线性代数行列式计算习题课 ppt课件 (2)

合集下载

线性代数课件1-5~1-6行列式的性质与计算

线性代数课件1-5~1-6行列式的性质与计算

a11 a1i a1 j a1n a21 a2 i a2 j a2 j an1 ani anj anj
a11 ka1 j a1 j a1n a21 ka2 j a2 j a2 j an1 kanj anj anj
推论 如果行列式有两行(列)完全相同, a11 a12 a1n 则此行列式为零. 证明 设行列式为 D 互换相同的两行,有
D D
D0
1 7 5 6 6 2 0
6 6 2
a21 a22 b1 b1 b2 b2 a n1 a n 2 ann bn bn a2 n

4 0 0
r4 2 r5
3 0 0 0
5
0 0 0 1 4 0 0 0
0 0 2 0 3 0 5 0 0

0 r 3r 0 0 2 5 1 0 0 3 0 1 2 5 0 0
r2 r1
0 16 2 7
0 16 2 7
r3 4r2 0 2 1 1 D 0 8 4 6 r4 8r2 0 0 8 10 0 16 2 7 0 0 10 15
0 2 1 1
1
3
1
2
1 3 1
2
1 3 1 2 5 r4 r3 0 2 1 1 2 8 5 40. 4 2 0 0 8 10 5 0 0 0 2
a11 ai1 a12 a1n a i 2 a in a11 ai1 a12 a1n a i 2 a in
k 0. ka i 1 ka i 2 ka in a i 1 a i 2 a in a n1 a n 2 a nn a n1 a n 2 a nn

线性代数ppt

线性代数ppt
A 其中A是A的伴随阵.
推论 设A、B 都是n阶方阵,若AB E(或
BA E) , 则B A1.
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶可逆矩阵,则AB也可逆,且 1
1 1
4 若A可逆,则AT也可逆 ,且 A A .
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22
a12a21.
三阶行列式的计算方法——沙路法
一些常用的行列式结果:
a11 a12 a1n
1.
0 a22 a2n
a11a22
ann
0 0 ann
1
2.
2
12 n
1
n
3.
(其中 为数);
3 AB C AB AC, B C A BA CA;
方阵的幂运算: (1) Ak Al Akl (2) ( Ak )l Akl
注意:ABk AkBk .
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
M
M
M
an1
an2
ann
则D等于下列两个行列式之和:
a11 a12 a1n
a11 a12 a1n
MMM
bi 2 bin ci1
M
M
M
ci 2 cin
M
M
an1 an2 ann
an1 an2 ann
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行列 式不变. (倍加运算)

线性代数课件_第一章_行列式——4-PPT精选文档20页

线性代数课件_第一章_行列式——4-PPT精选文档20页
9
课件
19
END
D 1 ta p 1 q 1 a p 2 q 2 a p n q n
01.12.2019
课件
16
其中 p 1p 2 p n,q 1 q 2 q n 是两个 n级排列,t为行
标排列逆序数与列标排列逆序数的和.
01.12.2019
课件
17
思考题
证明 在全部 n阶排列中n2,奇偶排列各占
t 4 3 0 1 1 2 2 2 0 1 6 65
所以 a1a 42a 33a 1 4a 2 5a 6 65 是六阶行列式中的项.
01.12.2019
课件
10
a 3a 2 4a 3 1a 4 5a 1 2a 5 66 下标的逆序数为
t4523 816
所以 a 3a 2 4a 3 1a 4 5a 1 2a 5 6不6是六阶行列式中的项.
t 1 0 2 2 1 0 6,
所以 a2a 33a 14a 25a 61a 46前5 边应带正号.
01.12.2019
课件
12
(2 )a 3a 2 4a 1 3a 4 5a 1 6a 6 25 行标排列341562的逆序数为
t 0 0 2 0 0 4 6 列标排列234165的逆序数为
01.12.2019
课件
4
二、对换与排列的奇偶性的关系
定理1 一个排列中的任意两个元素对换,排列 改变奇偶性. 证明 设排列为
a 1 ala abb b 1 b m 对换a与b a 1 albbab a 1 b m
除a,b 外,其它元素的逆序数不改变.
01.12.2019
课件

