(完整)高考文科数学总复习试题知识点,推荐文档

合集下载

高考文科数学必考知识点

高考文科数学必考知识点

高考文科数学必考知识点高考文科数学必考知识点主要包括数与代数、函数与方程、几何与空间、统计与概率四个模块,下面将对每个模块的重点内容进行详细介绍。

一、数与代数1. 整式与分式整式是只包含有限个非负整数次幂的代数式,如2x²+3x-1;分式是由多项式除以非零多项式得到的表达式,如(2x²+3x-1)/(x+2)。

必考知识点包括整式的加减乘除运算、分式的约分和等值变形。

2. 方程与不等式方程是含有未知数的等式,如2x+3=7;不等式是含有未知数的不等式,如2x+3>7。

必考知识点包括一元一次方程及其应用、一元二次方程及其应用、一元一次不等式及其应用。

3. 指数与对数指数是用来表示乘法的重复操作,如2³=2×2×2;对数是指数运算的逆运算,如log₂8=3。

必考知识点包括指数与幂、对数的定义和性质。

4. 等比数列与等差数列等差数列是指相邻两项之差相等的数列,如1, 3, 5, 7, ...;等比数列是指相邻两项之比相等的数列,如2, 4, 8, 16, ...。

必考知识点包括等差数列与等比数列的通项公式、求和公式及其应用。

二、函数与方程1. 函数函数是一个映射关系,将一个集合的每个元素都对应到另一个集合中的唯一元素,如y=x ²。

必考知识点包括函数的定义、函数的图像、函数的性质以及常见的基本函数。

2. 二次函数二次函数是一个以x的二次多项式形式表示的函数,如y=ax²+bx+c。

必考知识点包括二次函数的图像、二次函数的最值、零点及其应用。

3. 指数函数与对数函数指数函数是以变量为指数的函数,如y=2ˣ;对数函数是指数函数的逆运算,如y=log₂x。

必考知识点包括指数函数与对数函数的图像、性质和应用。

4. 三角函数三角函数是描述角度与边长之间关系的函数,如y=sin(x)。

必考知识点包括三角函数的图像、周期性、相关性质以及应用。

高中数学知识点总结大全(文科)

高中数学知识点总结大全(文科)

高中数学知识点总结目录第一章一一集合与简易逻辑 (1)第二章一一函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章一一集合与简易逻辑集合一识点归纳:定义:一组对象的全体形成一个集合.特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图分类:有限集、无限集.数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集如关系:属于E、不属于£、包含于J(或U)、真包含于5、集合相等=・运算:交运算ACB={x|xEA且XEB};并运算AUB={x|xGA或xEB};补运算C u A={x\x^A且xCU},U为全集性质:ACA:<1)CA:若ACB.BJC,则AJC:AAA=AUA=A;AA4> =4>:AU4)=A:AAB=A<=>AUB=B<=>ACB;Anc t/A=4);AUC"A=I:C[7(C L rA)=A:C L-(AoB)=(C Lr A)n(C L.B).方法:韦恩示意图,数轴分析.注意:①区别6与W、乒与己、a与{a}、4>与{4)}.{(1,2)}与{1,2};②ACB时,A有两种情况:A=4>与AN4>・③若集合A中有n(WGAT)个元素,则集合A的所有不同的子集个数为2”,所有真子集的个数是2”-1,所有非空真子集的个数是2”-2.④区分集合中元素的形式:如A={x\y=x2+2x+l}^B={y\y=x2+2x+l}^ C={(x,y)|y=X:+2x+1}:D={x\x=x2+2x+]}i E=((x,y)|y=x2+2x+l,x e Z,y e Z}:F={(x,V)|y=尸+2x+1};G={z|y=[2+2x+l,z=与.X空集是指不含任何元素的集合.{0}、。

