人教版八年级数学下册 18.1.1 :平行四边形的性质 同步练习题(附答案)
新人教版初中数学八年级下册同步练习试题及答案_第18章 平行四行形(40页)
第十八章平行四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2 (B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n (D)6n (n +1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD中,CE⊥AB于E,CF⊥AD于F,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O为□ABCD的对角线AC的串点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
18.1 平行四边形(第1课时)-2020-2021学年八年级数学下册课时同步练(人教版)(解析版)
第十八章平行四边形专题18.1 平行四边形(第1课时)基础巩固一、单选题(共10小题)1.平行四边形的周长为24cm,相邻两边的差为2cm,则平行四边形的各边长为()A.4cm,4cm,8cm,8cmB.5cm,5cm,7cm,7cmC.5.5cm,5.5cm,6.5cm,6.5cmD.3cm,3cm,9cm,9cm【答案】B【分析】利用平行四边形两组邻边相等,进而再利用周长及两边的关系建立方程组即可求解.【解答】解:可设两边分别为xcm,ycm,由题意可得,解得,所以平行四边形的各边长为5cm,5cm,7cm,7cm,故选:B.【知识点】平行四边形的性质2.若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm【答案】B【分析】平行四边形的两条对角线互相平分,根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,进行判断.【解答】解:由题意可知,平行四边形边长的取值范围是:8﹣3<边长<8+3,即5<边长<11.只有选项B在此范围内,故选B.【知识点】三角形三边关系、平行四边形的性质3.如图,在△ABC中,E,F分别为AC,BC中点,若AB=6,BC=7,AC=8,则EF=()A.3B.3.5C.4D.4.5【答案】A【分析】根据三角形中位线定理解答即可.【解答】解:∵E,F分别为AC,BC中点,∴EF是△ABC的中位线,∴EF=AB=×6=3,故选:A.【知识点】三角形中位线定理4.若平行四边形中两个内角的度数比为1:3,则其中较小的内角是()A.30°B.45°C.60°D.75°【答案】B【分析】首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.【解答】解:设平行四边形中两个内角分别为x°,3x°,则x+3x=180,解得:x=45°,∴其中较小的内角是45°.故选:B.【知识点】平行四边形的性质5.如图,正方形ABCD中,DE∥AC,DE交BC的延长线于E,若AB=2厘米,则下列结论错误的是()A.四边形ACED是平行四边形B.四边形ACED的面积是4平方厘米C.DO=1厘米D.∠DAE=22.5°【答案】D【分析】根据正方形的性质,以及平行四边形的判定定理即可判断.【解答】解:∵DE∥AC,AD∥CE,则四边形ACED是平行四边形,∴DO=DC=1,故A,C正确;四边形ACED的面积=AD•DC=4平方厘米,故B正确;四边形ACED是平行四边形,而不是菱形.∴AC不是∠DAC的平分线.∵∠DAC=45°∴∠DAE=22.5°错误.故选:D.【知识点】平行四边形的判定与性质、正方形的性质6.下列说法中不正确的是()A.矩形的对角线互相垂直且相等B.平行四边形的对角线互相平分C.四条边相等的四边形是菱形D.正方形的对角线相等【答案】A【分析】根据平行四边形、矩形、菱形、正方形的性质即可判断.【解答】解:A、矩形的对角线互相平分且相等,故A错误.B、平行四边形的对角线互相平分,故B正确.C、四条边相等的四边形是菱形,故C正确.D、正方形的对角线相等,故D正确.故选:A.【知识点】菱形的判定、矩形的性质、平行四边形的判定与性质、正方形的性质7.已知▱ABCD的周长为56,AB=4,则BC=()A.4B.12C.24D.28【答案】C【分析】根据平行四边形的性质可得AB=CD,AD=BC,进而可得AB+BC=28,然后可得BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵▱ABCD的周长为56,∴AB+BC=28,∵AB=4,故选:C.【知识点】平行四边形的性质8.如图,面积为1的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.【答案】D【分析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.【解答】解:∵D,E,F分别是AB,BC,CA的中点,∴DE=AC,DF=BC,EF=AB,∴=,∴△DEF∽△ABC,∴=()2=()2=,∵等边三角形ABC的面积为1,∴△DEF的面积是,故选:D.【知识点】等边三角形的性质、三角形中位线定理9.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=65°,∠ANM=45°,则∠B=()A.20°B.45°C.65°D.70°【答案】D【分析】根据三角形中位线定理得出MN∥BC,进而利用平行线的性质解答即可.【解答】解:∵M、N分别是△ABC的边AB、AC的中点,∴∠C=∠ANM=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°,故选:D.【知识点】三角形中位线定理10.已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④【答案】A【分析】证出四边形ADCF是平行四边形,得出CF AD.即CF BD,则四边形DBCF是平行四边形,得出DF BC,即可得出结论.【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.【知识点】平行四边形的判定与性质、三角形中位线定理二、填空题(共6小题)11.在平行四边形ABCD中,∠A与∠B的度数之比为2:1,则∠C=.【答案】120°【分析】由四边形ABCD为平行四边形,可知∠A+∠B=180°,根据∠A:∠B=2:1,即可求得∠B的度数,进而得出∠C的度数.【解答】解:∵四边形ABCD为平行四边形,∴∠A+∠B=180°,∵∠A:∠B=2:1,∴∠B=×180°=60°,∴∠C=180°﹣60°=120°.故答案为:120°.【知识点】平行四边形的性质12.如图,▱ABCD的对角线AC,BD相交于点O,请添加一个条件:,使▱ABCD是菱形.【答案】AD=DC(答案不唯一)【分析】根据菱形的定义得出答案即可.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD=DC,▱ABCD为菱形;故答案为:AD=DC(答案不唯一).【知识点】菱形的判定、平行四边形的性质13.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=48m,则AB的长是m.【答案】96【分析】根据三角形中位线定理解答即可.【解答】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=96(m),故答案为:96.【知识点】三角形中位线定理14.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【答案】4【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【知识点】平行四边形的性质15.如图,△ABC中,BC边上的中线AD将∠BAC分成了两角∠BAD、∠DAC分别为70°和40°,若中线AD长为2.4cm,则AC长为cm.【答案】4.8【分析】如图,作CE∥AD交BA的延长线于E.首先证明EC=AD,再证明AC=CE即可解决问题.【解答】解:如图,作CE∥AD交BA的延长线于E.∵AD∥CE,BD=CD,∴AB=AE,∴EC=2AD=4.8cm,∵∠E=∠BAD=70°,∠ACE=∠DAC=40°,∴∠CAE=180°﹣∠ACE﹣∠E=180°﹣40°﹣70°=70°,∴∠E=∠CAE=70°,∴AC=EC=2.4cm.【知识点】等腰三角形的判定与性质、三角形中位线定理16.如图,平行四边形ABCD中,点M是边BC的中点,线段AM、BD互相垂直,AM=3,BD=6,则该平行四边形的面积为.【答案】12【分析】连接DM,根据平行四边形的性质和三角形中线的性质解答即可.【解答】解:连接DM,∵四边形ABCD是平行四边形,∴AD=BC,∴△ABD的面积=△BCD的面积,∵点M是边BC的中点,∴△BDM的面积=△CDM的面积=△BCD的面积,∵线段AM、BD互相垂直,AM=3,BD=6,∴四边形ABMD的面积=,∴△ABD的面积=,∴四边形ABCD的面积=2×6=12,故答案为:12.【知识点】平行四边形的性质、三角形的面积拓展提升三、解答题(共6小题)17.如图,E,F分别是平行四边形ABCD的边AD、BC边上的点,且AE=CF,连接BE,DF.求证:四边形BFDE是平行四边形.【分析】由平行四边形的性质得到AD=BC,AD∥BC,由已知得到ED=BF,根据平行四边形的判定即可得到结论.【解答】证明:∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴ED∥BF,又∵AE=CF,且ED=AD﹣AE,BF=BC﹣CF,∴ED=BF,∴四边形BFDE是平行四边形.【知识点】平行四边形的判定与性质、全等三角形的判定与性质18.如图,在▱BCFD中,点E是DF的中点,连接CE并延长,与BD的延长线相交于点A,连接CD,AF.(1)求证:四边形ADCF是平行四边形;(2)若CA=CB,则▱ADCF为(填矩形、菱形、正方形中的一个).【答案】矩形【分析】(1)根据平行四边形的判定方法即可求出答案.(2)根据矩形的判定方法即可求出答案.【解答】解:(1)在平行四边形BCFD中,DE∥BC,∵E是DF的中点,∴DE=BC,∴DE是△ABC的中位线,∴E是AC的中点,∴四边形ADCF是平行四边形.(2)∵CA=CB,DE是△ABC的中位线,∴AD=AE,∵E是AC的中点,∴AE=CE,∴AD=AC,∴∠ADC=90°,∠ACD=30°,∴▱ADCF是矩形.故答案为:矩形【知识点】全等三角形的判定与性质、矩形的性质、菱形的性质、正方形的性质、平行四边形的判定与性质19.已知:如图,在菱形ABCD中,E是AB上一点,线段DE与菱形对角线AC交于点F,点O是AC的中点,EO的延长线交边DC于点G(1)求证:∠AED=∠FBC;(2)求证:四边形DEBG是平行四边形.【分析】(1)首先证明△CBF≌△CDF,从而得到∠FBC=∠FDC,然后由平行线的性质可知∠FDC=∠AED,从而可证得∠AED=∠FBC;(2)连接BD,由菱形的性质可知;OB=OD,然后再证明OG=OE,从而可证得四边形DEBG是平行四边形.【解答】证明:(1)∵四边形ABCD是菱形,∴∠DCF=∠BCF,DC=BC.在△DCF和△BCF中,,∴△DCF≌△BCF,∴∠FBC=∠FDC.∵DC∥AB,∴∠FDC=∠AED.∴∠AED=∠FBC.(2)如图,连接BD.∵四边形ABCD是菱形,O是AC的中点,∴OD=OB.∵DC∥AB,∴∠GCO=∠EAO.在△GCO和△EAO中,,∴△GCO≌△EAO,∴OE=OG.∴四边形DEBG是平行四边形.【知识点】平行四边形的判定、菱形的性质20.如图,在▱ABCD中,E,F分别是AB、BC的中点,O是对角线的交点,若OE=4cm,OF=3cm,求▱ABCD的周长.【分析】根据平行四边形的性质可得AO=CO,BO=DO,AB=CD,AD=BC,再根据三角形中位线定理可得BC=2EO,CD=2FO,然后可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD,AD=BC,∵E,F分别是AB、BC的中点,∴BC=2EO,CD=2FO,∵OE=4cm,OF=3cm,∴BC=8cm,DC=6cm,∴AD=8cm,AB=6cm,∴▱ABCD的周长为6+6+8+8=28(cm).【知识点】平行四边形的性质21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.【分析】(1)根据已知条件得到四边形ABCD是菱形.求得BC=CD.得到BE=2BC,于是得到结论;(2)根据平行四边形的性质得到AD=BC,AD∥BE,求得AD=CE,AD∥CE,推出平行四边形ACED是矩形,根据正方形的判定定理即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.