工程力学第六章答案 梁的变形-工程力学梁的弯曲答案
兰大《工程力学》15春在线作业3 答案
《工程力学》15春在线作业3
一、单选题(共15 道试题,共60 分。
)
1. 研究梁的弯曲变形,主要目的是解决梁的()计算问题。
A. 强度
B. 刚度
C. 稳定性
D. 支座反力
正确答案:B
2. 空间力系作用下的止推轴承共有( )约束力。
A. 二个
B. 三个
C. 四个
D. 六个
正确答案:B
3. 纯弯曲梁段,横截面上()。
A. 仅有正应力
B. 仅有切应力
C. 既有正应力,又有切应力
D. 切应力很小,忽略不计
正确答案:A
4. 第三强度理论,是指()。
A. 最大拉应力理论
B. 最大切应力理论
C. 最大伸长线应变理论
D. 畸变能密度理论
正确答案:B
5. 在减速箱中,高速轴的直径比低速轴的直径()。
A. 大
B. 小
C. 一样
D. 不一定
正确答案:B
6. 有集中力作用的梁,集中力作用处()。
A. 剪力发生突变
B. 弯矩发生突变
C. 剪力、弯矩同时发生突变。
工程力学习题答案6廖明成
工程力学习题答案6廖明成第六章 杆类构件的内力分析习 题6.1 试求图示结构1-1和2-2截面上的内力,指出AB 和CD 两杆的变形属于哪类基本变形,并说明依据。
(a )(b )题6.1图解:(a )应用截面法:对题的图取截面2-2以下部分为研究对象,受力图如图一所示:BM图一图二由平衡条件得:0,AM=∑6320N F ⨯-⨯=解得:NF =9KNCD 杆的变形属于拉伸变形。
应用截面法,取题所示截面1-1以右及2-2以下部分作为研究对象,其受力图如图二所示,由平衡条件有: 0,OM =∑ 6210NF M ⨯-⨯-= (1)0,yF =∑ 60NSF F --=(2)将NF =9KN 代入(1)-(2)式,得:M=3 kN·mSF =3 KNAB 杆属于弯曲变形。
(b )应用截面法 ,取1-1以上部分作为研究对象,受力图如图三所示,由平衡条件有:0,Fx =∑20NF -=图三F NMNF =2KN0,DM =∑ 210M -⨯=M=2KNAB 杆属于弯曲变形6.2 求图示结构中拉杆AB 的轴力。
设由AB 连接的1和2两部分均为刚体。
题6.2图解:首先根据刚体系的平衡条件,求出AB杆的内力。
刚体1的受力图如图一所示D图一 图二平衡条件为:0,CM=∑104840D N F F ⨯-⨯-⨯=(1)刚体2受力图如图二所示,平衡条件为:0,EM =∑ 240NDF F ⨯-⨯=(2)解以上两式有AB 杆内的轴力为:NF =5KN6.3 试求图示各杆件1-1、2-2和3-3截面上的轴力,并做轴力图。
(a )C(b )(c )(d )题6.3图解:(a ) 如图所示,解除约束,代之以约束反力,做受力图,如图1a 所示。
利用静力平衡条件,确定约束反力的大小和方向,并标示在图1a 中,作杆左端面的外法线n ,将受力图中各力标以正负号,轴力图是平行于杆轴线的直线,轴力图线在有轴向力作用处要发生突变,突变量等于该处总用力的数值,对于正的外力,轴力图向上突变,对于负的外力,轴力图向下突变,轴力图如2a 所示,截面1和截面2上的轴力分别为1N F =-2KN2N F =-8KN ,(a )nkN(a 1)(2)C(b )CBkNb 1)(b 2)((b )解题步骤和(a )相同,杆的受力图和轴力图如(1b )(2b )所示,截面1和截面2上的轴力分别为1N F =4KN 2N F =6KN(c )解题步骤和(a )相同,杆的受力图和轴力图如(1c )(2c )所示,截面1,截面2和截面3上的轴力分别为1N F =3F 2N F =4F ,3NF =4FB C(c )4F(c 1)(c 2)(d)A D(d 1)(d 2)(d )解题步骤和(a )相同,杆的受力图和轴力图如(1d )(2d )所示,截面1和截面2上的轴力分别为1N F =2KN 2N F =2KN6.4 求图示各轴1-1、2-2截面上的扭矩,并做各轴的扭矩图。
工程力学:弯曲变形 习题与答案
一、单选题1、研究梁的变形的目的是()。
A.进行梁的正应力计算B.进行梁的刚度计算C.进行梁的稳定性计算D.进行梁的剪应力计算正确答案:B2、图示圆截面悬臂梁,若直径d增大1倍(其它条件不变),则梁的最大正应力、最大挠度分别降至原来的()。
A.1/2 1/4B.1/4 1/8C.1/8 1/8D.1/8 1/16正确答案:D3、下面关于梁、挠度和转角的讨论中,正确的结论是()。
A.挠度最大的截面转角为零B.挠度最大的截面转角最大C.转角为零的截面挠度最大D.挠度的一阶导数等于转角正确答案:D4、已知两悬臂梁的抗弯截面刚度EI相同,长度分别为l和2l,在自由端各作用F1和F2,若二者自由端的挠度相等,则F1/F2=()。
A.2B.4C.6D.8正确答案:D5、梁上弯矩为零处()。
A.梁的转角一定为零B.梁的挠度一定为零C.挠度一定为零,转角不一定为零D.梁的挠曲线的曲率一定为零正确答案:D6、已知等直梁在某段上的挠曲轴方程w(x)=–Cx4,C为常量,则在该段梁上()。
A.分布载荷是x的一次函数B.分布载荷是x的二次函数C.无分布载荷作用D.有均匀分布载荷作用正确答案:D7、在等直梁弯曲变形中,挠曲线曲率最大值发生在()。
A.剪力最大处B.转角最大处C.弯矩最大处D.挠度最大处正确答案:C8、材料相同的(a)悬臂梁和(b)悬臂梁,长度也相同,在自由端各作用2P和P,截面形状分别是b(宽)×2b(高)、b×b。
