2020高考数学核心突破《专题六 解析几何》(含往年真题分析)
高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习及答案解析版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A . 54B .45C .254D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32 B .2 C .2 D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( ) A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为 A 、 B 、、 C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23-22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( ) A.B.C. D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( ) A .1 B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r = 29.F 1、F 2是双曲线C :x 2-22y b=1的两个焦点,P 是C 上一点,且△F 1PF 2是等腰直角三角形,则双曲线C 的离心率为 A .12 B .22C .32D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图,轴截面为边长为34等边三角形的圆锥,过底面圆周上任一点作一平面α,且α与底面所成二面角为6π,已知α与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点,F 为C的焦点,若2FA FB=,则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C ,过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点,若3=,则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹方程是 ( )A.y 2=8xB.y 2=-8xC.y 2=4xD.y 2=-4x36.若R k ∈,则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k37.点(-1,2)关于直线y =x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2)38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( )A .直线与圆相交但不过圆心.B . 相切.C .直线与圆相交且过圆心.D . 相离40.椭圆的长轴为A1A2,B 为短轴的一个端点,若∠A1BA2=120°,则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=142.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为( )A.3y x = B .3y x = C .33y x =D .3y x =43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时,实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =,则双曲线离心率的取值范围是( )A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点,O 为坐标原点,1(,0)2OA =,则OA OP ⋅的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <,则直线0Ax By C ++=一定不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 47.[2012·课标全国卷]等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( ) A.2 B.22 C.4 D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。
2023年高考数学二轮复习(新高考版)第1部分 专题突破 专题6 微重点17 抛物线的二级结论的应用

易错提醒
焦半径公式和焦点弦面积公式容易混淆,用时要注意使用 的条件;数形结合求解时,焦点弦的倾斜角可以为锐角、 直角或钝角,不能一律当成锐角而漏解.
跟踪演练1 (1)已知 A,B 是过抛物线 y2=2px(p>0)焦点 F 的直线与抛物线的
交点,O 是坐标原点,且满足A→B=3F→B,S△OAB= 32|AB|,则|AB|的值为
A.2
B.2 6+3
C.4
√D.3+2 2
因为p=2, 所以|A1F|+|B1F|=2p=1, 所以 2|AF|+|BF|=(2|AF|+|BF|)·|A1F|+|B1F| =3+2|B|AFF||+||BAFF||≥3+2 2|B|AFF||·||BAFF||=3+2 2,
当且仅当|BF|= 2|AF|时,等号成立,
ABB′A′的面积为
A.4 3
B.8 3
√C.16 3
D.32 3
12345678
不妨令直线l的倾斜角为θ,
则|AF|=1-cpos
θ=1-c3os
, θ
|BF|=1+cpos
θ=1+c3os
, θ
又|AF|=3|BF|,∴1-c3os
θ=3·1+c3os
, θ
解得 cos θ=12,
又 θ∈[0,π),∴θ=π3,
√B.34
C.43
D.3
如图,过点P作准线的垂线交于点H,
由抛物线的定义有|PF|=|PH|=m(m>0),
过点Q作准线的垂线交于点E,则|EQ|=|QF|, ∵P→M=2F→P,∴|PM|=2m, 根据△PHM∽△QEM,可得||PPMH||=||QQME||=12, ∴2|EQ|=|QM|=|FQ|+3m. ∴|EQ|=3m,即|FQ|=3m, ∴||PFQQ||=3m3+m m=34.
2020高考数学(文科)二轮总复习保分专题6 解析几何第一部分 层级二 专题6 第2讲

课时跟踪检测(十三) 圆锥曲线的方程与性质一、选择题1.(2019·全国卷Ⅰ)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50°D.1cos 50°解析:选D 由题意可得-ba =tan 130°, 所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D.2.(2019·福州模拟)已知点(0,3)到双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的距离为2,则C 的离心率是( )A.32B.63C.62D.94解析:选A 由题意可得,双曲线C 的一条渐近线的方程为bx -ay =0,则点(0,3)到双曲线C 的渐近线的距离d =|0-3a |b 2+a2=2,得b 2a 2=54,所以双曲线C 的离心率e =ca =1+b 2a 2=1+54=32,故选A.3.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 为直线y =2b 上的一点,△F 1MF 2是等边三角形,则椭圆C 的离心率为( )A.714B.77C.277D.3714解析:选C 因为△F 1MF 2是等边三角形,故M (0,2b ),|MF 1|=|F 1F 2|即4b 2+c 2=4c 2,4a 2=7c 2,所以e 2=c 2a 2=47,故e =277.4.(2019·长沙模拟)已知抛物线C :y 2=8x 的焦点为F ,点A (1,a )(a >0)在C 上,|AF |=3.若直线AF 与C 交于另一点B ,则|AB |的值是( )A .12B .10C .9D .4.5解析:选C 解法一:因为A (1,a )(a >0)在抛物线C 上,所以a 2=8,解得a =22或a =-22(舍去),故直线AF 的方程为y =-22(x -2),与抛物线的方程联立,消去y ,可得x 2-5x +4=0,解得x 1=1,x 2=4.由抛物线的定义,得|BF |=4+2=6,所以|AB |=|AF |+|BF |=9,故选C.解法二:因为直线AB 过焦点F (2,0),设A (x A ,y A ),B (x B ,y B ),直线方程为y =k (x -2),与y 2=8x 联立得k 2x 2-(4k +8)x -4k 2=0,所以x A x B =4.又x A =1,所以x B =4,所以|AB |=|AF |+|BF |=x A +x B +4=9,故选C.5.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |则△OPF 的面积为( )A.32B.52C.72D.92解析:选B 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P 在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎨⎧x 20+y 20=3,x 204-y 25=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝ ⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B.6.已知椭圆C :x 29+y 25=1,若直线l 经过M (0,1),与椭圆交于A ,B 两点,且MA→=-23MB →,则直线l 的方程为( ) A .y =±12x +1 B .y =±13x +1 C .y =±x +1D .y =±23x +1解析:选B 依题意,设直线l :y =kx +1,点A (x 1,y 1),B (x 2,y 2).则由⎩⎨⎧y =kx +1,x 29+y 25=1,消去y ,整理得(9k 2+5)x 2+18kx -36=0,Δ=(18k )2+4×36×(9k 2+5)>0,⎩⎪⎨⎪⎧x 1+x 2=-18k9k 2+5,x 1x 2=-369k 2+5,x 1=-23x 2,解得k =±13,即直线l 的方程为y =±13x +1,故选B.二、填空题7.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析:设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心、焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎨⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎪⎨⎪⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案:(3,15)8.(2019·福州四校联考)已知抛物线C 的顶点为坐标原点,对称轴为坐标轴,直线l 过抛物线C 的焦点F ,且与抛物线的对称轴垂直,l 与C 交于A ,B 两点,且|AB |=8,M 为抛物线C 准线上一点,则△ABM 的面积为________.解析:不妨设抛物线C :y 2=2px (p >0),因为直线l 过抛物线C 的焦点,且与抛物线的对称轴垂直,所以线段AB 为通径,所以2p =8,p =4,又M 为抛物线C 的准线上一点,所以点M 到直线AB 的距离即焦点到准线的距离为4,所以△ABM 的面积为12×8×4=16.答案:169.(2019·郑州模拟)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为P ,交另一条渐近线于点Q ,若5PF →=3FQ→,则双曲线E 的离心率为________. 解析:由题意知,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 的坐标为(c,0),设一条渐近线OP (O 为坐标原点)的方程为y =ba x ,另一条渐近线OQ 的方程为y =-b a x ,不妨设P ⎝ ⎛⎭⎪⎫m ,b a m ,Q ⎝ ⎛⎭⎪⎫n ,-b a n ,由5PF→=3FQ →,得⎩⎨⎧5(c -m )=3(n -c ),5⎝ ⎛⎭⎪⎫-b a m =3⎝ ⎛⎭⎪⎫-b a n ,解得⎩⎪⎨⎪⎧m =45c ,n =43c ,因为OP ⊥FP ,所以k PF =-ba mc -m=-ab ,解得a 2=4b 2,所以e 2=c 2a 2=1+b 2a 2=54,故双曲线E 的离心率e =52.答案:5 2三、解答题10.(2019·全国卷Ⅱ)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求椭圆C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a 的取值范围.解:(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=3c,于是2a=|PF1|+|PF2|=(3+1)c,故椭圆C的离心率为e=ca=3-1.(2)由题意可知,满足条件的点P(x,y)存在,当且仅当12|y|·2c=16,yx+c·yx-c=-1,x2a2+y2b2=1,即c|y|=16,①x2+y2=c2,②x2 a2+y2b2=1.③由②③及a2=b2+c2得y2=b4 c2.又由①知y2=162c2,故b=4.由②③及a2=b2+c2得x2=a2c2(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4 2.当b=4,a≥42时,存在满足条件的点P.所以b=4,a的取值范围为[42,+∞).11.(2019·广东七校联考)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C上存在一点E(2,t)到焦点F的距离等于3.(1)求抛物线C的方程;(2)已知点P 在抛物线C 上且异于原点,点Q 为直线x =-1 上的点,且FP ⊥FQ ,求直线PQ 与抛物线C 的交点个数,并说明理由.解:(1)抛物线C 的准线方程为x =-p2, 所以点E (2,t )到焦点F 的距离为2+p2=3, 解得p =2.所以抛物线C 的方程为y 2=4x . (2)直线PQ 与抛物线C 只有一个交点. 理由如下:设点P ⎝ ⎛⎭⎪⎫y 204,y 0,点Q (-1,m ).由(1)得焦点F (1,0),则FP →=⎝ ⎛⎭⎪⎫y 204-1,y 0,FQ →=(-2,m ),由题意可得FP →·FQ→=0,故-2⎝ ⎛⎭⎪⎫y 204-1+my 0=0,从而m =y 20-42y 0.故直线PQ 的斜率k PQ =y 0-m y 204+1=2y 0.故直线PQ 的方程为y -y 0=2y 0⎝ ⎛⎭⎪⎫x -y 204,得x =y 0y 2-y 204.①又抛物线C 的方程为y 2=4x ,②所以由①②得(y -y 0)2=0,故y =y 0,x =y 204.故直线PQ 与抛物线C 只有一个交点.12.(2019·永州模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,椭圆过点(0,2),点Q 为椭圆上一动点(异于左右顶点),且△QF 1F 2的周长为4+4 2.(1)求椭圆E 的方程;(2)过点F 1,F 2分别作斜率为k 1,k 2的直线l 1,l 2,分别交椭圆E 于A ,B 和C ,D 四点,且|AB |+|CD |=62,求k 1k 2的值.解:(1)由题意可知,⎩⎨⎧b =2,2a +2c =4+42,a 2=b 2+c 2,解得a =22,b =2,∴椭圆E 的方程为x 28+y 24=1. (2)由题意可知,F 1(-2,0),F 2(2,0),设直线AB 的方程为y =k 1(x +2),A (x 1,y 1),B (x 2,y 2), 联立⎩⎨⎧x 2+2y 2=8,y =k 1(x +2).∴(1+2k 21)x 2+8k 21x +8k 21-8=0.∴Δ=(8k 21)2-4(1+2k 21)(8k 21-8)=32(k 21+1)>0,则x 1+x 2=8k 211+2k 21,x 1x 2=8k 21-81+2k 21, |AB |=1+k 21|x 1-x 2|=(1+k 21)[(x 1+x 2)2-4x 1x 2]=42(1+k 21)1+2k 21. 同理联立方程,由弦长公式可知,|CD |=42(1+k 22)1+2k 22, ∵|AB |+|CD |=62,∴42(1+k 21)1+2k 21+42(1+k 22)1+2k 22=62,化简得k 21k 22=14,则k 1k 2=±12.。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
全国高考数学专题汇编:解析几何(含答案)

全国高考数学专题汇编:解析几何一.选择题(共21小题)1.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.42.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.23.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.4.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.325.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD ⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(2019•新课标Ⅰ)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.7.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=18.(2019•新课标Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.89.(2019•新课标Ⅱ)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.10.(2019•新课标Ⅲ)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.12.(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣113.(2018•新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 14.(2018•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.215.(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A 的坐标是(1,3),则△APF的面积为()A.B.C.D.16.(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)17.(2017•新课标Ⅱ)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)18.(2017•新课标Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l 为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.319.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.20.(2016•新课标Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.21.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二.填空题(共4小题)22.(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.23.(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=.24.(2017•新课标Ⅲ)双曲线(a>0)的一条渐近线方程为y=x,则a=.25.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.参考答案一.选择题(共21小题)1.B;2.B;3.B;4.B;5.B;6.D;7.B;8.D;9.A;10.B;11.C;12.D;13.A;14.D;15.D;16.A;17.C;18.C;19.A;20.B;21.A;二.填空题(共4小题)22.(3,);23.2;24.5;25.4π;三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线P A的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x =c代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)代数方法:由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则(法一)=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.法二:∵P(3,1),Q(6,2),∴直线PQ的方程为:x﹣3y=0,∴点A到直线PQ:x﹣3y=0的距离d=,而|PQ|=,∴S△APQ=••=.数形结合方法:如图示:①当P点在y轴左侧时,过P点作PM⊥AB,直线x=6和x轴交于N(6,0)点,易知△PMB≌△BQN,∴NB=PM=1,故y=1时,+=1,解得:x=±3,(x=3舍),故P(﹣3,1),易得BM=8,QN=8,故S△APQ=S△AQN﹣S△APB﹣S△PBQ﹣S△BQN=(11×8﹣10×1﹣(1+65)﹣1×8)=,②当P点在y轴右侧时,同理可得x=3,即P(3,1),BM=2,NQ=2,故S△APQ=,综上,△APQ的面积是.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解答】解:∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.【解答】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故曲线C的离心率e==﹣1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:|y|•2c=16,•=﹣1,+=1,即c|y|=16,①x2+y2=c2,②+=1,③由②③及a2=b2+c2得y2=,又由①知y2=,故b=4,由②③得x2=(c2﹣b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4,当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.【解答】(1)证明:设D(t,﹣),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:2tx1﹣2y1+1=0.设B(x2,y2),同理可得2tx2﹣2y2+1=0.故直线AB的方程为2tx﹣2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2﹣2tx﹣1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2﹣2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=+===0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y =﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|F A|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|F A|+|FB|=4﹣,∴|F A|+|FB|=2|FP|,35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+m sinα﹣2sin2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由•=(﹣1﹣cosα,﹣sinα)•(﹣3,)=3+3cosα﹣3(1+cosα)=0.可得过点P且垂直于OQ的直线l过C的左焦点F.另解:设Q(﹣3,t),P(m,n),由•=1,可得(m,n)•(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,又P在圆x2+y2=2上,可得m2+n2=2,即有nt=3+3m,又椭圆的左焦点F(﹣1,0),•=(﹣1﹣m,﹣n)•(﹣3,t)=3+3m﹣nt=3+3m﹣3﹣3m=0,则⊥,可得过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有•=﹣1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△P AR≌△F AR,∴∠P AR=∠F AR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠P AF=2∠P AR,∴∠FQB=∠P AR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.。
2020全国卷高考专题:平面解析几何

10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
2020高考数学专题突破《解析几何》

k2 4 21+k2
=98,
1+2k2
即1+k22k21+1k+2 8k2=
9, 2
即 81k4(1+k2)=2(1+2k2)2(1+8k2),
整理得 17k6+9k4-24k2-2=0,
即(k2-1)(17k4+26k2+2)=0,解得 k=±1.
故存在直线 l:y=x-2 或 y=-x+2 满足题意.
(2)根据直线系方程过定点时参数没有关系(即直线系方程 对任意参数都成立),得到方程组fgxx,,yy==00,.
(3)以(2)中方程组的解为坐标的点就是直线所过的定点, 若定点具备一定的限制条件,可以特殊解决.
[例 3] 已知椭圆 C:x42+y2=1,过椭圆 C 的右顶点 A 的两条斜率之积为-14的直线分别与椭圆交于点 M,N.问:直 线 MN 是否过定点 D?若过定点 D,求出点 D 的坐标;若不 过定点,请说明理由.
(2)本题可将直线方程巧设为 x=my-1,用含 m 的式子 表示出|S1-S2|,并求其最大值.显然,此法无需考虑直线的 斜率是否存在,是解决此类问题的最佳选择.
提能点(二)
灵活运用策略, 尝试“借石攻玉”
策略1
点差法:解决中点弦问题
在圆锥曲线中,有关弦的中点条件,可利用点差法求解,
即对于圆锥曲线 ax2+by2=1 来说,当两点 M(x1,y1),N(x2,
12 12
= 3,当且仅当 m=±233时取等号,所以|S1-S2|的最大值为 3.
[微评] (1)当直线 l 的斜率不存在时,可知直线方程为 x =-1;当直线 l 的斜率存在(显然 k≠0)时,可设直线方程为 y=k(x+1)(k≠0).求解时一定要分直线 l 的斜率不存在与直 线 l 的斜率存在两种情况作答,缺少任何一种情况,步骤都 是不完整的.
2020高考数学(文科)二轮总复习保分专题6 解析几何第一部分 层级二 专题6 第2讲

b a
x的距离|PF2|=
bac-0 1+ba2
=b,而
|OF2|=c,所以在Rt△OPF2中,由勾股定理可得|OP|= c2-b2 =a,所以|PF1|= 6
|OP|= 6a.且cos ∠PF2O=||OPFF22||=bc, 又在△F1F2P中,
cos ∠PF2F1=|PF2|22+|P|FF21|F·|F2|21-F2||PF1|2=b2+24bc·22-c 6a2,
∴点(4,0)到C的渐近线的距离为 |42| =2 2.
第37页
栏目导航
2.(2019·大连模拟)已知椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)的左、右顶点分别为A1,
A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )
6 A. 3
3 B. 3
2
1
C. 3
D.3
=0,得ba=2.因为双曲线的焦距为4 5,所以c=2 5.结合c2=a2+b2,可得a=2,b= 4,所以双曲线的方程为x42-1y62 =1.
第20页
栏目导航
(3)设直线AB的方程为x=my+
p 2
,A(x1,y1),B(x2,y2),且x1>x2,将直线AB的
方程代入抛物线方程得y2-2pmy-p2=0,所以y1y2=-p2,y1+y2=2pm,设抛物线 的准线为l,过A作AC⊥l,垂足为C,过B作BD⊥l,垂足为D,因为|AF|=2|BF|=6,
第27页
栏目导航
考点二 圆锥曲线的几何性质
|析典例|
【例】
(1)(2019·南宁模拟)设F1,F2是双曲线C:
x2 a2
-
y2 b2
京津鲁琼专用2020版高考数学二轮复习第三部分教材知识重点再现回顾6解析几何练习含解析