【知识点】正方形的判定、平行四边形的性质22.如图,△ABC中,分别以AB、AC为边在△ABC外作等边三角形ABD和等边三角形ACE,连接CD、BE,四边形ADFE是平行四边形.(1)求证:△ACD≌△AEB;(2)当∠BAC的度数为时,平行四边形ADFE是矩形;当∠BAC的度数为时,平行四边形ADFE 不存在;(3)当△ABC满足时,平行四边形ADFE是菱形.【答案】【第1空】150°【第2空】60°【第3空】AB=AC【分析】(1)先由等边三角形的性质得AD=AB,AE=AC,∠ACE=∠AEC=∠DAB=∠EAC=60°,则∠DAC=∠BAE,再由SAS即可得出结论;(2)当∠BAC=150°时,则∠DAE=90°,得平行四边形ADFE是矩形;当∠BAC=60°,证出D、A、E三点共线,得平行四边形ADFE不存在;(3)先由等边三角形的性质得AD=AB,AE=AC,再由AB=AC得AD=AE,即可得出结论.【解答】(1)证明:∵△ABD和△ACE是等边三角形,∴AD=AB,AE=AC,∠ACE=∠AEC=∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS);(2)解:当∠BAC的度数为150°时,平行四边形ADFE是矩形;当∠BAC的度数为60°时,平行四边形ADFE不存在;理由如下:当∠BAC=150°时,∵∠DAB=∠CAE=60°,∴∠DAE=360°﹣150°﹣60°﹣60°=90°,又∵四边形ADFE是平行四边形,∴平行四边形ADFE是矩形;当∠BAC=60°,∠BAC+∠DAB+∠CAE=180°,∴D、A、E三点共线,∴平行四边形ADFE不存在;故答案为:150°,60°;(3)解:当△ABC满足AB=AC时,平行四边形ADFE是菱形,理由如下:∵△ABD和△ACE是等边三角形,∴AD=AB,AE=AC,∵AB=AC,∴AD=AE,又∵四边形ADFE是平行四边形,∴平行四边形ADFE是菱形,故答案为:AB=AC.【知识点】全等三角形的判定与性质、等边三角形的性质、菱形的判定、平行四边形的性质、矩形的判定与性质。
人教版八年级数学下册 平行四边形 同步测试题(word版 含解析)
人教版八年级数学下册《18-1平行四边形》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.平行四边形不具有的性质是()A.两组对边分别相等B.两组对角分别相等C.对角线互相平分D.两条对角线相等2.在平行四边形ABCD中,∠A:∠B:∠C:∠D可以是()A.2:3:4:5B.3:2:3:2C.2:2:1:1D.2:3:3:2 3.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB=BC,CD=DA B.AB∥CD,AD=BCC.AB∥CD,∠A=∠C D.∠A=∠B,∠C=∠D4.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于E,交BA的延长线于F,则AF 的长等于()A.2B.3C.4D.65.如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED 时,△AOE的面积为4,则四边形EFCD的面积是()A.8B.12C.16D.326.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3B.4C.5D.67.如图,平行四边形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分点,AE、CF的延长线分别交DC、AB于N、M点,那么四边形MENF的面积是()A.B.C.2D.28.如图,在平面直角坐标系中,A(1,0),B(﹣1,3),C(﹣2,﹣1),找一点D,使得以点A,B,C,D 为顶点的四边形是平行四边形,则点D的坐标不可能是()A.(2,4)B.(﹣4,2)C.(0,﹣4)D.(﹣3,2)二.填空题(共8小题,满分40分)9.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为.10.如图,四边形ABCD中,∠A=90°,AB=2,AD=2,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.11.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为.12.如图,E是直线CD上的一点.已知平行四边形ABCD的面积为50cm2,在△ABE的面积为cm2.13.如图,在平行四边形ABCD中,BE⊥AC,AC=24,BE=5,AD=8,则两平行线AD与BC间的距离是.14.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD =24厘米,△OAB的周长是18厘米,则EF=厘米.15.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为.16.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.三.解答题(共6小题,满分40分)17.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E.(1)求证:AF=DE;(2)若EF=1,▱ABCD的周长为46,求BC的长.18.如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F(1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.19.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.20.如图,矩形ABCD,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s 的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D出发,第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).21.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接EO和FO.(1)当点E为AB中点时,求EO的长度;(2)求线段AO的取值范围;(3)当EO⊥FO时,连接EF.求证:BE+DF>EF.22.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG 的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.参考答案一.选择题(共8小题,满分40分)1.解:平行四边形两组对边平行且相等、对角相等、邻角互补、对角线互相平分但不相等,所以A、B、C正确,不符合题意,D错误,符合题意,故选:D.2.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴B正确,故选:B.3.解:如图所示,根据平行四边形的判定,A、B、D条件均不能判定为平行四边形, C选项中,由于AB∥CD,∠A=∠C,所以∠B=∠D,所以只有C能判定.故选:C.4.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠F=∠FCD,∵CE平分∠BCD,∴∠BCE=∠FCD,∴∠F=∠BCE,∴BF=BC=6,∴AF=BF﹣AB=8﹣6=2;故选:A.5.解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∵AO=CO∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;故选:C.6.解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=DE=4.故选:B.7.解:∵四边形ABCD是平行四边形,∴AB=DC=4,∵E、F恰好是BD的三等分点,∴DE=EF=BF,∵AE⊥BD于E,CF⊥BD于F,∴AN∥CM,∴AM=BM=AB=2,又∵∠ABD=30°,则在Rt△BFM中,MF=BM=1,BF=,同理:在Rt△DEN中,EN=1,∴EN=MF,∵AE⊥BD,CF⊥BD,∴MF∥EN,∴四边形MENF是平行四边形,∵E、F恰好是BD的三等分点,∴EF=BF=,∴四边形MENF的面积=1×=.故选:B.8.解:如图所示:观察图象可知,满足条件的点D有三个,坐标分别为(2,4)或(﹣4,2)或(0,﹣4),∴点D的坐标不可能是(﹣3,2),故选:D.二.填空题(共8小题,满分40分)9.解:设中位线DE=3,DF=4,EF=5.∵DE是△ABC的中位线,∴BC=2DE=2×3=6.同理:AC=2DF=8,AB=2EF=10.∵62+82=100=102,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=×6×8=24.故答案是:24.10.解:连接DN、DB,如图所示:在Rt△DAB中,∠A=90°,AB=2,AD=2,∴BD===4,∵点E,F分别为DM,MN的中点,∴EF是△DMN的中位线,∴EF=DN,由题意得,当点N与点B重合时DN最大,最大值为4,∴EF长度的最大值为2,故答案为:2.11.解:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=7,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.12.解:根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为50cm2,∴△ABE的面积为25cm2.故答案为:25.13.解:∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,在△ADC和△CBA中,∴△ADC≌△CBA(SSS),∵AC=24,BE=5,∴S△ACB=×24×5=60,∴S△ADC=60,∴S平行四边形ABCD=120,过B作BF⊥AD,∵AD=8,∴8BF=120,解得:BF=15.故答案为:15.14.解:∵▱ABCD的对角线AC,BD相交于点O,∴点O是AC、BD的中点,∵AC+BD=24厘米,∴OB+0A=12厘米,∵△OAB的周长是18厘米,∴AB=18﹣12=6厘米,∵▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,∴AB=2EF,∴EF=6÷2=3厘米,故答案为:3.15.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形ABCD的周长为20,∴BC+CD=10,∵OE⊥BD,∴BE=DE,∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=10.故答案为:10.16.解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6﹣2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故答案为:2或6.三.解答题(共6小题,满分40分)17.证明:(1)∵四边形ABCD的平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AFB=∠CBF,∠DEC=∠BCE,∵BF平分∠ABC,CE平分∠BCD,∴∠ABF=∠FBC=∠AFB,∠DCE=∠BCE=∠DEC,∴AB=AF,DC=DE,∴AF=DE;(2)∵▱ABCD的周长为46,∴AD+AB=23,∵EF=1,∴2AB﹣AD=EF=1,∴AB=8,AD=15,∴BC=15.18.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.19.证明:(1)∵AO=CO,OE=OF,∠AOE=∠COF ∴△AOE≌△COF(SAS),∴∠OAE=∠OCF∴AD∥BC,∴∠EDO=∠FBO又∵OE=OF,∠EOD=∠FOB∴△EOD≌△FOB(AAS),∴OB=OD,且OA=OC∴四边形ABCD是平行四边形(2)∵EF⊥AC,AO=CO,∴AF=FC∴AB+BF+AF=AB+BF+FC=15即AB+BC=15∴▱ABCD的周长=2(AB+BC)=15×2=3020.