聚类分析—密度聚类讲解
统计学中的聚类分析方法
统计学中的聚类分析方法统计学是一门研究数据收集、整理、分析和解释的学科。
在统计学中,聚类分析是一种常用的方法,通过对数据集进行分类,将相似的样本归为一类,以便揭示数据的内部结构和隐含关系。
聚类分析可以应用于各个领域,包括市场调研、生物学、医学、图像处理等。
对于大量数据集的分类和理解,聚类分析提供了一种有效的手段。
一、聚类分析的基本思想聚类分析的基本思想是将样本集合中具有相似特征的样本划分为一组,通过测量样本间的相似性或者距离,将样本分成不同的簇。
相似性可以根据各种度量方法来定义,例如欧氏距离、曼哈顿距离、相关系数等。
聚类分析的目标是使得同一簇中的样本之间更加相似,而不同簇中的样本之间差异较大。
在进行聚类分析时,需要注意选择合适的聚类算法和参数,以及对结果的验证和解释。
二、常用的聚类算法1. K-means算法K-means算法是一种常见的聚类算法,通过将样本分为K个簇,每个簇内的样本之间的距离最小,而不同簇之间的距离最大。
算法的基本步骤包括初始化质心、计算样本到质心的距离、分配样本到最近的质心、更新质心位置,并迭代上述步骤直至收敛。
2. 层次聚类算法层次聚类算法是一种分层次的聚类方法,不需要预先指定簇的数目。
该算法将每个样本作为一个独立的簇,并通过不断合并相似的簇来构建层次结构。
合并的标准可以是最小距离、最大距离、平均距离等。
3. 密度聚类算法密度聚类算法是一种基于密度的聚类方法,适用于对复杂的数据集进行聚类。
该算法通过计算样本集合中每个样本的密度,并将高密度相连的样本划分为一类。
密度聚类算法的优点在于它可以发现任意形状的簇,并且对于噪声和异常点具有较强的鲁棒性。
三、聚类结果的评价和解释聚类结果的评价和解释是聚类分析中的重要步骤。
常用的评价指标包括轮廓系数、DB指数、Dunn指数等,它们能够对聚类结果的好坏进行量化评估。
解释聚类结果的过程包括对每个簇的特征进行分析,寻找可以解释簇内样本差异的相关因素。
聚类分析(五)——基于密度的聚类算法OPTICS
聚类分析(五)——基于密度的聚类算法OPTICS 1 什么是OPTICS算法在前⾯介绍的DBSCAN算法中,有两个初始参数E(邻域半径)和minPts(E邻域最⼩点数)需要⽤户⼿动设置输⼊,并且聚类的类簇结果对这两个参数的取值⾮常敏感,不同的取值将产⽣不同的聚类结果,其实这也是⼤多数其他需要初始化参数聚类算法的弊端。
为了克服DBSCAN算法这⼀缺点,提出了OPTICS算法(Ordering Points to identify theclustering structure)。
OPTICS并不显⽰的产⽣结果类簇,⽽是为聚类分析⽣成⼀个增⼴的簇排序(⽐如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。
它包含的信息等价于从⼀个⼴泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。
2 OPTICS两个概念核⼼距离:对象p的核⼼距离是指是p成为核⼼对象的最⼩E’。
如果p不是核⼼对象,那么p的核⼼距离没有任何意义。
可达距离:对象q到对象p的可达距离是指p的核⼼距离和p与q之间欧⼏⾥得距离之间的较⼤值。
如果p不是核⼼对象,p和q之间的可达距离没有意义。
例如:假设邻域半径E=2, minPts=3,存在点A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2)点A为核⼼对象,在A的E领域中有点{A,B,C,D,E,F},其中A的核⼼距离为E’=1,因为在点A的E’邻域中有点{A,B,D,E}>3;点F到核⼼对象点A的可达距离为,因为A到F的欧⼏⾥得距离,⼤于点A的核⼼距离1.3 算法描述OPTICS算法额外存储了每个对象的核⼼距离和可达距离。
基于OPTICS产⽣的排序信息来提取类簇。
算法描述如下:算法:OPTICS输⼊:样本集D, 邻域半径E, 给定点在E领域内成为核⼼对象的最⼩领域点数MinPts输出:具有可达距离信息的样本点输出排序⽅法:1 创建两个队列,有序队列和结果队列。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据分析方法,用于将一组数据分成不同的类别或群组。
通过聚类分析,可以发现数据中的内在结构和模式,帮助我们更好地理解数据和做出决策。
在进行聚类分析时,我们需要选择适合的聚类算法和合适的聚类类型。
本文将介绍聚类分析的类型和选择方法。
一、聚类分析的类型1. 划分聚类(Partitioning Clustering)划分聚类是将数据集划分为不相交的子集,每个子集代表一个聚类。
常用的划分聚类算法有K-means算法和K-medoids算法。
K-means算法是一种迭代算法,通过计算数据点与聚类中心的距离来确定数据点所属的聚类。
K-medoids算法是一种基于对象之间的相似性度量的划分聚类算法。