高考文科数学所有知识点总结

高考文科数学所有知识点总结

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

文科数学高频必考考点第一部分:选择与填空1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);2.常用逻辑用语(充要条件,全称量词与存在量词的判定);3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);4.幂、指、对函数式运算及图像和性质5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);6.空间体的三视图及其还原图的表面积和体积;7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;12.向量数量积、坐标运算、向量的几何意义的应用;13.正余弦定理应用及解三角形;14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;15.线性规划的应用;会求目标函数;16.圆锥曲线的性质应用(特别是会求离心率);17.导数的几何意义及运算、定积分简单求法18.复数的概念、四则运算及几何意义;19.抽象函数的识别与应用;第二部分:解答题第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;第18题:(文)概率与统计(概率与统计相结合型)(理)离散型随机变量的概率分布列及其数字特征;第19题:立体几何①证线面平行垂直;面与面平行垂直②求空间中角(理科特别是二面角的求法)③求距离(理科:动态性)空间体体积;第20题:解析几何(注重思维能力与技巧,减少计算量)①求曲线轨迹方程(用定义或待定系数法)②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)③求定点、定值、最值,求参数取值的问题;第21题:函数与导数的综合应用这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

高三数学考试试题基本知识点文科版

高三数学考试试题基本知识点文科版

高三数学考试试题基本知识点文科版
一、函数基本知识点
1.函数的基本概念
–函数的定义
–自变量和因变量
–定义域和值域
2.函数的性质
–奇函数与偶函数
–单调性
–最值
3.复合函数
–复合函数的性质
–复合函数的求解
二、导数基本知识点
1.导数的定义
–函数在某一点的导数
–导数的几何意义
2.导数的性质
–导数的四则运算
–函数的导数与原函数的关系
–高阶导数
3.应用题
–切线与切线方程
–导数在几何与物理问题中的应用
三、不定积分基本知识点
1.不定积分的概念
–基本初等函数的原函数
–不定积分的性质
2.不定积分的运算规则
–不定积分的线性性质
–不定积分的换元积分法
–分部积分法
3.不定积分的应用
–定积分的基本概念
–定积分的性质
–定积分的几何应用
四、微分方程基本知识点
1.微分方程的基本概念
–微分方程的定义
–微分方程的解
2.一阶微分方程
–可分离变量微分方程
–齐次微分方程
–一阶线性微分方程
3.应用题
–积分因子法
–变量代换法
–模型建立与求解
通过对上述文科数学基本知识点的复习和掌握,能够更好地应对高三数学考试中的各类试题,提高自己的数学成绩,为将来的学习和发展打下坚实的数学基础。

高考文科数学知识点汇总

高考文科数学知识点汇总

高考文科数学知识点汇总高考文科数学知识点:立体几何1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决"平行与垂直'的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:(1)由定义知:"两平行平面没有公共点';(2)由定义推得:"两个平面平行,其中一个平面内的直线必平行于另一个平面';(3)两个平面平行的性质定理:"如果两个平行平面同时和第三个平面相交,那么它们的交线平行';(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;(5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行。

高考文科数学知识点:导数一、综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

高考文科数学总复习知识点

高考文科数学总复习知识点

高考文科数学总复习知识点高三文科数学总复集合:集合的元素具有确定性、互异性和无序性特征。

常用的数集包括自然数集(或非负整数集)记为N,正整数集记为N或N+,整数集记为Z,实数集记为R,有理数集记为Q。

集合还有重要的等价关系,即A∩B=A当且仅当A∪B=B当且仅当A是B的子集。

一个由n个元素组成的集合有2个不同的子集,其中有2n-1个非空子集,也有2n-1个真子集。

函数:函数单调性的证明可以通过取值、作差、变形、定号和得出结论等步骤完成。

常用的结论包括:若f(x)为增(减)函数,则-f(x)为减(增)函数;增+增=增,减+减=减;复合函数的单调性是“同增异减”;奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

函数的奇偶性定义为f(-x)=f(x)时为偶函数,f(-x)=-f(x)时为奇函数。

需要注意的是,函数为奇偶函数的前提是定义域在数轴上关于原点对称;奇函数的图像关于原点对称,偶函数的图像关于y轴对称;若奇函数f(x)在x=0处有意义,则f(0)=0.基本初等函数:指数函数的一般形式为x=a^n,其中n>1且n为自然数。

负数没有偶次方根,任何次方根都是正数,当n是奇数时,a^n=a,当n是偶数时,a^n=|a|。

对数的定义为若a=N,则b=log_a N,其中a为对数的底数,b为以a为底的N的对数,N为真数。

需要注意的是,负数和零没有对数,log_a 1=0且log_a a=1(a>0且a≠1)。

对数的运算法则包括log_a (MN)=log_a M+log_a N,log_a (M/N)=log_a M-log_a N,log_a M^n=nlog_a M,换底公式为log_a b=log_c b/log_c a。