回顾6 解析几何[必记知识]1.直线方程的五种形式(1)点斜式:y -y 1=k (x -x 1)(直线过点P 1(x 1,y 1),且斜率为k ,不包括y 轴和平行于y 轴的直线).(2)斜截式:y =kx +b (b 为直线l 在y 轴上的截距,且斜率为k ,不包括y 轴和平行于y 轴的直线).(3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1(直线过点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2,不包括坐标轴和平行于坐标轴的直线).(4)截距式:x a +y b=1(a ,b 分别为直线的横、纵截距,且a ≠0,b ≠0,不包括坐标轴、平行于坐标轴和过原点的直线).(5)一般式:Ax +By +C =0(其中A ,B 不同时为0). 2.直线的两种位置关系当不重合的两条直线l 1和l 2的斜率存在时: (1)两直线平行l 1∥l 2⇔k 1=k 2. (2)两直线垂直l 1⊥l 2⇔k 1·k 2=-1.[提醒] 当一条直线的斜率为0,另一条直线的斜率不存在时,两直线也垂直,此种情形易忽略.3.三种距离公式(1)A (x 1,y 1),B (x 2,y 2)两点间的距离 |AB |=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离d =|Ax 0+By 0+C |A 2+B 2(其中点P (x 0,y 0),直线方程为Ax +By +C =0).(3)两平行线间的距离d =|C 2-C 1|A 2+B 2(其中两平行线方程分别为l 1:Ax +By +C 1=0,l 1:Ax+By +C 2=0且C 1≠C 2).[提醒] 应用两平行线间距离公式时,注意两平行线方程中x ,y 的系数应对应相等.4.圆的方程的两种形式(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,代数判断法与几何判断法.(2)圆与圆的位置关系:相交、内切、外切、外离、内含,代数判断法与几何判断法.6.椭圆的标准方程及几何性质[提醒] 椭圆的离心率反映了焦点远离中心的程度,e 的大小决定了椭圆的形状,反映了椭圆的圆扁程度.因为a 2=b 2+c 2,所以b a=1-e 2,因此,当e 越趋近于1时,b a越趋近于0,椭圆越扁;当e 越趋近于0时,b a越趋近于1,椭圆越接近于圆.所以e 越大椭圆越扁;e 越小椭圆越圆,当且仅当a =b ,c =0时,椭圆变为圆,方程为x 2+y 2=a 2(a >0).7.双曲线的标准方程及几何性质[提醒] (1)离心率e的取值范围为(1,+∞).当e越接近于1时,双曲线开口越小;当e越接近于+∞时,双曲线开口越大.(2)满足||PF1|-|PF2||=2a的点P的轨迹不一定是双曲线,当2a=0时,点P的轨迹是线段F1F2的中垂线;当0<2a<|F1F2|时,点P的轨迹是双曲线;当2a=|F1F2|时,点P的轨迹是两条射线;当2a>|F1F2|时,点P的轨迹不存在.8.抛物线的标准方程及几何性质[必会结论]1.与圆的切线有关的结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点为A ,B ,则过A ,B 两点的直线方程为x 0x +y 0y =r 2.(4)过圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点P (x 0,y 0)引圆的切线,切点为T ,则|PT |=x 20+y 20+Dx 0+Ey 0+F .(5)过圆C :(x -a )2+(y -b )2=r 2(r >0)外一点P (x 0,y 0)作圆C 的两条切线,切点分别为A ,B ,则切点弦AB 所在的直线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(6)若圆的方程为(x -a )2+(y -b )2=r 2(r >0),则过圆外一点P (x 0,y 0)的切线长d =(x 0-a )2+(y 0-b )2-r 2. 2.椭圆中焦点三角形的相关结论由椭圆上一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正、余弦定理.以椭圆x 2a 2+y 2b2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c ,0),F 2(c ,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)|PF 1|=a +ex 0,|PF 2|=a -ex 0(焦半径公式),|PF 1|+|PF 2|=2a .(e 为椭圆的离心率) (2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3)S △PF 1F 2=12|PF 1||PF 2|·sin θ=b 2tan θ2=c |y 0|,当|y 0|=b ,即P 为短轴端点时,S△PF 1F 2取得最大值,为bc .(4)焦点三角形的周长为2(a +c ). 3.双曲线的方程与渐近线方程的关系(1)若双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),则渐近线的方程为x 2a 2-y 2b 2=0,即y =±bax .(2)若渐近线的方程为y =±b a x (a >0,b >0),即x a ±y b =0,则双曲线的方程可设为x 2a 2-y 2b2=λ.(3)若所求双曲线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共渐近线,其方程可设为x 2a 2-y 2b2=λ(λ>0,焦点在x 轴上;λ<0,焦点在y 轴上).4.双曲线常用的结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a,异支的弦中最短的为实轴,其长为2a .(4)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则k PA ·k PB =b 2a2,S △PF 1F 2=b 2tanθ2,其中θ为∠F 1PF 2.(5)P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标恒为a .5.抛物线焦点弦的相关结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为直线AB 的倾斜角,则(1)焦半径|AF |=x 1+p 2=p 1-cos α,|BF |=x 2+p 2=p1+cos α.(2)x 1x 2=p 24,y 1y 2=-p 2.(3)弦长|AB |=x 1+x 2+p =2psin 2α.(4)1|FA |+1|FB |=2p. (5)以弦AB 为直径的圆与准线相切. (6)S △OAB =p 22sin α(O 为抛物线的顶点).[必练习题]1.过圆x 2+y 2-x -y +14=0的圆心,且倾斜角为π4的直线方程为( )A .x -2y =0B .x -2y +3=0C .x -y =0D .x -y +1=0解析:选 C.由题意知圆的圆心坐标为⎝ ⎛⎭⎪⎫12,12,所以过圆的圆心,且倾斜角为π4的直线方程为y =x ,即x -y =0.2.圆心为(4,0)且与直线3x -y =0相切的圆的方程为( ) A .(x -4)2+y 2=1 B .(x -4)2+y 2=12 C .(x -4)2+y 2=6D .(x +4)2+y 2=9解析:选B.由题意,知圆的半径为圆心到直线3x -y =0的距离,即r =|3×4-0|3+1=23,结合圆心坐标可知,圆的方程为(x -4)2+y 2=12,故选B.3.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则其渐近方程为( )A .y =±2xB .y =±4xC .y =±12xD .y =±14x解析:选C.由题意得e =c a =52,又a 2+b 2=c 2,所以b a =12,所以双曲线的渐近线方程为y =±12x ,选C.4.设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若|AB |=4,|BC |=2,则椭圆的两个焦点之间的距离为( )A .463B .263C .433D .233解析:选 A.不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a=2,因为∠CBA =π4,|BC |=2,所以点C 的坐标为(-1,1),因为点C 在椭圆上,所以14+1b 2=1,所以b 2=43,所以c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为463.5.已知⊙M 经过双曲线S :x 29-y 216=1的一个顶点和一个焦点,圆心M 在双曲线S 上,则圆心M 到原点O 的距离为( )A .143或73B .154或83C .133D .163解析:选D.因为⊙M 经过双曲线S :x 29-y 216=1的一个顶点和一个焦点,圆心M 在双曲线S 上,所以⊙M 不可能过异侧的顶点和焦点,不妨设⊙M 经过双曲线的右顶点和右焦点,则圆心M 到双曲线的右焦点(5,0)与右顶点(3,0)的距离相等,所以x M =4,代入双曲线方程可得y M =±16×⎝ ⎛⎭⎪⎫169-1=±473,所以|OM |=16+⎝ ⎛⎭⎪⎫4732=163,故选D.6.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .334B .938C .6332D .94解析:选D.易知直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,与y 2=3x 联立并消去x 得4y 2-123y-9=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=33,y 1y 2=-94,S △OAB =12|OF |·|y 1-y 2|=12×34(y 1+y 2)2-4y 1y 2=3827+9=94.故选D. 7.已知双曲线x 2a 2-y 212=1(a >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为43,则双曲线的方程为( )A .x 24-3y 24=1B .x 24-4y 23=1C .x 26-y 212=1D .x 24-y 212=1 解析:选 D.根据对称性,不妨设点A 在第一象限,A (x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=a 2,y =23a x 解得⎩⎪⎨⎪⎧x =a 212+a 2,y =23a 12+a2,因为四边形ABCD 的面积为43,所以4xy =4×23a312+a2=43,解得a =2,故双曲线的方程为x 24-y 212=1,选D.8.已知圆C 1:(x -1)2+y 2=2与圆C 2:x 2+(y -b )2=2(b >0)相交于A ,B 两点,且|AB |=2,则b =________.解析:由题意知C 1(1,0),C 2(0,b ),半径r 1=r 2=2,所以线段AB 和线段C 1C 2相互垂直平分,则|C 1C 2|=2,即1+b 2=4,又b >0,故b = 3.答案: 39.已知椭圆x 2a 2+y 2b2=1(a >b >0),以原点O 为圆心,短半轴长为半径作圆O ,过椭圆的长轴的一端点P 作圆O 的两条切线,切点为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为________.解析:如图,因为四边形PAOB 为正方形,且PA ,PB 为圆O 的切线,所以△OAP 是等腰直角三角形,故a =2b ,所以e =c a =22. 答案:2210.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________.解析:由题意知,经过第一象限的双曲线的渐近线方程为y =33x .抛物线的焦点为F 1⎝ ⎛⎭⎪⎫0,p 2,双曲线的右焦点为F 2(2,0).又y ′=1p x ,故抛物线C 1在点M ⎝⎛⎭⎪⎫x 0,x 202p 处的切线的斜率为33,即1p x 0=33,所以x 0=33p ,又点F 1⎝ ⎛⎭⎪⎫0,p 2,F 2(2,0),M⎝ ⎛⎭⎪⎫33p ,p 6三点共线,所以p2-00-2=p 6-p233p -0,即p =433.43答案:3。
解析几何-2020年高考数学(理)【热点·重点·难点】专练(解析版)

解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用. 【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算. 【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·福建三明一中高三月考)已知1F ,2F 为椭圆2222:1,(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程是( )A .22184x y +=B .22182x y +=C .22162x y +=D .22164x y +=【答案】C 【解析】 【分析】先由题意,不妨设点(),A x y 位于第一象限,根据12AF AF ⊥,得到1212==OA F F c ,根据OA 与x 轴正方向的夹角为30︒,得到1,2⎫⎪⎪⎝⎭A c ,从而由122F AF S ∆=求出2c =,)A,得到22311a b+=,224a b -=,联立,即可求出结果. 【详解】因为过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A , 不妨设点(),A x y 位于第一象限,因为12AF AF ⊥,所以12AF F ∆为直角三角形,因此1212==OA F F c ; 又OA 与x 轴正方向的夹角为30︒,所以3cos302==x OA c ,1sin 302==y OA c ,即1,22⎛⎫ ⎪ ⎪⎝⎭A c c ;所以12112222F AF S c c ∆=⋅⋅=,解得:2c =,所以)A ;因此22311a b+=①, 又2224a b c -==②,由①②解得:2262a b ⎧=⎨=⎩,因此所求椭圆方程为22162x y +=.故选:C【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2.(2019·贵州高三月考(理))已知抛物线2:4C y x =的焦点为F ,Q 为抛物线上一点,连接PF 并延长交抛物线的准线于点P ,且点P |2||=PQ QF ,则直线PF 的方程为( )A 0y -=B 0y +C 0y -=0y +D .10x -= 【答案】D【解析】根据P 的纵坐标为负数,判断出直线PF 斜率大于零,设直线PF 的倾斜角为θ,根据抛物线的定义,求得cos θ的值,进而求得θ,从而求得tan θ也即直线PF 的斜率,利用点斜式求得直线PF 的方程. 【详解】由于P 的纵坐标为负数,所以直线PF 斜率大于零,由此排除B,C 选项.设直线PF 的倾斜角为θ.作出抛物线24y x =和准线1x =-的图像如下图所示.作QA PA ⊥,交准线1x =-于A 点.根据抛物线的定义可知QF QA =,且QFx AQP θ∠=∠=.依题意|2||=PQ QF ,故在直角三角形PQA 中cos QA QF PQ PQ θ===π6θ=,故直线PF 的斜率为πtan6=,所以直线PF 的方程为)01y x -=-,化简得10x -=.故选:D.。
【2020最新】数学高考(理)二轮专题复习:第一部分专题六解析几何1-6-2-含答案(1)

