卡上对应题目旳答题区域内作答, 答对旳得4分, 答错、不答或答案超过一种旳一律得0分.1. 下列计算对旳旳是()A. B. C. D.2.用配措施解一元二次方程, 下列配方对旳旳是()A. B. C. D.3.如图,用放大镜将图形放大,应当属于.. )A. 相似变换B. 平移变换C. 对称变换D. 旋转变换4.在抛掷一枚均匀硬币旳试验中,假如没有硬币,则下列可作试验替代物旳是....)A.一颗骰子B.一种啤酒瓶盖.C.两张扑克牌(一张黑桃, 一张红桃.. D.一颗图钉5.如图, 在平面直角坐标系中, 已知点, 点,则=cos()∠OABA. B. C. D.6.如图, 在□中, , , 是对角线上旳任意一点, 过点作∥ , 与□旳两条边分别交于点, .设, , 则下面能大体反应与之间关系旳图像为()B. C. D.A. B. C. D.7.如图, 在Rt△ABC中, ∠ACB=90°, CD⊥AB于点D.已知AC= , BC=2, 那么sin∠ACD=()A. B. C. D.8.已知函数y=x2-2x-2旳图象如图所示,根据其中提供旳信息,可求得使y≥1成立旳x旳取值范围是...)A. -1≤x≤3B. -3≤x≤1C. x≥-3D. x≤-1或x≥3二、填空题(每题3分, 共36分)在答题卡上对应题目旳答题区域内作答。

9. 化简: ;10. 一元二次方程旳二次项系数、一次项系数、常数项旳和为;11. 要使式子故意义, 旳取值范围是;12.某一种“爱心小组”有3名女生和2名男生, 现从中任选1人去参与学校组织旳“献爱心”志愿者活动, 则选中女生旳概率为____________;13. 顺次连结等腰梯形各边旳中点所得旳四边形是____________;14. 如图, 在坡度为1:2旳山坡上种树, 规定株距(相邻两树间旳水平距离)是米, 斜坡上相邻两树间旳坡面距离是米;15. 设是方程旳两个实数根, 则旳值为___________;16. 已知: 如图, 旳面积为, 中位线, 则边上旳高为;17. 在一次初三学生数学交流会上, 每两名学生握手一次, 记录共握手253次。

初中数学九年级数学竞赛试题及答案

初中数学九年级数学竞赛试题及答案

初中数学九年级数学竞赛试题及答案九年级数学竞赛试卷一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是事件。

3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ?的外接圆,030C ∠=,2AB cm =,则⊙O 的半径为 cm 。

5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。

7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB 上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点,点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角形是三角形。

9、如图是44?正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为。

二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是()A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于().A 、2 B 、1 C 、1 D 、1ABA '()C C 'B 'AB13、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ?,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于()A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是()A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为()A.2cm B.3cm C.23cm D.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-?+-18、如图,ABC ?中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为:①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;OAB(1)若小玲先摸,问小玲摸到C棋的概率是多少?(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。

九年级数学竞赛班入学测试卷(含答案)

九年级数学竞赛班入学测试卷(含答案)

内部资料,请勿外传 1 建议:60分以上可以进竞赛班。

九年级数学竞赛班入学测试卷 (每小题10分,共12小题。

)1、若实数a 、b 满足21202a ab b -++=,则a 的取值范围是( C )(提示:主元法)A a ≤-2B a ≥4C a ≤-2或a ≥4D -2≤a ≤42.已知m 是方程01x -x 2=+2006的一个根,则代数式3+1++22m 20062005m -m 的值等于( D ). A 、2005 B 、2006 C 、2007 D 、.20083.设x =2-3,则x 7+3x 6-10x 5-29x 4++x 3-2x 2+x -l 的值为( A ).(提示:长除法) (A)610-2-323+ (B) 6102323+++(C) 6102-327-++ (D) 6102327+++ 4.如图,正方形ABCD 外有一点P ,P 在BC 外侧,并夹在平行线AB 与CD 之间.若PA =17,PB =2 ,PC =5 ,则PD =( A ),(A)25 (B)19 (C)32 (D)175.如图7,在△ABC 中,AB =5,AC =3,D 为BC 的中点,AD =2,则tan ∠BAD = ____43______. 6.已知a <3,b >3,且1a bk , ab =3,则k 的最小整数值是______6_______.7.设x 为任意实数,则函数y =16)12(122+-++x x 的最小值为 13 (提示:勾股定理)8.分解因式:(x 4+x 2-4)(x 4+x 2+3)+10= )1)(1)(1)(1)(2(222+-++-++x x x x x x x . 9.方程2x-92x -112x -172x -192x -152x -172x -112x -13+=+ 的解是x = 6.5 . 10.已知5 =2.236,那么56-14253-95-3+= 0.4472 或者 55 11.设41y 3-x 2=,x ,y 都是正整数,则方程有 5 组正整数解. 12、实数a b ≠,且满足22(1)33(1),3(1)3(1)a a b b +=-++=-+,则b a ba ab +的值为 23 。