线性代数-行列式PPT课件

线性代数-行列式PPT课件

矩阵的秩和行列式
矩阵的秩和行列式之间也存在关系。矩阵的 秩等于其行向量或列向量生成的子空间的维 数,而行向量或列向量生成的子空间的维数 又等于该矩阵的阶数与非零特征值的个数之 和减去一,而一个矩阵的非零特征值的个数 又等于该矩阵的行列式的值。
05
特殊行列式介绍
二阶行列式
定义
二阶行列式表示为2x2的矩 阵,其计算公式为a11*a22a12*a21。
对于任何n阶方阵A,其行列式|A|和转置行列式|A^T|相等,即|A^T| = |A|。
行列式的乘法规则
总结词
行列式的乘法规则
详细描述
行列式的乘法规则是两个矩阵的行列式相乘等于它们对应元素相乘后的行列式。即,如果矩阵A和B分别是m×n 和n×p矩阵,那么它们的行列式相乘|AB| = |A||B|。
向量和向量的外积
行列式可以用来描述向量的外积,即两个向量的叉积。叉积 的结果是一个向量,其方向垂直于作为叉积运算输入的两个 向量,大小等于这两个向量的模的乘积与它们之间夹角的正 弦的乘积。
在线性方程组中的应用
解线性方程组
行列式可以用来判断线性方程组是否有 解,以及解的个数。如果一个线性方程 组的系数矩阵的行列式不为零,则该线 性方程组有唯一解;如果系数矩阵的行 列式为零,则该线性方程组可能无解、 有唯一解或有无穷多解。
线性代数-行列式ppt课件
• 引言 • 行列式的计算方法 • 行列式的性质 • 行列式的应用 • 特殊行列式介绍 • 行列式的计算技巧
01
引言
主题简介
01
行列式是线性代数中的基本概念 之一,用于描述矩阵的某些性质 和运算规则。
02
行列式在数学、物理、工程等领 域有广泛的应用,是解决实际问 题的重要工具。

《线性代数》课件-第2章方阵的行列式

《线性代数》课件-第2章方阵的行列式
教学重点:方阵行列式的性质及展开定理,计算典型 的行列式的各种方法.
教学难点:n阶行列式的计算,拉普拉斯定理的应用.
教学时间:6学时.
§1 n 阶行列式的定义
设n阶方阵A=(aij),称
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
为方阵A 的行列式,记为| A |或det A .
1.1 n 阶行列式的引出
于是D中可能不为0的均布项可以记为
a a a b b . 1p1 1p2
mpm 1q1
nqn
这里,pi=ri,qi=rm+i-m,设l为排列p1p2 …pm(m+q1) …(m+qn)的 逆序数。以t,s分别表示排列p1p2 …pm及q1q2 …qn的逆序数,
应有l= t+s,于是
D
(1)l a1p1 a2 p2 a b b mpm 1q1 2q2 bnqn
b2
a2n , j 1, 2, , n.
an1
bn
ann
提出三个问题
(1)D=?(怎么算)?
(2)当D≠0时,方程组是否有唯一解?
(3)若D≠0时,方程组有唯一解,解的形式 是否是
xj
Dj D
,
j 1,2,
, n.
1.2 全排列及其逆序数
1、全排列 用1,2,3三个数字可以排6个不重复三位数即:
第二章 方阵的行列式
行列式是一种常用的数学工具,也是代数学中必不可 少的基本概念,在数学和其他应用科学以及工程技术中有 着广泛的应用。本章主要介绍行列式的概念、性质和计 算方法。
教学目的:通过本章的教学使学生了解行列式的概念, 掌握行列式的性质,会计算各种类型的行列式.