教学资料范本【2020最新】数学高考(理)二轮专题复习:第一部分专题六解析几何1-6-2-含答案(1)编辑:__________________时间:__________________一、选择题(本题共12小题,每小题5分,共60分)1.若实数k满足0<k<9,则曲线-=1与曲线-=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等解析:选A.由25+(9-k)=(25-k)+9,知两曲线的焦距相等.2.(20xx·宁夏银川质检)抛物线y2=8x的焦点到双曲线x2-=1的渐近线的距离是( )A. B.32C.1 D. 3解析:选D.由抛物线y2=8x,有2p=8⇒p=4,焦点坐标为(2,0),双曲线的渐近线方程为y=±x,不妨取其中一条x-y=0,由点到直线的距离公式,有d==,故选D.3.已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点.则C的方程为( )A.-=1B.-=1C.-=1D.-=1解析:选B.∵双曲线的一条渐近线方程为y=x,则=,①又∵椭圆+=1与双曲线有公共焦点,易知c=3,则a2+b2=c2=9,②由①②解得a=2,b=,则双曲线C的方程为-=1,故选B.4.已知抛物线y2=2px 的焦点F 与双曲线-=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK|=|AF|,则△AFK 的面积为( )A .4B .8C .16D .32解析:选D.因为抛物线y2=2px 的焦点F 与双曲线-=1的右焦点(4,0)重合,所以p =8.设A(m ,n),又|AK|=|AF|,所以m +4=|n|,又n2=16m ,解得m =4,|n|=8,所以△AFK 的面积为S =×8×8=32.5.(20xx·安徽合肥模拟)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P 为双曲线右支上一点,则·的最小值为( )A .-2B .-8116C .1D .0 解析:选 A.设点P(x ,y),其中x≥1.依题意得A1(-1,0),F2(2,0),则有=x2-1,y2=3(x2-1),PA1→·=(-1-x ,-y)·(2-x ,-y)=(x +1)(x -2)+y2=x2+3(x2-1)-x -2=4x2-x -5=4-,其中x≥1.因此,当x =1时,·取得最小值-2,选A.6.(20xx·浙江宁波模拟)点A 是抛物线C1:y2=2px(p >0)与双曲线C2:-=1(a >0,b >0)的一条渐近线的交点,若点A 到抛物线C1的准线的距离为p ,则双曲线C2的离心率等于( )A.B. 3C.D. 6解析:选C.取双曲线的一条渐近线为y =x ,联立⇒⎩⎪⎨⎪⎧ x =2pa2b2,y =2pa b ,故A.因为点A 到抛物线C1的准线的距离为p.所以+=p ,所以=.所以双曲线C2的离心率e ===.7.(20xx·山东德州一模)已知抛物线y2=8x 与双曲线-y2=1(a >0)的一个交点为M ,F 为抛物线的焦点,若|MF|=5,则该双曲线的渐近线方程为( )A .5x±3y=0B .3x±5y=0C .4x±5y=0D .5x±4y=0解析:选A.抛物线y2=8x 的焦点为F(2,0),准线方程为x =-2,设M(m ,n),则由抛物线的定义可得|MF|=m +2=5,解得m =3,由n2=24,可得n =±2.将M(3,±2)代入双曲线-y2=1(a >0),可得-24=1(a >0),解得a =,故双曲线的渐近线方程为y =±x,即5x±3y=0.故选A.8.(20xx·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :+=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( )A. B.12C. D.34解析:选A.由题意可知直线AE的斜率存在,设为k,直线AE的方程为y=k(x+a),令x=0可得点E坐标为(0,ka),所以OE的中点H 坐标为,又右顶点B(a,0),所以可得直线BM的斜率为-,可设其方程为y=-x+a,联立可得点M横坐标为-,又点M的横坐标和左焦点相同,所以-=-c,所以e=.9.已知双曲线的标准方程为-=1,F为其右焦点,A1,A2分别是实轴的左、右端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于M,N两点,若·=0,则a的值为( )A. B.95C. D.165解析:选B.∵双曲线-=1,右焦点F(5,0),A1(-3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),∵P,A1,M三点共线,∴=,m=,∵P,A2,N三点共线,∴=,∴n=.∵-=1,∴=,∴=.又=,=,∴·=(a-5)2+=(a-5)2+,∵·=0,∴(a-5)2+=0,∴25a2-90a+81=0,∴a=.故选B.10.(20xx·山东东营模拟)设F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使·=0,且|PF1|=|PF2|,则该双曲线的离心率为( )A. B.+1C. D.+1解析:选C.因为双曲线右支上存在一点P,使·=0,所以⊥,因为|PF1|=|PF2|,所以|F1F2|=2|PF2|=4c,即|PF2|=2c,所以|PF1|-|PF2|=|PF2|-|PF2|=(-1)|PF2|=2a,因为|PF2|=2c,所以2c(-1)=2a,e===.11.以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )A.2 B.4C.6 D.8解析:选B.设抛物线方程为y2=2px(p>0),圆的方程为x2+y2=r2.∵|AB|=4,|DE|=2,抛物线的准线方程为x=-,∴不妨设A,D.∵点A,D在圆x2+y2=r2上,∴∴+8=+5,∴p=4(负值舍去).∴C的焦点到准线的距离为4.12.(20xx·高考全国卷Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,|AB|+|DE|的最小值为( )A.16 B.14C.12 D.10解析:选A.设AB倾斜角为θ,则|AB|=,又DE与AB垂直,即DE的倾斜角为+θ,|DE|==2pcos2θ而y2=4x,即p=2.∴|AB|+|DE|=2p==≥16,当θ=时取等号,即|AB|+|DE|最小值为16,故选A.二、填空题(本题共4小题,每小题5分,共20分)13.已知离心率e=的双曲线C:-=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线相交于O,A 两点,若△AOF的面积为4,则a的值为________.解析:因为e==,所以=,==,设|AF|=m,|OA|=2m,由面积关系得×m×2m=4,所以m=2,由勾股定理,得c==2,又=,所以a =4.答案:414.设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.解析:设F1(-c,0),F2(c,0),其中c=,则可设A(c,b2),B(x0,y0),由|AF1|=3|F1B|,可得(-2c,-b2)=3(x0+c,y0),故即代入椭圆方程可得+b2=1,解得b2=,故椭圆方程为x2+=1.答案:x2+=115.(20xx·高考江苏卷)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由已知条件易得B,C,F(c,0),∴=,=,由∠BFC=90°,可得·=0,所以+2=0,即c2-a2+b2=0,即4c2-3a2+(a2-c2)=0,亦即3c2=2a2,所以=,则e==.答案:6316.(20xx·山东潍坊模拟)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为________.解析:设AF=a,BF=b,由余弦定理得|AB|2=a2+b2-2abcos 120°=a2+b2+ab=(a+b)2-ab≥(a+b)2-=(a+b)2,因为==MN,所以|AB|2≥|2MN|2,所以≥,所以最小值为.答案: 3。
专题06 解析几何-2020届高考数学备课锦囊(人教版)

专题六 解析几何目录一、考情分析.................................................................................1 二、两年高考试题展示.....................................................................1 三、知识、方法、技能.....................................................................15 四、延伸拓展.................................................................................26 (一)阿波罗尼奥斯圆.....................................................................26 (二)椭圆与双曲线的对偶性质.........................................................28 (三)抛物线性质总结 (35)一、考情分析解析几何高考全国卷中一般有2道客观题、1道解答题,客观题考查热点是双曲线的几何性质、椭圆、抛物线的定义及几何性质及抛物线与其他知识的交汇;解答题一般分2问,第1问主要考查曲线的方程,第2问主要考查直线与圆锥曲线的关系.二、两年高考试题展示1. 【2019全国卷Ⅰ】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为(A) 2212x y +=(B) 22132x y +=(C) 22143x y +=(D) 22154x y +=【答案】B【解析】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .2.【2018全国卷I 】已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=(A) (B) 3 (C) (D) 4【答案】B【解析】根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.3.【2018全国卷I 】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=(A) 5 (B) 6 (C) 7 (D) 8 【答案】D【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.4. 【2019全国卷Ⅱ】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =(A) 2 (B) 3 (C) 4 (D) 8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .5. 【2019全国卷Ⅱ】11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 (A) 2(B) 3(C) 2 (D)5【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==.2e ∴=A .6.【2018全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为(A) (B) (C) (D)【答案】D【解析】因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.7.【2018全国卷II】双曲线的离心率为,则其渐近线方程为(A) (B) (C) (D)【答案】A【解析】因为渐近线方程为,所以渐近线方程为,选A.8. 【2019全国卷Ⅲ】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为(A)324(B)322(C)12x x (D) 32【答案】A【解析】由222,2,6,a b c a b ===+=6,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上, 113326224PFO P S OF y ∴=⋅=⨯⨯=△,故选A . 9.【2018全国卷Ⅲ】设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为(A)(B) 2 (C)(D)【答案】C【解析】由题可知,,在中,,在中,,,,故选C.10.【2018全国卷Ⅲ】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 (A) (B)(C)(D)【答案】A 【解析】直线分别与轴,轴交于,两点,,则,点P 在圆上,圆心为(2,0),则圆心到直线距离,故点P 到直线的距离的范围为,则,故答案选A.11. 【2019全国卷Ⅰ】16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则12,OB OF OF ==有221122,OBF BF O OBF OF B ∠=∠=∠=∠1AOB AOF ∠=∠.又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠则0260BOF ∠=.又渐近线OB 的斜率为0tan 603ba==所以该双曲线的离心率为221()1(3)2c be a a==+=+=. 12. 【2019全国卷Ⅲ】15.设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(15【解析】由已知可得2222236,36,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.122212,4MF MF a MF +===.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M的坐标为(.13. 【2019全国卷Ⅰ】19.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【解析】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =- ∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+ 联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --=则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则()21212413413144129AB y y y y =+⋅+-=⋅+=14.【2018全国卷I 】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.【解析】(1)由已知得,l 的方程为x =1.由已知可得,点A 的坐标为或.所以AM 的方程为或.(2)当l 与x 轴重合时,.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以.当l 与x 轴不重合也不垂直时,设l 的方程为,,则,直线MA ,MB 的斜率之和为.由得.将代入得.所以,.则.从而,故MA ,MB 的倾斜角互补,所以.综上,.15. 【2019全国卷Ⅱ】21.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值. 【解析】(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2yx x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x y x +=≠±;(2)(i )设直线PQ 的方程为y kx =,由题意可知0k >,直线PQ 的方程与椭圆方程2224x y +=联立,即22,2 4.x y kx x y y ⎧=⎪=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,点P在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE kk =,可得直线QE方程:2k y x =-2222 4.k y x x y ⎧=-⎪⎨⎪+=⎩,消去y得,22222128(2)021k k x k ++=+(*),设点11(,)G x y ,显然Q 点和1x 是方程(*)的解所以有222112128212k k x x k +-+=⇒=+,代入直线QE 方程中,得31y =G的坐标为23,直线PG 的斜率为; 3322222(2)1642(2)PGk k k k k k k -+===-+-+,因为1()1,PQ PG k k k k=⋅-=-所以PQ PG ⊥,因此PQG 是直角三角形;(ii )由(i )可知:2222(,),(,)21212121P Q k k k k ++++,G 的坐标为232222(,)(2)21(2)21k k k k ++++,22222222222241()()2121212121k k k PQ k k k k k --+=-+-=+++++,23222222222226422241()()(2)2121(2)2121(2)21k k k k k PG k k k k k k k k ++=-+-=++++++++,22342222141418()2252(2)2121PQGk k k k k S k k k k k ∆+++=⨯⋅=+++++42'4228(1)(1)(232)(252)k k k k S k k -+-++=++,因为0k >,所以当01k <<时,'0S >,函数()S k 单调递增,当1k >时,'0S <,函数()S k 单调递减,因此当1k =时,函数()S k 有最大值,最大值为16(1)9S =. 16.【2018全国II 】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由得. ,故.所以.由题设知,解得k =–1(舍去),k =1.因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为,即.设所求圆的圆心坐标为(x 0,y 0),则解得或因此所求圆的方程为或.17. 【2019全国卷Ⅲ】21.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【解析】(1)证明:设A ,B 两点的坐标分别为11(,)x y ,22(,)x y ,因为212y x =,所以'y x =, 则切线DA 为:111()y y x x x -=----------①,切线DB 为:222()y y x x x -=---------②,代入212y x =得22111222221212y x x x x y x x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩①②,21x x ⨯-⨯①②得2112121()()02x x y x x x x -+-=,因为120x x -≠故消去得交点的纵坐标1212y x x =, 因为DA 和DB 的交点D 为直线12y =-上的动点,所以有121122y x x ==-,121x x =-,直线AB 为112121y y x x y y x x --=--,点A ,B 在曲线22x y =上,则有211222121222x y x x x x x x --=--,整理得21121121212111()()()()2222x y x x x x x x x x x x x x =+-+=-++=++,即121()()02x x x y ++-=.当0x =,12y =时无论1x ,2x 取何值时,此等式均成立.因此直线AB 过定点1(0,)2,得证. (2)设AB 的中点为G ,由题得G 点坐标为1212(,)22x x y y ++,则12125(0,)222x x y y EG ++=--,又1212(,)BA x x y y =--.由题意知EG BA ⊥,即0EG BA ⋅=即121212125()()()()0222x x y y x x y y ++-+--=.代入212y x =得222222121212151()()()02422x x x x x x +-+-⋅-=整理得22121212()()(6)0x x x x x x -++-=. 因120x x -≠,故221212()(6)0x x x x ++-=.所以120x x +=或221260x x +-=.由第一问中22111222221212y x x x x y x x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩①②,为这里的(,)x y 为D 点坐标,然而12y =,故 221111122x x x x --=-,所以1111()2x x x =-,又因为121x x =-.所以121112111111()()()222x x x x x x x x x -=-=-=+.即D 坐标为1211((),)22x x +-. 那么1212(,)BA x x y y =--,121((),3)2ED x x =+. 设θ为BA与ED 的夹角,那么有221sin (2ADBE S BA ED BA ED BAθ=⋅==⋅-=四边形代入212y x =进行化简有ADBE S =四边形 若120x x +=,则3ADBE S ===四边形. 若221260x x +-=,则222121212()24x x x x x x +=++=,222121212()28x x x x x x -=+-=代入有ADBES ==四边形所以四边形ADBE 的面积为3或18.【2018全国卷Ⅲ】已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【解析】(1)设,则.两式相减,并由得.由题设知,于是.①;由题设得,故. (2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.三、知识、方法、技能1直线的倾斜角与斜率均是反映直线倾斜程度的量.倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度,两者由公式k=tanα联系.(2)在使用过两点的直线的斜率公式k=y2-y1时,注意同一直线上选取的点不同,直线的斜率不会因此而发生变化,同时还要注意两点横坐标是x2-x1否相等,若相等,则直线的倾斜角为90°,斜率不存在,但并不意味着直线的方程也不存在,此时直线的方程可写为x=x1.(3)已知直线方程求直线倾斜角范围的一般步骤:①求出斜率k的取值范围(若斜率不存在,倾斜角为90°);②利用正切函数的单调性,借助正切函数的图象或单位圆确定倾斜角的取值范围.(4)直线的斜率与倾斜角的关系:①当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大到+∞;②当α∈⎝⎛⎭⎫π2,π且由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由-∞增大并趋近于0(k ≠0). 2.给出了倾斜角的正弦值,求正切值时,应注意倾斜角的范围;3.对于直线方程来说,要注意的是:每一种形式的二元一次方程表示的直线都是有限制的.在解决关于直线方程的问题中,要把握限制的条件,在求解时要细心处理,否则容易产生增解或漏解的情形.如利用直线的点斜式、斜截式解题时,要注意防止忽视斜率不存在而出现漏解;利用直线的截距式解题时,要注意防止忽视零截距而造成漏解;利用直线的一般式解题时,要注意防止忽视隐含条件A 2+B 2≠0而出现增解. 3.直线在x 轴上的截距是直线与x 轴的交点的横坐标,直线在y 轴上的截距是直线与y 轴的交点的纵坐标,注意截距不是距离,它可正、可负、可为0,在用截距式求直线方程时,不可忽视截距可能为0.截距相等包括经过原点的直线.【例】求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程.【解析】当直线不经过原点时,设直线方程为x 2a +y a =1(a ≠0),将点A (-5,2)代入方程,解得a =-12,所以直线方程为x +2y +1=0;当直线经过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.综上可知,所求直线方程为2x +5y =0或x +2y +1=0.4. 运用直线系方程,有时会使解题更为简单快捷,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ); (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 无论是判断两条直线平行还是垂直,都是从两方面来讨论的,即两条直线斜率都存在的情况和两条直线至少有一条斜率不存在的情况.由两直线平行求参数要注意排除重合的情况.6.运用公式d =||C 1-C 2A 2+B 2求两平行直线间的距离时,一定要将两条直线方程中x ,y 的系数化成相等的系数,求两平行直线间的距离也可化归为点到直线的距离,即在一条直线上任取一点,求该点到另一条直线的距离即为两平行直线间的距离.这一方法体现了化归思想的应用.7.判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.解析几何是用代数的方法解决几何问题,所以灵活运用平面几何中相关的性质、定理会使求解过程简捷、明快,如四边形有外接圆的充要条件:对角互补.7.有关直线与点的对称问题可分为四类:两点关于一点成中心对称;两线关于一点成中心对称;两点关于一直线成轴对称;两线关于一直线成轴对称,前两类较简单,后两类主要应用中点、垂直等条件解决.求曲线关于点或直线对称曲线的主要步骤是:①在已知曲线上任取一点M (x ,y );②求出这点关于对称中心或对称轴的对称点M ′(x ′,y ′);③已知曲线方程用x ′,y ′表示,求出所求曲线的方程G (x ′,y ′)=0. 8.关于中心对称问题的处理方法:①若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1.②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在. 9.关于轴对称问题的处理方法:①点关于直线的对称.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,且连接P 1P 2的直线垂直于l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). ②直线关于直线的对称.此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.10.与角平分线有关的问题常转化为轴对称问题.【例】在△ABC中,BC边上的高所在直线l1的方程为x-2y+1=0,∠A的平分线所在的直线l2的方程为y=0,若点B的坐标为(1,2),求点A、C的坐标.【答案】A(-1,0),C(5,-6)11.求圆的方程必须具备三个独立的条件.从圆的标准方程来讲,关键在于求出圆心坐标和半径长;从圆的一般方程来讲,若知道圆上的三个点则可求出圆的方程.因此,待定系数法是求圆的方程的常用方法.(2)用几何法求圆的方程,要充分运用圆的几何性质,如“圆心在圆的任一条弦的垂直平分线上”等.(3)常见圆的方程的设法:12.才能确定一个圆,求圆的方程时,若能根据已知条件找出圆心和半径,则可用直接法写出圆的标准方程,否则可用待定系数法.13.求圆的方程的方法(1)几何法:即通过研究圆的性质,以及点和圆、直线和圆、圆和圆的位置关系,求得圆的基本量(圆心坐标和半径长),进而求得圆的方程.(2)代数法:即用“待定系数法”求圆的方程,其一般步骤是:①根据题意选择方程的形式;②利用条件列出关于a,b,r或D,E,F的方程组;③解②中的方程组,求得a,b,r或D,E,F的对应值,代入圆的标准方程或一般方程.14.具有某些共同性质的圆的集合称为圆系,它们的方程叫做圆系方程,常见的圆系方程有以下几种: ①同心圆系方程:(x -a )2+(y -b )2=r 2(r >0).其中的a ,b 是定值,r 是参数. ②半径相等的圆系方程:(x -a )2+(y -b )2=r 2(r >0).其中r 是定值,a ,b 是参数.③过直线Ax +By +C =0与圆x 2+y 2+Dx +Ey +F =0交点的圆系方程:x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ∈R ).④过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0和圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1)(其中不含圆C 2,因此应用时注意检验C 2是否满足题意,以防丢解).当λ=-1时,圆系方程表示直线l :(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0.若两圆相交,则l 为两圆相交弦所在直线;若两圆相切,则l 为公切线.15.在解决直线和圆的位置关系问题时,一定要联系圆的几何性质,利用有关图形的几何特征以简化运算;讨论直线与圆的位置关系时,一般不讨论Δ>0,Δ=0,Δ<0,而用圆心到直线的距离d 与圆的半径r 之间的关系,即d <r ,d =r ,d >r ,分别确定相交、相切、相离.16.要特别注意利用圆的性质,如“垂直于弦的直径必平分弦”,“圆的切线垂直于过切点的半径”,“两圆相切时,切点与两圆圆心三点共线”等等.可以说,适时运用圆的几何性质,将明显减少代数运算量,请同学们切记.17.涉及圆的切线时,要考虑过切点与切线垂直的半径,过圆x 2+y 2+Dx +Ey +F =0外一点M (x 0,y 0)引圆的切线,T 为切点,切线长公式为||MT =x 20+y 20+Dx 0+Ey 0+F. 18.计算弦长时,要利用半径、弦心距(圆心到弦所在直线的距离)、半弦长构成的直角三角形.当然,不失一般性,圆锥曲线的弦长公式||AB =1+k 2||x 1-x 2(A (x 1,y 1),B (x 2,y 2)为弦的两个端点)也应重视. 19.已知⊙O 1:x 2+y 2=r 2;⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx +Ey +F =0.若点M (x 0,y 0)在圆上,则过M 的切线方程分别为x 0x +y 0y =r 2;(x -a )(x 0-a )+(y -b )(y 0-b )=r 2;x 0x +y 0y +D ·x 0+x 2+E ·y 0+y2+F =0.若点M (x 0,y 0)在圆外,过点M 引圆的两条切线,切点为M 1,M 2,则切点弦(两切点的连线段)所在直线的方程分别为x 0x +y 0y =r 2;(x -a )(x 0-a )+(y -b )(y 0-b )=r 2;x 0x +y 0y +D ·x 0+x 2+E ·y 0+y 2+F =0.20.研究两圆的位置关系时,要灵活运用平面几何法、坐标法.两圆相交时可由两圆的方程消去二次项求得两圆公共弦所在的直线方程.21.已知点()00,P x y 及圆C :()2220x y r r +=>,若点P 在圆C 上,则直线200x x y y r +=为圆C 在点P处的切线;若点P 在圆C 外,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 方程为200x x y y r +=;若点P 在圆C 内,过点P 的直线与圆C 交于点A ,B ,过A ,B 作圆C 的切线,则两切线交点轨迹方程为200x x y y r +=.22.求曲线的轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系f (x ,y )=0.也就是:建系设点、列式、代换、化简、证明,最后的证明可以省略,必要时加以说明.(2)定义法:先根据条件得出动点的轨迹是某种已知的曲线,再由曲线的定义直接写出动点的轨迹方程. (3)待定系数法:已知所求的曲线类型,先根据条件设出曲线方程,再由条件确定其待定系数.(4)相关点法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,首先用x ,y 表示x 0,y 0,再将x 0,y 0代入已知曲线得到要求的轨迹方程.(5)交轨法:动点P (x ,y )是两动直线(或曲线)的交点,解决此类问题通常是通过解方程组得到交点(含参数)的坐标,再消去参数求出所求的轨迹方程.(6)参数法:当动点P (x ,y )的坐标之间的关系不易找到,可考虑将x ,y 均用一中间变量(参数)表示,得参数方程,再消去参数得方程f (x ,y )=0.(4)、(5)两种方法本质上也是参数法,只不过是多参数的参数方程或是隐性式的参数方程.23.要注意一些轨迹问题中包含的某些隐含条件,也就是曲线上点的坐标的取值范围,有时还要补充特殊点的坐标或特殊曲线的方程.求轨迹方程与求轨迹是有区别的,若求轨迹,则不仅要求出方程,而且还需要说明所求轨迹是什么曲线,即曲线的形状、位置、大小都需说明. 24.根据问题给出的条件不同,求轨迹的方法也不同,一般有如下规律: (1)单点的轨迹问题——直接法+待定系数法; (2)双动点的轨迹问题——相关点法; (3)多动点的轨迹问题——参数法+交轨法.25.利用参数法求动点轨迹时要注意:(1)参数的选择要合理;(2)消参的方法灵活多样;(3)对于所选的参数,要注意取值范围,并注意参数范围对x ,y 的取值范围的制约.26.曲线关于点中心对称、关于直线轴对称问题,通常是转化为点的中心对称或轴对称,一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0; (2)曲线f (x ,y )=0关于y =kx +b 的对称曲线的求法:设曲线f (x ,y )=0上任意一点为P (x 0,y 0),点P 关于直线y =kx +b 的对称点为P ′(x ,y ),则由轴对称的条件知,P 与P ′的坐标满足⎩⎪⎨⎪⎧y -y0x -x 0·k =-1,y +y 02=k ·x +x 02+b ,从中解出x 0,y 0,将其代入已知曲线f (x ,y )=0,就可求出曲线f (x ,y )=0关于直线y =kx +b 对称的曲线方程.27.椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);③用椭圆的参数方程设动点的坐标,转化为三角问题求解.28.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.29.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n =1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.30.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.31.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.32.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一. 33.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b 2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc.(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a.(4)AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|; ②直线AB 的斜率k AB =-b 2x 0a 2y 0.34.求双曲线的标准方程一般用待定系数法;(2)当双曲线焦点的位置不确定时,为了避免讨论焦点的位置,常设双曲线方程为Ax 2+By 2=1(A ·B <0),这样可以简化运算.35.要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解.(2)要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征||PF 1+||PF 2≥2c 的运用.36.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.37.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为Ax 2+By 2=1的形式,当A >0,B >0,A ≠B 时为椭圆,当A ·B <0时为双曲线.38.双曲线的几个常用结论:(1)与双曲线x2a2-y2b2=1(a>0,b>0)有共同渐近线的双曲线系方程为x2a2-y2b2=λ(λ≠0).(2)双曲线上的点P(x0,y0)与左(下)焦点F1或右(上)焦点F2之间的线段叫做双曲线的焦半径,分别记作r1=|PF1|,r2=|PF2|,则①x2a2-y2b2=1(a>0,b>0),若点P在右支上,则r1=ex0+a,r2=ex0-a;若点P在左支上,则r1=-ex0-a,r2=-ex0+a.②y2a2-x2b2=1(a>0,b>0),若点P在上支上,则r1=ey0+a,r2=ey0-a;若点P在下支上,则r1=-ey0-a,r2=-ey0+a.39.如图,AB为过抛物线y2=2px(p>0)焦点F的弦,点A,B在抛物线准线上的射影为A1,B1,且A(x1,y1),B(x2,y2).求证:(1)||AB=x1+x2+p;(2)x1x2=p24,y1y2=-p2;(3)以AB为直径的圆与抛物线的准线相切;(4)1|| AF +1||BF=2p.40.设AB是过抛物线y2=2px(p>0)的焦点F的弦,A(x1,y1),B(x2,y2),求证:(1)若点A,B在准线上的射影分别为M,N,则∠MFN=90°;(2)取MN的中点R,则∠ARB=90°;(3)以MN为直径的圆必与直线AB相切于点F;(4)若经过点A和抛物线顶点O的直线交准线于点Q,则BQ平行于抛物线的对称轴.41.求抛物线的标准方程的常用方法是待定系数法或轨迹法.若抛物线的开口不确定,为避免多种情况分类求解的麻烦,可以设抛物线方程为y2=mx或x2=ny(m≠0,n≠0).若m>0,开口向右;若m<0,开口向左.m有两解时,则抛物线的标准方程有两个.对n >0与n <0,有类似的讨论.42.对于圆锥曲线的综合问题,①要注意将曲线的定义性质化,找出定义赋予的条件;②要重视利用图形的几何性质解题(本书多处强调);③要灵活运用韦达定理、弦长公式、斜率公式、中点公式、判别式等解题,巧妙运用“设而不求”、“整体代入”、“点差法”、“对称转换”等方法.43.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程或动弦中点M (x ,y )轨迹时,一般可设A (x 1,y 1),B (x 2,y 2),利用A ,B 两点在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m (或2x ),y 1+y 2=2n (或2y ),从而求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程,或者得到动弦所在直线斜率与中点坐标x ,y 之间的关系,整体消去x 1,x 2,y 1,y 2,得到点M (x ,y )的轨迹方程.44.对满足一定条件的直线或者曲线过定点问题,可先设出该直线或曲线上两点的坐标,利用坐标在直线或曲线上以及切线、点共线、点共圆、对称等条件,建立点的坐标满足的方程或方程组.为简化运算应多考虑曲线的几何性质,求出相应的含参数的直线或曲线,再利用直线或曲线过定点的知识加以解决. 以“求直线l :y =kx +2k +1(k 为参数)是否过定点?有以下常用方法:①待定系数法:假设直线l 过点(c 1,c 2),则y -c 2=k (x -c 1),即y =kx -c 1k +c 2,通过与已知直线方程比较得c 1=-2,c 2=1.所以直线l 过定点(-2,1).②赋值法:令k =0,得l 1:y =1;令k =1,得l 2:y =x +3,求出l 1与l 2的交点(-2,1),将交点坐标代入直线系得1=-2k +2k +1恒成立,所以线l 过定点(-2,1).赋值法由两步构成,第一步:通过给参数赋值,求出可能的定点坐标;第二步:验证其是否恒满足直线方程.③参数集项法:对直线l 的方程中的参数集项得y =k (x +2)+1,令k 的系数为0,得x =2,y =1,k 的取值是任意的,但l 的方程对点(-2,1)恒成立,所以直线l 过定点(-2,1).45.圆锥曲线上的点关于某一直线对称的问题,通常利用圆锥曲线上的两点所在直线与已知直线l (或者是直线系)垂直,圆锥曲线上两点连成线段的中点一定在对称轴直线l 上,再利用判别式或中点与曲线的位置关系求解.46.解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,=;。
2020版数学高考专题突破及解析

