单源最短路径问题-Dijkstra
dijkstra算法步骤例题
dijkstra算法步骤例题Dijkstra算法是解决单源最短路径问题的常用算法。
其思路是通过累计最短路径来逐渐扩展到所有节点。
Dijkstra算法的基本流程如下:1. 创建一个空堆和一个空seen集合。
堆中包含每个节点到起始节点的距离值和节点本身。
2. 将起始节点插入堆中,并将其距离值设为0。
3. 当堆不为空时,取出堆中距离值最小的节点。
如果此节点在seen中,跳过。
否则,将其标记为seen,并计算其邻居节点到起始节点的距离值。
如果邻居节点的距离值未被计算过或新距离值比已计算的距离值小,更新其距离值。
最后,将其加入堆中以备下一次取最小距离值使用。
4. 重复上述步骤3,直至堆为空或者所有节点距离值都被计算。
下面通过一个例子来详细解释Dijkstra算法的具体实现过程:假设我们有如下图所示的一个简单的有向加权图,其中每个节点代表一个城市,每条有向边代表两个城市之间的道路,其权重表示两座城市之间的距离。
![image.png](attachment:image.png)设起点为A,我们使用Dijkstra算法来求出从A到图中其余各个节点的最短距离和路径。
具体步骤如下:1. 创建空的distance字典保存每个节点到起点A的距离,创建空的parents字典保存最短路径上的每个节点的前一个节点,创建空的visited集合保存已经访问过的节点,创建初始堆,将A压入堆中,距离设置为0。
```distance = {A: 0}parents = {A: None}visited = set()heap = [(0, A)]```2. 当堆不为空时,取出堆中最小距离值对应的节点,并加入visited中。
```while heap:(curr_dist, curr_node) = heapq.heappop(heap)if curr_node in visited:continuevisited.add(curr_node)```3. 对于当前节点的每个邻居,计算其到起点的距离值并更新distance和parents。
dijkstra例题详解
dijkstra例题详解Dijkstra算法是一种求解单源最短路径问题的贪心算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1956年提出的。
Dijkstra算法可以解决有向有权图中单个源节点到其他所有节点的最短路径问题。
下面我们就来看一下Dijkstra算法的具体流程和实例。
一、Dijkstra算法的基本思想Dijkstra算法是一种基于贪心算法的思想,它采用了一种逐步逼近的方式来得到最短路径。
Dijkstra算法主要基于两个概念:1.已知最短路径节点集合S2.未知最短路径节点集合Q初始时,已知最短路径节点集合S为空,未知最短路径节点集合Q包含所有节点。
第一步,从未知最短路径节点集合Q中选取一个节点v,使得该节点到源节点的距离最短,并把这个节点加入到已知最短路径节点集合S中。
第二步,根据新加入的节点v,更新其他节点到源节点的距离。
如果节点w到源节点的距离通过v缩短了,那么就更新节点w的距离。
重复以上两个步骤,直到集合S包含所有节点。
二、Dijkstra算法的实现步骤具体实现Dijkstra算法的步骤如下:1.首先,初始化一个距离数组dis,保存源节点到每个节点的最短距离,初始化为INF(无穷大)。
2.初始化一个标记数组vis,保存每个节点是否已经走过,初始化为false。
3.设置源节点的距离为0,并将其放入优先队列中。
4.重复以下步骤,直到队列为空:从队列中取出距离源节点最近的节点u,将其标记为vis[u]=true。
遍历节点u的所有邻节点v,若vis[v]=false,则计算源节点到v的距离,并更新dis[v]。
将节点v放入优先队列中。
5.最终,dis数组中保存的就是源节点到每个节点的最短距离。
三、Dijkstra算法的例题详解现在我们来看一个Dijkstra算法的例题。
假设有一个无向有权图,图中有5个节点,给定起点s,节点之间的边和边权如下图所示。
给定起点s,求源节点s到每个节点的最短路径。
单源最短路径dijkstra算法c语言
单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
dijkstra算法流程
dijkstra算法流程
Dijkstra算法是一种解决单源最短路径问题的贪心算法。
它最早由荷兰计算机科学家Edsger W.Dijkstra于1959年提出,是图论中非
常基础的算法。
它被广泛应用于交通运输、计算机网络等领域,它可
以算出从起点到其他所有节点的最短路径。
下面我们来看一下Dijkstra算法的具体流程:
1.首先,我们要明确起点,并把起点标记为到起点最短路径为0,其他顶点至起点的最短路径为正无穷。
2.然后从起点开始,依次访问与它相邻的顶点,计算这些顶点与
起点的距离,并把它们的距离作为这些顶点的到起点的距离参数。
3.接下来,从这些顶点中找到距离起点最短的顶点,并且把这个
顶点标记为已确定最短路径。
4.然后,更新与这个点相邻的所有未确定最短路径的顶点的最短
路径。