关于它们的最大挠度正确的是()。
A.(a)梁最大挠度是(b)梁的1/4倍B.(a)梁最大挠度是(b)梁的1/2倍C.(a)梁最大挠度与(b)梁的相等D.(a)梁最大挠度是(b)梁的2倍正确答案:A9、已知简支梁的EI为常数,在梁的左端和右端分别作用一力偶m1和m2今欲使梁的挠曲线在x=l/3处出现一拐点,则比值m1/m2为()。
A.2B.3C.1/2D.1/3正确答案:C10、两根梁尺寸,受力和支承情况完全相同,但材料不同,弹性模量分别为E1和E2,且E1=7E2,则两根梁的挠度之比y1/y2为()。
《工程力学》课后习题与答案全集
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN
;
由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。
则
(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。
工程力学第六章 弯曲变形
荷情况有关,而且还与梁的材料、截面尺寸、形
状和梁的跨度有关。所以,要想提高弯曲刚度,
就应从上述各种因素入手。
一、增大梁的抗弯刚度EI 二、减小跨度或增加支承 三、改变加载方式 48EI
作 业
1、2、4(a、e)
§6-3 用叠加法计算梁的变形 梁的刚度计算
一、用叠加法计算梁的变形
在材料服从胡克定律、且变形很小的前提下, 载荷与它所引起的变形成线性关系。 当梁上同时作用几个载荷时,各个载荷所引 起的变形是各自独立的,互不影响。若计算几个 载荷共同作用下在某截面上引起的变形,则可分 别计算各个载荷单独作用下的变形,然后叠加。
例: 梁AB,横截面为边长为a的正方形,
弹性模量为E1;杆BC,横截面为直径为d的圆 形,弹性模量为E2。试求BC杆的伸长及AB梁 中点的挠度。
例:用叠加法求图示梁B端的挠度和转角。
解:
二、梁的刚度计算
刚度条件:
max [ ] max [ ]
[w]、[θ]是构件的许可挠度和转角,它们决定
q
B
x
l
由边界条件: x 0时, 0 x l时, 0
ql 3 , D0 得: C 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
B
x
l
A qx (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
l 2
x
P AC 解: 段:M ( x ) x 2 y P EI " x 2 A P 2 EI ' x C x 4 l 2 P 3 EI x Cx D 12
工程力学(第二版)课后答案
1-1五个力作用于一点O,如图示。
图中方格的边长为10mm 。
试求此力系的合力。
解题思路:(1)由式(1-13)求合力在直角坐标轴上的投影;(2)由式(1-14)求合力的大小;(3)由式(1-15)求合力的方向。
答案:F R =669.5N , ∠(F R,i )=34.901-2如图示平面上的三个力F1=100N,F2=50N,F3=50N,三力作用线均过A点,尺寸如图。
试求此力系的合力。
解题思路:(1)由式(1-13)求合力在直角坐标轴上的投影;(2)由式(1-14)求合力的大小;(3)由式(1-15)求合力的方向。
答案:F R =161.2N , ∠(F R,F i)=29.701-3试计算下列各图中的力F对点O之矩。
解题思路:各小题均由式(1-16)求力矩。
答案:略1-4如图所示的挡土墙重G 1=75 kN ,铅直土压力G 2=120 kN ,水平土压力F p =90 kN 。
试求三力对前趾A 点之矩的和,并判断挡土墙是否会倾倒。
解题思路:(1)由式(1-16)求三力对前趾A 点之矩的代数和; (2)若其值为负(顺时针转),则挡土墙不会翻倒。
答案:∑M A =-180kN.m ,不会倾倒。
1-5如图所示,边长为a 的正六面体上沿对角线AH 作用一力F 。
试求力F 在三个坐标轴上的投影,力F 对三个坐标轴之矩以及对点O 之矩矢。
解题思路:(1)由式(1-13)、(1-14)、(1-15)求合力的大小和方向; (2)由式(1-25)求力对三个坐标轴之矩; (3)由式(1-26)求力对坐标原点之矩。
答案:M x =0,Fa M y 33=,Fa M 33z =-, k Fa j Fa M O 3333-=1-7试画出下列各图中物体A ,构件AB 的受力图。
未画重力的物体重量不计,所有接触面均为光滑接触。
解题思路:(1)画出研究对象的轮廓形状; (2)画出已知的主动力;(3)在解除约束处按约束的性质画出约束力。
测试题-弯曲内力(答案)
班级:学号:姓名:《工程力学》弯曲内力测试题一、判断题(每小题2分,共20分)1、根据剪力图和弯矩图,可以初步判断梁的危险截面位置。
(√)2、梁的内力图通常与横截面面积有关。
(×)3、将梁上的集中力平移,不会改变梁的内力分布。
(×)4、梁端铰支座处无集中力偶作用,该端铰支座处的弯矩必为零。
(√)5、分布载荷q(x)向上为负,向下为正。
(×)6、简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(√)7、剪力图上斜直线部分一定有分布载荷作用。