第 2 节函数的单调性与最大( 小) 值最新考纲 1. 理解函数的单调性、最大( 小) 值及其几何意义; 2. 会运用基本初等函数的图像分析函数的性质.知识梳理1 . 函数的单调性(1) 单调函数的定义增函数减函数定义在函数y = f ( x )的定义域内的一个区间A 上,如果对于任意两数x 1 ,x 2 ∈ A当x 1 < x 2 时,都有f ( x 1 )< f ( x 2 ) ,那么就说函数 f ( x ) 在区间 A 上是增加的当x 1 < x 2 时,都有f ( x 1 )> f ( x 2 ) ,那么就说函数 f ( x ) 在区间 A 上是减少的图像描述自左向右看图像是上升的自左向右看图像是下降的(2) 单调区间的定义如果y = f ( x ) 在区间 A 上是增加的或是减少的,那么称 A 为单调区间.2 . 函数的最值前提函数y = f ( x ) 的定义域为 D条件(1) 对于任意x ∈D ,都有 f ( x ) ≤M ;(2) 存在x 0 ∈ D ,使得 f ( x 0 ) =M (3) 对于任意x ∈D ,都有 f ( x ) ≥ M ;(4) 存在x 0 ∈ D ,使得 f ( x 0 ) =M结论M 为最大值M 为最小值[ 微点提醒]1 . 函数y = f ( x )( f ( x )>0) 在公共定义域内与y =- f ( x ) ,y =的单调性相反.2 . “ 对勾函数” y =x +( a >0) 的单调增区间为( -∞ ,-) ,( ,+∞ ) ;单调减区间是[ -,0) ,(0 ,] .基础自测1 . 判断下列结论正误( 在括号内打“√” 或“×” )(1) 对于函数 f ( x ) ,x ∈ D ,若对任意x 1 ,x 2 ∈ D ,且x 1 ≠ x 2 有( x 1 -x 2 )[ f ( x 1 ) - f ( x 2 )]>0 ,则函数 f ( x ) 在区间 D 上是增函数. ( )(2) 函数y =的单调递减区间是( -∞ ,0) ∪ (0 ,+∞ ) . ( )(3) 对于函数y = f ( x ) ,若 f (1)< f (3) ,则 f ( x ) 为增函数. ( )(4) 函数y = f ( x ) 在[1 ,+∞ ) 上是增函数,则函数的单调递增区间是[1 ,+∞ ) . ( )解析(2) 此单调区间不能用并集符号连接,取x 1 =- 1 ,x 2 = 1 ,则 f ( -1) < f (1) ,故应说成单调递减区间为( -∞ ,0) 和(0 ,+∞ ) .(3) 应对任意的x 1 <x 2 , f ( x 1 ) < f ( x 2 ) 成立才可以.(4) 若 f ( x ) =x , f ( x ) 在[1 ,+∞ ) 上为增函数,但y = f ( x ) 的单调递增区间是R .答案(1) √ (2) × (3) × (4) ×2 . ( 必修1P 37 例 1 改编) 下列函数中,在区间(0 ,+∞ ) 内单调递减的是( )A . y =-xB . y =x 2 -xC . y =ln x -xD . y = e x解析对于 A ,y 1 =在(0 ,+∞ ) 内是减函数,y 2 =x 在(0 ,+∞ ) 内是增函数,则y =-x 在(0 ,+∞ ) 内是减函数;B ,C 选项中的函数在(0 ,+∞ ) 上均不单调;选项D 中,y = e x 在(0 ,+∞ ) 上是增函数.答案 A3 . ( 必修1P3 8 例4 改编) 函数y =在区间[2 ,3] 上的最大值是________ .解析函数y =在[2 ,3] 上是减函数,当x = 2 时,y =取得最大值= 2.答案 24 . (2018·广东省际名校联考) 设函数 f ( x ) 在R 上为增函数,则下列结论一定正确的是( )A . y =在R 上为减函数B . y =| f ( x )| 在R 上为增函数C . y =-在R 上为增函数D . y =- f ( x ) 在R 上为减函数解析如 f ( x ) =x 3 ,则y =的定义域为( -∞ ,0) ∪ (0 ,+∞ ) ,在定义域上无单调性, A 错;则y =| f ( x )| 在R 上无单调性,B 错;则y =-的定义域为( -∞ ,0) ∪ (0 ,+∞ ) ,在定义域上无单调性,C 错.答案 D5 . (2019·西安调研) 若函数 f ( x ) =( m -1) x + b 在R 上是增函数,则 f ( m ) 与 f (1) 的大小关系是( )A . f ( m )> f (1)B . f ( m )< f (1)C . f ( m ) ≥ f (1)D . f ( m ) ≤ f (1)解析因为 f ( x ) =( m -1) x + b 在R 上是增函数,则m -1>0 ,所以m >1 ,所以 f ( m )> f (1) .答案 A6 . (2017·全国Ⅱ卷) 函数 f ( x ) =ln( x 2 - 2 x -8) 的单调递增区间是( )A . ( -∞ ,-2)B . ( -∞ ,1)C . (1 ,+∞ )D . (4 ,+∞ )解析由x 2 - 2 x -8>0 ,得x >4 或x < - 2.设t =x 2 - 2 x -8 ,则y =ln t 为增函数.要求函数 f ( x ) 的单调递增区间,即求函数t =x 2 - 2 x -8 的单调递增区间.∵ 函数t =x 2 - 2 x -8 的单调递增区间为(4 ,+∞ ) ,∴ 函数 f ( x ) 的单调递增区间为(4 ,+∞ ) .答案 D考点一确定函数的单调性( 区间)【例 1 】(1) (2019·东北三省四校质检) 若函数y =log ( x 2 -ax + 3 a ) 在区间(2 ,+∞ ) 上是减函数,则 a 的取值范围为( )A . ( -∞ ,-4) ∪ [2 ,+∞ )B . ( - 4 ,4]C . [ - 4 ,4)D . [ - 4 ,4]解析令t =x 2 -ax + 3 a ,则y =log t ( t >0) ,易知t =x 2 -ax + 3 a 在上单调递减,在上单调递增.∵ y =log ( x 2 -ax + 3 a ) 在区间(2 ,+∞ ) 上是减函数,∴ t =x 2 -ax + 3 a 在(2 ,+∞ ) 上是增函数,且在(2 ,+∞ ) 上t >0 ,∴ 2 ≥ ,且 4 - 2 a + 3 a ≥ 0 ,∴ a ∈ [ - 4 ,4] .答案 D(2) 判断并证明函数 f ( x ) =ax 2 +( 其中1< a <3) 在x ∈ [1 ,2] 上的单调性.解 f ( x ) 在[1 ,2] 上单调递增,证明如下:设 1 ≤ x 1 < x 2 ≤ 2 ,则 f ( x 2 ) - f ( x 1 ) =ax +-ax -=( x 2 -x 1 ) ,由 1 ≤ x 1 < x 2 ≤ 2 ,得x 2 -x 1 >0 ,2< x 1 +x 2 <4 ,1< x 1 x 2 <4 ,-1< -< -.又因为1< a <3 ,所以2< a ( x 1 +x 2 )<12 ,得 a ( x 1 +x 2 ) ->0 ,从而 f ( x 2 ) - f ( x 1 )>0 ,即 f ( x 2 )> f ( x 1 ) ,故当 a ∈ (1 ,3) 时, f ( x ) 在[1 ,2] 上单调递增.规律方法 1.(1) 求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1) . (2) 单调区间不能用集合或不等式表达,且图像不连续的单调区间要用“ 和”“ ,” 连接.2 . (1) 函数单调性的判断方法有:① 定义法;② 图像法;③ 利用已知函数的单调性;④ 导数法.(2) 函数y = f [ g ( x )] 的单调性应根据外层函数y = f ( t ) 和内层函数t =g ( x ) 的单调性判断,遵循“ 同增异减” 的原则.【训练 1 】( 一题多解) 试讨论函数 f ( x ) =( a ≠ 0) 在( -1 ,1) 上的单调性.解法一设-1< x 1 < x 2 <1 ,f ( x ) = a = a ,f ( x 1 ) - f ( x 2 ) = a - a =,由于-1< x 1 < x 2 <1 ,所以x 2 -x 1 >0 ,x 1 -1<0 ,x 2 -1<0 ,故当 a >0 时, f ( x 1 ) - f ( x 2 )>0 ,即 f ( x 1 )> f ( x 2 ) ,函数 f ( x ) 在( - 1 ,1) 上单调递减;当 a <0 时, f ( x 1 ) - f ( x 2 )<0 ,即 f ( x 1 )< f ( x 2 ) ,函数 f ( x ) 在( - 1 ,1) 上单调递增.法二 f ′( x ) ===-.当 a >0 时, f ′( x )<0 ,函数 f ( x ) 在( - 1 ,1) 上单调递减;当 a <0 时, f ′( x )>0 ,函数 f ( x ) 在( - 1 ,1) 上单调递增.考点二求函数的最值【例 2 】(1) 已知函数 f ( x ) = a x +log a x ( a >0 ,且 a ≠ 1) 在[1 ,2] 上的最大值与最小值之和为log a 2 + 6 ,则 a 的值为( )A. B. C . 2 D . 4(2) 已知函数 f ( x ) =则 f [ f ( -3)] =________ , f ( x ) 的最小值是________ .解析(1) f ( x ) = a x +log a x 在[1 ,2] 上是单调函数,所以 f (1) + f (2) =log a 2 + 6 ,则 a +log a 1 + a 2 +log a 2 =log a 2 + 6 ,即( a -2)( a +3) =0 ,又 a >0 ,所以 a = 2.(2) ∵ f ( -3) =lg[( -3) 2 +1] =lg 10 = 1 ,∴ f [ f ( -3)] = f (1) =0 ,当x ≥ 1 时, f ( x ) =x +- 3 ≥ 2 - 3 ,当且仅当x =时,取等号,此时 f ( x ) min = 2 -3<0 ;当x <1 时, f ( x ) =lg( x 2 +1) ≥ lg 1 =0 ,当且仅当x =0 时,取等号,此时 f ( x ) min =0.∴ f ( x ) 的最小值为 2 - 3.答案(1)C (2)0 2 - 3规律方法求函数最值的四种常用方法(1) 单调性法:先确定函数的单调性,再由单调性求最值.(2) 图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3) 基本不等式法:先对解析式变形,使之具备“ 一正二定三相等” 的条件后用基本不等式求出最值.(4) 导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.【训练 2 】(1) (2019·郑州调研) 函数 f ( x ) =-在x ∈ [1 ,4] 上的最大值为M ,最小值为m ,则M -m 的值是( )A. B . 2 C. D.(2) (2018·邵阳质检) 定义max{ a , b , c ,} 为 a , b , c 中的最大值,设M =max{2 x , 2 x - 3 , 6 -x } ,则M 的最小值是( )A . 2B . 3C . 4D . 6解析(1) 易知 f ( x ) =-在[1 ,4] 上是增函数,∴ M = f ( x ) max = f (4) = 2 -=,m = f (1) =0.因此M -m =.(2) 画出函数M ={2 x , 2 x - 3 , 6 -x } 的图像( 如图) ,由图可知,函数M 在 A (2 ,4) 处取得最小值 2 2 = 6 - 2 = 4 ,故M 的最小值为 4.答案(1)A (2)C考点三函数单调性的应用多维探究角度 1 利用单调性比较大小【例 3 - 1 】已知函数 f ( x ) 的图像向左平移 1 个单位后关于y 轴对称,当x 2 > x 1 >1 时,[ f ( x 2 ) - f ( x 1 )]·( x 2 -x 1 )<0 恒成立,设 a= f , b = f (2) , c = f (3) ,则 a , b , c 的大小关系为( )A . c > a > bB . c > b > aC . a > c > bD . b > a > c解析由于函数 f ( x ) 的图像向左平移 1 个单位后得到的图像关于y 轴对称,故函数y = f ( x ) 的图像关于直线x = 1 对称,所以 a = f = f .当x 2 > x 1 >1 时,[ f ( x 2 ) - f ( x 1 )]( x 2 -x 1 )<0 恒成立,等价于函数f ( x ) 在(1 ,+∞ ) 上单调递减,所以 b > a > c .答案 D角度 2 求解函数不等式【例 3 - 2 】(2018·全国Ⅰ卷) 设函数 f ( x ) =则满足f ( x +1)< f (2 x ) 的x 的取值范围是( )A . ( -∞ ,-1]B . (0 ,+∞ )C . ( - 1 ,0)D . ( -∞ ,0)解析当x ≤ 0 时,函数 f ( x ) = 2 -x 是减函数,则 f ( x ) ≥ f (0) = 1. 作出 f ( x ) 的大致图像如图所示,结合图像知,要使 f ( x +1) < f (2x ) ,当且仅当或解得x < - 1 或- 1 ≤ x <0 ,即x <0.答案 D角度 3 求参数的值或取值范围【例 3 - 3 】已知 f ( x ) =满足对任意x 1 ≠ x 2 ,都有>0 成立,那么实数 a 的取值范围是________ .解析对任意x 1 ≠ x 2 ,都有>0 ,所以y = f ( x ) 在( -∞ ,+∞ ) 上是增函数.所以解得≤ a <2.故实数 a 的取值范围是.答案规律方法 1. 利用单调性求参数的取值( 范围) 的思路是:根据其单调性直接构建参数满足的方程( 组)( 不等式( 组)) 或先得到其图像的升降,再结合图像求解. 对于分段函数,要注意衔接点的取值.2 . (1) 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2) 求解函数不等式,其实质是函数单调性的逆用,由条件脱去“ f ” .【训练 3 】(1) 已知奇函数 f ( x ) 在R 上是增函数,若 a =- f ,b = f (log 2 4.1) , c = f (2 0.8 ) ,则 a , b , c 的大小关系为( )A . a < b < cB . b < a < cC . c < b < aD . c < a < b(2) 若函数 f ( x ) =-x 2 + 2 ax 与g ( x ) =在区间[1 ,2] 上都是减函数,则 a 的取值范围是( )A . ( - 1 ,0) ∪ (0 ,1)B . ( - 1 ,0) ∪ (0 ,1]C . (0 ,1)D . (0 ,1]解析(1) 由 f ( x ) 是奇函数,得 a =- f = f (log 2 5) .又log 2 5>log 2 4.1>2>2 0.8 ,且y = f ( x ) 在R 上是增函数,所以 a > b >c .(2) 因为 f ( x ) =-x 2 + 2 ax =-( x - a ) 2 + a 2 在[1 ,2] 上为减函数,所以由其图像得 a ≤ 1 ,g ( x ) =,g ′( x ) =-,要使g ( x ) 在[1 ,2] 上为减函数,需g ′( x )<0 在[1 ,2] 上恒成立,故有- a <0 ,因此 a >0 ,综上可知0< a ≤ 1.答案(1)C (2)D[ 思维升华]1 . 利用定义证明或判断函数单调性的步骤:(1) 取值;(2) 作差;(3) 定号;(4) 判断.2 . 确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图像法,也可利用单调函数的和差确定单调性.3 . 求函数最值的常用求法:单调性法、图像法、换元法、利用基本不等式. 闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,最值一定在端点处取到;开区间上的“ 单峰” 函数一定存在最大值( 最小值) .[ 易错防范]1 . 区分两个概念:“ 函数的单调区间” 和“ 函数在某区间上单调” ,前者指函数具备单调性的“ 最大” 的区间,后者是前者“ 最大” 区间的子集.2 . 函数在两个不同的区间上单调性相同,一般要分开写,用“ ,” 或“ 和” 连接,不要用“ ∪ ” . 例如,函数 f ( x ) 在区间( - 1 ,0) 上是减函数,在(0 ,1) 上是减函数,但在( - 1 ,0) ∪ (0 ,1) 上却不一定是减函数,如函数 f ( x ) =.基础巩固题组( 建议用时:40 分钟)一、选择题1 . 函数 f ( x ) =-x +在上的最大值是( )A. B . - C . - 2 D . 2解析易知 f ( x ) 在上是减函数,∴ f ( x ) max = f ( -2) = 2 -=.答案 A2 . (2019·广州模拟) 下列函数 f ( x ) 中,满足“ 任意x 1 ,x 2 ∈ (0 ,+∞ ) 且x 1 ≠ x 2 ,( x 1 -x 2 )·[ f ( x 1 ) - f ( x 2 )]<0 ” 的是( )A . f ( x ) = 2 xB . f ( x ) =| x -1|C . f ( x ) =-xD . f ( x ) =ln( x +1)解析由( x 1 -x 2 )·[ f ( x 1 ) - f ( x 2 )]<0 可知, f ( x ) 在(0 ,+∞ ) 上是减函数, A , D 选项中, f ( x ) 为增函数; B 中, f ( x ) =| x -1| 在(0 ,+∞ ) 上不单调,对于 f ( x ) =-x ,因为y =与y =-x 在(0 ,+∞ ) 上单调递减,因此 f ( x ) 在(0 ,+∞ ) 上是减函数. 答案 C3 . (2019·萍乡一模) 已知函数 f ( x ) =log a ( -x 2 - 2 x +3)( a >0 且 a ≠ 1) ,若 f (0)<0 ,则此函数的单调递增区间是( )A . ( -∞ ,-1]B . [ - 1 ,+∞ )C . [ - 1 ,1)D . ( - 3 ,-1]解析令g ( x ) =-x 2 - 2 x + 3 ,由题意知g ( x )>0 ,可得-3< x <1 ,故函数的定义域为{ x | -3< x <1} . 根据 f (0) =log a 3<0 ,可得0< a <1 ,又g ( x ) 在定义域( - 3 ,1) 内的减区间是[ - 1 ,1) ,∴ f ( x ) 的单调递增区间为[ - 1 ,1) .答案 C4 . 函数y =,x ∈ ( m ,n ] 的最小值为0 ,则m 的取值范围是( )A . (1 ,2)B . ( - 1 ,2)C . [1 ,2)D . [ - 1 ,2)解析函数y ===- 1 在区间( - 1 ,+∞ ) 上是减函数,且 f (2) =0 ,所以n = 2.根据题意,x ∈ ( m ,n ] 时,y min =0.∴ m 的取值范围是[ - 1 ,2) .答案 D5 . (2019·蚌埠模拟) 已知单调函数 f ( x ) ,对任意的x ∈ R 都有 f [ f ( x ) -2 x ] = 6 ,则 f (2) =( )A . 2B . 4C . 6D . 8解析设t = f ( x ) - 2 x ,则 f ( t ) = 6 ,且 f ( x ) = 2 x +t ,令x =t ,则 f ( t ) = 2 t +t = 6 ,∵ f ( x ) 是单调函数,且 f (2) = 2 2 + 2 = 6 ,∴ t = 2 ,即 f ( x ) = 2 x + 2 ,则 f (2) = 4 + 2 =6.答案 C二、填空题6 . 设函数 f ( x ) =g ( x ) =x 2 f ( x -1) ,则函数g ( x ) 的递减区间是________ .解析由题意知g ( x ) =函数的图像如图所示的实线部分,根据图像,g ( x ) 的递减区间是[0 ,1) .答案[0 ,1)7 . 设函数 f ( x ) =在区间( - 2 ,+∞ ) 上是增函数,那么 a 的取值范围是________ .解析 f ( x ) == a -,∵ 函数 f ( x ) 在区间( - 2 ,+∞ ) 上是增函数,∴ 即即 a ≥ 1.答案[1 ,+∞ )8 . ( 一题多解)(2019·成都诊断) 对于任意实数 a , b ,定义min{ a ,b } =设函数 f ( x ) =-x + 3 ,g ( x ) =log 2 x ,则函数h ( x ) =min{ f ( x ) ,g ( x )} 的最大值是______ .解析法一在同一坐标系中,作函数 f ( x ) ,g ( x ) 图像,依题意,h ( x ) 的图像如图所示的实线部分.易知点 A (2 ,1) 为图像的最高点,因此h ( x ) 的最大值为h (2) = 1.法二依题意,h ( x ) =当0< x ≤ 2 时,h ( x ) =log 2 x 是增函数,当x >2 时,h ( x ) = 3 -x 是减函数,因此h ( x ) 在x = 2 时取得最大值h (2) = 1.答案 1三、解答题9 . 已知函数 f ( x ) =-( a >0 ,x >0) .(1) 求证: f ( x ) 在(0 ,+∞ ) 上是增函数;(2) 若 f ( x ) 在上的值域是,求 a 的值.(1) 证明设x 2 > x 1 >0 ,则x 2 -x 1 >0 ,x 1 x 2 >0 ,∵ f ( x 2 ) - f ( x 1 ) =-=-=>0 ,∴ f ( x 2 )> f ( x 1 ) ,∴ f ( x ) 在(0 ,+∞ ) 上是增函数.(2) 解∵ f ( x ) 在上的值域是,又由(1) 得 f ( x ) 在上是单调增函数,∴ f =, f (2) = 2 ,易得 a =.10 . 函数 f ( x ) =log a (1 -x ) +log a ( x +3)(0< a <1) .(1) 求方程 f ( x ) =0 的解.(2) 若函数 f ( x ) 的最小值为- 1 ,求 a 的值.解(1) 由得-3< x <1.∴ f ( x ) 的定义域为( - 3 ,1) .则 f ( x ) =log a ( -x 2 - 2 x +3) ,x ∈ ( - 3 ,1) ,令 f ( x ) =0 ,得-x 2 - 2 x + 3 = 1 ,解得x =-1± ∈ ( - 3 ,1) .故 f ( x ) =0 的解为x =-1± .(2) 由(1) 得 f ( x ) =log a [ -( x +1) 2 +4] ,x ∈ ( - 3 ,1) ,由于0< -( x +1) 2 + 4 ≤ 4 ,且 a ∈ (0 ,1) ,∴ log a [ -( x +1) 2 +4] ≥ log a 4 ,由题意可得log a 4 =- 1 ,解得 a =,满足条件.所以 a 的值为.能力提升题组( 建议用时:20 分钟)11 . (2017·全国Ⅰ卷) 已知函数 f ( x ) 在( -∞ ,+∞ ) 上单调递减,且为奇函数. 若 f (1) =- 1 ,则满足- 1 ≤ f ( x -2) ≤ 1 的x 的取值范围是( )A . [ - 2 ,2]B . [ - 1 ,1]C . [0 ,4]D . [1 ,3]解析∵ f ( x ) 为奇函数,∴ f ( -x ) =- f ( x ) .∵ f (1) =- 1 ,∴ f ( -1) =- f (1) = 1.故由- 1 ≤ f ( x -2) ≤ 1 ,得 f (1) ≤ f ( x -2) ≤ f (-1) .又 f ( x ) 在( -∞ ,+∞ ) 单调递减,∴ - 1 ≤ x - 2 ≤ 1 ,∴ 1 ≤ x ≤ 3.答案 D12 . 已知函数 f ( x ) =x 2 - 2 ax + a 在区间( -∞ ,1) 上有最小值,则函数g ( x ) =在区间(1 ,+∞ ) 上一定( )A . 有最小值B . 有最大值C . 是减函数D . 是增函数解析因为函数 f ( x ) =x 2 - 2 ax + a =( x - a ) 2 + a - a 2 在区间( -∞ ,1) 上有最小值,所以函数 f ( x ) 的对称轴x = a 应当位于区间( -∞ ,1) 内,即 a <1 ,又g ( x ) ==x +- 2 a ,当 a <0 时,g ( x ) =x +- 2 a 在区间(1 ,+∞ ) 上为增函数,此时,g ( x ) min > g (1) = 1 - a >0 ;当 a =0 时,g ( x ) =x 在区间(1 ,+∞ ) 上为增函数,此时,g ( x ) min > g (1) = 1 :当0< a <1 时,g ( x ) =x +- 2 a ,g ′( x ) = 1 ->1 -a >0 ,此时g ( x ) min > g (1) = 1 - a ;综上,g ( x ) 在区间(1 ,+∞ ) 上单调递增.答案 D13 . 已知 f ( x ) =不等式 f ( x + a )> f (2 a -x ) 在[ a , a +1] 上恒成立,则实数 a 的取值范围是________ .解析二次函数y 1 =x 2 - 4 x + 3 的对称轴是x = 2 ,所以该函数在( -∞ ,0] 上单调递减,所以x 2 - 4 x + 3 ≥ 3 ,同样可知函数y 2 =-x 2 - 2 x + 3 在(0 ,+∞ ) 上单调递减,所以-x 2 - 2 x +3<3 ,所以 f ( x ) 在R 上单调递减,所以由 f ( x + a )> f (2 a -x ) 得到x + a <2 a -x ,即 2 x < a 在[ a , a +1] 上恒成立,所以2( a +1)< a , a < - 2 ,所以实数 a 的取值范围是( -∞ ,-2) .答案( -∞ ,-2)14 . 已知函数 f ( x ) = a -.(1) 求 f (0) ;(2) 探究 f ( x ) 的单调性,并证明你的结论;(3) 若 f ( x ) 为奇函数,求满足 f ( ax )< f (2) 的x 的范围.解(1) f (0) = a -= a - 1.(2) f ( x ) 在R 上单调递增. 证明如下:∵ f ( x ) 的定义域为R ,∴ 任取x 1 ,x 2 ∈ R 且x 1 < x 2 ,则 f ( x 1 ) - f ( x 2 ) = a -- a +=,∵ y = 2 x 在R 上单调递增且x 1 < x 2 ,∴ 0<2 x 1 <2 x 2 ,∴ 2 x 1 - 2 x 2 <0 , 2 x 1 +1>0 , 2 x 2 +1>0.∴ f ( x 1 ) - f ( x 2 )<0 ,即 f ( x 1 )< f ( x 2 ) .∴ f ( x ) 在R 上单调递增.(3) ∵ f ( x ) 是奇函数,∴ f ( -x ) =- f ( x ) ,即 a -=- a +,解得 a =1( 或用 f (0) =0 去解) .∴ f ( ax )< f (2) 即为 f ( x )< f (2) ,又∵ f ( x ) 在R 上单调递增,∴ x <2.∴ x 的取值范围是( -∞ ,2) .。
解析几何历年高考真题试卷--带详细答案