解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10﹣2t=14﹣3t,解得t=4;②当构成▱AMEN时,10﹣2t=3t﹣14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.(3)如图(1),当0<t<时,S=S梯形CDNE﹣S△DMN﹣S△CEM=×(2t+9)×5﹣×2t ×3t﹣×9×(5﹣3t)=﹣3t2+t;如图(2),当≤t<时,S=S△EMN=EM•CD=×(14﹣3t)×5=35﹣t;如图(3),当<t≤5时,S=S△EMN=×(3t﹣14)×5=t﹣35;如图(4),当5<t<6时,S=S△EMN=MN•BE=×(30﹣2t﹣3t)×1=15﹣t.21.(1)解:∵四边形ABCD为平行四边形,∴BC=AD=3,OA=OC,∵点E为AB中点,∴OE为△ABC的中位线,∴OE=BC=;(2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,而OA=OC,∴5﹣3<2AO<5+3,∴1<AO<4;(3)证明:延长FO交BC于G点,连接EG,如图,∵四边形ABCD为平行四边形,∴OB=OD,BC∥AD,∴∠OBG=∠ODF,在△OBG和△ODF中,∴△OBG≌△ODF,∴BG=DF,OG=OF,∵EO⊥OF,∴EG=EF,在△BEG中,BE+BG>EG,∴BE+FD>EF.22.(1)证明:如图1,∵CE=CF∴∠CEF=∠F,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴∠F AD=∠FEC,∠BAF=∠F,∴∠BAF=∠F AD,∴AF是∠BAD的平分线;(2)解:如图2,连接CG,BG在平行四边形ABCD中,∠ABC=90°,∴AD=BC,∠BCD=90°,∴∠BCF=180°﹣90°=90°,又∵CE=CF,∴△CEF是等腰直角三角形,即:∠CEF=∠F=45°,由(1)可得:∠F AD=∠CEF=∠F=45°,∴AD=DF=BC,又∵G是EF的中点,∴CG=GF,∠ECG=∠F=45°,∠CGF=90°,在△BGC与△DGF中,,∴△BGC≌△DGF(SAS),∴BG=DG,∠BGC=∠DGF,∴∠BGD=∠CGF=90°∴△BGD是等腰直角三角形,即:∠BDG=45°;(3)解:如图3,延长AB,FG相较于H,连接EG,DH.∴GF∥CE,GF=CE∴四边形EGFC是平行四边形.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形由(1)可得:AD=DF,CE=CF∴平行四边形EGFC是菱形.平行四边形AHFD是菱形.∵∠BAD=60°∴△AHD、△FHD是等边三角形,即∠ADH=∠FDH=60°,在△BHD与△GFD中,,∴△BHD≌△GFD(SAS),∠BDH=∠GDF,∴∠BDG=60°.。
人教版 八年级数学下册 18.1 ---18.2复习题(含答案)
人教版八年级数学18.1 平行四边形一、选择题1. 已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A. OE=12DC B. OA=OCC. ∠BOE=∠OBAD. ∠OBE=∠OCE2. 如图,在平行四边形ABCD中,5AD=,3AB=,AE平分BAD∠交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4如图DCEBA3. 如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B为()A. 66°B. 104°C. 114°4. 如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.215. 如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A . 10B . 14C . 20D . 226. 点A 、B 、C 、D 在同一平面内,从①AB CD ∥,②AB CD =,③BC AD ∥,④BC AD =.这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )种A .3B .4C .5D .67. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .158. 如图,D 是△ABC内一点,BD ⊥CD ,AD=7,BD=4,CD=3,E 、F 、G 、H分别是AB 、BD 、CD 、AC 的中点,则四边形EFGH 的周长为A .12B .14C .24D .219.已知四边形的四条边长分别a b c d ,,,其a b ,对边,并且满足222222a b c d ab cd +++=+)A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形10.(2020·P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S,PBC∆的面积为2S,则()A.122SS S+> B.122SS S+<C.212SS S+= D.21S S+的大小与P点位置有关二、填空题11. 如图,在平行四边ABCD中,120A∠=︒,则D∠=︒.EAB C图图1DCBA如图,在平行四边形ABCD中,DB DC=,65A∠=︒,CE BD⊥于E,则BCE∠=︒.EEAB C图AB CD图2D13. 如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件________(写一个即可),使四边形ABCD是平行四边形.14. (2020·凉山州)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E.若OA=1,△AOE的周长等于5,则平行四边形ABCD的周长等于.OE DCBA15. 如图,已知等边三角形的边长为10,P是ABC∆内一点,PD AC∥,PE AB PF BC∥,∥,点D E F,,分别在AB BC AC,,上,则PD PE PF++=P FEDCBA16. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.三、解答题17. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.18. (2020·淮安)如图,在□ABCD中,点E、F分别在BC、AD上,AC与EF 相交于点O,且AO=CO.(1)求证∶△AOF≌△COE;(2)连接AE、CF,则四边形AECF_______________(填"是"或"不是")平行四边形.19. 如图,在等腰ABC∆中,延长边AB 到点D ,延长边CA 到点E ,连接DE ,恰有AD BC CE DE ===.求证:100BAC ∠=︒.EDCB A20. 如图,在ABC ∆中,AB AC AD BC =⊥,于D ,点P 在BC 上, PE BC ⊥交BA 的延长线于E ,交AC KHF FABCD EPPE D C BA21. 如图所示,在平行四边形ABCD 中,求证222222AC BD AB BC CD DA +=+++.DCBA人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题1. 【答案】D 【解析】A 、B 、C 均正确,因为OB 不一定等于OC ,所以∠OBE 不一定等于∠OCE .2. 【答案】B3. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.4. 【答案】C【解析】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°, 又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6, 由折叠可得,∠E=∠D=∠B=60°, ∴∠DAE=60°,∴△ADE 是等边三角形, ∴△ADE 的周长为6×3=18, 故选C .5. 【答案】B【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .由AC +BD =16可得OA +OB =8,又∵AB =CD =6,∴△ABO 的周长为OA +OB +AB =8+6=14.6. 【答案】B7. 【答案】C8. 【答案】A【解析】∵BD ⊥CD ,BD=4,CD=3, ∴BC=2222=43BD CD ++=5,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点, ∴EH=FG=12BC ,EF=GH=12AD , ∴四边形EFGH 的周长=EH+GH+FG+EF=AD+BC , 又∵AD=7,∴四边形EFGH 的周长=7+5=12.故选A .9. 【答案】B10. 【答案】C然后使分割后的图形与PAD∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.11. 【答案】60︒12. 【答案】25︒【解析】∵四边形ABCD 是平行四边形 ∴65A DCB ∠=∠=︒ 又∵DB DC =∴65DBC DCB ∠=∠=︒,∴50CDB ∠=︒ 又∵CE BD ⊥,∴40ECD ∠=︒ ∴654025BCE ∠=︒-︒=︒.13. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.14. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE,OE.∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +8ABCD 的周长=16.故答案为16.15.16. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.三、解答题17. 【答案】解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD ,∴∠F AE=∠CDE , ∵E 是AD 的中点,∴AE=DE ,又∵∠FEA=∠CED ,∴△F AE ≌△CDE ,∴CD=F A , 又∵CD ∥AF ,∴四边形ACDF 是平行四边形. (2)BC=2CD.理由:∵CF 平分∠BCD ,∴∠DCE=45°, ∵∠CDE=90°,∴△CDE 是等腰直角三角形, ∴CD=DE ,∵E 是AD 的中点,∴AD=2CD , ∵AD=BC ,∴BC=2CD.18. 【答案】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAO=∠ECO , 中∴△AOF和△COE(ASA).(2)由(1)△AOF和△COE,∴OF=OE,又∵OA=OC,∴四边形AEOF为平行四边形.19.20. 【答案】分析:加倍中线构造平行四边形,然后再通过等量线段证明原式成立。
2022-2023学年人教版八年下学期数学18.1..1平行四边形的性质 同步练习
18.1.1平行四边形的性质同步练习一、选择题1.在平行四边形ABCD中,如果∠A=35°,那么∠C的度数是()A.145°B.65°C.55°D.35°2.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AC=6,BD=10,则AB的长是()A.3B.4C.5D.63.如图,平行四边形ABCD的顶点A,B,C的坐标分别是(0,2),(-1,-1),(2,-1),则顶点D的坐标是()A.(-3,2)B.(3,-2)C.(3,2)D.(2,2)4.如图,四边形ABCD是平行四边形,以点A为圆心,AB的长为半BF的长为半径径画弧,交AD于点F;分别以点B,F为圆心,大于12画弧,两弧相交于点G;连接AG并延长,交BC于点E,若AE=2√10,BF=2√6,则AB的长为()A.3B.4C.5D.85.如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E. 若∠B=46°,则∠AEC的大小为()A.110°B.113°C.125°D.134°6.如图,平行四边形ABCD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.8cmB.9cmC.10cmD.12cm7.如图,在平行四边形ABCD中,O为对角线AC的中点,AC⊥AB,点E为AD中点,并且OF⊥BC,∠D=53°,则∠FOE的度数是()A.137° B.153° C.127° D.143°8.如图,四边形ABCD为平行四边形,作∠BAD的平分线AE,交DC 边于点E,若∠DEA=30°,则∠C的度数为()A.45°B.60°C.80°D.120°9.如图,在平行四边形ABCD中,对角线AC,BD交于点O,BC=8,DB=12,AC=20,则四边形ABCD的面积是()A.48B.40C.24D.9610.如图,平行四边形ABCD的对角线AC,BD交于点O,DE平分∠ADC交BC于点E,∠BCD=60°,AD=2AB,连接OE,下列结论:=AB∙BD; ②DB平分∠ADE;③AB=DE;④S∆CDE=①S平行国边形ABCDS∆BOC,其中正确的有()A.1 个B.2个C.3个D.4 个二、填空题1.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,在DCCD,连接OE交BC于点F,若BC=12,的延长线上取点E,使CE=12则CF=________。