如果新路径比其原路径更短,则更新路径;若没有更短,则保
留原路径。
5.重复第三步和第四步,直到找到起点到终点的最短路径。
6.最后,我们就能得到最短路径和各个顶点的距离。
通过以上的算法流程,我们可以计算出起点到其他所有顶点的最
短路径。
需要注意的是,Dijkstra算法只适用于边权为非负的有向图
或无向图。
在实际应用中,Dijkstra算法更多的是基于图的模型进行
路由选择和网络通信优化。
总结起来,Dijkstra算法是一种基于节点遍历、操作路径的贪心算法,它是求解最短路径问题中的一种重要算法。
虽然Dijkstra算法
只适用于边权为非负的有向图或无向图,但是它的计算效率相对较高,并且非常容易理解和实现。
dijkstra算法 城市最短路径问题
dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
dijkstra最短路径 应用案例
Dijkstra算法是一种用于解决图的单源最短路径问题的算法,由荷兰计算机科学家埃德斯格·迪克斯特拉提出。
该算法被广泛应用于网络路由算法、城市交通规划、通信网络等领域。
本文将从几个具体的案例出发,介绍Dijkstra最短路径算法的应用。
一、网络路由算法在现代计算机网络中,Dijkstra算法被应用于路由器之间的数据传输。
路由器之间通过Dijkstra算法计算出最短路径,以确保数据包能以最短的路径传输,从而提高网络的传输效率和稳定性。
假设有一个由多个路由器组成的网络,每个路由器之间存在多条连接线路,而每条线路都有一个权重值,代表数据传输的成本。
当一个路由器需要发送数据时,Dijkstra算法可以帮助它找到到达目的地最短且成本最小的路径。
这样,网络中的数据传输就能以最高效的方式进行,从而提升了整个网络的性能。
二、城市交通规划Dijkstra算法也被广泛应用于城市交通规划领域。
在城市交通规划中,人们通常需要找到最短路径以及最快到达目的地的方法,而Dijkstra算法正是能够满足这一需求的算法之一。
假设某城市有多条道路,每条道路都有不同的行驶时间。
当一个人需要从城市的某个地点出发到达另一个地点时,可以利用Dijkstra算法计算出最短行驶时间的路径。
这样,城市交通规划部门就可以根据这些信息对城市的交通流量进行合理分配和调度,提高城市交通的效率。
三、通信网络另一个Dijkstra算法的应用案例是在通信网络中。
通信网络通常是由多个节点和连接这些节点的线路组成的。
而节点之间的通信是通过传送数据包来实现的。
在这种情况下,Dijkstra算法可以帮助确定数据包传输的最短路径,以提高通信网络的效率和稳定性。
在一个由多个节点组成的通信网络中,当一个节点需要向另一个节点发送数据时,Dijkstra算法可以帮助确定最短路径,从而确保数据包能够以最短的路径传输到目的地。
这样一来,通信网络就能够更加稳定地进行数据传输,提高了通信网络的效率。
dijkstra最短路径算法详解
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
求解单源最短路径问题的算法
求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。
核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。
该算法适用于无负权边的情况。
2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。
该算法适用于存在负权边的情况。
3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。
该算法适用于有向图或无向图,且适用于任意权重的情况。
4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。
该算法适用于图中存在目标节点的情况。
以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。
dijkstra算法求解过程
Dijkstra算法求解过程简介Dijkstra算法是解决单源最短路径问题的经典算法之一,它通过贪心策略逐步确定从源点到其他所有节点的最短路径。
该算法的核心思想是利用优先队列,不断选择最短路径中还未确定最短路径的节点,直到找到源点到目标节点的最短路径。
算法思路1.创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大(表示未确定最短路径)。
2.将源点到自身的距离设置为0,将源点加入优先队列Q。
3.从Q中选择距离最短的节点u,并标记节点u的最短路径为确定。
4.遍历节点u的所有邻接节点v,更新源点到v的距离,如果发现新的最短路径,则更新路径长度并将节点v加入优先队列Q。
5.重复步骤3和4,直到优先队列Q为空。
算法步骤详解初始化首先,我们需要创建一个优先队列Q,并初始化源点到所有其他节点的距离为无穷大。
同时,将源点到自身的距离设置为0,将源点加入优先队列Q。
选择最短路径节点从优先队列Q中选择距离最短的节点u,将其标记为最短路径已确定的节点。
更新最短路径遍历节点u的所有邻接节点v,计算从源点到节点v的距离。