解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。
历年高考理科数学真题汇编+答案解析(6):解析几何(2017-2020年)

y2 b2
1(a 0,b
0) 的右焦点,O 为坐标原点,以 OF
为
直径的圆与圆 x2 y2 a2 交于 P,Q 两点.若 PQ OF ,则 C 的离心率为(
)
A. 2
B. 3
C.2
D. 5
【解析】如图 A11 所示. ∵OF 为直径, PQ OF ,∴PQ 也是直径.,即点 P、Q 的坐标为 ( c , c ) . 22
9.(2019 全国 I 卷理 10)已知椭圆 C 的焦点为 F1( 1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两点.若
| AF2 | 2 | F2B | , | AB || BF1 | ,则 C 的方程为
A. x2 y2 1 2
B. x2 y2 1 32
C. x2 y2 1 43
3 2
,∴ SPOF
1 2
| OF
||
y0
|
1 2
6
33
2
.
24
若点 P 在 C 的渐近线 y
2 2
x
上,同理可得
x0
6 2
,
y0
6 ( 2
2) 2
3, 2
∴ SPOF
1 2
| OF
||
y0
|
1 2
6
33
2
.
24
综上所述, SPOF
32 4
.
-9-
【答案】A
【考点】选修 2-1 双曲线
14.(2019
12,到 y 轴的距离为 9,则 p
A.2
B.3
C.6
D.9
【解析】设 A 点的坐标为(m,n),∵点 A 到 C 的焦点的距离为 12,∴m=9,
2020高考数学总复习:解析几何