(√)8、在集中力作用的截面处,剪力图有突变,弯矩图连续但不光滑。
(√)9、梁在集中力偶作用截面处,弯矩图有突变,剪力图无变化。
(√)10、在梁的某一段上,若无载荷q作用,则该段梁上的剪力为常数。
(√)二、单项选择题(每小题2分,共20分)1、如图所示,火车轮轴产生的是(D )。
A.拉伸或压缩变形B.剪切变形C.扭转变形D.弯曲变形2、梁在集中力偶作用的截面处,它的内力图为(C )。
A. 剪力图有突变,弯矩图无变化B. 剪力图有突变,弯矩图有转折C. 弯矩图有突变,剪力图无变化D. 弯矩图有突变,剪力图有转折3、在下图四种情况中,截面上弯矩为正,剪力为负的是(B )。
4、梁在某一段内作用有向下的分布力时,则在该段内,弯矩图是一条(A )。
A. 上凸曲线B. 下凸曲线C. 带有拐点的曲线;D. 斜直线5、梁受力如图,在B截面处(D )A. 剪力图有突变,弯矩图连续光滑B. 剪力图有尖角,弯矩图连续光滑C. 剪力图、弯矩图都有尖角D. 剪力图有突变,弯矩图有尖角6、图示梁,当力偶M e的位置改变时,有(B )A. 剪力图、弯矩图都改变B. 剪力图不变,只弯矩图改变C. 弯矩图不变,只剪力图改变D. 剪力图、弯矩图都不变F qCBAFM eaqa a7、若梁的受力情况对于梁的中央截面为反对称(如图),则下列结论中正确的是(D )A. 剪力图和弯矩图均为反对称,中央截面上剪力为零B. 剪力图和弯矩图均为对称,中央截面上弯矩为零C. 剪力图反对称,弯矩图对称,中央截面上剪力为零D. 剪力图对称,弯矩图反对称,中央截面上弯矩为零8、多跨静定梁的两种受载情况分别如图所示,力F靠近铰链,以下结论正确的是(C )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同9、多跨静定梁的两种受载情况如图所示,下列结论中正确的是(D )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同10、若梁的剪力图和弯矩图分别如图所示,则该图表明(C )A. AB段有均布载荷,BC段无载荷;B. AB 段无载荷,B截面处有向上的集中力,BC段有向下的均布载荷;C. AB 段无载荷,B截面处有向下的集中力,BC段有向下的均布载荷;D. AB 段无载荷,B截面处有顺时针的集中力偶,BC段有向下的均布载荷。
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
工程力学大二试题答案
工程力学大二试题答案一、选择题1. 静力学中,当一个刚体处于平衡状态时,以下哪项是正确的?A. 合力为零B. 合力矩为零C. 合力和合力矩都为零D. 以上均不正确答案:C2. 材料力学中,弹性模量的定义是:A. 材料在受力时的形变程度B. 材料抵抗形变的能力C. 材料在受力时单位长度的形变所需力量D. 材料在受力后恢复原状的能力答案:B3. 在梁的弯曲问题中,以下哪项因素不会影响梁的弯矩分布?A. 梁的长度B. 梁的截面形状C. 载荷分布D. 材料的弹性模量答案:A4. 能量法在结构力学中的应用主要是为了:A. 计算结构的自然频率B. 确定结构的稳定性C. 计算结构在荷载作用下的位移D. 分析结构的动态响应答案:C5. 动态力学中,阻尼力与速度成正比,这种阻尼称为:A. 粘性阻尼B. 摩擦阻尼C. 干阻尼D. 材料阻尼答案:A二、填空题1. 在平面力系中,若要使刚体处于平衡状态,必须满足__________和__________两个条件。
答案:合力矩为零;合力为零2. 应力状态描述中,主应力是指在材料点上与__________方向相对应的应力值。
答案:主轴3. 当一个悬臂梁受到集中载荷作用时,其最大弯矩出现在__________。
答案:支点4. 在结构动力学中,系统的自然频率与__________、__________和__________有关。
答案:质量分布;刚度分布;几何形状5. 能量守恒原理表明,在没有__________的情况下,一个系统的总能量是__________的。
答案:外力做功;守恒三、计算题1. 一根长度为 L 的简支梁,其上表面在距离支点 a 处作用有一集中载荷 P,求梁中点处的弯矩。
解:根据弯矩公式,简支梁在集中载荷作用下的弯矩分布为线性分布。
在中点处,弯矩 M = (P * a) / (L / 2)。
2. 一块边长为 a 的正方形板,在中心受有集中载荷 P,板的厚度为t,材料的弹性模量为 E,泊松比为ν,求板中心的最大挠度 w。
测试题-弯曲变形(答案)
班级:学号:姓名:《工程力学》弯曲变形测试题一、判断题(每小题2分,共20分)1、梁弯曲变形后,最大转角和最大挠度是同一截面。
(×)2、不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么这两根梁弯曲变形时,最大挠度值相同。
(×)3、EI是梁的抗弯刚度,提高它的最有效、最合理的方法是改用更好的材料。
(×)4、梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,则梁的挠曲线仍然是一条光滑、连续的曲线。
(√)5、梁弯曲后,梁某点的曲率半径和该点所在横截面位置无关。
(×)6、梁上有两个载荷,梁的变形与两个载荷加载次序无关。
(√ )7、一般情况下,梁的挠度和转角都要求不超过许用值。