指数函数和对数函数是互逆的,即a^log_a N=N。

b=(a。

a≠1,c。

c≠1,b>),利用换底公式推导以下结论:logc a = 1n(1) loga bn = loga b (2) loga b = logb am改写为:假设b=(a。

高考文科数学知识点复习.doc

高考文科数学知识点复习.doc

2018年高考文科数学知识点复习高考文科数学知识点一不等式一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(2)如果a 0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b| |a b| |a|+|b|.(6)|a1+a2+ +an| |a1|+|a2|+ +|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a| a2 (a-b)2 0(a、b R)②a2+b2 2ab(a、b R,当且仅当a=b时取= 号)2.不等式的证明方法(1)比较法:要证明a b(a0(a-b 0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差变形判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|0)(6)|f(x)| g(x)①与f(x) g(x)或f(x) -g(x)(其中g(x) 0)同解;②与g(x) 0同解.(9)当a 1时,af(x) ag(x)与f(x) g(x)同解,当0ag(x)与f(x)四、不等式解不等式的途径,利用函数的性质。

(完整word版)高考数学知识点归纳总结,推荐文档

(完整word版)高考数学知识点归纳总结,推荐文档

高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。

2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。

且:有假为假,全真为真。

非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。

常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。

高考数学文科常考知识点

高考数学文科常考知识点

高考数学文科常考知识点数学是高考文科理科都必考的科目之一,对于文科生来说,数学的考试内容相对来说更为简单,但是也有很多常考的知识点需要我们掌握。

本文将会介绍一些高考数学文科常考的知识点,希望对广大考生有所帮助。

一、函数与方程在高考数学文科试卷中,函数与方程是常考的重点内容之一。

对于文科生来说,掌握函数与方程的性质和变化规律非常重要。

1. 一次函数:一次函数是指函数的最高次数为1的函数,通常具有 y=kx+b 的形式。

文科生需要掌握一次函数的定义、性质以及与实际问题的应用。

2. 二次函数:二次函数是指函数的最高次数为2的函数,通常具有 y=ax^2+bx+c 的形式。

文科生需要掌握二次函数的定义、性质以及与实际问题的应用。

3. 幂函数与指数函数:幂函数是指函数的变量以某个常数为底的次幂,通常具有 y=ax^n 的形式。

指数函数是幂函数当指数为常数e (自然对数的底数)时的特殊情况。

文科生需要掌握幂函数与指数函数的定义、性质以及与实际问题的应用。

4. 对数函数:对数函数是指以某个常数为底的对数函数,通常具有 y=log_a(x) 的形式。

文科生需要掌握对数函数的定义、性质以及与实际问题的应用。

5. 方程与不等式:方程与不等式是数学中的基本概念,是解决实际问题的基本工具。

文科生需要掌握一元高次方程与一元一次方程的求解方法,以及一元一次不等式的求解方法。

二、几何与三角函数1. 平面几何:平面几何是高考数学文科试卷的必考内容之一。

文科生需要掌握平面几何中的基本概念,如点、线、面、角等,以及常见的图形的性质和计算方法。

2. 三角函数:三角函数是数学中的重要分支,也是高考数学文科试卷中常考的内容之一。

文科生需要掌握常见三角函数的定义、性质以及与实际问题的应用。

三、统计与概率1. 统计学:统计学是高考数学文科试卷中的重要内容。

文科生需要掌握统计学中的基本概念,如总体、样本、频数等,以及常见的数据处理和分析方法。

2024年高考文科数学知识点总结归纳(二篇)

2024年高考文科数学知识点总结归纳(二篇)

2024年高考文科数学知识点总结归纳高考文科数学考试主要涉及以下几个知识点:1. 代数与函数:- 线性方程与线性不等式- 二次函数与一元二次方程- 指数与对数- 三角函数与三角方程- 复数与复数方程2. 数列与数学归纳法:- 等差数列与等比数列- 递推数列- 数学归纳法的应用3. 几何与向量:- 角的概念与性质- 三角形与四边形的性质- 圆的概念与性质- 直线与平面的方程- 向量的定义与运算4. 概率与统计:- 事件的概念与性质- 离散型随机变量与连续型随机变量- 概率的计算与性质- 统计的基本概念与方法下面对每个知识点进行进一步总结:1. 代数与函数:- 线性方程与线性不等式:高考文科数学中的线性方程与线性不等式主要涉及到一元一次方程与一元一次不等式的求解。