人教版八年级下册数学课时练《18.1.1 平行四边形的性质》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版数学八年级下册《18.1.1平行四边形的性质》单元测试卷一、选择题1.如图,口ABCD 的对角线AC ,BD 相交于点O ,且16AC BD +=,若△BCO 的周长为14,则AD 的长为()A .12B .9C .8D .62.下列说法不正确的是()A .平行四边形两组对边分别平行B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的两组对边分别平行且相等3.□ABCD 中,∠A :∠B =1:2,则∠D 的度数为()A .36°B .45°C .60°D .120°4.在▱ABCD 中,∠A :∠B =3:1,则∠D =()A .22.5°B .45°C .135°D .157.5°5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,且4AC =,E ,F ,G 分别是是AO ,OB ,OC 的中点,且EFG 的周长为7,则▱ABCD 的周长为()A .10B .15C .20D .256.已知▱ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,不与点C 重合,连接EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF =AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF .中一定成立的是()A .①②④B .①③C .②③④D .①②③④7.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点;①PE 平分∠CPF ,②CF 平分∠DCB ;③BF =BE ;④PF =PC .其中正确的个数为()A .1个B .2个C .3个D .4个8.如图,在平行四边形ABCD 中,AB ≠BC ,AE 平分∠FAD 并交CD 于点E ,且AE ⊥EF ,有如下结论:①DE =CE ,②AF =CF +AD ,③AEF CEF DEA S S S +V V V =,④AB =BF ,其中正确的是()A .①④B .①②③C .②③④D .①②③④9.如图▱ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,图中有()对面积相等的平行四边形.A .1B .2C .3D .410.如图,在ABCD 中,下列结论错误的是()A .AD CB =B .AO CO =C .12∠=∠D .13∠=∠二、填空题11.平行四边形ABCD 的对角线交于点O ,△ABC 的面积为9,则平行四边形面积为_____.12.如图,在平行四边形ABCD 中,DE 平分∠ADC ,6CD =,2BE =,则平行四边形ABCD 的周长是____.13.如图,在平行四边形ABCD 中,DE ⊥BC 于点E ,BF ⊥CD 于点F ,DE 和BF 相交于点H ,BF 的延长线与AD 的延长线相交于点G .若∠DBC =45°,现有以下四个说法:①BD;②∠A =∠BHE ;③△BCF ≌△DCE ;④AB =BH ,则其中正确的是_____.14.如图,平行四边形ABCD 中,∠ABC =60°,∠BAC =45°,AB =2,E 为AC 上一点,将 ADE 沿DE 翻折,点A 恰好落DC 上的点F 处,连接BF ,则BF 的长是____.15.如图,▱ABCD 中,BC =8,AB =10,BC ⊥AC ,则▱ABCD 的面积为_____.三、解答题16.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB ⊥AC ,AB =3,AD =5,求BD 的长.17.如图,ABCD 是平行四边形,AD =4,AB =5,点A 的坐标为(-2,0),求点B 、C 、D 的坐标.18.如图,在ABCD 中,对角线AC 与BD 相交于点O ,BD AD .求OB 的长度及ABCD 的面积.19.如图,点E 为平行四边形ABCD 的边CD 的中点,连结AE 并延长交BC 的延长线于F .(1)求证:AD =CF ;(2)若AB =2BC ,∠B =70°,求∠F 的度数.20.如图,在▱ABCD 中,以AB 为斜边在▱ABCD 内部作等腰直角△ABE ,且AD =AE ,连接DE ,过点E 作EF ⊥DE 交AB 于点F ,交DC 于点G ,且∠AFE =120°.(1)若EF AB 的长;(2)求证:12AB =12EF +GE .21.如图,已知在▱ABCD 中,对角线AC ,BD 相交于点O .(1)如图1,E 是AB 的中点,连接OE ,若AC +BD =2m ,OE =n ,求△AOD 的周长;(用含m ,n 的式子表示)(2)如图2,若∠ABD =2∠BAC =45°,若BD =2,求▱ABCD 的面积.22.如图,四边形ABCD 为平行四边形,∠BAD 的平分线AF 交CD 于点E ,交BC 的延长线于点F .点E 恰是CD 的中点.求证:(1)△ADE ≌△FCE ;(2)BE ⊥AF .23.在ABCD 中,点P 和点Q 是直线BD 上不重合的两个动点,//AP CQ ,AD BD =.(1)如图①,求证:BP DQ =;(2)由图①易得BP BQ BC +=,请分别写出图②,图③中BP ,BQ ,BC 三者之间的数量关系,并选择一个关系进行证明;(3)在(1)和(2)的条件下,若1DQ =,3DP =,则BC =______.参考答案1.D2.C 3.B 4.D 5.C 6.B 7.A 8.C 9.C 10.D11.1812.2813.①②④14.15.4816.解: 四边形ABCD 是平行四边形115,,22BC AD OA OC AC OB OD BD ∴====== AB ⊥AC ,90BAC ∴∠=︒在Rt ABC 中,3,5AB BC ==4∴===AC 122AO AC ∴==在Rt ABO 中,3,2AB AO ==BO ∴===2BD BO ∴==BD ∴=17.解:ABCD 是平行四边形,∴CD x ∥轴,5CD AB ==,由题意可得,2OA =,90AOD ∠=︒,∴OD ==D ,∵(2,0)A -,5AB =,∴(3,0)B ,∵D ,5CD AB ==,CD x ∥轴,∴(5,C ,∴(3,0)B 、(5,C 、D .18.解:∵BD ⊥AD ,AB =10,AD =8,∴BD =.∵四边形ABCD 是平行四边形,∴OB =12BD =3,∴S ▱ABCD =6×8=48.故OB 的长为3,▱ABCD 的面积为48.19.(1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中,D ECF ED CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵△ADE ≌△FCE ,∴AD =FC ,∴AD =BC =FC ,∴BF =2BC ,∵AB =2BC ,∴BF =AB ,∴∠BAF =∠F =12(180°﹣70°)=55°.20.解:(1)作EH AB ⊥,交AB 于H,ABE ∆ 是等腰直角三角形,45EAB EBA ∴∠=∠=︒,EA EB =,12EH HB AH AB ∴===,60EFH EAB AEF ∴∠=∠+∠=︒,30FEH ∴∠=︒,12FH EF ∴===EH ∴=AB =.(2)证明:连接EC,15AEF ∠=︒ ,EF DE ⊥,AE AD =,75DEA EDA ∴∠=∠=︒,30EAD ∴∠=︒,45BAE ∠=︒ ,75DAB DCB ∴∠=∠=︒,105CBA CDA ∠=∠=︒,45ABE ∠=︒ ,60CBE ∴∠=︒,AD BE BC == ,BCE ∴∆是等边三角形,15DCE ∴∠=︒,CE BE AE ==,90GED ∠=︒ ,30GDE ∠=︒,60DGE ∠=︒,2DG GE ∴=,105EGC AFE ∠=︒=∠ ,CE AE =,15DCE AEF ∠=︒=∠,在AEF ∆与ECG ∆中,EGC AFE CE AEDCE AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF ECG ASA ∴∆≅∆,GC FE ∴=,22AB DC DG GC GE CG GE EF ∴==+=+=+.即1122AB EF GE =+.21.解:(1)如图,在平行四边行ABCD 中,对角线AC ,BD 相交于点O ,∴OA =OC =12AC ,OB =OD =12BD ,即点O 是BD 的中点,∵AC +BD =2m ,∴1111()22222OA OD AC BD AC BD m m +=+=+=⨯=,∵E 是AB 的中点,OE =n ,∴22AD OE n ==,∴△AOD 的周长=2AD OA OD n m ++=+;(2)过点O 作OE ⊥AB 于E ,延长EO 交CD 于点F ,作点B 关于OE 的对称点G ,连接OG ,如图:∵BD =2,点O 为BD 的中点,∴1OB =,∵∠ABD =2∠BAC =45°,∠OEB =90°,∴△OBE 是等腰直角三角形,即OE =BE ,∠BAC =22.5°,设OE BE x ==,则由勾股定理,2221x x +=,解得:2x =(负值已舍去);∴2OE BE ==,由平行四边形的性质,则2EF OE ==;∵点B 关于OE 的对称点是点G ,∴1OG OB ==,2GE BE ==,∴45OGB ABD ∠=∠=︒,∵∠BAC =22.5°,∴∠AOG =22.5°,∴∠BAC =∠AOG ,∴AG =OG =1,∴1122AB =++=,∴▱ABCD的面积为:(12AB EF ∙==;22.证明:(1)∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D =∠ECF ,∵E 为CD 的中点,∴ED =EC ,在△ADE 和△FCE 中,D ECF ED ECAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△FCE (ASA );(2)∵四边形ABCD 为平行四边形,∴AB =CD ,AD ∥BC ,∴∠FAD =∠AFB ,又∵AF 平分∠BAD ,∴∠FAD =∠FAB .∴∠AFB =∠FAB .∴AB =BF ,∵△ADE ≌△FCE ,∴AE =FE ,∴BE ⊥AF .23.证明:(1)∵四边形ABCD 是平行四边形,∴//AD BC ,AD BC =,∴ADB CBD ∠=∠,∵//AP CQ ,∴APQ CQB ∠=∠,∴ADP △≌CBQ △(AAS ),∴DP BQ =,∴BQ PQ PD PQ -=-,即BP DQ =.(2)图②:BQ BP BC -=,理由是:∵//AP CQ ,∴APB CQD ∠=∠,∵//AB CD ,∴ABD CDB ∠=∠,∴ABP CDQ ∠=∠,∵AB CD =,∴ABP △≌CDQ (AAS ),∴BP DQ =,∴BC AD BD BQ DQ BQ BP ===-=-.图③:BP BQ BC -=,理由是:同理得:ADP △≌CBQ △(AAS ),∴PD BQ =,∴BC AD BD BP PD BP BQ ===-=-.(3)图①,134BC BP BQ DQ PD =+=+=+=,图②,312BC BQ BP PD DQ =-=-=-=,∴2BC =或4。
2020-2021学年八年级数学人教版下册:18.1.1平行四边形的性质同步练习(附答案)