(√ )8、在铰支座处,挠度和转角均等于零。
(×)9、绘制挠曲线的大致形状,既要根据梁的弯矩图,也要考虑梁的支撑条件。
(√ )10、弯矩突变的截面转角也有突变。
(×)二、单项选择题(每小题2分,共20分)1、梁的挠度是(B )。
A. 横截面上任一点沿梁轴方向的位移B. 横截面形心沿垂直梁轴方向的位移C. 横截面形心沿梁轴方向的线位移D. 横截面形心的位移2、在下列关于挠度、转角正负号的概念中,(C)是正确的。
A. 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B. 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C. 转角和挠度的正负号均与坐标系有关D. 转角和挠度的正负号均与坐标系无关3、挠曲线近似微分方程在(D )条件下成立。
A. 梁的变形属于小变形 B .材料服从胡克定律C. 挠曲线在xoy平面内D. 同时满足A、B、C4、等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D )处。
A. 挠度最大B. 转角最大C. 剪力最大D. 弯矩最大5、应用叠加原理求梁横截面的挠度、转角时,需要满足的条件有(C )A. 梁必须是等截面的B. 梁必须是静定的C. 变形必须是小变形;D. 梁的弯曲必须是平面弯曲6、两简支梁,一根为钢、一根为铜,已知它们的抗弯刚度相同。
工程力学习题库-弯曲变形
第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
工程力学--材料力学(北京科大、东北大学版)第4版第六章习题答案
第六章习题6—1用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-2、用积分法求以下各梁的转角方程、挠曲线方程以及指定的转角和挠度。
已知抗弯刚度EI为常数。
6-3、用叠加法求图示各梁中指定截面的挠度和转角。
已知梁的抗弯刚读EI为常数。
6-4阶梯形悬臂梁如图所示,AC段的惯性矩为CB段的二倍。
用积分法求B端的转角以及挠度。
6-5一齿轮轴受力如图所示。
已知:a=100mm,b=200mm,c=150mm,l=300mm;材料的弹性模量E=210Pa;轴在轴承处的许用转角[]=0.005rad。
近似的设全轴的直径均为d=60mm,试校核轴的刚度。
回答:6-6一跨度为4m的简支梁,受均布载荷q=10Kn/m,集中载荷P=20Kn,梁由两个槽钢组成。
设材料的许用应力[]=160Ma,梁的许用挠度[]=。
试选择槽钢的号码,并校核其刚度。
梁的自重忽略不计。
m壁厚=4mm,单位长度重量6-7两端简支的输气管道,外径D=114m。
q=106N/m,材料的弹性模量E=210Gpa。
设管道的许用挠度试确定管道的最大跨度。
6-845a号工字钢的简支梁,跨长l=10m,材料的弹性模量E-210Gpa。
若梁的最大挠度不得超过,求梁所能承受的布满全梁的最大均布载荷q。
6-9一直角拐如图所示,AB段横截面为圆形,BC段为矩形,A段固定,B段为滑动轴承。
C端作用一集中力P=60N。
有关尺寸如图所示。
材料的弹性模量E=210Gpa,剪切弹性模量G=0.4E。
试求C端的挠度。
提示:由于A端固定,B端为滑动轴承,所以BC杆可饶AB杆的轴线转动。
C端挠度由二部分组成;(1)把BC杆当作悬臂梁,受集中力P作用于C端产生的挠度,;(2)AB杆受扭转在C锻又产生了挠度,。
最后,可得C端的挠度6-10、以弹性元件作为测力装置的实验如图所示,通过测量BC梁中点的挠度来确定卡头A处作用的力P,已知,梁截面宽b=60mm,高h=40mm,材料的弹性模量E=210Gpa。
大学工程力学试题及答案
大学工程力学试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是材料力学中的基本假设?A. 均匀性假设B. 连续性假设C. 各向同性假设D. 各向异性假设答案:D2. 梁的弯曲应力公式为:A. σ = (M/I) * (y/R)B. σ = (M/I) * (R/y)C. σ = (M/I) * (y/R)D. σ = (M/I) * (R/y)答案:C3. 弹性模量E的单位是:A. N/mB. N/m²C. PaD. J/m³答案:C4. 以下哪种材料不属于脆性材料?A. 玻璃B. 陶瓷C. 橡胶D. 混凝土答案:C5. 根据能量守恒定律,以下说法不正确的是:A. 机械能守恒B. 能量可以无中生有C. 能量可以转化为其他形式D. 能量守恒定律适用于所有物理过程答案:B6. 静定结构与超静定结构的主要区别在于:A. 材料种类B. 受力情况C. 几何形状D. 约束数量答案:D7. 以下哪种情况不属于平面力系的平衡条件?A. 合力为零B. 合力矩为零C. 合外力为零D. 合外力矩为零答案:C8. 梁的剪力图和弯矩图可以用来确定:A. 梁的变形B. 梁的内力C. 梁的自重D. 梁的外力答案:B9. 梁的挠度与弯矩之间的关系是:A. 线性关系B. 非线性关系C. 没有关系D. 反比关系答案:B10. 以下哪种方法不适用于解决超静定结构问题?A. 弯矩分配法B. 力法C. 位移法D. 能量法答案:A二、填空题(每题2分,共20分)1. 材料的弹性模量E与泊松比μ之间的关系是E = _______。