如果发现新的最短路径,则更新节点v的路径长度,并将节点v加入优先队列Q。
重复步骤3和4重复进行步骤3和4,直到优先队列Q为空。
这样就能够找到源点到所有其他节点的最短路径。
算法实例下面通过一个具体的示例来演示Dijkstra算法的求解过程。
假设有如下图所示的带权有向图,我们需要求解从源点A到其他所有节点的最短路径:4A -------> B| /|\| / || 2 | \3| \/ \/| C---D| / || /1 |2| \/ |--->E------>F我们先初始化距离表,将源点A到所有其他节点的距离设置为无穷大,源点A到自身的距离设置为0:节点距离A 0——- —-B ∞——- —-C ∞——- —-D ∞——- —-E ∞——- —-F ∞接着,将源点A加入优先队列Q。
Dijkstra算法求解单源最短路径问题
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
dijkstra算法求解过程
dijkstra算法求解过程
Dijkstra算法是一种用于解决单源最短路径问题的贪心算法。
它的基本思想是从起点开始,每次选择当前最短路径的节点作为下一个中转点,直到到达终点为止。
下面我们来详细了解一下Dijkstra算法的求解过程。
1. 初始化
首先,我们需要将起点到各个节点的距离初始化为无穷大,表示当前还没有找到最短路径。
同时,将起点到自身的距离设为0,表示起点到自身的距离为0。
2. 选择最短路径节点
从起点开始,选择当前距离起点最近的节点作为中转点,将其标记为已访问。
然后,更新起点到其他节点的距离,如果经过当前中转点的路径比原来的路径更短,就更新距离。
3. 重复选择最短路径节点
重复上述步骤,直到所有节点都被标记为已访问,或者终点被标记为
已访问。
在每次选择最短路径节点时,可以使用优先队列来提高效率。
4. 输出最短路径
当所有节点都被标记为已访问时,最短路径就已经确定了。
可以通过
回溯记录每个节点的前驱节点,从终点开始沿着前驱节点一直回溯到
起点,就可以得到最短路径。
Dijkstra算法的时间复杂度为O(n^2),其中n为节点数。
如果使用优先队列来优化,时间复杂度可以降为O(mlogn),其中m为边数。
因此,在实际应用中,Dijkstra算法常常被用来解决稠密图的最短路径
问题。
总之,Dijkstra算法是一种简单而有效的求解单源最短路径问题的算法。
通过不断选择当前最短路径的节点,可以逐步确定起点到终点的
最短路径。
dijkstra算法过程
dijkstra算法过程Dijkstra算法是一种图论算法,用于求解单源最短路径问题。
它是由荷兰计算机科学家艾伦迪科斯特拉在1959年开发的,可以在多重图中找到从某个节点(以及节点之间的边)到其他所有节点的最短路径。
Dijkstra算法的基本原理是,从源节点出发,沿着图中的每条边,从一个节点移动到另一个节点。
它试图找出从源节点到目标节点的最短路径。
因此,它不会停留在一个未知的节点上花费太长时间,而是会沿着已知节点将其最短路径记录下来。
Dijkstra算法运行时,需要两个数据结构。
第一个是图结构,也称为路网,用来储存图中的边和节点。
第二个是长度表,用来储存源节点到其他所有节点的距离(即边的权重)。
Dijkstra算法的步骤如下:第一步:将图中所有节点的距离初始化为无穷大,表示当前不可达。
第二步:将源节点的距离初始化为0。
第三步:遍历所有节点,找出源节点到当前节点之间的最短路径,并更新距离表中的值。
第四步:如果当前节点的距离被更新,则重复第二步和第三步,直到所有节点的距离都被更新完毕。
第五步:距离表中的值就是源节点到其他节点的最短路径距离。
至此,Dijkstra算法的过程结束。
它是一种十分有效的算法,可以在多重图中迅速求解最短路径问题。
此外,Dijkstra算法也适用于复杂网络,比如电路设计和计算机网络等。
在近年来,随着计算复杂度的提升,许多Dijkstra算法的改进和变体被提出,如A*算法、D*算法、遗传算法、蚁群算法等,以提高求解最短路径问题的运行效率。
总的来说,Dijkstra算法是一种有效的图论算法,在解决最短路径问题时具有重要的应用价值,它也是无穷多改进变体和改进算法的基础。
求解单源最短路径问题的算法
求解单源最短路径问题的算法单源最短路径问题是指从图中的一个顶点到其他所有顶点的最短路径的问题。
下面将详细介绍两种经典的求解该问题的算法:Dijkstra算法和Bellman-Ford 算法。
1. Dijkstra算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
创建一个集合S,记录已经确定最短路径的顶点。
- 重复以下步骤,直到集合S包含所有顶点:- 从未确定最短路径的顶点中选择距离源顶点最近的顶点u,并将其加入集合S。
- 对于与u相邻的顶点v,更新其距离为:min(distance[v], distance[u] + weight(u, v)),其中weight(u, v)表示边(u, v)的权值。
- 最终得到源顶点到图中所有其他顶点的最短路径。
2. Bellman-Ford算法:- 初始化:将源顶点的距离初始化为0,其他顶点的距离初始化为无穷大。