222高考数学总复习第六讲:解析几何高考解析几何试题一般共有 4 题(2 个选择题, 1 个填空题, 1 个解答题), 共计 30 分左右, 考查的知识点约为 20 个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥 曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线 中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查 直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这 点值得考生在复课时强化. 一、圆锥曲线的几类基本习题一. 弦的中点问题具有斜率的弦中点问题,一般设曲线上两点为 ( x , y ) , ( x , y ) ,1122代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
例1 给定双曲线 x 2 - y 2 = 1 。
过 A (2,1)的直线与双曲线交于2两点 P 及 P ,求线段 P P 的中点 P 的轨迹方程。
1 212分析:设 P ( x , y ) , P ( x , y ) 代入方程得 x 2 - y 12 = 1 , x 2 - y 2 = 1 。
1 1122212两式相减得( x + x )( x - x ) - 1 ( y + y )( y - y ) = 0 。
1 2 1 2 1 2 1 2又设中点 P (x,y ),将 x + x = 2 x , y + y = 2 y 代入,当 x ≠ x 时121212得程。
因此所求轨迹方程是 8( x - 1) 2 - 1 2 a 2 b 22 x - 2 y · y 1 - y 2 = 0 。
2 x - x1 2又 k = y 1 - y 2 = y - 1 ,x - xx - 212代入得 2 x 2 - y 2 - 4 x + y = 0 。
当弦 P P 斜率不存在时,其中点 P (2,0)的坐标也满足上述方1 214( y - ) 2 2 = 1 。
2020高考数学核心突破《专题6 解析几何第3讲 圆锥曲线的综合问题》