需要掌握将方程转化为标准形式、去括号、移项、合并同类项、整理得到方程的解,以及用图象法解不等式。

- 二次函数与一元二次方程:二次函数与一元二次方程是高考文科数学中重要的知识点。

需要掌握二次函数的顶点、对称轴、单调性、最值等性质,以及一元二次方程的求解方法,包括配方法、公式法、因式分解法等。

- 指数与对数:指数与对数是高考文科数学中的基本知识点,涉及到指数函数与对数函数的性质、指数方程与对数方程的求解方法,以及指数对数的换底公式等。

- 三角函数与三角方程:三角函数与三角方程是高考文科数学中的重要内容。

需要掌握三角函数的定义、性质与图象,以及三角方程的求解方法,包括基本解、通解等。

- 复数与复数方程:复数与复数方程是高考文科数学中的较为高级的知识点。

需要掌握复数的定义、运算与性质,以及复数方程的求解方法,包括一次解法与二次解法。

2. 数列与数学归纳法:- 等差数列与等比数列:高考文科数学中经常涉及到等差数列与等比数列的问题,需要掌握等差数列与等比数列的通项公式、求和公式以及相关性质。

- 递推数列:递推数列是高考文科数学中常见的一种数列,需要了解递推数列的定义、通项公式、前n项和以及性质。

(精品word)高考文科数学知识点总结(良心出品必属精品)

(精品word)高考文科数学知识点总结(良心出品必属精品)

集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法集合元素的特征:确定性、互异性、无序性.3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题二逆命题.②一个命题为真,则它的逆否命题一定为真.原命题=逆否命题.(二)含绝对值不等式、一元二次不等式的解法及延伸1. 含绝对值不等式的解法(1)公式法:ax+bcc,与ax + bAC(c〉O)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.特例①一元一次不等式ax>b解的讨论;2ax +bx+c=O (a =0)的解集 旬 X C 乂1或乂 AX 2 }R2ax +bx+c" (a >0)的解集旬 % v x <x 2 }(三)简易逻辑1、 命题的定义:可以判断真假的语句叫做命题2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是 简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

(1)“非p ”形式复合命题的真假与F 的真假相反;(2)“ p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;(3)“ p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真. 4、四种命题的形式: 原命题:若P 则q ;逆命题:若q 则p ;否命题:若「P 则「q ;逆否命题:若「q 则「p 。

6、如果已知p= q 那么我们说,p 是q 的充分条件,q 是p 的必要条件 若p= q 且q= p,则称p 是q 的充要条件,记为p? q. 函数构成复合命题的形式:p 或q (记作 q ” ) ; p 且 q (记作“ p A q ” ) ; 非q ”)。

逆命题 若q 则p■■互 否 逆否命题 若「q 则互逆 互逆------ > 否逆知识回顾:(一)映射与函数1. 映射与一一映射2. 函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(二)函数的性质1. 函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1,X2⑴若当X1<X2时,都有f(x i)<f(x 2),则说f(x)在这个区间上是增函数;⑵若当X1VX2时,都有f(x i)>f(x 2),则说f(x)在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2. 函数的奇偶性鹤函数的定义:如果对的定文域內任童仆都有f卜掘冃但),那么函数率)就叫做偶函数.奇函数的定义,如果对干函数耳養)的定义域内枉意一个鶯,祁有n-x)=j(x)T ju么就叫做奇嚼数.他是奇鹹UM T闵3 3+加M o樂二-1(/(1)* 0)4.判断函数单调性(定义),例如:f(xj — f (x2) =\:斤巾2 -巾2 =3指数函数与对数函数指数函数及其性质Xy=a (a>O,a 工1)〔二)a>1定义域:R值域:(0, +乂)性过定点(0, 1),即x=0时,y=1质0<a<1图像分布在一、二象限,与有y轴相交,落在轴的上方。