答案:2G(1+μ)2. 梁在纯弯矩作用下,其横截面上的应力分布为_______。
答案:线性分布3. 在静力平衡状态下,一个物体的合力为_______。
答案:零4. 材料力学中的胡克定律表明,在弹性范围内,材料的应力与应变之间存在_______关系。
答案:线性5. 梁的弯矩与截面的惯性矩I成_______关系。
工程力学2第六章 弯曲变形
§6-4 用叠加法求弯曲变形
设梁上有n 个载荷同时作用,任意截面上的弯矩 为M(x),转角为 ,挠度为y,则有:
d2y EI 2 EIy'' M ( x ) dx n
由弯矩的叠加原理知: 所以, 即,
§6–3 用积分法求弯曲变形 (Beam deflection by integration )
一、微分方程的积分 (Integrating the differential equation )
M ( x) w EI
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成
EIw M ( x )
代入求解,得
1 Fb 3 C1 C 2 Fbl 6 6l D1 D2 0
FAy x1
ymax
x2
a
b
目录
§6-3 用积分法求弯曲变形
5)确定转角方程和挠度方程
AC 段: 0 x1 a
Fb 2 Fb 2 EI 1 x1 (l b2 ) 2l 6l
Fb 3 Fb 2 EIy1 x1 ( l b 2 ) x1 6l 6l
转角
4、挠度与转角的关系 ( Relationship between deflection and slope): w
A
tg w ' w '( x )
B
x
C C'
转角
w挠度
挠曲线
B
5、挠度和转角符号的规定
(Sign convention for deflection and slope) 挠度 向上为正,向下为负. 转角 自x 转至切线方向,逆时针转为正,顺时针转为负. w
工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tanα≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图 作BD 两节点的受力图 联合解得:kN F F F A80100tan 2=≈=α 2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
测试题-弯曲应力(答案)
班级: 学号: 姓名:《工程力学》弯曲应力测试题一、判断题(每小题2分,共20分)1、弯曲变形梁,其外力、外力偶作用在梁的纵向对称面内,梁产生对称弯曲。
( √ )2、铁路的钢轨制成工字形,只是为了节省材料。
( × )3、为了提高梁的强度和刚度,只能通过增加梁的支撑的办法来实现。
( × )4、中性轴是中性层与横截面的交线。
( √ )5、最大弯矩M max 只可能发生在集中力F 作用处,因此只需校核此截面强度是否满足梁的 强度条件。
( × )6、大多数梁只进行弯曲正应力强度校核,而不计算弯曲切应力,这是因为他们横截面上只有正应力存在。
( × )7、抗弯截面系数仅与截面形状和尺寸有关,与材料种类无关。
( √ )8、矩形截面梁,若其截面高度和宽度都增加一倍,则强度提高到原来的16倍。
( × )9、在梁的弯曲正应力公式中,I z 为梁截面对于形心轴的惯性矩。
( √ ) 10、梁弯曲最合理的截面形状,是在横截面积相同条件下W z 值最大的截面形状。
( √ ) 二、单项选择题(每小题2分,共20分)1、材料弯曲变形后( B )长度不变。
A .外层 B .中性层 C .内层2、梁弯曲时横截面上的最大正应力在( C )。
A. 中性轴上B. 对称轴上C. 离中性轴最远处的边缘上3、一圆截面悬臂梁,受力弯曲变形时,若其它条件不变,而直径增加一倍,则其最大正 应力是原来的( A )倍。
A.81B. 8C. 2D.214、图示受横力弯曲的简支梁产生纯弯曲变形的梁段是( D )A. AC 段B. CD 段C. DB 段D. 不存在 5、由梁弯曲时的平面假设,经变形几何关系分析得到( C )A. 中性轴通过截面形心B. 梁只产生平面弯曲;C. y ερ=;D. 1zM EI ρ=6、图示的两铸铁梁,材料相同,承受相同的载荷F 。
当F 增大时,破坏的情况是( C )。
工程力学第六章答案 梁的变形-工程力学梁的弯曲答案
第五章 梁的变形测试练习1. 判断改错题5—1—1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零。
( )5-1—2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
( ) 5—1—3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。
( )5—1—4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零.( )5-1—5 挠曲线近似微分方程不能用于求截面直梁的位移。
( ) 5-1—6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。