专题六 第3讲1.(教材回归)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( A )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)解析 由题知F (c,0),A (a,0),不妨令B 点在第一象限, 则B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b 2a ,k AB =b 2a (c -a ), ∵CD ⊥AB ,∴k CD =a (a -c )b 2,∴直线CD 的方程为y +b 2a =a (a -c )b 2(x -c ).由双曲线的对称性,知点D 在x 轴上,得x D =b 4a 2(a -c )+c ,点D 到直线BC 的距离为c -x D ,∴b 4a 2(c -a )<a +a 2+b 2=a +c ,b 4<a 2(c -a )·(c +a )=a 2·b 2,b 2<a 2,⎝⎛⎭⎫b a 2<1.又该双曲线的渐近线的斜率为b a 或-ba ,∴双曲线渐近线斜率的取值范围是(-1,0)∪(0,1).故选A.2.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( D )A .52 B.46+ 2 C .7+ 2D .6 2解析 设Q (10cos θ,sin θ),圆心为M .由已知得M (0,6),则|MQ |=(10cos θ-0)2+(sin θ-6)2=10cos 2θ+sin 2θ-12sin θ+36 =-9sin 2 θ-12sin θ+46 =-9⎝⎛⎭⎫sin θ+232+50≤5 2 ⎝⎛⎭⎫当sin θ=-23时取等号, 因为|PQ |≤|PM |+|MQ |=2+|MQ |, 故|PQ |max =52+2=6 2.3.(2017·重庆二模)设F 为抛物线C :y 2=2px (p >0)的焦点,过点F 且倾斜角为60°的直线交曲线C 于A ,B 两点(点B 在第一象限,点A 在第四象限),O 为坐标原点,过A 作C 的准线的垂线,垂足为M ,则|OB |与|OM |的比值为( C )A. 3 B .2 C .3D .4解析 依题意知F ⎝⎛⎭⎫p 2,0,准线x =-p 2,设直线AB :y =3⎝⎛⎭⎫x -p 2,联立⎩⎪⎨⎪⎧y =3⎝⎛⎭⎫x -p 2,y 2=2px ,得3y 2-2py -3p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1=-p 3,y 2=3p ,∴x 2=32p .∴M ⎝⎛⎭⎫-p 2,-33p ,B ⎝⎛⎭⎫32p ,3p , ∴|OM |=216p ,|OB |=212p ,即|OB |=3|OM |.故选C. 4.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( B )A .2B .3 C.1728D.10解析 依题意不妨设A (x 1,x 1),B (x 2,-x 2),则OA →·OB →=2⇒x 1x 2-x 1x 2=2⇒x 1x 2=2或x 1x 1=-1(舍去).当x 1=x 2时,有x 1=x 2=2,则S △ABO +S △AFO =22+28=1728;当x 1≠x 2时,直线AB 的方程为y -x 1=x 1+x 2x 1-x 2(x -x 1),则直线AB 与x 轴的交点坐标为(2,0).则S △ABO +S△AFO =12×2(x 1+x 2)+12×14x 1=98x 1+x 2≥298x 1x 2=3⎝⎛⎭⎫当且仅当98x 1=x 2时取“=”,而1728>3,故选B.5.(书中淘金)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( A )A.433B.233 C .3D .2解析 不妨设P 在第一象限,|PF 1|=m ,|PF 2|=n .在△PF 1F 2中,由余弦定理得m 2+n 2-mn =4c 2.设椭圆的长轴长为2a 1,离心率为e 1,双曲线的实轴长为2a 2,离心率为e 2,它们的焦距为2c ,则1e 1+1e 2=a 1+a 2c =m +n 2+m -n2c =mc. ∴⎝⎛⎭⎫1e 1+1e 22=m 2c 2=4m 2m 2+n 2-mn =4⎝⎛⎭⎫n m 2-n m +1,易知⎝⎛⎭⎫n m 2-n m +1的最小值为34,故⎝⎛⎭⎫1e 1+1e 2max =433. 6.(2017·河南郑州二模)过双曲线x 2-y 28=1的右支上一点P 分别向圆C 1:(x +3)2+y 2=4和圆C 2:(x -3)2+y 2=1作切线,切点分别为A ,B ,则|P A |2-|PB |2的最小值为__9__.解析 由题意知双曲线的焦点为C 1(-3,0),C 2(3,0),如图.连接AC 1,PC 1,BC 2,PC 2,根据切线性质得,|P A |2=|PC 1|2-4, |PB |2=|PC 2|2-1. 又|PC 1|-|PC 2|=2, 则|P A |2-|PB |2=(|PC 1|2-4)-(|PC 1|2-1)=|PC 21|-|PC 22|-3=(|PC 1|+|PC 2|)(|PC 1|-|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=2×6-3=9,当且仅当点P 为双曲线的右顶点时,等号成立.7.(母题营养)已知抛物线E :x 2=2py (p >0),直线y =kx +2与E 交于A ,B 两点,且OA →·OB →=2,其中O 为原点.(1)求抛物线E 的方程;(2)点C 坐标为(0,-2),记直线CA ,CB 的斜率分别为k 1,k 2,证明:k 21+k 22-2k 2为定值.解析 (1)将y =kx +2代入x 2=2py , 得x 2-2pkx -4p =0,其中Δ=4p 2k 2+16p >0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2pk ,x 1x 2=-4p .OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 212p ·x 222p=-4p +4.由已知,-4p +4=2,p =12,所以抛物线E 的方程为x 2=y .(2)证明:由(1)知,x 1+x 2=k ,x 1x 2=-2. k 1=y 1+2x 1=x 21+2x 1=x 21-x 1x 2x 1=x 1-x 2,同理k 2=x 2-x 1,所以k 21+k 22-2k 2=2(x 1-x 2)2-2(x 1+x 2)2=-8x 1x 2=16,即k 21+k 22-2k 2为定值.8.(教材回归)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解析 (1)由题意知m ≠0,可设直线AB 的方程为 y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0.①将AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 9.(书中淘金)已知抛物线x 2=2py (p >0),F 为其焦点,过点F 的直线l 交抛物线于A ,B 两点,过点B 作x 轴的垂线,交直线OA 于点C ,如图所示.(1)求点C 的轨迹M 的方程;(2)直线m 是抛物线的不与x 轴重合的切线,切点为P ,M 与直线m 交于点Q ,求证:以线段PQ 为直径的圆过点F .解析 (1)依题意可知,直线l 的斜率k 存在, 设其方程为y =kx +p2.设点A (x 1,y 1),B (x 2,y 2),动点C (x ,y ). 由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2,得x 2-2pkx -p 2=0,∴x 1x 2=-p 2. ∵l OA :y =y 1x 1x =x 12p x ,l BC :x =x 2,∴由⎩⎪⎨⎪⎧y =x 12p x ,x =x 2,得y =x 12p x 2=-p2,即点C 的轨迹M 的方程为y =-p 2.(2)证明:设直线m 的方程为y =k 1x +b .由⎩⎪⎨⎪⎧x 2=2py ,y =k 1x +b ,得x 2-2pk 1x -2pb =0,Δ=4p 2k 21+8pb .∵直线m 与抛物线C 相切,∴Δ=0,∴pk 21+2b =0,∴切点P 为(pk 1,-b ).又由⎩⎪⎨⎪⎧y =k 1x +b ,y =-p 2,得Q ⎝ ⎛⎭⎪⎫-p +2b 2k 1,-p 2.∵FP →·FQ →=⎝⎛⎭⎫pk 1,-b -p 2·⎝ ⎛⎭⎪⎫-p +2b 2k 1,-p =-p 2(p +2b )+pb +p 22=0,∴FP ⊥FQ ,∴以PQ 为直径的圆过点F .10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),右顶点为A ,且|AF |=1.(1)求椭圆C 的标准方程;(2)若动直线l :y =kx +m 与椭圆C 有且只有一个交点P ,且与直线x =4交于点Q ,问:是否存在一个定点M (t,0),使得MP →·MQ →=0.若存在,求出点M 的坐标;若不存在,请说明理由.解析 (1)由c =1,a -c =1,得a =2,所以b =3,故椭圆C 的标准方程为x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,得(3+4k 2)x 2+8kmx +4m 2-12=0, 所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0, 即m 2=3+4k 2. 设P (x P ,y P ),则x P =-4km 3+4k 2=-4km ,y P =kx P +m =-4k 2m +m =3m ,即P ⎝⎛⎭⎫-4k m ,3m . 因为M (t,0),Q (4,4k +m ),所以MP →=⎝⎛⎭⎫-4k m -t ,3m ,MQ →=(4-t,4k +m ). 所以MP →·MQ →=⎝⎛⎭⎫-4k m -t ·(4-t )+3m ·(4k +m )=t 2-4t +3+4km (t -1)=0恒成立,故⎩⎪⎨⎪⎧t =1,t 2-4t +3=0,即t=1.所以存在点M(1,0)符合题意.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六解析几何题型一直线方程及位置关系1.(1)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)在△ABC 中,A (1,1),B (m ,m )(1<m <4),C (4,2),则当△ABC 的面积最大时,m =( B ) A.32 B.94 C.12D.14突破点拨(1)利用直线平行的判断方法.(2)先求AC 的值,再利用点到直线的距离公式求出点B 到AC 的距离,最后表示出面积. 解析 (1)直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧-a 3=-1a -2,1a -2≠1,解得a =-1.故选C.(2)由两点间的距离公式可得|AC |=10,直线AC 的方程为x -3y +2=0. 所以点B 到直线AC 的距离d =|m -3m +2|10,所以△ABC 的面积S =12|AC |d =12|m -3m +2|=12⎪⎪⎪⎪⎝⎛⎭⎫m -322-14. 又1<m <4.所以1<m <2,所以当m =32,即m =94时,S 取得最大值.故选B.2.(1)(2017·湖南长沙模拟)在平面内,点A ,B ,C 分别在直线l 1,l 2,l 3上,且l 1∥l 2∥l 3(l 2在l 1与l 3之间),l 1与l 2之间的距离为a ,l 2与l 3之间的距离为b ,若AB →2=AB →·AC →,则△ABC 的面积的最小值为( B )A.a +b 2B .abC .2abD.a 2+b 22(2)(2017·湖北荆州调考)若点P (1,1)为圆C :x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为__2x -y -1=0__.突破点拨(1)由AB →2=AB →·AC →⇒AB →⊥BC →.(2)由圆心C (3,0)知k PC =-12,且MN ⊥PC .解析 (1)以直线l 2为x 轴,点B 为坐标原点建立平面直角坐标系,则l 1:y =a ,l 3:y =-b .由AB →2=AB →·AC →,得AB →·CB →=0,即AB ⊥BC .设直线AB 的斜率为k ,则AB :y =kx ,得A ⎝⎛⎭⎫a k ,a ,直线BC :y =-1k x ,得C (kb ,-b ),所以S △ABC =12⎝⎛⎭⎫a k 2+a 2·(kb )2+(-b )2 =122a 2b 2+a 2b 2k 2+k 2a 2b 2≥122a 2b 2+2a 2b 2=ab , 当且仅当k =±1时等号成立.(2)圆心C 的坐标为(3,0),直线PC 的斜率为-12,故直线MN 的斜率为2,所以直线MN的方程为y -1=2(x -1),即2x -y -1=0.(1)确定直线的几何要素是直线上的一点和直线的方向,刻画直线方向的要素是其倾斜角,当倾斜角不等于90°时可以使用斜率表示直线的方向.解题时要善于分析确定直线的几何要素,写出正确的直线方程.(2)讨论两直线的位置关系时,要注意两直线斜率是否存在.题型二 圆的方程及性质1.(1)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( C ) A .26 B .8 C .46D .10(2)已知AC ,BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),则四边形ABCD 的面积的最大值为( A )A .5B .10C .15D .20突破点拨(1)由已知三点,求出圆的方程,然后求出M ,N 的坐标,进而求出|MN |. (2)借助平面几何的相关知识辅助求解. 解析 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.所以圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26, 所以M (0,-2+26),N (0,-2-26) 或M (0,-2-26),N (0,-2+26), 所以|MN |=4 6.故选C.(2)由题意知圆心为O (0,0),半径为2.设圆心O 到AC ,BD 的距离分别为d 1,d 2,作OE⊥AC ,OF ⊥BD ,垂足分别为E ,F ,则四边形OEMF 为矩形,连OM ,则有d 21+d 22=OM2=3.由平面几何知识知|AC |=24-d 21,|BD |=24-d 22,∴S 四边形ABCD =12|AC |·|BD |=24-d 21·4-d 22≤(4-d 21)+(4-d 22)=8-(d 21+d 22)=5, 即四边形ABCD 的面积的最大值为5.故选A.2.(1)已知抛物线C 1:x 2=2y 的焦点为F ,以F 为圆心的圆C 2交C 1于A ,B 两点,交C 1的准线于C ,D 两点,若四边形ABCD 是矩形,则圆C 2的标准方程为( A )A .x 2+⎝⎛⎭⎫y -122=4 B.⎝⎛⎭⎫x -122+y 2=4 C .x 2+⎝⎛⎭⎫y -122=2 D.⎝⎛⎭⎫x -122+y 2=2 (2)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__(x -1)2+y 2=2__.突破点拨(1)利用已知条件和圆的性质求出圆心和半径即可. (2)先确定直线过的定点,再求圆的标准方程.解析 (1)由题设知抛物线的焦点为F ⎝⎛⎭⎫0,12,所以圆C 2的圆心坐标为⎝⎛⎭⎫0,12.因为四边形ABCD 是矩形,所以BD 为直径,AC 为直径,又F ⎝⎛⎭⎫0,12为圆C 2的圆心,所以点F 为该矩形的两条对角线的交点,所以点F 到直线CD 的距离与点F 到直线AB 的距离相等.又直线CD 的方程为y =-12,点F 到直线CD 的距离为1,所以直线AB 的方程为y =32,可取A ⎝⎛⎭⎫-3,32,所以圆C 2的半径r =|AF |=(-3-0)2+⎝⎛⎭⎫32-122=2,所以圆C 2的标准方程为x 2+⎝⎛⎭⎫y -122=4,故选A. (2)直线mx -y -2m -1=0经过定点(2,-1).当圆与直线相切于点(2,-1)时,圆的半径最大,此时半径r 满足r 2=(1-2)2+(0+1)2=2.故所求方程为(x -1)2+y 2=2.圆的性质在求圆的方程中的应用(1)圆心在圆的任一条弦的垂直平分线上.(2)圆上异于某直径端点的点与该直径的两端点连线垂直.(3)已知某圆与某直线相切,则过切点且垂直于该切线的直线必过该圆的圆心.题型三 直线与圆的位置关系1.(1)(2017·哈尔滨一模)过直线kx +y +3=0上一点P 作圆x 2+y 2-2y =0的切线,切点为Q .若|PQ |=3,则实数k(2)(2017·江西重点学校模拟)已知圆C :x 2+y 2+8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的取值范围为⎣⎡⎦⎤-43,0 . 突破点拨(1)考虑圆心到直线的距离的最大值.(2)利用数形结合,把问题转化为圆心C 到直线l 的距离小于或等于两个圆的半径之和问题.解析 (1)圆C :x 2+y 2-2y =0的圆心为(0,1),半径是r =1.根据题意,PQ 是圆C :x 2+y 2-2y =0的一条切线,Q 是切点,|PQ |=3,则|PC |=2.当PC 与直线kx +y +3=0垂直时,圆心到直线的距离最大.由点到直线的距离公式得|4|k 2+1≤2,解得k ∈(-∞,-3]∪[3,+∞).(2)将圆C 的方程化为标准形式为(x +4)2+y 2=1,其圆心为(-4,0),半径r =1.因为直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,所以圆心(-4,0)到直线y =kx -2的距离d ≤r +1,即d =|-4k -2|k 2+1≤2,整理可得3k 2+4k ≤0,解得-43≤k ≤0,故实数k 的取值范围为⎣⎡⎦⎤-43,0.2.(1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( C )A .2B .42C .6D .210(2)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( A )A .150°B .135°C .120°D .105°突破点拨(1)先利用圆心在直线l 上,求得a 的值,再利用线段AB ,BC ,AC 构成的直角三角形求解.(2)方法一:设出直线l 的方程,表示出S △AOB ,再利用均值不等式求解.方法二:先利用sin ∠AOB 表示出S △AOB ,然后求出当S △AOB 取得最大值时|OC |的值,进而求出直线l 的倾斜角.解析 (1)圆C 的标准方程为(x -2)2+(y -1)2=22,圆心为C (2,1),半径r =2,由直线l 是圆C 的对称轴,知直线l 过点C ,所以2+a ×1-1=0,a =-1,所以A (-4,-1),于是|AC |2=40,所以|AB |=|AC |2-22=40-4=6.故选C.(2)由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,如图所示.方法一 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB =12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A. 方法二 S △AOB =12|OA |·|OB |·sin ∠AOB =sin ∠AOB ,当∠AOB =90°时,S △AOB 取最大值.此时,|OC |=1,则∠OPC =30°,得直线l 的倾斜角为150°.圆的综合应用(1)求点C 的轨迹E 的方程;(2)当AC 不在y 轴上时,设直线AC 与曲线E 交于另一点P ,该曲线在点P 处的切线与直线BC 交于Q 点.求证:△PQC 恒为直角三角形.思维导航(1)由圆的几何性质知BA ⊥BC ,通过设点列式可求E 的方程.(2)只需证明PQ ⊥QC .可用判别式方法或导数方法求出E 在点P 处的切线的斜率,再求解.规范解答(1)设C 点的坐标为(x ,y ),则B 点的坐标为⎝⎛⎭⎫x2,0.因为AC 是直径,所以BA ⊥BC ,或C ,B 均在坐标原点. 因此BA →·BC →=0,而BA →=⎝⎛⎭⎫-x 2,2,BC →=⎝⎛⎭⎫x 2,y , 故有-x 24+2y =0,即x 2=8y .另一方面,设C ⎝⎛⎭⎫x 0,x 28是曲线x 2=8y 上一点, 则有|AC |=x 20+⎝⎛⎭⎫x 208-22=x 20+168,AC 中点的纵坐标为2+x 2082=x 20+1616,故以AC 为直径的圆与x 轴相切. 综上可知,C 点轨迹E 的方程为x 2=8y . (2)设直线AC 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 2=8y得x 2-8kx -16=0. 设C (x 1,y 1),P (x 2,y 2),则有x 1x 2=-16. 由y =x 28对x 求导得y ′=x 4,从而曲线E 在点P 处的切线斜率k 2=x 24,直线BC 的斜率k 1=x 218x 1-x 12=x 14,于是k 1k 2=x 1x 216=-1616=-1,因此QC ⊥PQ .所以△PQC 恒为直角三角形.【变式考法】 已知圆O :x 2+y 2=25,圆O 1的圆心为O 1(m,0)(m ≠0),且与圆O 交于点P (3,4),过点P 且斜率为k (k ≠0)的直线l 分别交圆O ,O 1于点A ,B .(1)若k =1,且|BP |=72,求圆O 1的方程;(2)过点P 作垂直于直线l 的直线l 1分别交圆O ,O 1于点C ,D .当m 为常数时,试判断|AB |2+|CD |2是否为定值?若是定值,求出这个值;若不是定值,请说明理由.解析 (1)当k =1时,直线l :y -4=x -3,即x -y +1=0, 由题意得⎝ ⎛⎭⎪⎫|m +1|22+⎝⎛⎭⎫7222=(m -3)2+42, 整理得m 2-14m =0,解得m =14或m =0(舍去), 所以圆O 1的方程为(x -14)2+y 2=137. (2)设A (x 1,y 1),B (x 2,y 2).直线l :y -4=k (x -3),即y =kx -(3k -4),由⎩⎪⎨⎪⎧y =kx -(3k -4),x 2+y 2=25,消去y 得 (k 2+1)x 2+(8k -6k 2)x +9k 2-24k -9=0, 由一元二次方程根与系数的关系,得 3·x 1=9k 2-24k -9k 2+1,所以x 1=3k 2-8k -3k 2+1.由⎩⎪⎨⎪⎧y =kx -(3k -4),(x -m )2+y 2=(m -3)2+42,消去y 得, (k 2+1)x 2+(8k -6k 2-2m )x +9k 2-24k -9+6m =0, 由一元二次方程根与系数的关系,得3·x 2=9k 2-24k -9+6m k 2+1,所以x 2=3k 2-8k -3+2m k 2+1,所以x 1-x 2=3k 2-8k -3k 2+1-3k 2-8k -3+2m k 2+1=-2mk 2+1.|AB |2=(x 1-x 2)2+(y 1-y 2)2=(k 2+1)(x 1-x 2)2 =(k 2+1)·⎝ ⎛⎭⎪⎫-2m k 2+12=4m 2k 2+1. 同理可得,|CD |2=4m 2⎝⎛⎭⎫-1k 2+1=4m 2k 2k 2+1,所以|AB |2+|CD |2=4m 2k 2+1+4m 2k 2k 2+1=4m 2为定值.1.定义点P (x 0,y 0)到直线l :ax +by +c =0(a 2+b 2≠0)的有向距离为d =ax 0+by 0+ca 2+b 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2,则以下命题中正确的是( D )A .若d 1-d 2=0,则直线P 1P 2与直线l 平行B .若d 1+d 2=0,则直线P 1P 2与直线l 平行C .若d 1+d 2=0,则直线P 1P 2与直线l 垂直D .若d 1·d 2<0,则直线P 1P 2与直线l 相交解析 当d 1=d 2=0时,可排除A 项,B 项,C 项,若d 1·d 2<0,则点P 1,P 2在直线l 的两侧,所以直线P 1P 2与直线l 相交.故选D.2.(高考改编)已知直线l 的倾斜角为34π,直线l 1经过点A (3,2),B (a ,-1),且l 1与l垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( B )A .-4B .-2C .0D .2解析 由题意知l 的斜率为-1,则l 1的斜率为1, 即k AB =2-(-1)3-a=1,a =0.由l 1∥l 2,得-2b =1,b =-2,所以a +b =-2,故选B.3.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为( A )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析 圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,结合题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2⇒a <-2,故选A.4.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( B )A .7B .6C .5D .4解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m .因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.故选B.5.(2017·河南洛阳一模)已知{(x ,y )|(m +3)x +y =3m -4}∩{(x ,y )|7x +(5-m )y -8=0}=∅,则直线(m +3)x +y =3m +4与坐标轴围成的三角形面积是( B )A .1B .2C .3D .4解析 由于{(x ,y )|(m +3)x +y =3m -4}∩{(x ,y )|7x +(5-m )y -8=0}=∅,故直线(m +3)x +y =3m -4与直线7x +(5-m )y -8=0平行,则有7×1=(5-m )·(m +3)且7×(3m -4)≠8×(m +3).由7×1=(5-m )·(m +3)整理得m 2-2m -8=0,解得m =-2或m =4.由7×(3m -4)≠8×(m +3),得m ≠4,所以m =-2,故直线(m +3)x +y =3m +4的方程为x +y =-2,交x 轴于点(-2,0),交y 轴于点(0,-2),故直线(m +3)x +y =3m +4与坐标轴围成的三角形面积是12×2×2=2,故选B.6.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__x 2+(y -1)2=1__.解析 根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为2555. 解析 易知圆心为(2,-1),r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=35,∴弦长为2r 2-d 2=24-95=2555. 8.(教材回归)如果直线l 将圆C :(x -2)2+(y +3)2=13平分,那么坐标原点O 到直线l 的最大距离为13 .解析 由题意,知直线l 过圆心C (2,-3),当直线OC ⊥l 时,坐标原点到直线l 的距离最大,且最大距离为|OC |.|OC |=22+(-3)2=13.9.如图,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为 (x -1)2+(y -2)2=2 .(2)过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点.下列三个结论: ①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |=2 2. 其中正确结论的序号是__①②③__(写出所有正确结论的序号). 解析 (1)设圆心C (a ,b ),半径为r ,∵圆C 与x 轴相切于点T (1,0),∴a =1,r =|b |,又∵圆C 与y 轴正半轴交于两点,∴b >0,则b =r . ∵|AB |=2,∴2=2r 2-1,∴r =2, 故圆C 的标准方程为(x -1)2+(y -2)2=2. (2)设N (x ,y ),而A (0,2-1),B (0,2+1), 则|NB |2|NA |2=x 2+(y -2-1)2x 2+(y -2+1)2=x 2+y 2-2(2+1)y +3+22x 2+y 2-2(2-1)y +3-22, 又x 2+y 2=1,∴|NB |2|NA |2=4+22-2(2+1)y4-22-2(2-1)y =2+12-1·22-2y 22-2y =(2+1)2, ∴|NB ||NA |=2+1,同理|MB ||MA |=2+1. ∴|NA ||NB |=|MA ||MB |,且|NB ||NA |-|MA ||MB |=2+1-12+1=2, |NB ||NA |+|MA ||MB |=2+1+12+1=2+1+2-1=22, 故正确结论的序号是①②③.10.(2017·河南郑州一模)已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解析 (1)由题意,得|MP ||MQ |=5,即(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,以5为半径的圆.(2)当直线的斜率不存在时,l :x =-2, 此时所截得的线段长度为2×52-32=8. 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心到l 的距离d =|3k +2|k 2+1.由题意,得⎝⎛⎭⎪⎫|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.1.(2017·四川绵阳质检)设不同直线l 1:2x -my -1=0,l 2:(m -1)x -y +1=0,则“m =2”是“l 1∥l 2”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l 1∥l 2时,显然m ≠0,从而有2m =m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立.故选C.2.若过点A (0,-1)的直线l 与圆x 2+(y -3)2=4的圆心的距离记为d ,则d 的取值范围为( A )A .[0,4]B .[0,3]C .[0,2]D .