行列式典型例题ppt课件 (2)

行列式典型例题ppt课件 (2)
7
例3
计算n阶行列式
x1 a2 a3 an
a1 x2 a3 an
D n
a1
a2
x3
an
a1 a2 a3 xn
加边法:行列式的每行或每列除对角线上元素 外分别是某个数的倍数.
8
x1 a2 a3 an
a1 x2 a3 an
D n
a1
a2
x3
an
a1 a2 a3 xn (n)
1 0 0 0 0
1 1 1 1
1
2
2 2 2
n1
Vn n! 1
3
32
3
n1 .
1
n
n n 2
n1
6
上面等式右端行列式为n阶范德蒙行列式,由 范德蒙行列式知
V n n! (ai a j) 1 j i n n!(2 1)(3 1)(n 1) • (3 2)(4 2)(n 2)[n (n 1)] n!(n 1)!(n 2)! 2!1!.
xa a a a a a a
0 x a a a x a
Dn 0 a x a a a a
0 a a x a a x

D n (x a )D n 1 a (x a )n 1
(1)
14
利用类似的方法,可得
xa a
0x
Dn
0 a
a a a a
a a x a
x a a x
行列式,它必可利用行列式性质化为三角形行 列式而求得其值,所以
10
1
1
1 Dn
1
1
a1
a2
a3
an
a1 x1 a2 x2 a3 x3
an xn
1

线性代数课件 n阶(方阵的)行列式

线性代数课件 n阶(方阵的)行列式

例4
a11
计算上三角行列式
a12 a1n a22 a2 n ann
a11 a22

ann
a11a22 ann
注意!
d1 dn dn
-13-

d1


n( n 1) ( 1) 2 d
1d 2 d n
性质7
a11 a1k a k 1 a kk D c11 c1k c n1 c nk
a11 a12 a1n
D
a21 a22 a2n

an1
an2 ann

DT
a11 a 21 a n1 a12 a 22 a n 2 a1n a 2 n a nn
1 0 0 D 2 1 0 0 1 2
1 2 0 0 1 1 DT 0 0 2
说明
行列式的性质凡是对行成立的,对列也成立, 反之亦然。
3 100 204 100 100 204 200 200 395 1 200 395 1 300 600 300 300 600
-10-
性质6
把行列式的某一行的各元素乘以同一数然后加
到另一行对应的元素上去,行列式的值不变。 只用 ri k r j 这种变换,把行列式化为 三角形,然后计算行列式的值。
0 b11 b1n bn1 bnn
b11 b1n D2 det(bij ) , bn1 bnn
a11 a1k D1 det(a ij ) , a k 1 a kk
则 D D1 D2
-14-
例5
0 0 0 0 0 0
-1-