2. 层次聚类(Hierarchical Clustering)层次聚类是将数据集划分为一个层次结构,每个层次代表一个聚类。
常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类是自底向上的聚类过程,开始时每个数据点都是一个聚类,然后逐步合并相似的聚类,直到形成一个大的聚类。
分裂层次聚类是自顶向下的聚类过程,开始时所有数据点都属于一个聚类,然后逐步将聚类分裂成更小的聚类。
3. 密度聚类(Density Clustering)密度聚类是基于数据点之间的密度来进行聚类的方法。
常用的密度聚类算法有DBSCAN算法和OPTICS算法。
DBSCAN算法通过定义数据点的邻域密度来确定核心对象和边界对象,并将核心对象连接起来形成聚类。
OPTICS算法是DBSCAN算法的一种改进,通过计算数据点的可达距离来确定聚类。
二、选择聚类分析的方法在选择聚类分析的方法时,需要考虑以下几个因素:1. 数据类型不同的聚类算法适用于不同类型的数据。
例如,K-means算法适用于连续型数值数据,而DBSCAN算法适用于密度可测量的数据。
因此,在选择聚类算法时,需要根据数据的类型来确定合适的算法。
2. 数据量和维度聚类算法的计算复杂度与数据量和维度有关。
密度聚类算法详解课件
04
密度聚类算法在数据挖掘中的应用 场景
在图像分类中的应用
01
总结词
密度聚类算法在图像分类中能够有效地识别和区分不同类别的图像。
02
详细描述
通过构建像素之间的相似性矩阵,密度聚类算法可以发现图像中的密集
区域和稀疏区域,从而将不同的图像分为不同的类别。
03
应用案例
DBSCAN算法可以用于图像分类,例如在人脸识别、物体识别等应用中
密度聚类算法详解课件
目录
CONTENTS
• 密度聚类算法概述 • DBSCAN算法详解 • DENCLUE算法详解 • 密度聚类算法在数据挖掘中的应用场景 • 密度聚类算法的优缺点及未来发展趋势
01
密度聚类算法概述
定义与背景
定义
密度聚类算法是一种基于数据密 度的聚类方法,通过搜索数据空 间中的密集区域来发现聚类。
参数与优化策略
参数
DENCLUE算法的主要参数包括高斯混合模型的组件数、高斯分布的协方差矩阵 、迭代次数等。这些参数需要根据具体数据集和问题进行调整和优化。
优化策略
在算法的迭代过程中,可以使用EM算法来优化高斯混合模型的参数,以及使用 K-means算法来对密度分布进行聚类。此外,可以使用一些启发式方法来初始化 高斯混合模型的参数,以提高算法的性能。
DENCLUE(Density based Clustering based on Locally Aggregated Mode Learning)是一种基于密度的聚类算法 。它通过学习局部模式的密度分布来进行聚类。
数学模型
该算法主要基于概率密度估计,通过学习数据的局部密度分 布来进行聚类。它使用一个高斯混合模型(GMM)来估计数 据的局部密度分布,并使用一个聚类算法(如K-means)对 估计的密度分布进行聚类。
经济统计数据的聚类分析方法
经济统计数据的聚类分析方法引言:经济统计数据是经济研究和政策制定的重要基础,通过对经济数据的分析和解读,可以帮助我们了解经济的发展趋势、结构特征以及潜在问题。
而聚类分析作为一种常用的数据分析方法,可以将相似的经济指标归为一类,帮助我们更好地理解经济数据的内在联系和规律。
本文将介绍经济统计数据的聚类分析方法,探讨其在经济研究中的应用。
一、聚类分析的基本原理聚类分析是一种无监督学习方法,它通过对数据集进行分组,将相似的样本归为一类。
其基本原理是通过计算样本之间的相似性或距离,将相似性较高的样本划分为同一类别。
聚类分析可以帮助我们发现数据集中的内在结构,并将数据集划分为若干个互不重叠的类别。
二、经济统计数据的聚类分析方法在进行经济统计数据的聚类分析时,首先需要选择适当的指标。
常用的指标包括国内生产总值、消费者物价指数、劳动力参与率等。
接下来,我们可以使用不同的聚类算法对这些指标进行分析。
1. K-means聚类算法K-means是一种常用的聚类算法,它将数据集分为K个互不重叠的类别。
该算法首先随机选择K个初始聚类中心,然后通过计算每个样本与聚类中心的距离,将样本分配给距离最近的聚类中心。
接着,更新聚类中心的位置,并迭代上述过程,直到聚类中心的位置不再发生变化。
K-means算法对初始聚类中心的选择较为敏感,因此需要进行多次试验,选取最优的结果。
2. 层次聚类算法层次聚类算法是一种自底向上的聚类方法,它首先将每个样本视为一个独立的类别,然后通过计算样本之间的相似性,逐步将相似的样本合并为一类。
该算法可以生成一个聚类树状图,帮助我们观察不同层次的聚类结果。
层次聚类算法的优点是不需要预先指定聚类个数,但是计算复杂度较高。
3. 密度聚类算法密度聚类算法是一种基于样本密度的聚类方法,它将样本空间划分为具有高密度的区域和低密度的区域。
该算法通过计算每个样本周围的密度,并将密度较高的样本作为核心对象,进而将其邻近的样本归为一类。
什么是聚类分析,它有哪些应用?