- 重复以下步骤,执行V-1次(V为顶点数):- 遍历图中的所有边,对于每条边(u, v),更新顶点v的距离为:min(distance[v], distance[u] + weight(u, v))。
- 检查是否存在负权回路:再次遍历所有边,如果对于边(u, v),发现distance[v] > distance[u] + weight(u, v),则说明存在从源顶点可达的负权回路,无法确定最短路径;否则,最短路径已经确定。
Dijkstra算法适用于无负权边且图稠密的情况,时间复杂度为O(V^2),也可以通过最小堆优化(时间复杂度为O((V+E)logV))。
Bellman-Ford算法适用于有负权边或存在负权回路的情况,时间复杂度为O(VE)。
需要注意的是,以上算法都是解决单源最短路径问题的经典算法,也可以使用其他如SPFA、Floyd-Warshall等算法求解,选择合适的算法应根据具体问题的要求和图的特性进行评估和选择。
matlab dijkstra算法求解最短路径例题
matlab dijkstra算法求解最短路径例题Dijkstra算法是一种用于在带有非负权值的图中找到单源最短路径的算法。
以下是一个用MATLAB实现Dijkstra算法求解最短路径的简单例子:function [shortestDistances, predecessors] = dijkstra(graph, startNode)% 输入参数:% - graph: 表示图的邻接矩阵,graph(i, j) 表示节点i 到节点 j 的权值,如果没有直接连接则为 inf。
% - startNode: 起始节点的索引。
numNodes = size(graph, 1);% 初始化距离数组,表示从起始节点到每个节点的最短距离 shortestDistances = inf(1, numNodes);shortestDistances(startNode) = 0;% 初始化前驱节点数组predecessors = zeros(1, numNodes);% 未访问的节点集合unvisitedNodes = 1:numNodes;while ~isempty(unvisitedNodes)% 选择当前最短距离的节点[~, currentNodeIndex] = min(shortestDistances(unvisitedNodes));currentNode = unvisitedNodes(currentNodeIndex);% 从未访问节点集合中移除当前节点unvisitedNodes(currentNodeIndex) = [];% 更新与当前节点相邻节点的距离for neighbor = unvisitedNodesif graph(currentNode, neighbor) + shortestDistances(currentNode) < shortestDistances(neighbor) shortestDistances(neighbor) = graph(currentNode, neighbor) + shortestDistances(currentNode);predecessors(neighbor) = currentNode;endendendend现在,让我们使用一个简单的例子来测试这个算法:% 创建一个邻接矩阵表示图graph = [0, 2, 0, 4, 0;2, 0, 3, 7, 0;0, 3, 0, 1, 0;4, 7, 1, 0, 5;0, 0, 0, 5, 0];startNode = 1; % 起始节点% 调用Dijkstra算法[shortestDistances, predecessors] = dijkstra(graph, startNode);% 显示结果disp('最短距离:');disp(shortestDistances);disp('前驱节点:');disp(predecessors);这个例子中,graph 表示一个带有权值的图的邻接矩阵,startNode 是起始节点的索引。
dijkstra最短路径经典例题 java
题目:Dijkstra算法解决最短路径问题一、介绍Dijkstra算法Dijkstra算法是一种用于解决图中单源最短路径问题的经典算法。
它采用了贪心法的思想,即每次都选择当前最短的路径去更新相邻节点的距离,直到所有节点的最短路径都被更新为止。
Dijkstra算法的时间复杂度为O(V^2),其中V表示图中节点的个数,因此适用于节点数较少的情况。
二、Dijkstra算法的基本步骤1. 初始化:将起始节点的距离设置为0,其他节点的距离设置为无穷大。
2. 确定当前最短距离节点:从未标记节点中选择距离最短的节点作为当前节点。
3. 更新相邻节点的距离:计算当前节点到相邻节点的距离,若小于原距离,则更新距离。
4. 标记当前节点:将当前节点标记为已访问。
5. 重复步骤2-4,直到所有节点都被标记为已访问或者没有可更新的节点。
三、经典例题:求解最短路径假设有一个带权有向图,节点表示城市,边表示城市之间的道路并标有权值,即两个城市之间的距离。
现要求从起始城市A到目标城市B的最短路径。