高三文科数学知识点及例题

高三文科数学知识点及例题

高三文科数学知识点及例题引言:随着高考的临近,高三学生们要面临着各科目的复习备考。

在文科生中,数学常常被认为是最具挑战的科目之一。

本文将介绍一些高三文科生常见的数学知识点,并提供一些例题以帮助学生们更好地理解和掌握这些知识。

一、函数与方程1.1 一次函数一次函数是高中数学中最基础的函数之一。

它的一般形式为y=ax+b,其中a和b为常数。

一次函数的图像为一条斜率为a的直线,b则决定了直线与y轴的交点。

例题:已知一次函数的图像过点(2, 5),斜率为3,求该一次函数的解析式。

1.2 二次函数二次函数的一般形式为y=ax^2+bx+c,其中a不等于0。

它的图像通常为一个开口朝上或朝下的抛物线。

例题:已知二次函数的图像顶点为(2, -3),过点(1, -5),求该二次函数的解析式。

1.3 指数函数指数函数是以指数为自变量的函数。

它的一般形式为y=a^x,其中a为底数,a大于0且不等于1。

指数函数的图像通常是增长或衰减的曲线。

例题:已知指数函数的图像经过点(1, 2),求该指数函数的解析式。

二、概率与统计2.1 抽样与总体概率与统计是高考数学中较为重要的一个知识点。

在概率与统计中,抽样与总体是一个重要的概念。

总体是指研究对象的全体,而抽样是从总体中选取的一部分进行研究。

例题:某班级有50名学生,要对他们的成绩进行调查。

为了节约时间,决定随机抽取10名学生进行调查。

这里抽取的10名学生是总体还是样本?2.2 随机事件与概率随机事件是指在相同条件下,每次试验中可能发生也可能不发生的事件。

概率则是描述随机事件发生可能性的一种方式。

例题:一枚骰子被投掷一次,求出点数大于4的概率。

三、数列与数学归纳法3.1 等差数列等差数列中,任意两个相邻的项之间的差值相等。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,n为项数,d为公差。

例题:求等差数列1,4,7,10...的第20项。

3.2 等比数列等比数列中,任意两个相邻的项之间的比值相等。

高考数学(文科)主干知识整合

高考数学(文科)主干知识整合

高考数学(文科)主干知识一:三角函数考试要求(1)任意角的概念、弧度制:了解任意角的概念.弧度制概念,能进行弧度与角度的互化. (2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义.② 能利用单位圆中的三角函数线推导出απ± 的正弦、余弦、正切,及απ±2的正弦、余弦的诱导公式,能画出 x y sin =,x y cos = ,x y tan = 的图象,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间]2,0[π 的性质(如单调性、最大值和最小值、图象与 轴的交点等);理解正切函数在区间)2,2(ππ-的单调性.④ 理解同角三角函数的基本关系式: 1cos sin 22=+x x ,x xxtan cos sin = . ⑤ 了解函数 )sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象,了解参数ϕω,,A 对函数图象变化的影响.(3)三角恒等变换① 会用向量的数量积推导出两角差的余弦公式βαβαβαsin sin cos cos )cos(+=-. ② 能利用两角差的余弦公式导出两角差的正弦βαβαβαsin cos cos sin )sin(-=-、正切公式βαβαβαtan tan 1tan tan )tan(+-=-.③ 能利用两角差的余弦公式导出两角和的正弦βαβαβαsin cos cos sin )sin(+=+、余弦βαβαβαsin sin cos cos )cos(-=+、正切βαβαβαtan tan 1tan tan )tan(-+=+公式,二倍角公式:αααcos sin 22sin =、ααααα2222sin 211cos 2sin cos 2cos -=-=-=及其变形22cos 1cos ,22cos 1sin 22αααα+=-=、ααα2tan 1tan 22tan -=.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). ④掌握正弦定理Cc B b A a sin sin sin ==、余弦定理A bc c b a cos 2222-+=,并能解决一些简单的三角形度量问题.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.复习关注重视相关知识的理解和记忆,更要重视三角函数的图象和性质的探究,关注三角知识的应用,关注解三角形及其应用.强化训练一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的). 1.若角α的始边为x 轴的非负半轴,顶点为坐标原点,点P(-4,3)为其终边上一点,则cos α的值为( )A .45B .-35C .-45D .±352.若函数f(x)=asinx -bcosx 在x=3π处有最小值-2,则常数a 、b 的值是( ) A .a=-1,b= 3B .a=1,b=- 3C .a=3,b=-1D .a=-3,b=13.已知)3sin(3)3cos()(ϕϕ+-+=x x x f 为偶函数,则ϕ可以取的一个值为( )A .π6B .π3C .-π6D .-π34.在△ABC 中,sin 2cos cos cos 2sin sin A C AA C A+=-是角A 、B 、C 成等差数列的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .既不充分也不必要条件 5.已知函数f(x)=asinx -bcosx (a 、b 为常数,a ≠0,x ∈R )在x =π4处取得最小值,则函数y =f(3π4-x)是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(3π2,0)对称C .奇函数且它的图象关于点(3π2,0)对称 D .奇函数且它的图象关于点(π,0)对称6.已知sin2=-2524, ∈(-π4,0),则sin +cos =( )A .-51B .51 C .-57 D .577.曲线y =2si n )4cos()4(ππ-+x x 和直线y =21在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|等于( ) A .πB .2πC .3πD .4π8.若3cos25θ=,4sin 25θ=-,则角θ的终边一定落在直线( )上。