什么是聚类分析,它有哪些应用?
一、聚类分析的实现方式
聚类分析的实现方式有很多种,如下面几种:
1. 基于距离的聚类:
这种方法将数据点之间的距离作为相似性的度量,然后将距离最近的数据点聚在一起,并逐渐地将距离较远的数据点加入到不同的簇中。
2. 基于密度的聚类:
这种方法通过计算数据点的密度来确定簇边界,而不是使用距离来度量相似性。
将密度较高的数据点聚集在一起,而将密度较低的数据点单独作为一个簇。
3. 基于层次的聚类:
这种方法将数据点逐层进行聚合,每一层都是由多个子层组成的。
聚类过程一直持续到所有数据点都被分配到一个簇中,或者簇的数量达到预设的值。
二、聚类分析的应用领域
聚类分析作为一种重要的数据挖掘技术,在多个领域中都有着广泛的应用,下面介绍一些主要应用领域:
1. 市场细分:
聚类分析可以帮助企业将市场分割成不同的细分市场,然后根据每个细分市场的特点定制相应的市场策略。
2. 生物分类:
聚类分析在生物学领域中应用非常广泛,例如,可以用于分类分子或组分、成本分析以及微生物学等方面。
3. 网络流量分析:
聚类分析可以帮助网络管理员对网络流量进行分类,以便更好地了解网络中流动的数据类型,从而更好地优化网络性能。
4. 风险评估:
聚类分析可以用于对风险进行分类和评估,例如,可以将客户分类成高风险、中风险和低风险客户,以快速响应某些意外事件。
结论
聚类分析是一种非常有用的技术,可以用于许多不同的领域。
以上只是聚类分析的一些基本理解和应用,随着技术的不断发展,聚类分析在未来也将有着更广泛的应用。
知识点归纳 数据挖掘中的聚类分析与分类算法
知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。
在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。
本文将对这两个知识点进行归纳总结。
一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。
其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。
聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。
常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。
它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。
2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。
Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。
3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。
这类算法可以有效地发现具有不同密度分布的聚类。
二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。
通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。
分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。
常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。
它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。
2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。
它假设特征之间相互独立,并通过计算条件概率来进行分类预测。
3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。
多维数据的分组和聚类分析方法及应用研究
多维数据的分组和聚类分析方法及应用研究随着数据产生和积累的飞速增长,多维数据的分组和聚类分析变得日益重要。
这些分析方法帮助人们理解和发现数据背后的模式和关系,从而为决策提供基础和洞察力。
本文将介绍多维数据的分组和聚类分析的常见方法,并探讨它们在不同领域的应用研究。
1. 多维数据分组分析方法多维数据分组分析的目标是将数据集划分为不同的组,使得每个组内的成员具有相似的特征。
以下是几种常见的多维数据分组分析方法:1.1. K-means聚类K-means聚类是一种基于距离的分组方法,将数据集划分为K个类别,使得每个数据点与其所属类别的质心之间的距离最小化。
该方法适用于连续变量和欧几里得距离度量的数据集。
K-means聚类具有简单、高效的优点,但对初始聚类中心的选择敏感。
1.2. 层次聚类层次聚类是一种自底向上或自顶向下的分组方法,通过计算样本间的距离或相似度来确定聚类结构。
该方法生成一个树形结构,可视化地表示不同类别之间的关系。
层次聚类不需要预先指定类别数量,但对于大规模数据集计算复杂度较高。
1.3. 密度聚类密度聚类方法基于数据点周围的密度来划分组,将样本点密度较高的区域作为一个组,较低的区域作为另一个组。
该方法可以识别复杂的聚类形状和噪声数据,适用于非凸数据集。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类方法。