线性代数-行列式(完整版)ppt课件

线性代数-行列式(完整版)ppt课件
设 D
,
31
(1)当为何值时, D 0,
(2)当为何值时 D0.
解 230 0,或 3
2
D
2
31
.
例3 求二阶行列式
a 1 b2
.
(2)三阶行列式
记号
a 11 a 12 a 13 a 21 a 22 a 23 称为三阶行列式. a 31 a 32 a 33
它表示数
a 1a 1 2a 2 3 3a 1a 2 2a 3 3 1a 1a 3 2a 1 32 a 1a 3 2a 2 3 1a 1a 2 2a 1 3 3a 1a 1 2a 3 32
27下三角行列式的值等于其主对角线上. 各元素的乘积 .
同理可得 上三角形行列式
a 11 a 12 a 13 a 1n
0
D 0
a 22 a 23 a 2n
0 a 33 a 3 n a11a22ann
0 0 0 a nn
其中 aii 0 (i1,2,n)
特殊情况 : 对角形行列式
a1n
a21 a22 a2n1 0
0 0 a2n1 a2n
an11 an12 0 an1 0 0
0
0 an12 an1n1 an1n
0 an1 an2 ann1 ann
( 1 ) aaa a N (j1 j2 jn 1 jn ) 1 j12 j2
和式中仅当 j1n ,j2n 1 , ,jn 12 ,jn1时,
a1j1a2j2annj0
D ( 1 ) nN (n (n ( 1n ) 1 ) 3) 2 a 1 n 1 a 2 ,n 1 a n 1
29
(1) 2 12n .
注:
类似可得
a11 a12 a1n1 a1n 0 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a31 a32 a33
n阶行列式: a11 a12
a11a23a32 a12a21a33 a13a22a31
a1n
p1p2 pn
Dndet(aij)a21 a22
a2n (1)ta1p1a2p2 anpn
an1 an2
ann
n !项
第3页
行列式的性质
1、DDT 2 、 两 行 ( 列 ) 互 换 , 行 列 式 变 号 ri rj (ci cj)
第5页
几类特殊行列式的值
a11 a12
1.
a22
a1n a11 a2n a21 a22
a11
a22
ann an1 an2
ann
ann
a11a22 ann
第6页
典型习题
➢ 代数余子式的相关计算 ➢ 计算行列式
第7页
与代数余子式有关的计算
•5 1.已 知 某 4 阶 行 列 式 的 第 2 行 元 素 依 次 是 2 , 1 ,m ,6 , 第 3 行
第一章 行列式
小结与习题
第1页
知识点
➢ 行列式的定义 ➢ 行列式的性质 ➢ 行列式按行(列)展开 ➢ 几类特殊行列式的值
第2页
行列式的定义
二阶行列式:a11
a21
a12 a22
a11a22 a12a21
三阶行列式:a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3 a11a22a33 a12a23a31 a13a21a32
元 素 的 余 子 式 的 值 依 次 是 3 ,9 , 3 , 1 , 则 m 7
第 3 行 元 素 代 数 余 子 式 的 值 依 次 是 : 3 , 9 , ( 3), (1)
由 代 数 余 子 式 的 性 质 得 2 3 ( 1 ) ( 9 ) m ( 3 ) 6 1 0
解 得 m 7.
第8页
计算行列式
① 利用行列式定义计算
x1 1 2
•26. 函数f(x)1 x 1 1中x3的系数是 1
32 x 1 1 1 2x 1
(1)t(1234)xxx1 (1)t(1243)xx12x
第9页
计算行列式
② 化三角形法
利用性质化行列式为三角形行列式。
③ 造零降阶法
利用性质将某行(列)中大部分元素化为零,然后
x 1 1 1 x c1c4 x 1 1 1
x 1 1 1 1 x 1 1 1
1 1 1 x1 1 0 0 x
c2c1
1 c1x x
1
x1
1 c3c1 1 x
0
x
0x4
1 x1 1 1 c4c1 1 x 0 0
1 1 1 1 1 0 0 0
第11页
•三、练习
•1设行列式
01 0 2 0 1 0 1 0 2 D 0 2 0 1 0 202 0 1 2 0 1 0 3
*
*
3、kai1
kain k ai1
ain
*
*
ri k (ci k) ri k (ci k)
4 、 若 有 两 行 ( 列 ) 元 素 相 同 或 对 应 成 比 例 , 行 列 式 等 于 零
5、 bi1ci1
* bincin bi1
*
* bin ci1
*
பைடு நூலகம்
* cin
*
6 、 某 行 ( 列 ) 的 k 倍 加 到 另 一 行 ( 列 ) 上 , 行 列 式 值 不 变 ri krj (ci kcj)
第4页
行列式按行(列)展开
行列式等于它的任一行(列)各元素与其对应的代数余子式 乘积之和:
D nai1Ai1ai2Ai2 ainAin a1iA1ia2iA2i aniAni
行列式某一行(列)元素与另一行(列)对应元素的代数余子式 乘积之和等于零:
ai1Aj1ai2Aj2 ainAjn0 a1iA 1ja2iA 2j aniA nj 0, ij
求A43.
第12页
•3.计算下列行列式的值
0a 0 0
D4
0
c
0 0
b
0
0 0
00 xd
第13页
4.用克兰姆法则解线性方程组
4x 3y z 1 3x 4y 7z 2 x 7y 6z 1
第14页
按该行(列)展开,降低行列式的阶数。
2 3 8 1
2 1 3 1
3
1 1
0 1 2 31; 3 4 2
1 4
2 1
5 3 1
0 20
4
0 1 0 1
2 3 4 9
3
第10页
a. 行(列)元素之和相等的行列式
1 7•3. D 1
1
1 1 x 1 x 1 1 x 1 c1 c2
1 x 1 1 x c1c3 1 x 1 1
相关文档
最新文档