18.1.1平行四边形的性质同步练习一、选择题1.如图,若平行四边形ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A. 14cmB. 12cmC. 10cmD. 8cm2.如图,在▱ABCD中,∠A+∠C=70∘,则∠B的度数为()A. 125∘B. 135∘C. 145∘D. 155∘3.如图,在▱ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 8cm4.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE.若▱ABCD的周长为28,则△ABE的周长为()A. 28B. 24C. 21D. 145.如图,在平行四边形ABCD中,若AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA长的取值范围是()A. 1cm<OA<4cmB. 2cm<OA<8cmC. 2cm<OA<5cmD. 3cm<OA<8cm6.如图,▱ABCD的周长为14,BE=2,AE平分∠BAD交BC边于点E,则CE的长等于()A. 1B. 2C. 3D. 47.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A. 40°B. 50°C. 60°D. 70°8.如图所示,▱ABCD中,AC的垂直平分线交AD于点E,且△CDE的周长为8,则▱ABCD的周长是()A. 10B. 12C. 14D. 169.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A. S1+S2>S2B. S1+S2<S2C. S1+S2=S2D. S1+S2的大小与P点位置有关10.如图,a//b,AB//CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法不正确的是()A. AB=CDB. EC=GFC. A,B两点的距离就是线段AB的长度D. a与b的距离就是线段CD的长度11.如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB,EF的AD于点E,F;再分别以点E,F为圆心,大于12长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH12.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,DE交BC于点F,连接CE,则下列结论:①BE=CD;②BF=DF;③S△BEF=S△DCF;④BD//CE,其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若∠EAF=58∘,则∠BAD=——.14.如图,在▱ABCD中,对角线AC,BD相交于点O.若DO=1.5cm,AB=5cm,BC=4cm,则▱ABCD的面积为cm2.15.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(−2,1),则C点坐标为.16.如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为.17.如图,AB//CD,AB⊥BC.若AB=4cm,S △ABC=12cm 2,则△ABD中AB边上的高等于cm.18.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内.若点B的落点记为B′,则DB′的长为.三、解答题19.如图,点E是▱ABCD的边CD的中点,AE,BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.20.如图,已知在▱ABCD中,AB=5,BC=3,AC=2√13.(1)求▱ABCD的面积.(2)求证:BD⊥BC.21.如图,在▱ABCD中,CM平分∠BCD交AD于点M.(1)若CD=2,求DM的长.(2)若M是AD的中点,连接BM,求证:BM平分∠ABC.22.如图所示,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM//DN.23.下面是一个有关特殊平行四边形和等边三角形的小实验,请根据实验解答问题:已知在▱ABCD中,∠ABC=120∘,点D又是等边三角形DEF的一个顶点,DE与AB相交于点M(不与点A,B重合),DF与BC相交于点N(不与点B,C重合).(1)初步尝试如图 ①,若AB=BC,求证:BD=BM+BN;(2)探究发现如图 ②,若BC=2AB,过点D作DH⊥BC于点H,求证:∠BDC=90∘.答案和解析1.D2.C3.A4.D5.A6.C7.D8.D9.C10.D11.D12.D13.122∘14.1215.(2,−1)16.417.618.√219.解:∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAE =∠F ,∠D =∠ECF . 又∵E 是CD 的中点,∴ED =EC ,∴△ADE≌△FCE(AAS).∴AD =CF =3,DE =CE =2, ∴DC =4,∴▱ABCD 的周长为2(AD +DC)=14.20.解:(1)作CE ⊥AB 交AB 的延长线于点E . 设BE =x ,CE =ℎ,在Rt △CEB 中,x 2+ℎ2=9①, 在Rt △CEA 中,(5+x)2+ℎ2=52②, 联立①②,解得x =95,ℎ=125.∴□ABCD 的面积为AB ·ℎ=12.(2)证明:作DF ⊥AB ,垂足为F , ∴∠DFA =∠CEB =90°.∵四边形ABCD 是平行四边形, ∴AD =BC ,AD // BC .∴∠DAF =∠CBE .又∵∠DFA =∠CEB =90°,AD =BC , ∴△ADF≌△BCE(AAS).∴AF =BE =95,BF =5−95=165,DF =CE =125. 在Rt △DFB 中,BD 2=DF 2+BF 2=(125)2+(165)2=16,∴BD =4.∵BC =3,DC =5,∴CD2=DB2+BC2.∴BD⊥BC.21.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,∴∠BCM=∠DMC,∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠DMC=∠DCM,∴DM=DC=2.(2)证明:延长BA,CM交于点E,如图,∵BE//CD,∴∠D=∠EAM,∠E=∠DCM,∵M是AD的中点,∴DM=AM,∴△CDM≌△EAM(AAS).∴EM=CM.∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠E=∠BCM,∴BE=BC,∴BM平分∠ABC.22.证明:∵四边形ABCD是平行四边形,∴OA=OC.OB=OD.∵AM=CN,在△BOM和△DON中,∴△BOM≌△DON(SAS).∴∠OBM=∠ODN.∴BM//DN.23.证明:(1)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵AB=BC,∴AB=BC=CD=DA,∴△ABD,△BDC都是等边三角形,∴∠A=∠DBC=60°,∠ADB=60°,AD=BD.∵∠EDF=60°,∴∠ADM+∠MDB=∠BDN+∠MDB=60°,∴∠ADM=∠BDN.在△ADM与△BDN中,{∠A=∠DBNAD=BD∠ADM=∠BDN,∴△ADM≌△BDN,∴AM=BN,∴BD=AB=AM+MB=BN+MB,即BD=BM+BN;(2)∵四边形ABCD是平行四边形,∠ABC=120°,∴∠A=∠C=60°.∵DH⊥BC,∠C=60°,∴∠DHC=90°,∠HDC=30°.设CH=x,则DC=2x,DH=√3x,∴BC=2AB=2DC=4x,∴BH=BC−HC=3x.∴BD=√BH2+DH2=2√3x,∴BD2+DC2=BC2,∴∠BDC=90°.。
人教版数学八年级下册18.1.1 平行四边形的性质同步练习(解析版)
第十八章平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质基础闯关全练1.如图18-1-1-1,如果AD ∥EF ∥BC ,AB ∥GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有( )A .4个B .5个C .8个D .9个2.在平行四边形ABCD 中,如果∠A=55º,那么∠C 的度数是 ( )A .45ºB .55ºC .125ºD .145º3.如图18-1-1-2,在□ABCD 中,已知AC=4 cm ,若△ACD 的周长为13 cm ,则☐ABCD 的周长为( )A .26 cmB .24 cmC .20 cmD .18 cm4.如图18-1-1-3,在平行四边形ABCD 中,∠ADC 的平分线交BC 于点E .若∠CED=35º,则∠B 的度数为( )A .40ºB .50ºC .60ºD .70。
5.在平行四边形ABCD 中,已知∠A-∠B=60º,则∠C=________.6.如图18-1-1-4,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE.7.如图18-1-1-5,l ₁∥l ₂,AB ⊥l ₂,DC ⊥l ₁,则下列结论:①AB ⊥l ₁;②AB ∥CD ;③AB=CD ;④AC=BD ,其中正确的个数是( )A .4B .3C .2D .18.如图18-1-1-6,在☐ABCD 中,D 是对角线AC ,BD 的交点,若△AOD 的面积是4,则☐ABCD 的面积是( )A .8B .12C .16D .20 能力提升全练1.如图18-1-1-7,在平行四边形ABCD 中,∠ABC 、∠BCD 的平分线分别交AD 于点E 、F ,且AD=8.EF=2,则AB 的长是( )A .3B .4C .5D .62.如图18-1-1-8,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点M ,N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为_______.3.如图18-1-1-9①,☐ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AD 、BC 分别相交于点E 、F ,则OE=OF.若将EF 向两边延长与平行四边形的两对边的延长线分别相交(如图②和图③),OE 与OF 还相等吗?若相等,请你说明理由.三年模拟全练 一、选择题1.(2018黑龙江大庆肇源期末,3,★☆☆)如图18-1-1-10,在平行四边形ABCD 中,不一定成立的是 ( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD.A .①和④B .②和③C .③和④D .②和④2.如图18-1-1-11,☐ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E .AB=3.AC=2.BD=4,则AE 的长为( )A .23 B .23C .721D .7212 二、填空题3.如图18-1-1-12,在☐ABCD 中,∠A=130º,在边AD 上取一点E .使DE=DC ,则∠ECB=_______.三、解答题4.如图18-1-1-13,在平行四边形ABCD 中,∠BAD 的平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF,若BF⊥AE,∠BEA=60º,AB=4,求平行四边形ABCD的面积.五年中考全练一、选择题1.在☐ABCD中,若∠BAD与∠CDA的平分线交于点E,则△AED的形状是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定2.如图18-1-1-14,将☐ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48º,∠CFD=40º,则∠E为( )A.102º B.112º C.122º D.92º3.在☐ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为 ( )A.3 B.5 C.2或3 D.3或5二、填空题4.如图18-1-1-15,☐ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图18-1-1-16,在☐ABCD中,AB=10,AD=6,AC⊥BC,则BD=_______.三、解答题6.如图18-1-1-17,在☐ABCD中,点E,F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB,CD交于点G,H,求证:AG=CH.核心素养全练1.如图18-1-1-18,已知□ABCD.(1)试用三种不同的方法用一条直线MN将它分成面积相等的两部分;(保留作图痕迹,不写作法)(2)由上述方法,你能得到什么样的结论?(3)解决问题:兄弟俩分家,原来他们共同承包了一块平行四边形田地ABCD,现要拉一条直线将田地平均划分,在这块地里有一口井P,如图18-1-1-19所示,为了兄弟俩都能方便使用这口井,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)2.