((完整版))高考文科数学总复习知识点,推荐文档

((完整版))高考文科数学总复习知识点,推荐文档

-2-
(2)柱体、锥体、台体的体积公式:
V柱 Sh
V圆柱 Sh r 2h
V锥
1 3
Sh
V圆锥
1 r 2h 3
(3)球体的表面积和体积公式: V球
4 R 3 3
S球面 4R 2
直线与方程
1、直线的斜率
过两点的直线的斜率公式: k
y2 x2
y1 x1
( x1
x2 )
2、直线方程
①点斜式: y y1 k(x x1 ) 直线斜率 k ,且过点 x1, y1
abr a rbr a 0,b 0, r Q
(2)① loga MN loga M loga N

log
a
M N
log a
M
log a
N
(4) ③
③ loga M n n loga M
-1-
④换底公式: log a
b
log c log c
b a
a 0, a 1, c 0, c 1, b 0,利用换底公式推导下面的结论:
(1)定义:① f (x) f (x) , f (x) 就叫做偶函数 ② f (x) f (x) , f (x) 就叫做奇函数
注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称
②奇函数的图像关于原点对称,偶函数的图象关于 y 轴对称 ③若奇函数 f (x) 在 x 0 处有意义,则 f (0) 0
圆的方程
1、圆的方程
(1)标准方程 x a2 y b2 r 2 ,圆心 a, b,半径为 r
(2)一般方程 x 2 y 2 Dx Ey F 0
2、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,判断方法:

高考文科数学所有知识点总结

高考文科数学所有知识点总结

高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A (2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n -个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ AB B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集 U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )()()()U U U A B A B =痧?()()()U U U A B A B =痧?叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =x a y =xy(0,1)O 1y =定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a NaN =⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a=- ③若2b q a ->,则()M f q =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q)()2bf a-x<O-=f (p)f(q)()2bf a-x<O-=f (p)f(q)()2bf a-①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②奇函数的图像关于原点对称,偶函数的图象关于 y 轴对称 ③若奇函数 f (x) 在 x 0 处有意义,则 f (0) 0
(2)函数奇偶性的常用结论: 奇 + 奇 = 奇,偶 + 偶 = 偶,奇 * 奇 = 偶,偶 * 偶 = 偶,奇 * 偶 = 奇
基本初等函数
1、(1)一般地,如果 xn a ,那么 x 叫做 a 的 n 次方根。其中 n 1,n N
2
(3)
球体的表面积和体积公式:
V球
R 3
S球面 4R
直线与方程
1、直线的斜率
y2 y1
过两点的直线的斜率公式: k
2、直线方程
x2 x1
(x1 x2 )
①点斜式: y y1 k(x x1 ) 直线斜率 k ,且过点x1, y1
②斜截式: y kx b ,直线斜率为 k ,直线在 y 轴上的截距为b
函数:
1、函数单调性 (1)证明:取值--—作差----变形----定号 -----结论 (2)常用结论:
①若 f (x) 为增(减)函数,则 f (x) 为减(增)函数 ②增+增=增,减+减=减 ③复合函数的单调性是“同增异减” ④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反 9、函数奇偶性 (1)定义:① f (x) f (x) , f (x) 就叫做偶函数 ② f (x) f (x) , f (x) 就叫做奇函数 注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称
减函数
增函数
减函数
增函数
x (, 0)时,y (1,) x (, 0)时,y (0,1) x (0,1)时,y (0, ) x (0,1)时,y (, 0) x (0, )时,y (0,1) x (0, )时,y (1, ) x (1, )时,y (, 0) x (1, )时,y (0, )
表2
幂函数 y x( R)
性质
(1) 过定点(1,1)
(2) α 为奇数,函数为奇函 数;α 为偶数,函数为
偶函数
图象
4、几种常见函数的导数: C' 0 ( C 为常数) (xn )' nxn1 ( n Q )
(cos x)' sin x
(ln x)' 1 x
(loga
x)'
1 x
log a
e
(ex )'
ex
(sin x)' cos x (a x )' a x ln a
abr arbr a 0,b 0, r Q (2)① loga MN loga M log a N