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题(含答案)

初三数学竞赛选拔试题(含答案)初三数学竞赛选拔试题(含答案)一、选择题1. 若 3x + 2 = 17,则 x 的值是A. 5B. 7C. 9D. 112. 在一个几何图形中,有一个正方形,边长为 x 厘米,另有一个等腰直角三角形,直角边的长为 y 厘米。

已知正方形的面积是等腰直角三角形面积的 20 倍,下列等式成立的是A. x² = 20y²B. x² + y² = 20C. 20x² = y²D. x + y = 203. 若 a² - b² = 15 且 a + b = 5,则 a 的值是A. 10B. 5C. 3D. -104. 某校参加比赛的男女生比例为 5:3 ,男生比女生多 48 人,那么该校一共有多少学生?A. 320B. 480C. 800D. 9605. 以下各数中,最小的是A. -0.5B. -1/2C. -50%D. 1/-2二、填空题6. 将 120 分钟化为小时的形式,填入空白:____小时。

7. 三个角相加是 180°,如果有两个角是 50°和 80°,那么第三个角的度数是____°。

8. 分数 7/10 是小数____。

9. 甲、乙两地相距 150 公里,有两辆车同时相向而行,如果两车速度一样,则若干小时后两车相遇,填入空白:____小时。

10. (-a) ×(-a) ×(-a) ×(-a) ×(-a) ×(-a)表示的结果是____。

三、解答题11. 某衣服打对折后价格为 420 元,原价是多少元?12. 小丽拥有一些小球,其中有红球、蓝球和绿球。

红球比蓝球的 3 倍多 2 个,蓝球比绿球的 2 倍少 4 个。

如果小丽总共有 51 个球,求小丽拥有的绿球数量。

13. 若 a + b = 5 ,a - b = 3 ,求 a 和 b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )
(A) 7 2° (B)108°或14 4° (C)144° (D) 7 2°或144°
8、如图,已知圆心为A、B、C的三个圆彼此相切,且均与直线l相切.若⊙A、⊙B、⊙C的半径分
别为a、b、c(0<c<a<b),则a、b、c一定满足的关系式为 (
O B1 B2 B3 x5
10
O
B1 B2 B3 x
图-2 18-1
图18-2
-4
-6
(参考答案)
一、选择题:1、A 2、C 3、B 4、C 5、B 6、B 7、D提示:如图,有且只有右边两种情况,
8、D
二、填空题:9、95;设方程的两个根为x 1 ,x 2 ,则x 1 +x 2 =a, x 1 x 2 =b
三、解答题:
1 1 8n )(x 1 1 8n )
15、解:(1)x2-x-2n=(x-
2
2
------------ (2分)
则应有1+8n=9,25,49,81,121,169-----------------------------------------(4分)
相应解得n=1,3,6,10,15,21,28,36(舍去)……
江西于都市初三数学竞赛选拔试题
(本卷满分:120分,时间:120分钟)
一、选择题(每小题5分、共40分)
1、如果多项式 p a 2 2b2 2a 4b 2008 ,则 p 的最小值是( )
(A) 2020 (B) 2020 (C) 2020 (D) 2020
2、菱形的两条对角线之和为L,面积为S,则它的边长为(
16、某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出), 以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场, 进场的车在原有的15辆车后依次再出车.问到几点时,停车场内第一次出现无车辆?
17、一个三角形可被剖分成两个等腰三角形。原三角形的一个内角为36°,求原三角形的最大内 角的所有可能值。
)
(A)2b=a+c (B) b a c
1 11
1 11
(C) c a b (D) c a b
二、填空题(每小题5分,共30分)
9、已知a﹑b为正整数,a=b-2020,若关于x方程x2-ax+b=0有正整数解,则a 的最小值是________
10、如图,在△ABC中,AB=AC, AD⊥BC, CG∥AB, BG分别交
数据 x1 2,x2 2,x3 2,x4 2,x5 2 的说法:①方差为S2;②平均数为2;③平均数为4;
④方差为4S2。其中正确的说法是( )
(A) ①② (B) ①③ (C) ②* (D)③*
7、一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°)。
,A1、A2、A3三点的横坐标为连
续整数,其他条件不变,求线段CA2的长;
(3)若将抛物线
y
1 2
x2
改为抛物线
y
ax2
bx
c
,A1、A2、A3三点的横坐标为连续整数,其
他条件不变,请猜想线段CA2的长(用 a 、 b 、 c 表示,并直接写出答案).
y
y
6
A3
A3
4
C
2
A2
A1
C A2
A1
-10
-5
12、如图,⊙O的直径AB与弦EF相交于点P,交角为45°,
若 PE 2 PF 2 =8,则AB等于