我们知道:平行四边形的面积=底边×底边上的高.如图18-1-1-20,四边形ABCD 是平行四边形,AD∥BC,AB∥CD,设它的面积为S:(1)如图①,点肼为AD上任意一点,则△BCM的面积S₁=_______S,△BCD的面积S₂与△BCM的面积S₁的数量关系是_______;(2)如图②,设AC、BD交于点D,则O为AC、BD的中点,试探究△AOB的面积与△COD 的面积之和S₃与平行四边形ABCD的面积S的数量关系,并说明理由:(3)如图③,点P为平行四边形ABCD内任意一点,记△PAB的面积为S′,△PCD的面积为S″,猜想S′、S″的和与S的数量关系:(4)如图④,点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.第十八章 平行四边形 18.1 平行四边形 18.1.1 平行四边形的性质 1.D根据平行四边形的定义,可知图中的平行四边形有☐AEOG,☐GOFD ,☐EBHO,☐OHCF,☐AEFD ,☐EBCF,☐ABHG,☐GHCD ,☐ABCD 共9个. 2.B ∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A=55º,∴∠C=55º. 3.D 根据平行四边形的两组对边分别相等,得在☐ABCD 中AB=CD,BC=AD.由C △ACD=AD+AC+CD=13 cm,AC=4 cm ,得AD+CD=9 cm,∴C ☐ABCD =2(AD+CD)=2×9=18 cm ,故选D.4.D 在□ABCD 中,AD ∥BC ,∠B=∠ADC,∴∠A DE =∠C ED=35º.又∵DE 平分∠A DC ,∴∠A DC=2∠A DE=70º,∴∠B =∠A DC=70º. 5.答案 120º解析如图所示,由平行四边形的邻角互补可知∠A +∠B =180º,又∠A -∠B =60º,所以∠A=120º,又因为平行四边形对角相等,所以∠C=∠A =120º.6.证明 ∵四边形ABCD 为平行四边形, ∴AB=CD,AD=BC,∠C=∠A ,∵E 、F 分别是边BC 、AD 的中点,∴CE=21BC,AF=21AD , ∴AF=CE,∴△ABF ≌△CDE(SAS),∴∠A BF=∠C DE. 7.A ①②③④全部正确,故选A .8.C 因为平行四边形对角线互相平分,所以BO=DO ,AO=CO ,则△ABO 与△ADO 是等底同高的三角形,所以面积相等,同理,△ABO 与△CBO 面积相等.因此△ABO ,△ADO ,△CDO ,△CBO 面积都相等,所以S ☐ABCD =4S △ADO =16.1.C ∵BE 是∠A BC 的平分线,∴∠A BE =∠EBC,∵四边形ABCD 是平行四边形,∴AD ∥BC,∴ ∠A EB=∠EBC ,∴∠A EB =∠A BE,∴AB=AE ,同理DF=DC .又平行四边形的对边相等, ∴AB=CD,故AE=DF.∴AE-EF=DF-EF,即AF=DE,∵AF+EF+DE=AD=8,∴ 2AF+EF=8, 又∵EF=2.∴AF=3,AB=AE=AF+EF=5. 2.答案6解析 ∵四边形ABCD 是平行四边形,∴AD ∥BC, OA=OC,OB=OD .∴∠CAD =∠A CB, ∵∠A OM =∠NOC,∴△AOM ≌△CON(ASA),∴S △AOM =S △CON =2,∴S △AOD =S △DOM +S △AOM =4+2=6.又∵△AOB 与△AOD 等底同高,∴S △AOB =S =6. 3.解析题图②中OE=OF.理由:在☐ABCD 中,AB ∥CD,OA=OC, ∴∠E=∠F,叉∵∠A OE=∠COF, ∴△AOF ≌△COF(AAS), ∴OE=OF. 题图③中OE=OF.理由:在☐ABCD 中,AD ∥BC,OA=OC, ∴∠E =∠F, 又∵∠A OE =∠C OF ,∴△AOE ≌△COF(AAS), ∴OE=OF. 一、选择题1.D ∵四边形ABCD 是平行四边形,∴AO=CO ,故①成立;AD ∥BC ,故③成立,利用排除法可得②与④不一定成立.故选D .2.D .∵四边形ABCD 是平行四边形,AC=2,BD=4, ∴AO=21AC=1.BO=21BD=2, ∵AB=3.∴AB ²+AO ²=(3)²+1²=2²=BO ², ∴∠B AC=90º,在Rt △BAC 中,BC=()7232222=+=+AC AB ,∴S △BAC =21•AB •AC=21•BC •AE, ∴3×2=7AE . ∴AE=7212.故选D . 二、填空题 3.答案 65º解析 因为四边形ABCD 是平行四边形,所以AD ∥BC ,∠A +∠D=180º.因为∠A=130º,所以∠D =50º,因为DE=DC ,所以∠D EC =∠D CE 、由AD ∥BC 得∠D EC =∠B CE ,所以∠ECB =∠D EC =∠D CE=21(180º-∠D )=21×(180º-50º)=65º. 三、解答题4.解析(1)证明: ∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠D AE =∠E,∵∠B AD 的平分线AE 交CD 于点F ,交BC 的延长线于点E ,∴∠BAE=∠DAE ,∴∠E =∠B AE , ∴AB=BE,又在平行四边形ABCD 中,AB=CD,∴BE=CD.(2)由BE=CD=AB ,∠B EA=60º得△ABE 为等边三角形,∴AE=AB=4,又∵BF ⊥AE,∴AF=EF=2,根据勾股定理得BF=23,易证△ADF ≌△ECF ,∴S △AFD =S △ECF ,又S ☐ABCD =S 四边形ABCF+S △AFD ,S △ABE =S 四边形ABCF +S △CFE ,∴平行四边形ABCD 的面积等于△ABE 的面积,故S ☐ABCD =S△ABE=21AE •BF=21×4×23=43.一、选择题1.B ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠B AD+∠A DC=180º,∵∠B AD 与∠C DA 的平分线交于点E ,∴∠EAD=21∠B AD, ∠EDA=21∠C DA ,∴∠EAD+∠EDA=21(∠B AD+∠C DA)=21×180º=90º, ∴∠A ED=90º,故△AED 是直角三角形.2.B 设∠A=∠E=x ,∵∠DBE =∠A BD=48º,∠B FE =∠D FC=40º,∴∠FBD=180º-x-48º=132º-x ,∴∠EBF =∠D BE-∠FBD=48º-(132º-x)=x-84º,又∠E+∠BFE+∠EBF=180º.即∠EBF=180º-∠E-∠BFE=180º-x-40º=140º-x, ∴x-84º=140º-x,∴x=112º.3.D 分两种情况讨论:(1)如图①,在□ABCD 中,BC ∥AD,∴∠D AE =∠A EB,∠A DF =∠D FC .∴AE 平分∠BAD 交BC 于点E,DF 平分∠A DC 交BC 于点F,∴∠BAE=∠D AE,∠A DF=∠C DF, ∴∠BAE=∠A EB, ∠C FD=∠C DF, ∴AB=BE,CF=CD.在□ABCD中 ,AB=CD,∴BC=BE+CF -EF=2AB-EF,即2AB-2=8,∴AB=5.(2)如图②,在☐ABCD中,BC∥AD,∴∠D AE=∠A EB,∠A DF=∠D FC,∵AE平分∠BAD交BC于点E,DF平分∠A DC交BC于点F, ∴∠BAE=∠DAE, ∠A DF=∠CDF,∴∠B AE=∠A EB,∠C FD=∠C DF,∴AB=BE,CF=CD.在☐ABCD中,AB=CD,∴BC=BE+CF+EF=2AB+EF,即2AB+2=8,∴AB=3.综上所述,AB的长为3或5.二、填空题4.答案14解析在☐ABCD中,BC=AD=6,OB=OD=21BD,OA=OC=21AC,且AC+BD=16,∴OB+OC=21(AC+BD)=8,∴△BOC的周长为OB+OC+BC=14.5.答案413解析过点D作DE⊥B C交BC的延长线于点E,∵四边形ABCD为平行四边形,∴AD=BC=6,∴AC⊥BC,∴DE=AC=226-10=8.∵BE=BC+CE=6+6=12,∴BD=22812+=413.三、解答题6.证明∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠A=∠C,∴∠F=∠E,∵BE=DF.∴AD+DF=CB+BE.即AF=CE,在△AGF和△CHE中,⎪⎩⎪⎨⎧E,∠=F∠,CE=AFC,∠=A∠∴△AGF≌△CHE(ASA),∴AG=CH.1.解析(1)作图如下.(2)过对角线交点的任意一条直线都能将平行四边形分成面积相等的两部分. (3)作图如下.2.解析(1)21;S ₁=S ₂,设在☐ABCD 中,BC 边上的高为h ₁, ∵S ☐ABCD =BC •h ₁=S,∴S △BCM =21BC •h ₁=21S,S △BCD =21BC •h ₁=21S, ∴S ₁=21S,S ₂=21S,∴S ₁=S ₂. (2)S ₃=21S .理由:∵O 为AC 、BD 的中点,∴S ₃=S △AOB +S △COD =21S △ABD +21S △BCD =21(S △ABD +S △BCD =21S. (3)S ′+S ″=21S .设在☐ABCD 中,CD 边上的高为h ₂,△ABP 中AB 边上的高为h ₃,△PCD 中CD 边上的高为h ₄,∵AB ∥CD,∴ h ₃+h ₄=h ₂,又AB=CD ,∴S △PAB +S △PCD )=21AB •h ₃+21CD •h ₄=21AB •(h ₃+h ₄)=21AB •h ₂=21S ,即S ′+S ″=21S . (4)易知S △PAB +S △PCD =21S=S △BCD , ∵S △PAB =3,S △PBC =7,∴S △PBD =S 四边形PBCD -S △BCD =S △PBC +S △PCD -S △BCD =7+(21S-3)-21S=7-3=4.。
人教版八年级数学下册18.1.1平行四边形的性质(第二课时)对角线同步练习题
平行四边形的性质(第二课时)同步练习题一、单选题1.平行四边形的一边长为10,那么它的两条对角线的长可以是( )A .4和6B .6和8C .8和12D .20和302.平行四边形的一组对角的平分线( )A .一定相互平行B .一定相交C .可能平行也可能相交D .平行或共线 3.有下列说法:①平行四边形具有四边形的所有性质: ②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形; ④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形. 其中正确说法的序号是( ).A .①②④B .①③④C .①②③D .①②③④4.如图,在▱ABCD 中,已知90ODA =∠°,10cm AC =,6cm BD =,则AD 的长为( )第4题 第5题 第7题 第9题 A .4cmB .5cmC .6cmD .8cm5.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)6.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm7.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB 3AC =2,BD =4,则AE 的长为( )A 3B .32C .217D .2178.已知四边形ABCD 是平行四边形,则下列各图中1∠与2∠一定不相等的是( )A .B .C .D .9.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A.18°B.36°C.72°D.144°10.如图,设M是ABCD边AB上任意一点,设AMD∆的面积为1S,BMC∆的面积为2S,CDM∆的面积为S,则()第10题第12题第13题第14题A.12S S S=+B.12S S S>+C.12S S S<+D.不能确定二、填空题11.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD的周长等于_____.12.如图,在中,.以点为圆心,以小于长为半径作弧,分别交、于点、,再分别以、为圆心,以大于的长为半径作弧,两弧在内交于点,连接并延长交于点,则____.13.如图,直线EF经过平行四边形ABCD的对角线的交点O,若四边形AEFB的面积为20cm2,则平行四边形ABCD的面积为___cm2.14.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,直线BF交线段AD的延长线于点G,下列结论:①CE=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG.其中正确的结论是 ___.15.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形的面积是________.三、解答题16、如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC的长;(2)求▱ABCD的面积.17.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F,连接EC.ABCD50D∠=︒B AB BA BC PQ P Q12PQ ABC∠M BM AD E AEB∠=122100cmABDC(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.。