( ) 5—1—7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的. ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。
( )5—1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。
( ) 5—1—10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。
( )题5-1-3图题5-1-4图题5-1-8图题5-1-7图题5-1-9图2.填空题5—2—1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在和。
5—2—2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。
5—2—3 应用叠加原理求梁的变形时应满足的条件是:。
5—2—4 在梁的变形中挠度和转角之间的关系是。
5—2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是,连续条件是.5—2—6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是,连续条件是。
《工程力学》考试50题和答案
《工程力学》考试50题和答案一. 单选题1. 压杆可分为几个个类型()。
A. 1B. 2C. 3D. 4参考答案:C2.在题3中,若杆AB为直径d=10mm的圆杆,F=20kN,AB杆横截面上的应力是()。
A.132PaB.134PaC.144PaD.111Pa参考答案:A3. 利用解析法求解平面共点力系的平衡问题时,所能列写出的独立的平衡方程数目为()。
A. 1B. 2C. 3D. 4参考答案:B2. 判断题4. 压杆从直线平衡构形到弯曲平衡构形的转变过程,称为“屈曲”。
由于屈曲,压杆产生的侧向位移,称为屈曲位移。
A. 错误B. 正确参考答案:B5. 力偶可在其作用面内任意搬移,而不改变它对刚体的作用效应。
A. 错误B. 正确参考答案:B6. 当作用于轴上的外力偶多于两个时,为了表示各横截面上扭矩沿轴线变化的情况,在图中以横轴表示横截面的位置,纵轴表示相应截面上的扭矩,这种图线称为扭矩图。
A. 错误B. 正确参考答案:B7. 当外力作用点位于截面形心附近的一个区域内时,就可以保证中性轴不穿过横截面,横截面上无压应力(或拉应力),此区域称为截面核心。
A. 错误B. 正确参考答案:B8. 变形区横断面的变形,变形区的应力和应变状态在切向和径向是完全相同的,仅在宽度方向有所不同。
A. 错误B. 正确参考答案:B9. 梁某截面上的剪力和弯矩如图所示,根据剪力和弯矩的正负号规定,该剪力的符号为—,弯矩的符号为+。
A. 错误B. 正确参考答案:A10.1A. 错误B. 正确参考答案:B11. 平衡是指惯性参照系内,物体受到几个力的作用,仍保持静止状态,或匀速直线运动状态,或绕轴匀速转动的状态,叫做物体处于平衡状态,简称物体的“平衡”。
B. 正确参考答案:B12. 圆轴扭转的平面假设:圆轴扭转变形前原为平面的横截面,变形后仍保持为平面,形状和大小不变,半径仍保持为直线;且相邻两截面间的距离不变。
A. 错误B. 正确参考答案:B13. 通常情况下,梁的内力包括剪力和弯矩,平面刚架的内力包括剪力弯矩和轴力。
工程力学考试题及答案
工程力学考试题及答案一、单项选择题(每题2分,共20分)1. 以下哪项是工程力学中研究的主要对象?A. 材料B. 结构C. 力D. 以上都是答案:D2. 静力学中,平衡状态是指物体所受的合力为:A. 非零B. 零C. 任意值D. 不可确定答案:B3. 材料力学中,弹性模量是描述材料的哪种性质?A. 强度B. 硬度C. 弹性D. 塑性答案:C4. 根据牛顿第三定律,作用力和反作用力的大小关系是:A. 相等B. 不相等C. 相反D. 无法确定答案:A5. 在梁的弯曲问题中,梁的弯曲刚度与以下哪项无关?A. 梁的截面形状B. 梁的长度C. 梁的材料D. 梁的截面尺寸答案:B6. 应力集中是指在材料的哪些部位应力会显著增大?A. 光滑表面B. 无缺陷区域C. 几何突变处D. 均匀受力区域答案:C7. 动载荷是指:A. 静止不动的载荷B. 随时间变化的载荷C. 随空间变化的载荷D. 均匀分布的载荷答案:B8. 能量守恒定律在工程力学中的应用主要体现在:A. 热力学B. 动力学C. 静力学D. 流体力学答案:B9. 以下哪种材料可以认为是理想弹性体?A. 橡胶B. 钢铁C. 玻璃D. 木材答案:B10. 塑性变形是指材料在外力作用下发生变形后,去掉外力后:A. 不能恢复原状B. 完全恢复原状C. 部分恢复原状D. 无法确定答案:A二、填空题(每空1分,共20分)1. 物体在受到三个力的作用下,若这三个力的合力为零,则物体处于______状态。
答案:平衡2. 材料力学中,梁的挠度是指梁在受力后与______之间的最大垂直距离。
答案:原始直线3. 材料在拉伸过程中,其应力与应变的关系曲线称为______曲线。
答案:应力-应变4. 根据胡克定律,弹簧的变形量与施加在其上的力成正比,其比例系数称为______。
答案:弹簧常数5. 在材料力学中,材料的屈服强度是指材料在______状态下的最大应力。