四、Java代码实现Dijkstra算法```javaimport java.util.Arrays;public class DijkstraAlgorithm {private static final int INF = Integer.MAX_VALUE; // 无穷大表示两节点不直接相连public int[] dijkstra(int[][] graph, int start) {int n = graph.length;int[] distance = new int[n]; // 存储起始节点到各节点的最短距离boolean[] visited = new boolean[n]; // 记录节点是否已被访问// 初始化distance数组Arrays.fill(distance, INF);distance[start] = 0;// 循环更新最短距离for (int i = 0; i < n - 1; i++) {int minIndex = findMinIndex(distance, visited); // 找到未被访问且距禃最短的节点visited[minIndex] = true;for (int j = 0; j < n; j++) {if (!visited[j] graph[minIndex][j] != INFdistance[minIndex] + graph[minIndex][j] < distance[j]) {distance[j] = distance[minIndex] +graph[minIndex][j];}}}return distance;}private int findMinIndex(int[] distance, boolean[] visited) { int minDist = INF, minIndex = -1;for (int i = 0; i < distance.length; i++) {if (!visited[i] distance[i] < minDist) {minDist = distance[i];minIndex = i;}}return minIndex;}public static void m本人n(String[] args) {int[][] graph = {{0, 6, 3, INF, INF},{INF, 0, INF, 1, INF},{INF, 2, 0, 1, 1},{INF, INF, INF, 0, 3},{INF, INF, INF, INF, 0}};DijkstraAlgorithm dijkstra = new DijkstraAlgorithm();int[] distance = dijkstra.dijkstra(graph, 0);for (int i = 0; i < distance.length; i++) {System.out.println("节点0到节点" + i + "的最短距禿:" + (distance[i] == INF ? "不可达" : distance[i]));}}}```五、代码解析1. 首先定义了一个常量INF表示无穷大,在实际应用中可以根据具体情况设置为合适的数值。
单源最短路径算法
单源最短路径算法这篇文章将介绍两种常用的单源最短路径算法,Dijkstra算法和Bellman-Ford算法,它们分别使用了贪心法和动态规划的思想来解决该问题。
一、Dijkstra算法:Dijkstra算法是一种贪心法的算法,以其发明者荷兰计算机科学家Edsger W. Dijkstra的名字命名。
它的基本思想是通过逐步扩展已知最短路径集合,直到找到从起始节点到目标节点的最短路径为止。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于与起始节点直接相连的节点,更新距离数组的值为起始节点到这些节点的距离。
4.选择距离数组中值最小且未访问过的节点作为下一个当前节点。
5.更新从起始节点到当前节点经过未访问过的节点的距离,并更新距离数组中的值。
6.重复步骤4和5,直到所有节点都被访问过或者无法再找到更短的路径。
Dijkstra算法的时间复杂度为O(V^2),其中V为图中节点的数量。
使用优先队列或堆数据结构可以将时间复杂度降低到O((V+E)logV)。
二、Bellman-Ford算法:Bellman-Ford算法是一种动态规划的算法,它以其发明者Richard Bellman和Leslie Ford的名字命名。
与Dijkstra算法不同的是,Bellman-Ford算法可以处理含有负权边的图。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于每条边,更新距离数组的值为起始节点到目标节点的距离。
4.重复步骤3,直到所有节点的距离不再改变。
5.检查是否存在负权回路,如果存在,说明不存在最短路径。
Bellman-Ford算法的时间复杂度为O(VE),其中V为图中节点的数量,E为图中边的数量。
总结:Dijkstra算法和Bellman-Ford算法是解决单源最短路径问题的两种常用算法。
DIJKSTRA算法详细讲解