人教版八年级数学下《第十八章平行四边形》同步练习含答案.doc
F E D C B A O ED C B A D C B A O D C B A 第十八章 平行四边形 练习题一、选择题(每小题5分,共30分)1.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A.AB=DC ,AD=BCB.AB ∥DC ,AD ∥BCC.AB ∥DC ,AD=BCD.AB ∥DC ,AB=DC(第1题) (第2题)2.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,下列结论中不一定成立的是( )A.AB ∥DCB.AC=BDC.AC ⊥BDD.OA=OC3.顺次连接矩形四边中点得到的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC.若AC=4,则四边形OCED 的周长为( )A.4B.6C.8D.105.如图,将一个边长分别为4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则折痕EF 的长为( )6.如图,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )(第4题) (第5题) (第6题)二、填空题(每小题6分,共24分)7.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O ,若AC=6,则AO 的长度等于________________.8.如图,若将四根木条钉成的矩形木框变形为□ABCD 的形状,并使其面积变为O F E D C BA D CB A 矩形面积的一半,则□ABCD 的最小内角的大小为______________.(第7题) (第8题)9.如图,将两条宽度都为3的纸片重叠在一起,使∠ABC=600,则四边形ABCD 的面积为__________10.如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.则第n 个正方形的边长为________.(第9题) (第10题)三、解答题(第11题14分,第12,13题各16分,共46分)11.如图,在四边形ABCD 中,AB=CD ,BE=DF ;AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F.(1)求证:△ABE ≌△CDF ;(第11题)(2)若AC 与BD 交于点O ,求证:AO=CO.O D C B AF E D C B A12.如图,在△ABC 中,∠CAB=900,DE ,DF 是△ABC 的中位线,连结EF ,AD.求证:EF=AD.(第12题)∵AE⊥BD,CF ⊥BD,∴∠AEB=∠CFD=90°∵AB =CD,BE=DF ∴ABE≌CDF参考答案:1.C.2.B.3.C.4.C.5.D.6.D7.3. 8.300. 11.(1)证明:(2)提示:证明四边形ABCD 是平行四边形由(1)△ABE ≌△CDF ,可得∠ABE=∠CDF ,AB ∥CD ,可得四边形ABCD 是平行四边形,于是AO=CO.12.提示:由DE ,DF 是△ABC 的中位线,可得四边形EAFD 是平行四边形,又∠CAB=900.可知□EAFD 是矩形,根据矩形对角线相等即可得证.13.提示:(1)证明△AOF ≌△BOE ;(2)结论仍然成立,证明△AOF ≌△BOE.。
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(2016·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定 14.(2017·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .18 15.(2017·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对. 18.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4.7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ).∴∠OBM=∠ODN.∴BM∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE =1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD =4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.2 2D.4 218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B)A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD 是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°.∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形 4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2B .2C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形; (2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A)A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF ⊥DF ,∴∠DFE =90°.∴∠BFE +∠CFD =90°. ∴∠BEF =∠CFD .在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm .12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题 13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.2 17.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE 是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C =180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.3 3C.4 D.4 3第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
人教版八年级数学 下册 第十八章 18.1.1 平行四边形的性质 同步练习题(含答案)
第十八章 平行四边形 18.1.1 平行四边形的性质一、选择题1、在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2D.2∶1∶2∶12、平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定3、若□ABCD 的周长为28,△ABC 的周长为17cm ,则AC 的长为 ( ) (A )11cm (B ) 5.5cm (C )4cm (D )3cm4、如图4所示,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,图中全等三角形有( )A .5对 B .4对 C .3对 D .2对图4 图55、如图5 ,在□ABCD 中, ∠B=110°,延长AD 至F,延长CD 至E,连接EF,则∠E+∠F 的值为 ( ).(A)110°(B)30°(C)50°(D)70°二、填空题6、在平行四边形ABCD 中,∠A 的平分线交BC 于点E ,若CD=10,AD=16,则EC=7、如图所示,A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA , 图中有 个平行四边形8、如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,边AB 可以看成由_____________平移得来的,△ABC 可以看成由__________绕点O 旋转______________得来.9、在平行四边形ABCD 中,对角线AC ,BD 交于点O ,若△AOB 的面积为3,则平行四边形ABCD 的面积为______.10、已知如图,在平行四边形ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF= cm .三、解答题11、如图所示,已知点E ,F 在平行四边形ABCD 的对角线BD 上,且BE=D F .求证:(1)△ABE ≌△CDF ;(2)AE ∥CF .12、如图所示,在平行四边形ABCD 中,AD ⊥BD ,AD=4,DO=3.(1)求△COD 的周长;(2)直接写出Y ABCD 的面积.13、如图所示,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.14、如图,在□ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为25,AB=12,求对角线AC与BD的和.15、剪两张对边平行的纸条随意交叉叠放在一起,重合部分构成了一个四边形,转动其中一张纸条,线段AD和BC的长度有什么关系?为什么?16、如图所示,在平行四边形ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.请探索BM,DN与AB的数量关系,并证明你的结论.17、如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O•任作一条直线分别交AB,CD于点E,F.(1)求证:OE=OF;(2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.18、如图,□ABCD O为D的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,•点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.19、如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD,交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长是多少?第13题图第18题图参考答案:一、1、D 2、B 提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90° 3、D 4、B 5、D二、6、6 7、38、边DC,△CDA,180° 9、310、 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ; 三、11、(1)由平行四边形的性质得AB=CD ,∠ABE =∠CDF ,又BE=DF ,即得结论 (2)由(1)•可得∠AEB=∠CFD ,于是∠AED=∠CFB ,所以AE ∥CF 12、(1)8+213;(2)2413、解:∵ABCD ,∴BC =AD =12,CD =AB =13,OB =21BD ∵BD ⊥AD ,∴BD =22AD AB -=221213-=5∴OB =2514、解:因为△AOB 的周长为25, 所以OA+BO+AB=25,又AB=12,所以AO+OB=25-12=13,因为平行四边形的对角线互相平分,所以AC+BD=2OA+2OB=2(0A+OB)=2×13=26 15、解:AD 和BC 的长度相等. 理由如下:由题意知AB//CD,AD//BC ,∴四边形ABCD 是平行四边形, ∴AD=BC.16、数量关系为BM+DN=AB ,提示:•连结AC ,证△ABM ≌△CAN 得BM=CN ,于是BM+DN=CD=AB 17、(1)可证△DFO ≌△BEO (2)16 18、解:(1)有4对全等三角形.分别为△AMO ≌△CNO ,△OCF ≌△OAE ,△AME ≌△CNF ,△ABC ≌△CDA . (2)证明:∵OA=OC ,∠1=∠2,OE=OF ,∴△OAE ≌△OCF ,∴∠EAO=∠FCO . 在Y ABCD 中,AB ∥CD ,∴∠BAO=∠DCO ,∴∠EAM=∠NCF . 19、解:∵四边形ABCD 是平行四边形, ∴AB=CD ,BC=AD ,OB=OD.∵OE ⊥BD , ∴BE=DE.∵△CDE 的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10, ∴平行四边形ABCD 的周长为 2×(BC+CD)=20.。