答案:塑性变形6. 动载荷引起的振动通常需要考虑______效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 梁的变形测试练习1.判断改错题5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( )5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
( )5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。
( )5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。
( )5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。
( )5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。
( )5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。
( )5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。
( )B题5-1-3图B题5-1-4图B5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。
( )5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。
( )2.填空题5-2-1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在 和 。
5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。
5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。
5-2-4 在梁的变形中挠度和转角之间的关系是 。
5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。
5-2-6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是 ,连续条件是 。
5-2-7 图示结构为 次超静定梁。
题5-1-9图题5-1-10图Pa题5-2-2图5-2-8 纯弯曲梁段变形后的曲率与外力偶矩M 的关系为 ,其变形曲线为 曲线。
5-2-9 两根E I 值相同、跨度之比为1:2的简支梁,当承受相同的均布荷载q 作用时,它们的挠度之比为 。
5-2-10 当梁上作用有均布荷载时,其挠曲线方程是x 的 次方程。
梁上作用有集中力时,挠曲线方程是x 的 次方程。
梁上作用有力偶矩时,挠曲线方程是x 的 次方程。
5-2-11 图示外伸梁,若A B 段作用有均布荷载,B C 段上无荷载,则A B 段挠曲线方程是x 的 次方程;B C 段挠曲线方程是x 的 次方程。
5-2-12 减小梁变形的主要途径有: , , 。
5-2-13 已知梁的挠度曲线方程为)3(6)(2x l EIPx x y -=,则该梁的弯矩方程为 。
5-2-14 梁的变形中,挠度和截面弯矩M 的关系是 ,挠度和截面剪力Q 的关系是 。
5-2-15 为使图示A B 段的挠曲线为一直线,则x = 。
5-2-16 要使图示简支梁的挠曲线的拐点位于距A 端l /3处,则M 1:M 2= 。
5-2-17 图示静定梁,其B D 上无荷载作用,若已知B 截面的挠度y B ,则C 截面的挠度y C = ,D 截面的转角θD = 。
C题5-2-11图D BMD P a3.选择题5-3-1 简支梁长为l ,跨度中点作用有集中力P ,则梁的最大挠度f =( ) (E I =常量)A .EI Pl 483B .EI Pl 484C .EI Pl 38455D .EIPl 335-3-2 悬臂梁长为l ,梁上作用有均布荷载q ,则自由端截面的挠度为。
( )A .EI ql 64B .EI ql 63C .EI ql 84D .EIql 835-3-3 两梁尺寸及材料均相同,而受力如图示,则两梁的A . 弯矩相同,挠曲线形状不相同B . 弯矩相同,挠曲线形状相同C . 弯矩不相同,挠曲线形状不相同D . 弯矩不相同,挠曲线形状相同5-3-4 图示(a )、(b )两梁,长度、截面尺寸及约束均相同,图(a )梁的外力偶矩作用在C 截面,图(b )梁的外力偶矩作用在B 支座的右作侧,则两梁A B 段的内力和弯曲变形的比较是 ( )。
A 。
内力相同,变形不相同B .内力及变形均相同C .内力及变形均不相同D .内力不相同,变形相同5-3-5 当用积分法求图示梁的挠度曲线方程时,在确定积分常量的四个条件中,除x =0,θA =0;x =0,y A =0外,另两个条件是( ) 。
A .(y c )左= (y c )右,(θC )左=(θC )右B .(y c )左= (y c )右,y B =0C 题5-3-4图aCMa )b )题5-3-3图C .y C =0,y B =0D .y B =0,θC =05-3-6 图示简支梁在分布荷载q (x )=f (x )作用下,梁的挠度曲线方程为⎰⎰++-=,)()(D Cx dxdx x M x EIy ,其中,积分常量 ( )。
