复习线性回归方程的求法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xi
- nxy
i
i=1
n xi2 - nx2
,
i=1
i=1
aˆ = y - bˆ x
(2)相应的直线叫做回归直线。 (3)对两个变量进行的线性分析叫做线性回归分析。
(注意回归直线一定经过样本点的中心)
例1 假设关于某设备的使用年限x和所有支出的维修费用y(万 元)有如下的统计数据:
x
2
3
4
5
6
Y
模 拟
y = f(x)
回顾变量之间的两种关系
问题1:正方形的面积y与正方形的边长x之间 的函数关系是
y = x2
确定性关系
问题2:某水田水稻产量y与施肥量x之间是否
-------有一个确定性的关系?
例如:在 7 块并排、形状大小相同的试验田 上 进行施肥量对水稻产量影响的试验,得到 如下所示的一组数据:
X
3
4
y
2.5
3
5
6
4
4.5
(1)请画出上表数据的散点图
(2)请根据上表提供的数据,用最小二乘法求出y关于x的
性回归方程 y bˆx aˆ
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准 煤,试根据(2)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5 43 54 64.5 66.5 )
,
i=1
i=1
aˆ = y - bˆ x
(3)根据回归方程,并按要求进行预测说明。
第一章 统计案例
1.1回归分析的基本思想及其初步应用
(第二课时)
a. 比《数学3》中“回归”增加的内容
数学3——统计
1. 画散点图 2. 了解最小二乘法
的思想 3. 求回归直线方程
y=bx+a
4. 用回归直线方程 解决应用问题
2、现实生活中存在着大量的相关关系。
如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
探索:水稻产量y与施肥量x之间大致有何 规律?
施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455
y
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据估 计、推断
用样本估计总体 变量间的相关关系
简 分 系 用样本的 用样本数
线
单层 统 随抽 抽 机样 样 抽
频率分 布估计 总体分
字特征 估计总 体数字
性 回 归 分


特征

统计的基本思想
实际
样本
抽样
y = f(x)
分 析
y = f(x)
2.2
3.8
5.5
6.5
7.0
若由此资料所知y对x呈线性相关关系,试求: 1.回归直线方程 2.估计使用年限为10年时,维修费用是多少? 解题步骤:
1.作散点图
2.把数据列表,计算相应的值,求出回归系数 3.写出回归方程,并按要求进行预测说明。
例2 (2007年广东)下表提供了某厂节能降耗技术改造后生产 甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准 煤)的几组对应数据。
根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。 虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此, X和Y之间存在一种相关关系。
一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身 高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈 的身高有向中心回归的特点。“回归”一词即源于此。
选修1-2——统计案例 5. 引入线性回归模型
y=bx+a+e 6. 了解模型中随机误差项e产
生的原因
7. 了解相关指数 R2 和模型拟
合的效果之间的关系 8. 了解残差图的作用
9. 利用线性回归模型解决一类 非线性回归问题
10.正确理解分析方法与结果
什么是回归分析:
“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。
xi2 - nx2
,
i=1
aˆ =y-bˆx.
其中x
=
1 n
n xi,y i=1
=
1 n
n yi. i=1
(x,y) 称为样本点的中心。
2、回归直线方程:
(1)所求直线方程 yˆ = bˆ x +叫aˆ做回归直线方程;
其中
n
n
y bˆ =
(xi - x)(yi - y)
i=1 n
=
(xi - x)2
500 水稻产量
450 400 350
··· ·
300 ···
散点图 施化肥量
10 20 30 40 50
xHale Waihona Puke Baidu
探索2:在这些点附近可画直线不止一条,
哪条直线最能代表x与y之间的关系呢?
发现:图中各点,大致分布在某条直线附近。
y 水稻产量 500
450
· · 400
(xi ,yi )
·· 350 |yi - yi |
··· 300
(xi ,yi )
怎样求回归直线? 施化肥量
10
20
30
40x
50
n
Q(a,b)= (yi - bxi - a)2 取最小值时,a,b的值.
i=1
最小二乘法:yˆ = bˆ x + aˆ
n
n
bˆ =i=1i(n=x1i(-xxi)-(xy)i2-y) =
xiyi - nxy
i=1 n
施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455
1、定义: 自变量取值一定时,因变量的取值带有一
定随机性的两个变量之间的关系叫做相关关系。
注 1):相关关系是一种不确定性关系; 2):对具有相关关系的两个变量进行 统计分析的方法叫回归分析。
虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。
小结:求回归直线方程的步骤
(1)作散点图,通过图看出样本点是否呈条状分 布,进而判断两个量是否具有线性相关关系。
(2)所求直线方程 yˆ = bˆ x +叫aˆ做回归直线方程;
其中
n
n
y bˆ =
(xi - x)(yi - y)
i=1 n
=
(xi - x)2
xi
- nxy
i
i=1
n xi2 - nx2
回归分析的内容与步骤: 回归分析通过一个变量或一些变量的变化解释另一变量的变化。
其主要内容和步骤是,
首先根据理论和对问题的分析判断,将变量分为自变量和因变量; 其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系; 由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;
相关文档
最新文档