13、某商铺专营A,B两种商品,试销一段时间,总结得到经营利润y与

1x
3x
人资金x(万元)的经验公式分别是yA= 7 ,yB= 7 。如果该商铺投入10万元资金经营上述两种
商品,可获得的最大利润为___________ 万元。
故当1≤n≤30时,满足条件的整数n有7个--------------------------------(6分)
A
G
EF a
GE
AD,AC于E,F.若 BE b ,那么 BE 等于
F
.
E
B
DC
11、已知二次函数 y ax2 bx c 的图象与 x 轴交于点(-2,0),(x1,0),且1<x1<2,与y轴正
半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的 结论是_____________.(填写序号)
y 1 x2 18、已知A1、A2、A3是抛物线 2 上的三点,A1B1、A2B2、A3B3分别垂直于 x 轴,垂足
为B1、B2、B3,直线A2B2交线段A1A3于点C.
(1)如图18-1,若A1、A2、A3三点的横坐标依次为1、2、3,求线段CA2的长;
y 1 x2
y 1 x2 x 1
(2)如图18-2,若将抛物线 2 改为抛物线 2
).
1 (A) 2 4S L2
1 (B) 2 4S L2
1 (C) 2 L2 4S
1 (D) 2 L2 4S
3、方程 (x 2 x 1) x3 1的所有整数解的个数是( )
(A)5个 (B)4个 (C)3个 (D)2个
4、已知梯形ABCD中,AD∥BC,对角线AC、BD交于O,△AOD的面积为4,
∴x 1 x 2 -(x 1 +x 2 )=b-a=2020 ∴(x 1 -1) (x 2 )=2020=2×17×59
因为59为质数,故x 1 -1, x 2 -1中必有一个是59的倍数,取x 1 -1=34, x 2 -1=59,则x 1 +x 2 =95,
b
65 15
∴a的最小值为95; 10、 a ;11、①②③;12、4;13、1.75;14、 8 或 2 ;
△BOC的面积为9,则梯形ABCD的面积为( )
(A)21
(B)22
(C)25
5、方程|xy |+|x+y|=1的整数解的组数为(
(A)8 (B) 6
(C) 4 (D) 2
(D)26 )。
6、已知一组正数
x1,x2 ,x3,x4 ,x5
的方差为:
S2
1 5
( x12
x22
x32
x42
x52
20)
,则关于
14、在△ABC中,AB=15,AC=13,高AD=12,设能完全覆盖△ABC的圆的半径为R.则R的
最小值是

三、解答题(第15、16、17题各12分,第18题14分,共50分) 15、三项式x2-x-2n能分解为两个整系数一次因式的乘积 (1)若1≤n≤30,且n是整数,则这样的n有多少个? (2)当n≤2020时,求最大整数n
相关文档
最新文档