DIJKSTRA算法详细讲解DIJKSTRA算法是一种用于解决加权有向图中单源最短路径问题的算法。
它由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。
DIJKSTRA算法的基本思想是通过维护一个当前已知最短路径集合,不断更新起点到各个顶点的最短距离。
下面将详细讲解DIJKSTRA算法的步骤:1.初始化:设置一个集合S,用来保存已经确定最短路径的顶点;同时设置一个数组D,用来存放起点到各个顶点的当前最短距离。
初始时,将起点到自身的距离设置为0,其他顶点的距离设置为无穷大。
2.选择起点:从起点开始,将其加入集合S,并更新起点到各个邻接顶点的距离值。
首先选择起点的距离值为0,所以起点会被选入集合S。
3.更新距离:从集合S中取出一个顶点v,并遍历与v相邻的顶点。
如果从起点经过v到达相邻顶点w的距离比起点直接到达顶点w的距离要短,则更新起点到顶点w的距离,并将顶点w加入集合S。
重复这个步骤,直到集合S包含所有顶点。
4.重复步骤3:再次从集合S中取出距离最小的顶点,重复步骤3、这样不断更新起点到各个顶点的最短距离,直到集合S为空。
5.输出最短路径:最终得到每个顶点最短距离的数组D。
根据D数组中的值,可以得到起点到各个顶点的最短路径。
下面以一个示例来说明DIJKSTRA算法的具体过程:假设有以下加权有向图,起点为A:AD/\/\3214/\/\B-1-C-5-E初始化时,起点A到自身的距离为0,到其他顶点的距离为无穷大。
将集合S设为空。
开始计算:1.选择起点A,并加入集合S。
2.更新距离:起点A到B的距离为3,将其更新为1;起点A到C的距离为无穷大,将其更新为33.选择到达B距离最短的顶点B,并加入集合S。
4.更新距离:起点A到C的距离为3,将起点B到C的距离2与之相加,更新为3;起点A到D的距离为无穷大,更新为45.选择到达C距离最短的顶点C,并加入集合S。
6.更新距离:起点A到D的距离为4,将起点C到D的距离1与之相加,更新为3;起点A到E的距离为无穷大,更新为87.选择到达D距离最短的顶点D,并加入集合S。
最短路径问题和解法
最短路径问题和解法最短路径问题是计算一个图中从一个源点到目标点的最短路径问题,是图论中的重要问题之一。
该问题的解法可以划分为两种:单源最短路径问题和全源最短路径问题。
一、单源最短路径问题单源最短路径问题是指从一个源点出发,计算该源点到其他所有点的最短路径的问题。
解法有两种:Dijkstra算法和Bellman-Ford算法。
1. Dijkstra算法Dijkstra算法是一种贪心算法,每次将到源点距离最短的点加入已求出最短路径的点集。
虽然Dijkstra算法只适用于边权值均为正的带权有向图或者无向图,但是它的时间复杂度相比Bellman-Ford算法更优秀,为O(n^2)。
2. Bellman-Ford算法Bellman-Ford算法是一种较为通用的算法,不需要图的属性满足任何特殊要求,但是时间复杂度为O(n^3),不适用于大规模的图。
算法原理是进行n次松弛操作,查找从源点到其他点的最短路径,其中进行松弛的过程是比较消耗时间的。
二、全源最短路径问题全源最短路径问题是指求解所有点之间的最短路径问题。
解法有两种:Floyd算法和Johnson算法。
3. Floyd算法Floyd算法是一种动态规划算法,算法将所有点对之间的最短路径逐步推进,通过枚举中间点,得到更加精细的状态转移方程和最短路径。
时间复杂度为O(n^3),因此带来的计算负担较大。
4. Johnson算法Johnson算法目前是解决稠密图最短路径问题的最好算法之一。
Johnson算法先通过引入虚拟点,将原图转化为一个没有负权边的新图,再对新图使用Dijkstra算法进行求解。
该算法的时间复杂度为O(mnlogn),其中m为边的条数,n为点的个数。
综上所述,最短路径问题是图论中的重要问题之一。
对于单源最短路径问题,Dijkstra算法和Bellman-Ford算法是常用的解法;全源最短路径问题,Floyd算法和Johnson算法是较为常用的解法。
单源最短路径问题算法
单源最短路径问题算法一、概述单源最短路径问题是指在一个有向带权图中,给定一个起点,求出该起点到所有其他点的最短路径。
这个问题在实际应用中非常常见,例如地图导航、网络路由等。
二、算法分类1. Dijkstra算法Dijkstra算法是解决单源最短路径问题的一种经典算法。
该算法使用了贪心策略,每次选取当前距离起点最近的未访问节点作为下一个节点,并更新其周围节点的距离值。
该算法适用于没有负权边的情况。
2. Bellman-Ford算法Bellman-Ford算法是另一种解决单源最短路径问题的经典算法。
该算法使用动态规划的思想,通过对所有边进行松弛操作来更新每个节点的距离值。
该算法适用于存在负权边但不存在负权环的情况。
3. SPFA算法SPFA(Shortest Path Faster Algorithm)算法是一种基于Bellman-Ford思想和队列优化技巧的改进型算法。
SPFA在处理稀疏图时比Bellman-Ford更快,并且可以处理存在负权边但不存在负权环的情况。