log
a
M N
log a
M
log a
N
log aM n n log Ma
(4) ③ ③
.
.
④换底公式: log b logc b a 0, a 1, c 0, c 1, b 0,利用换底公式推导下面的结论:
③两点式:
y y
y1 y
x
xx1x(
x
x , y y )直线两点 x , y , x , y
1
21
2
11
22
2
1
2
1
④截矩式: x y 1 ,其中直线与 x 轴、 y 轴的截距分别为 a,b
ab
⑤一般式: Ax By C 0 ( A, B 不全为 0)
3、两直线平行与垂直
l1 // l2 k1 k2 , b1 b2 ; l1 l2 k1k2 1
①当n 是奇数时, n an n
a ,当n 是偶数时, n an
|
a
|
a
a
(a 0)
(a1
0)
④我们规定:(1) a m m an a 0, m, n N * , m 1
(2) a n an n 0
(2)对数的定义:若 ab N ,那么b log aN ,其中 a 叫做对数的底数, b 称为以 a 为底的 N 的对数,
N 叫做真数
注:(1)负数和零没有对数(因为 N ab 0 ) (2) log a1 0, log aa 1 ( a 0 且 a 1 )
(3)将 b log a N 代回 ab N 得到一个常用公式 aloga N N
a x N log Na x
2、(1)① a r a s a rs a 0, r, s Q② a r s a rs a 0, r, s Q
4、两点间距离公式: | AB | (x2 x )12 ( y 2 y )21 Ax0 By0 C
5、点到直线距离公式: d A2 B 2
C1 C2 6、两平行直线距离公式: d
A2 B 2
S圆锥表 rr l
圆的方程
1、圆的方程
(1) 标准方程x a2 y b2 r 2 ,圆心a, b,半径为 r
(2) 一般方程 x 2 y 2 Dx Ey F 0
2、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况,判断方法:
设直线l : Ax By C 0 ,圆C : x a2 y b2 r 2 ,圆心Ca,b到 l 的距离为
d Aa Bb C ,则有 d r l与C相离; d r l与C相切; d r l与C相交
a logca (1) log bn n log b
(2) log b 1
m
a
ma
a log ba
3、指数函数、对数函数、幂函数的图像和性质
表1
定义域
指数函数
y
x a
a
0,
a
1
xR
对数函数 y loga xa 0,a 1
x 0,
值域
y 0,
yR
图象
性质
过定点(0,1)
过定点(1, 0)
立体几何初步
柱体、锥体、台体的表面积与体积
(1)几何体表面积公式( C 为底面周长, h 为高, l 为母线):
.
.
S圆柱侧 2rh
S圆锥侧面积 rl
(2) 柱体、锥体、台体的体积公式:
S圆柱表 2rr l
V 柱 Sh
V圆柱 Sh r 2h 4
V 1 Sh 锥3
3
V圆锥
1r 2h 3
.
高三文科数学总复习
集合:
1、集合元素的特征:①确定性
②互异性
③无序性
2、常用数集及其记法:①自然数集(或非负整数集)记为 N
②整数集记为 Z
③实数集记为 R
3、重要的等价关系: A B A A B B A B
正整数集记为 N 或 N ④有理数集记为Q
4、一个由 n 个元素组成的集合有2n 个不同的子集,其中有2n 1个非空子集,也有2n 1个真子集
相关文档
最新文档