[0,1]解析 设圆心为B (0,3),圆心B 到直线l 的距离d 的最大值为|AB |=4,最小值为0(此时直线l 过圆心),故选A.3.(2017·山东青岛模拟)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( D )A .[1-3,1+3]B .(-∞,1-3)∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞)解析 ∵直线与圆相切,∴圆心到直线的距离d =r , 即d =|m +1+n +1-2|(m +1)2+(n +1)2=1,整理得m +n +1=mn .又m ,n ∈R ,有mn ≤(m +n )24,∴m +n +1≤(m +n )24,即(m +n )2-4(m +n )-4≥0,解得m +n ≤2-22或m +n ≥2+22,故选D.4.过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( A )A.3 B .2 C.2D .4解析 如图所示,∵P A ,PB 分别为圆O :x 2+y 2=1的切线,∴OA ⊥AP ,|AB |=2|AC |. ∵P (1,3),O (0,0),∴|OP |=1+3=2.又∵|OA |=1,∴∠AOP =60°,∴|AB |=2|AC |=2|AO |·sin ∠AOP =3,故选A.5.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( C ) A .26 B .8 C .46D .10解析 设圆心为P (a ,b ),由点A (1,3),C (1,-7)在圆上,知b =3-72=-2.再由|P A |=|PB |,得a =1,则P (1,-2),|P A |=(1-1)2+(3+2)2=5,于是圆P 的方程为(x -1)2+(y +2)2=25.令x =0,得y =-2±26,则|MN |=|(-2+26)-(-2-26)|=4 6.6.(2017·陕西西安调研)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( A )A.22,12B.2,22C.2,12D.24,14解析 因为a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0,x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c ,因为0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A. 7.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( D )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析 当直线AB 的斜率不存在,且0<r <5时,有两条满足题意的直线l .当直线AB 的斜率存在时,由抛物线与圆的对称性知,k AB >0和k AB <0时各有一条满足题意的直线l .设圆的圆心为C (5,0),A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22,∴k AB =y 2-y 1x 2-x 1=y 2-y 1y 224-y 214=2y 0. ∵k CM =y 0x 0-5,且k AB k CM =-1,∴x 0=3.∴r 2=(3-5)2+y 20>4(∵y 0≠0),即r >2.另一方面,由AB 的中点为M 知B (6-x 1,2y 0-y 1), ∵点B ,A 在抛物线上, ∴(2y 0-y 1)2=4(6-x 1),① y 21=4x 1,②由①和②,得y 21-2y 0y 1+2y 20-12=0. ∵Δ=4y 20-4(2y 20-12)>0,∴y 20<12.∴r 2=(3-5)2+y 20=4+y 20=4+y 20<16,∴r <4.综上,r ∈(2,4),故选D.8.(2017·湖南七校一模)已知圆C 的方程为(x -1)2+y 2=1,P 是椭圆x 24+y 23=1上的一点,过P 作圆的两条切线,切点为A ,B ,则P A →·PB →的取值范围为( C )A.⎣⎡⎭⎫32,+∞ B .[22-3,+∞) C.⎣⎡⎦⎤22-3,569 D.⎣⎡⎦⎤32,569解析 如图,设P A 与PB 的夹角为2α,则0<α<π2,|P A |=|PB |=1tan α,所以P A →·PB →=|P A |·|PB |cos 2α=1tan 2α·cos 2α=cos 2αsin 2α·cos 2α=cos 2α(1+cos 2α)1-cos 2α=(cos 2α-1)+(cos 22α-1)+21-cos 2α=-1-(cos 2α+1)+21-cos 2α=-3+(1-cos 2α)+21-cos 2α,令t =1-cos 2α,则设f (t )=P A →·PB →=t +2t -3.由图易知,点P 在椭圆左顶点时,α取得最小值,此时sin α=13,而点P 接近椭圆右顶点时,α→π2,所以sin α∈⎣⎡⎭⎫13,1,所以t =1-cos 2α=2sin 2α ∈⎣⎡⎭⎫29,2.易知f (t )在⎣⎡⎭⎫29,2上单调递减,在(2,2)上单调递增,则f (t )min =f (2)=22-3,而f ⎝⎛⎭⎫29=569,f (2)=0,所以f (t )max =f ⎝⎛⎭⎫29=569,所以P A →·PB →的取值范围为⎣⎡⎦⎤22-3,569,故选C.9.已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为__2__. 解析 依题意得a ×1+(3-a )×(-2)=0,解得a =2.10.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ⎝⎛⎭⎫x -322+y 2=254. 解析 由已知得该圆经过椭圆的三个顶点A (4,0),B (0,2),C (0,-2).易知线段AB 的垂直平分线的方程为2x -y -3=0.令y =0,得x =32,所以圆心坐标为⎝⎛⎭⎫32,0,则半径r =4-32=52.故该圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 11.过点A (3,1)的直线l 与圆C :x 2+y 2-4y -1=0相切于点B ,则CA →·CB →=__5__. 解析 由x 2+y 2-4y -1=0,得x 2+(y -2)2=5,可知圆心为C (0,2),半径r =5,∴|AC |=(3-0)2+(1-2)2=10,∴|AB |=10-5=5,∴∠ACB =45°,∴CA →·CB →=10×5×cos 45°=5.12.(2017·四川成都一模)已知圆O :x 2+y 2=1,直线x -2y +5=0上的动点为P ,过点P 作圆O 的一条切线,切点为A ,则|P A |的最小值为__2__.解析 过O 作OP 垂直于直线x -2y +5=0(P 为垂足),过P 作圆O 的切线P A (A 为切点),连接OA,易知此时|P A|的值最小.由点到直线的距离公式,得|OP|=|1×0-2×0+5|12+22= 5.又|OA|=1,所以|P A|=|OP|2-|OA|2=2,即所求最小值为2.第2讲椭圆、双曲线、抛物线题型一 椭圆及其性质1.(1)(2017·云南四市联考)F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,O 为坐标原点,点P 为椭圆上一点,|OP |=24a ,且|PF 1|,|F 1F 2|,|PF 2|成等比数列,则椭圆的离心率为( D )A.24B.23C.63D.64(2)若椭圆x 225+y 216=1上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离是__4__.突破点拨(1)利用椭圆的定义和几何性质转化求解. (2)运用椭圆的定义求解. 解析 (1)设P (x ,y ),|OP |2=x2+y 2=a 28.由椭圆的定义,得|PF 1|+|PF 2|=2a ,即|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2.又∵|PF 1|,|F 1F 2|,|PF 2|成等比数列,∴|PF 1|·|PF 2|=|F 1F 2|2=4c 2,∴|PF 1|2+|PF 2|2+8c 2=4a 2,∴(x +c )2+y 2+(x -c )2+y 2+8c 2=4a 2,整理得x 2+y 2+5c 2=2a 2,即a 28+5c 2=2a 2,c 2a 2=38,e =c a =64,故选D.(2)由椭圆的定义可知,|PF 1|+|PF 2|=2a ,所以点P 到其另一个焦点F 2的距离为|PF 2|=2a -|PF 1|=10-6=4.2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.突破点拨(1)利用原点到直线的距离,列关于a ,c 的方程求解.(2)利用(1)得出椭圆方程(含有字母b ),再利用弦AB 的长等于圆M 的直径求解. 解析 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c2=bca , 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)方法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12.从而x 1x 2=8-2b 2. 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2). 由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.方法二 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.② 依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10.设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得 -4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12. 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0. 所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2). 由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.圆锥曲线的离心率的算法技巧(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解关键.(2)在求解有关离心率的问题时,并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.题型二 双曲线及其性质1.(1)(2017·山东部分重点中学模拟)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作x 轴的垂线交双曲线于A ,B 两点,且△ABF 1为等边三角形,则双曲线的离心率是( B )A.2B.3C.2+1D.3+1(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( D )A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1 D .x 2-y 23=1 突破点拨(1)根据等边三角形列出等式,将等式用双曲线方程中的量表示,并转化为求离心率.(2)利用渐近线与圆相切以及焦点坐标,列出方程组求解.解析 (1)由题意知,△F 1AB 为等边三角形,故|AF 1|=|AB |.由双曲线的定义,得|AF 1|-12|AB |=2a .因为|AB |=2b 2a,可得b 2=2a 2,所以e = 3.故选B.(2)由双曲线的渐近线y =±bax 与圆(x -2)2+y 2=3相切可知⎩⎪⎨⎪⎧⎪⎪⎪⎪±b a ×21+⎝⎛⎭⎫b a 2=3,c =2,a 2+b 2=c 2,解得⎩⎨⎧a =1,b = 3.故所求双曲线的方程为x 2-y 23=1.故选D. 2.(1)(2017·河南信阳二模)已知双曲线C :x 2a 2-y 24=1(a >0)的一条渐近线方程为2x +3y=0,F 1,F 2分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且|PF 1|=2,则|PF 2|=( C )A .4B .6C .8D .10(2)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( D )A.433B .23C .6D .43突破点拨(1)用渐近线方程确定a 的值,再利用定义求|PF 2|. (2)可用特殊位置法求解,如F 的横坐标x =2.解析 (1)双曲线x 2a 2-y 24=1的渐近线方程为y =±2a x ,即2x ±ay =0.已知双曲线的一条渐近线方程为2x +3y =0,∴a =3.由双曲线的定义得||PF 1|-|PF 2||=2a ,即|2-|PF 2||=6,∴|PF 2|=8或-4,舍去-4.故选C.(2)双曲线x 2-y 23=1的右焦点为F (2,0), 其渐近线方程为3x ±y =0.不妨设A (2,23) ,B (2,-23),所以|AB |=43,故选D. 题型三 抛物线及其性质1.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( C )A.72B.52 C .3 D .2突破点拨利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. 解析 因为FP →=4FQ →,所以|FP →|=4|FQ →|,所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF|=34,所以|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3.【变式考法】 把本例条件“FP →=4FQ →”改为“PF →=12PQ →”,其他条件不变,则|QF |=__8__.解析 如图,过Q 作QQ ′⊥l ,垂足为Q ′,A 为l 与x 轴的交点.因为PF →=12PQ →,所以|PF →|=12|PQ →|.因为△P AF ∽△PQ ′Q ,所以|AF ||QQ ′|=|PF ||PQ |,所以|QQ ′|=8,则|QF |=|QQ ′|=8.2.(2017·福建福州一模)在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上.若|AO |=|AF |=32.(1)求C 的方程;(2)设直线l 与C 交于P ,Q 两点,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.突破点拨(1)利用抛物线的定义可求解.(2)设直线l 的方程为y =kx +b .联立抛物线方程,可推出b =1-2k 2,再写出S △OPQ =f (k ),利用基本不等式或求导的方法求f (k )max .解析 (1)抛物线C 的焦点F 的坐标为⎝⎛⎭⎫0,p2. 因为|AO |=|AF |=32,所以可求得点A 的坐标为⎝⎛⎭⎫±1436-p 2,p 4. 将点A 的坐标代入x 2=2py ,得116(36-p 2)=2p ×p4,解得p =2,故抛物线C 的方程为x 2=4y .(2)依题意,可知l 与x 轴不垂直,故可设l 的方程为y =kx +b , 并设P (x 1,y 1),Q (x 2,y 2),PQ 的中点M (x 0,1).联立方程组⎩⎪⎨⎪⎧y =kx +b ,x 2=4y ,消去y 得x 2-4kx -4b =0,所以x 1+x 2=4k ,x 1x 2=-4b . 因为线段PQ 的中点的纵坐标为1,所以y 1+y 2=k (x 1+x 2)+2b =4k 2+2b =2,即b =1-2k 2.因为直线l 与C 交于P ,Q 两点, 所以Δ=16k 2+16b >0,得k 2+b >0, 故k 2+b =k 2+1-2k 2>0,k 2∈[0,1). 由y =kx +b ,令x =0得y =b =1-2k 2, 故S △OPQ =12|b ||x 1-x 2|=12|1-2k 2|×(x 1+x 2)2-4x 1x 2 =2(1-2k 2)2(1-k 2). 设t =1-2k 2,则t ∈(-1,1].设y =(1-2k 2)2(1-k 2)=t 2·t +12=12(t 3+t 2),令y ′=12(3t 2+2t )=32t ⎝⎛⎭⎫t +23=0,得t =0或t =-23, 由y ′>0得t ∈⎝⎛⎭⎫-1,-23∪(0,1]; 由y ′<0得t ∈⎝⎛⎭⎫-23,0. 所以y =12(t 3+t 2)的单调递增区间为⎝⎛⎭⎫-1,-23,(0,1],单调递减区间为⎝⎛⎭⎫-23,0, 当t =-23时,y =227;当t =1时,y =1>227,故y max =1,所以S △OPQ 的最大值是2.解决直线与圆锥曲线位置关系问题的策略解答直线与圆锥曲线的位置关系的题,常常用到“设而不求”的方法,根据条件设出直线方程,与曲线联立,消去y ,整理出一个关于x 的二次方程,设出两个交点的坐标(x 1,y 1),(x 2,y 2),则x 1,x 2为二次方程的两个根,根据根与系数的关系,结合题中条件带入求解.注意:设直线方程时,考虑是否有斜率不存在的情况,若有,要讨论.圆锥曲线与其它知识的交汇和新定义问题(一)知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于曲线C 2:x 2+(y +4)2=2到直线l :y =x 的距离,则实数a =________.思维导航把抛物线、圆、新定义综合起来,是不落俗套的新题.最值问题是圆锥曲线中的一类重要题型,这类问题中含有变化的因素,解题时需要在变化的过程中,掌握运动规律,抓住主变元.如本题,读懂新定义的含义,再依据题干中所含的等式,即可找到关于参数的方程,即可破解此类交汇性试题.规范解答C 2:x 2+(y +4)2=2,圆心(0,-4),圆心到直线l :y =x 的距离为d =|0-(-4)|2=22,故曲线C 2到直线l :y =x 的距离为 d ′=d -r =22-2= 2.对于曲线C 1:y =x 2+a ,令y ′=2x =1, 得x =12,该切点为⎝⎛⎭⎫12,14+a , 则曲线C 1:y =x 2+a 到直线l :y =x 的距离为d ′=2=⎪⎪⎪⎪12-⎝⎛⎭⎫14+a 2⇒a =94或a =-74(舍去).答案 94【变式考法】 已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos α=55,sin(α+β)=35,则此椭圆的离心率为 57. 解析 cos α=55⇒sin α=255,所以sin β=sin [(α+β)-α]=sin(α+β)cos α-cos(α+β)sin α=35×55±45×255=11525或-55(舍去).如图,设|PF 1|=r 1,|PF 2|=r 2,由正弦定理得 r 111525=r 2255=2c 35⇒r 1+r 221525=2c 35⇒e =c a =57.1.(教材回归)抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( B )A .4B .5 C.15D.10解析 由抛物线的定义知,点A 到焦点的距离等于点A 到其准线的距离.所以|AF |=y 1+p2=4+1=5.故选B. 2.(2017·湖北武昌调考)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与圆(x -3)2+(y -1)2=1相切,则此双曲线的离心率为( D )A.2B.3C.5D .2解析 双曲线的一条渐近线为bx -ay =0.由于直线与圆相切,所以|3b -a |a 2+b 2=1,即(3b-a )2=a 2+b 2,所以ba=3,双曲线的离心率e =1+⎝⎛⎭⎫b a 2=2.故选D.3.已知椭圆mx 2+4y 2=1的离心率为22,则实数m =( D ) A .2B .2或83C .2或6D .2或8解析 显然m >0且m ≠4,当0<m <4时,椭圆长轴在x 轴上,则1m -141m=22,解得m =2;当m >4时,椭圆长轴在y 轴上,则14-1m 14=22,解得m =8.故选D. 4.(2017·上海浦东模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在双曲线上存在点P 使△OPF 2是以O 为顶点的等腰三角形,且|PF 1|+|PF 2|=22c 2-b 2,其中c 为双曲线的半焦距,则双曲线的离心率为( A )A.2B.2+1C.3D.3+1解析 由题意知|OP |=|OF 2|,因为O 为F 1F 2的中点, 由平面几何知识有PF 1⊥PF 2. 由双曲线的定义知|PF 1|-|PF 2|=2a . 又|PF 1|+|PF 2|=22c 2-b 2,从而有 |PF 1|=a +2c 2-b 2,|PF 2|=-a +2c 2-b 2. 由|PF 1|2+|PF 2|2=|F 1F 2|2,解得a 2=b 2, 即ba=1,所以双曲线的离心率为e = 2. 5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( A )A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1解析 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2,又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,所以e =ca =1-b 2a2=1-b 24,因为1≤b <2,所以0<e ≤32.故选A.6.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的—个焦点,则p = 22 .解析 拋物线y 2=2px (p >0)的准线方程为x =-p 2(p >0),故直线x =-p2过双曲线x 2-y 2=1的左焦点(-2,0),从而-p2=-2,得p =2 2.7.(2017·山东青岛二模)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,点P是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为3 .解析 由已知和双曲线的定义有⎩⎪⎨⎪⎧ |PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ⇒⎩⎪⎨⎪⎧ |PF 1|=4a ,|PF 2|=2a 或⎩⎪⎨⎪⎧|PF 1|=2a ,|PF 2|=4a . 因为2c >2a ,所以△PF 1F 2中30°角所对的边长为2a . 由余弦定理有4a 2=4c 2+16a 2-16ac ·32, 即3a 2-23ac +c 2=0,两边同除以a 2, 得e 2-23e +3=0,所以e = 3.8.在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 解析 (1)因为椭圆C 1的左焦点为F 1(-1,0),点P (0,1)在C 1上, 所以c =1,b =1,所以a 2=b 2+c 2=2. 所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m , 消去y 并整理得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切, 所以Δ2=(2km -4)2-4k 2m 2=0. 整理得km =1.②综合①②,解得⎩⎪⎨⎪⎧ k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2. 9.(考点聚焦)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.解析 (1)由题设知,c a =22,b =1.结合a 2=b 2+c 2,解得a = 2. 所以椭圆的方程为x 22+y 2=1.(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0.由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0. 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2. 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2. 10.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e .解析 (1)由椭圆的定义,有2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,得2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)方法一 连接F 1Q ,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a c a 2-2b 2,y 0=±b 2c .由|PF 1|=|PQ |>|PF 2|得x 0>0, 从而|PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,有|PF 1|+|PF 2|=2a , |QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|, 有|QF 1|=4a -2|PF 1|.又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|. 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4, 解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 方法二 连接F 1Q ,由椭圆的定义,有|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a , 从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2.因此e =ca =|PF 1|2+|PF 2|22a=(2-2)2+(2-1)2=9-62=6- 3.1.(2017·山东青岛二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线y =x +3只有一个公共点,且椭圆的离心率为55,则椭圆C 的方程为( B ) A.x 216+y 29=1 B.x 25+y 24=1 C.x 29+y 25=1 D.x 225+y 220=1 解析 将直线方程y =x +3代入C 的方程并整理得(a 2+b 2)·x 2+6a 2x +9a 2-a 2b 2=0.由椭圆与直线只有一个公共点,知Δ=0,得a 2+b 2=9.又c a =a 2-b 2a =55,∴b 2a 2=45,解得a 2=5,b 2=4,∴椭圆C 的方程为x 25+y 24=1.2.已知抛物线y 2=2px (p >0)的焦点F 恰好是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,且两曲线的交点的连线过点F ,则该双曲线的离心率为( C )A.2B.3 C .1+2D .1+3解析 因为两曲线的交点的连线过点F ,所以两曲线的交点坐标为⎝⎛⎭⎫p2,±p ,代入双曲线方程可得⎝⎛⎭⎫p 22a 2-p 2b 2=1,因为p2=c ,所以c 4-6a 2c 2+a 4=0,所以e 4-6e 2+1=0,又e >1,解得e =1+2,故选C.3.已知圆C 1:x 2+2cx +y 2=0,圆C 2:x 2-2cx +y 2=0,椭圆C :x 2a 2+y 2b2=1(a >b >0),c >0,且c 2=a 2-b 2.若圆C 1,C 2都在椭圆内,则椭圆离心率的取值范围是( B )A.⎣⎡⎭⎫12,1B.⎝⎛⎦⎤0,12C.⎣⎡⎭⎫22,1D.⎝⎛⎦⎤0,22 解析 圆C 1,C 2都在椭圆内等价于圆C 2的右顶点(2c,0),上顶点(c ,c )在椭圆内部,∴只需⎩⎪⎨⎪⎧ 2c ≤a ,c 2a 2+c 2b 2≤1,可得⎩⎪⎨⎪⎧e ≤12,e 4-3e 2+1≥0,结合e ∈(0,1),可得0<e ≤12.故选B.4.(2017·山西太原模拟)已知抛物线K :x 2=2py (p >0),焦点为F ,P 是K 上一点,K 在点P 处的切线为l ,d 为F 到l 的距离,则( D )A.d |PF |=pB.d |PF |2=pC.d |PF |=2p D.d 2|PF |=p 2解析 使点P 为原点O ,则切线l 为x 轴,且d =p 2,|PF |=p2.代入四个选项中检验知选D.5.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上的一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为( B )A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x解析 依题意,设M (x ,y ),因为|OF |=p2.所以|MF |=2p ,即x +p 2=2p ,解得x =3p2,y =3p .又△MFO 的面积为43,所以12×p2×3p =43,解得p =4,所以抛物线方程为y 2=8x .故选B.6.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程为( A )A.2x ±y =0 B .x ±2y =0 C .x ±2y =0D .2x ±y =0解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a , 又|PF 1|+|PF 2|=6a , 解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a , 所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°, 所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°, 得c =3a ,所以b =c 2-a 2=2a , 所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0.故选A.7.(2017·湖南雅礼中学调研)已知抛物线E :y 2=2px (0<p <4)的焦点为F ,点P 为E 上一。