4. Floyd-Warshall算法Floyd-Warshall算法是解决全源最短路径问题的一种经典算法。
该算法使用动态规划的思想,通过对每对节点之间进行松弛操作来更新它们之间的最短路径。
该算法适用于存在负权边但不存在负权环的情况。
三、算法实现1. Dijkstra算法Dijkstra算法可以使用堆优化来提高效率。
以下是使用堆优化的Dijkstra算法实现:```pythonimport heapqdef dijkstra(graph, start):# 初始化距离字典和堆dist = {node: float('inf') for node in graph}dist[start] = 0heap = [(0, start)]while heap:# 取出距离起点最近的节点(distance, node) = heapq.heappop(heap)# 更新周围节点的距离值for neighbor, weight in graph[node].items():new_distance = dist[node] + weightif new_distance < dist[neighbor]:dist[neighbor] = new_distanceheapq.heappush(heap, (new_distance, neighbor))return dist```2. Bellman-Ford算法Bellman-Ford算法需要进行多次松弛操作来更新每个节点的距离值,以下是Bellman-Ford算法实现:```pythondef bellman_ford(graph, start):# 初始化距离字典dist = {node: float('inf') for node in graph}dist[start] = 0# 进行n-1轮松弛操作for i in range(len(graph) - 1):for node in graph:for neighbor, weight in graph[node].items(): new_distance = dist[node] + weightif new_distance < dist[neighbor]:dist[neighbor] = new_distance# 检查是否存在负权环for node in graph:for neighbor, weight in graph[node].items():if dist[node] + weight < dist[neighbor]:raise ValueError('Negative cycle detected')return dist```3. SPFA算法SPFA算法使用队列来存储需要更新的节点,并使用一个标记数组来记录每个节点是否在队列中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{for(int j=0;j<VEX;j++)
cout<<graph[i][j]<<"\t";
cout<<endl;
}
//输出D、P表头
cout<<" ";
for(i=0;i<VEX;i++)
cout<<"D["<<i<<"] ";
cout<<" ";
for(i=0;i<VEX;i++)
if(D[j]!=-1&&D[j]<D[min]&&B[j]==1) min=j;
cout<<"min="<<min<<" ";
//将具有最短特殊路长度的结点min添加到红点集中
R[min]=1; B[min]=0;
//对数组D作必要的修改
for(j=1;j<VEX;j++)
if(graph[min][j]!=-1&&min!=j) //结点min到j间有路
int len = 0;
while( p != startPoint )
{
theway[len] = p;
p = prev[p];
len++;
}
theway[len] = startPoint;
len++;
for( int i = 0 , j = len - 1 ; i < len ; i++ , j-- )
printf( "从%d到%d的最短路径长%.f\n" , g.GetStartPoint() , dest , dist );
printf( "所经结点为:\n" );
for( int i = 0 ; i < pathlen ; i++ )
printf( "%3d" , path[i] );
printf( "\n----------------------------------------\n" );
}
//从起点出发
dist[startPoint] = 0;
s[startPoint] = true;
for( int i = 0 ; i < size ; i++ )
{
double temp;
int u = startPoint;
bool flag = false;
for( int j = 0 ; j < size ; j++ )
{
printf( "%5.f" , graph[i][j] );
}
printf( "\n" );
}
}
//
double CGraph::GetBestWay( int dest , int path[] , int &pathLen )