A .0,0==D C B .0,0≠=D CC .0,0≠≠D C D .0,0=≠D C5-3-7 挠曲线方程中的积分常梁主要反映了A . 对近似微分方程误差的修正B . 剪力对变形的影响C . 约束条件对变形的影响D . 梁的轴向位移对变形的影响5-3-8 图示悬臂梁在B 、C 两截面上各承受一个力偶矩作用,两力偶矩大小相等,转向相反,使梁产生弯曲变形。
B 截面的变形为( )。
A .0,0≠=θyB . 0,0=≠θyC .0,0≠≠θyD 。
0,0==θy5-3-9 图示简支梁受集中力作用,其最大挠度f 发生在( )。
A .集中力作用处 B 。
跨中截面 C .转角为零处 D 。
转角最大处5-3-10 两简支梁E I 及l 均相同,作用荷载如图所示。
跨中截面C 分别产生挠度y C 和转角θC ,则两梁C 点的挠度及两梁C 点的转角有( )。
A .θC 相等,y C 不相等B 。
θC 不相等,y C 相等 C .θC 和 都不相等D 。
θC 和y C 都相等B x题5-3-5图B yq (x )题5-3-6图 MC题5-3-8图 24.计算题5-4-1 试画出图示各梁挠曲线的大致形状。
5-4-2 一简支梁承受图示分布荷载q =K x 2(K 为已知),试求此梁的挠曲线方程(设E I=常量)。
5-4-3 已知图示梁的带积分常量的挠曲线方程为)2()2(2412163)210(12163)(2222423222221111312121l x lD x C l x q x ql x ql EIy x D x C x ql x ql x EIy ≤≤++-+-=≤≤++-=试求方程中的积分常量。
5-4-4 试用叠加法求图示梁B 点的挠度和转角。
(E I =常量)5-4-5 外伸梁受图示荷载作用,试求C 截面的挠度和A 截面的转角。
(E I =常量。
) 5-4-6 矩形截面梁A B 的抗弯刚度为E I ,受力如图示。
试问B 端支座向上抬高Δ为多少时,梁的A 截面的弯矩和C 截面的弯矩绝对值相等。
(材料的抗拉与抗压性能相同)5-4-7 图示弯曲的钢板梁A B ,截面为矩形,宽度为b ,高度为h ,钢板放在刚硬地面上时原有曲率半径为ρ,在两端受力P 作用使其平直,则将有均布压力作用于刚硬地面C -C 上。
/2/2(a ) /3 /3/3(/2/2(f ) (b )(d) a/2/2P (e ) 题5-4-1图B/2 /2 q 题5-4-4图 B /2 /2 q题5-4-3图 xx图已知刚梁E (弹性模量),试求所需的P 力及其在压平时梁内的最大正应力。
5-4-8 长度为l 、抗弯刚度为E I 的悬臂梁A B ,受均布荷载q 作用而弯曲时,与半径为r的刚性圆柱面接触,如图所示。
试求当梁上某一段A C 与刚性圆柱面在C 点接触(假设C 点与梁左端A 的距离为x)时,B 点的挠度。
5-4-9 单位长度重量为q 、抗弯刚度为E I 的矩形截面钢条,放置在水平刚性面上,刚条的一端伸出水平面一小段C D ,如图所示。
若伸出长度为a ,试求刚条翘起而不与水平面接触的CD 段的长度b 。
5-4-10 超静定梁如图所示,A B 段内作用有均布荷载q ,当C 支座向下沉陷EIql 964=∆时,试求梁的反力。
5-4-11 矩形截面悬臂梁如图所示,梁长为l ,在沿其截面高度h 承受非均匀加热,设梁顶部温度改变为t 1,底部温度改变为t 2,且t 2>t 1。
温度沿截面高度呈线形改变。
材料的线膨胀系数为a ,弹性模量为E ,由于不均匀受热而使梁发生弯曲变形,当梁的悬臂端施加偶矩M 0时,能使梁展直。
问应施加多大的外力偶矩?5-4-12 悬臂梁A B 和C D 的自由端处用拉杆B C 相连,受力如图所示,若A B 梁和C D 梁的8/2 /2 Δ题5-4-6图 C/2题5-4-5图 题5-4-7图C/2Δ题5-4-10图D 题5-4-9图h题5-4-11图抗弯刚度E I 相等,试求在下列两种情况下C 点的挠度.(1) 当B C 杆为刚性杆,即E A = 时; (2) 当B C 杆长为2l ,2lEIEI 时。
5-4-13 A B 与B C 两梁铰接于B ,如图所示。
已知两梁的抗弯度相等,P =40k N /m ,,试求B 点的约束力。
5-4-14 悬臂梁和简支梁材料和截面均相同。
已知E 及未受力前A B 梁B 点与C D 梁中点之间的间隙Δ(垂直距离),如图所示,当受P 力后A B 梁在B 点的挠度大于Δ,试求各梁的支座反力。
5-4-15 具有初始挠度的A B 梁如图所示,梁的E I 和l 均为已知。
当梁上作用有三角形分布荷载时(q 0已知),梁便呈直线形状。
试求梁的初始挠曲线方程。
5-4-16 试根据对称性求图示梁的挠曲线方程。
E I =常量5-4-17 两端固定的等截面梁,梁上作用一外力偶矩M 0 ,如图所示。
欲使在固定端A 的反力偶矩M A 为零,则力偶矩M 0应作用在梁上何位置?(即x =?)D /2 /2 l/2I 题5-4-12图l/2/2/2x题5-4-15图Cmmm题5-4-13图Dh bB题B/2题/2测试练习解答1. 判断改错题5-1-1 ×。
挠度和转角不仅与弯矩有关,而且与边界位移条件也有关,例如,当悬臂梁自由端作用有集中力P 时,自由端的M =0,但挠度和转角都是最大值。
5-1-2 ×。