人教版八年级数学下册《18.1.1平行四边形的性质》同步测试题及答案
人教版八年级数学下册《18.1.1平行四边形的性质》同步测试题及答案一、单选题1.在平行四边形ABCD 中,∠A=55°,则∠D 的度数是( ) A .105°B .115°C .125°D .55°2.如图,在ABCD 中,过点C 的直线CE AB ⊥,垂足为E ,53EAD ∠=︒则BCE ∠的度数为( )A .37︒B .47︒C .53︒D .127︒3.若平行四边形中两个内角的度数比为15:,则其中较小的内角度数是( ) A .30︒B .40︒C .90︒D .150︒4.如图,在ABCD 中,对角线AC ,BD 相交于点O ,6AC =cm ,10BD = cm ,4CD = cm ,则ABO 的周长为( )A .12 cmB .11 cmC .10 cmD .9 cm5.如图,□ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,12AB BC =连接OE .下列结论:∠∠ADO =30°;∠S □ABCD =AB ·AC ;∠OB =AB ;∠S 四边形OECD =32S △AOD ,其中成立的个数为( )A .1个B .2个C .3个D .4个6.如图,在平行四边形ABCD 中240A C ∠+∠=︒,则A ∠的度数为( )A .120︒B .100︒C .80︒D .60°7.在ABCD 中:2:1A B ∠∠=,则C ∠的度数为( ) A .50°B .60°C .100°D .120°8.在∠ABCD 中,如果140B ∠=︒,那么D ∠的度数是( ) A .20︒B .40︒C .140︒D .60︒二、填空题9.如图,把一张平行四边形纸片ABCD 沿BD 对折,使点C 落在点E 处,BE 与AD 相交于点O ,若∠DBC=15°,则∠BOD= .10.如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAB 的内部相交于点G ,画射线AG 交DC 于H .若∠B =140°,则∠DHA = .11.如图,在ABC 中30,3BAC AB AC ∠=︒==,P 为AB 边上一动点,以,PA PC 为邻边作平行四边形PAQC ,则对角线PQ 的最小值为 .12.现有一块等腰三角形纸板,腰长为5cm ,底边长为6cm .若把这个三角形纸板沿其对称轴剪开,可以拼成一个平行四边形.则拼成的平行四边形的两条对角线长的和为 .13.如图,ABCD 的顶点A 、C 分别在直线1l ,2l 上,12l l ∥若133∠=︒,65B ∠=︒则2∠= .三、解答题14.已知:如图,ABCD 中,∠BCD 的平分线交AB 于E ,交DA 的延长线于F .求证:AE =AF .15.如图是由小正方形组成的66⨯网格,每个小正方形的顶点叫做格点,每个小正方形的边长为1.A 、B 、C 都在格点上,仅用无刻度的直尺在给定网格中完成画图,(画图过程用虚线表示,画图结果用实线表示).(1)如图1,点E是BC边上一点,请画出ABCD,并在AD边上画点F,使得EF平分ABCD的面积;(2)如图2,点M为AB与网格线的交点,请画出线段MN,使得10MN16.已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.17.在平行四边形ABCD 中,AB CD ⊥于E ,CF AD ⊥于F ,H 为AD 上一动点,连接CH ,CH 交AE 于G ,且4AE CD ==.(1)如图1,若=60B ∠︒,求CF 、AF 的长; (2)如图2,当FH FD =时,求证:CG ED AG =+;(3)如图3,若=60B ∠︒,点H 是直线AD 上任一点,将线段CH 绕C 点逆时针旋转60°,得到线段CH ',请直接写出AH '的最小值_____.参考答案:题号 1 2 3 4 5 6 7 8 答案 CAAAB ADC1.C 2.A 3.A 4.A 5.B 6.A 7.D 8.C 9.150︒ 10.20° 11.3212.10cm 73(cm )或13+4(cm ) 13.32︒/32度14.见解析.15.(1)见解析(2)见解析16.DE=BF,DE∠BF.17.(1)3CF=832AF=-;(2)见解析;(3)43-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.1.1平行四边形的性质同步练习
一.选择题
1.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子
不正确的是()
A.AC⊥BD
B.AB=CD
C.BO=OD
D.∠BAD=∠BCD
2.已知平行四边形ABCD中,∠B=4∠A,则∠C=()
A.18°B.36°C.72°D.144°
3.如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别为(0,0)、
(4,0)、(2,4),则顶点C的坐标是()
A.(4,6)B.(4,2)C.(6,4)D.(8,2)
4.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n;则下
列说法正确的是()
A.AB∥PC B.△ABC的面积等于△BCP的面积
C.AC=BP D.△ABC的周长等于△BCP的周长
5.平行四边形的一边长是10cm,那么它的两条对角线的长可以是()
A.4cm和6cm
B.6cm和8cm
C.8cm和10cm
D.10cm和12cm
Y
6.如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()
A.8B.10C.12D.14
Y
Y
二.填空题 7. 如图所示,在 ABCD 中,对角线相交于点 O ,已知 AB =24 cm ,BC =18 cm ,△AOB
的周长为 54 cm ,则△AOD 的周长为________ cm .
8. 已知
Y ABCD ,如图所示,AB =8 cm ,BC =10 cm ,∠B=30°,Y ABCD 的面积为________.
9.在 ABCD 中,CA⊥AB,∠BAD=120°,若 BC =10 cm ,则 AC =______,AB =______.
10.如图,在△ABC 中,AB=AC=5,D 是 BC 边上的点,DE∥AB 交 AC 于点 E ,DF∥AC 交 AB 于
点 F ,那么四边形 AFDE 的周长是 .
11.如图所示,平行四边形 ABCD 的周长是 18cm ,对角线 AC 、BD 相交于点 O ,若△AOD 与△AOB
的周长差是 5cm ,则边 AB 的长是 _______cm .
12.如图所示,平行四边形 ABCD 中,BE⊥AD,CE 平分∠BCD,AB=10,BC=16,则 AE=__________.
三.解答题
13.如图所示,点 E ,F 是平行四边形 ABCD 对角线 BD 上的点,BF=DE .求证:AE=CF .
14.如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
15.如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P
是射线GC上一点,连接FP,EP.
求证:FP=EP.
2 参考答案
一.选择题
1.【答案】A ;
2.【答案】B ;
【解析】∵四边形 ABCD 是平行四边形,
∴∠C=∠A,BC∥AD,
∴∠A+∠B=180°,
∵∠B=4∠A,
∴∠A=36°,
∴∠C=∠A=36°,故选 B .
3.【答案】C ;
【解析】∵平行四边形 ABCD 的顶点 A 、B 、D 的坐标分别为(0,0)、(4,0)、(2,4),
∴DC=AB=4,DC∥AB,
∴C 的横坐标是 4+2=6,纵坐标是 4,
即 C 的坐标是(6,4).
故选 C.
4.【答案】B ;
【解析】解:AB 不一定平行于 PC ,A 不正确;
∵平行线间的距离处处相等,∴△ABC 的面积等于△BCP 的面积,B 正确;
AC 不一定等于 BP ,C 不正确;
△ABC 的周长不一定等于△BCP 的周长,D 不正确,
故选:B .
5.【答案】D ;
【解析】设两条对角线的长为 2a ,b .所以 a + b > 10 , 2a + 2b > 20 ,所以选 D.
6.【答案】B ;
【解析】因为∠AFB=∠FBC,∠ABF=∠FBC,所以 AF =AB =6;同理可证:DE =DC =6;
EF =AF+DE-AD =2,即 6+6-AD=2,解得 AD=10.
二.填空题
7.【答案】48;
【解析】因为四边形 ABCD 是平行四边形,所以 OD =OB ,AD =BC =18cm .又因为△AOB 的
周长为 54 cm ,所以 OA +OB +AB =54 cm ,因为 AB =24 cm ,所以 OA +OB =54
-24 =30( cm ) ,所以 OA +OD =30( cm ) ,所以 OA +OD +AD =30 +18 =
48( cm ).即△AOD 的周长为 48 cm .
8.【答案】40;
【解析】过点 A 作 AH⊥BC 于 H .在 Rt△ABH 中,∠B=30°,AB =8 cm ,
∴AH= 1
AB =4( cm ). 2
∴ S Y ABCD = BC·AH=10×4=40( cm 2 ).
9.【答案】53cm,5;
【解析】由题意,∠DAC=∠BCA=30°,AB=1
BC=5,AC=102-52=53. 2
10.【答案】10;
【解析】解:∵AB=AC=5,∴∠B=∠C,
由DF∥AC,得∠FDB=∠C=∠B,
∴FD=FB,
同理,得DE=EC.
∴四边形AFDE的周长=AF+AE+FD+DE
=AF+FB+AE+EC
=AB+AC
=5+5=10.
故答案为10.
11.【答案】2;
【解析】∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,
又∵△AOD与△AOB的周长差是5,
∴AD=AB+5,
设AB=x,AD=5+x,
则2(x+5+x)=18,
解得x=2,
即AB=2.
故答案为2.
12.【答案】6;
【解析】∵平行四边形ABCD,
∴AD∥BC,AD=BC=16,AB=CD=10,
∴∠DEC=∠ECB,
∵CE平分∠DCB,
∴∠DCE=∠BCE,
∴∠DEC=∠DCE,
∴DE=DC=AB=10,
∴AE=16-10=6,
故答案为:6.
三.解答题
13.【解析】
证明:∵四边形ABCD为平行四边形,
∴BC=AD,BC∥AD,
∴∠EDA=∠FBC,
在△AED和△CFB中,
⎨∠ADE
= ∠CBF ⎪ B F = DE
⎨∠FCP
=∠ECP , ⎪CP =CP
⎧ AD = BC
⎪
⎩ ∴△AED≌△CFB(SAS ),
∴AE=CF.
14.【解析】
解:(1)∵四边形 ABCD 是平行四边形,
∴AD∥CB,AB∥CD
∴∠DAB+∠CBA=180°,
又∵AP 和 BP 分别平分∠DAB 和∠CBA, ∴∠PAB+∠PBA= 1 2
(∠DAB+∠CBA)=90°,
在△APB 中,
∴∠APB=180-(∠PAB+∠PBA)=90°;
(2)∵AP 平分∠DAB,
∴∠DAP=∠PAB,
∵AB∥CD,
∴∠PAB=∠DPA
∴∠DAP=∠DPA
∴△ADP 是等腰三角形,
∴AD=DP=5,
同理:PC=CB=5,
即 AB=DC=DP+PC=10,
在 RT△APB 中,AB=10cm ,AP=8,
∴BP= 102 - 82 =6(cm )
∴△APB 的周长是 6+8+10=24(cm ).
15.【解析】
证明:∵四边形 ABCD 是平行四边形,
∴AD∥BC,
∴∠DGC=∠GCB(两直线平行,内错角相等), ∵DG=DC,
∴∠DGC=∠DCG,
∴∠DCG=∠GCB,
∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°, ∴∠DCP=∠FCP,
∵在△PCF 和△PCE 中
⎧CE =CF
⎪
⎩ ∴△PCF≌△PCE(SAS ),
∴PF=PE.。