{
int p = dest;
int theway[maxPoint];
bool Dijkstra();
void Display();
int GetStartPoint();
double GetBestWay( int dest , int path[] , int &pathLen );
private:
bool solved;//标志当前图是否已经求解
double graph[maxPoint][maxPoint];//当前图布局
for( int j = 0 ; j < size ; j++ )
{
dist[j] = graph[startPoint][j];
s[j] = false;
if( dist[j] < 0 ) //dist[i]<0,表示没有路径连接结点startPoint与结点j
prev[j] = 0;
else
prev[j] = startPoint;
}
CGraph::~CGraph(void)
{
}
//
bool CGraph::SetGraph( double g[maxPoint][maxPoint] , int startPoint , int size )
{
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
{
if( !s[j] )
{
//如果不是第一次比较,temp、u,都已经赋值,则
if( flag )
{
if( dist[j] > 0 && dist[j] < temp )
{
u = j;
temp = dist[j];
}
}
else
{
u = j;
temp = dist[j];
flag = true;
}
}
}
CGraph::CGraph(void)
{
for( int i = 0 ; i < maxPoint ; i++ )
{
for( int j = 0 ; j < maxPoint ; j++ )
graph[i][j] = -1;
}
startPoint = -1;
size = -1;
solved = false; //当前图还没有求解
{
dist[j] = newDist;
prev[j] = u;
}
}
}
}
solved = true;
return true;
}
//
void CGraph::Display()
{
printf( "当前地图的邻接矩阵\n" );
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
}
}
////////////////////////////////////////////////////////////
Dijkstra算法基本思想:设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
(1)初始时,S中仅含有源节点。
(2)设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,用数组D[i]记录顶点i当前所对应的最短特殊路径长度。
graph[is->startPoint = startPoint;
this->size = size;
solved = false;
Dijkstra();
return true;
}
//
bool CGraph::Dijkstra()
{
bool s[maxPoint];
//初始时,红点集中仅有源结点0
R[0]=1; B[0]=0;
for(int i=1;i<VEX;i++)
B[i]=1;
//对数组D、P进行初始化
for(i=0;i<VEX;i++)
{D[i]=graph[0][i];
if(D[i]!=-1) P[i]=0;
else P[i]=-1;
}
//输出邻接矩阵
for(i=0;i<VEX;i++)
cout<<P[i]<<" ";
cout<<endl;
}
}
源程序2:
#include<iostream>
using namespace std;
////////////////////////////////////////////////////////////
if(D[j]>D[min]+graph[min][j]||D[j]==-1)
{D[j]=D[min]+graph[min][j]; //每次迭代求最小值,最后一次即为到源点的最短路径
P[j]=min;
}
//输出最短路径
for(i=0;i<VEX;i++)
cout<<D[i]<<" ";
cout<<" ";
using namespace std;
#define VEX 5//定义结点的个数
#define maxpoint 100
double graph[][maxpoint]={
{ 0 , 10 , -1 , 30 , 100 },
{ -1 , 0 , 50 , -1 , -1 } ,
{ -1 , -1 , 0 , -1 , 10 } ,
cout<<"P["<<i<<"] ";
cout<<endl;
for(int k=1;k<VEX;k++) //每次从蓝点集中取出具有最短特殊路长度的结点min