2. 聚类分析方法聚类分析的目标是将数据集划分为若干个不相交的子集,每个子集中的数据点在某种意义上具有相似性。
以下是几种常见的聚类分析方法:2.1. 分层聚类分层聚类是一种基于相似性度量的聚类方法,将数据集划分为多个子集,类别数量从1逐渐增加到N。
该方法可通过树状图表示不同层级之间的相似性关系。
分层聚类的优点是不需要预先指定聚类数量,但对于大规模数据集计算复杂度较高。
2.2. 期望最大化(EM)算法EM算法是一种基于概率模型的聚类方法,通过迭代生成最大似然估计的方法来拟合数据分布。
数据聚类分析方法
数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。
聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。
以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。
它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。
该算法通过不断迭代更新簇的中心来优化聚类结果。
2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。
聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。
分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。
3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。
该算法通过确定数据点周围的密度来划分不同的簇。
常见的密度聚类算法有DBSCAN和OPTICS。
4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。
该算法通常适用于高维数据集,可以减少计算复杂度。
5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。
该算法通常用于非线性可分的数据集。
需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。
《数据挖掘》课程PPT-聚类分析
图像处理
1 2 3
图像分割
在图像处理中,聚类分析可以用于将图像分割成 多个区域或对象,以便进行更细致的分析和处理。
特征提取
通过聚类分析,可以提取图像中的关键特征,如 颜色、形状、纹理等,以实现图像分类、识别和 检索。
图像压缩
通过聚类分析,可以将图像中的像素进行聚类, 从而减少图像数据的维度和复杂度,实现图像压 缩。
03 推荐系统
利用聚类分析对用户和物品进行分类,为用户推 荐相似或相关的物品或服务。
02
聚类分析的常用算法
K-means算法
• 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
• · 概述:K-means是一种基于距离的聚类算法,通过迭代将数据划分为K个集群,使得每个数 据点与其所在集群的中心点之间的距离之和最小。
03 基于模型的聚类
根据某种模型对数据进行拟合,将数据点分配给 不同的模型,常见的算法有EM算法、高斯混合模 型等。
聚类分析的应用场景
01 客户细分
将客户按照其特征和行为划分为不同的细分市场, 以便更好地了解客户需求并提供定制化服务。
02 异常检测
通过聚类分析发现数据中的异常值或离群点,以 便及时发现潜在的问题或风险。
生物信息学
基因表达分析
在生物信息学中,聚类分析可以用于分析基因表达数据, 将相似的基因聚类在一起,以揭示基因之间的功能关联和 调控机制。
蛋白质组学分析
通过聚类分析,可以研究蛋白质之间的相互作用和功能模 块,以深入了解生物系统的复杂性和动态性。
个性化医疗
通过聚类分析,可以根据个体的基因型、表型等特征进行 分类,为个性化医疗提供依据和支持。
聚类分析之密度划分(DBSCAN、MeanShift)
聚类分析之密度划分(DBSCAN、MeanShift)将密度⾜够⼤的相邻区域连接,能有效处理异常数据,主要⽤于对空间数据的聚类。
只要靠近区域的密度超过某个阀值,就继续聚类。
将密度⾜够⼤的相邻区域连接起来。
在⼀个给定范围的区域内必须⾄少包含某个数⽬的点。
该类⽅法将每个簇看作是数据空间中被低密度区域分割开的⾼密度对象区域,也就是将簇看作是密度相连的点最⼤集合。
具有较⼤的优越性和灵活性,有效地克服噪声的影响,并且只需要对数据进⾏⼀次扫描。
代表算法DBSCAN、DENCLUE和OPTICS等。
setp1:输⼊数据集合s,随机找出⼀个点,并找出这个点所有密度相连点setp2:遍历所有epslon领域内的点,并寻找这些点相连的点setp3:扫描数据集,寻找没有被聚类的核⼼点。
返回setp2setp4:输出划分的类,并输出异常值点(不和其他点密度相连)优点:应⽤最为⼴泛;收敛速度快;能扩展以⽤于⼤规模的数据集,与K-means⽅法相⽐,DBSCAN不需要事先知道要形成的簇类的数量。
与K-means⽅法相⽐,DBSCAN可以发现任意形状的簇类。
同时,DBSCAN能够识别出噪声点。
缺点:倾向于识别凸形分布、⼤⼩相近、密度相近的聚类;中⼼选择和噪声聚类对结果影响⼤。
DBSCAN不能很好反映⾼维数据, DBSCAN不能很好反映数据集以变化的密度。
DBSCAN(Density-Based Spatial Clustering of Application with Noise)是⼀个基于⾼密度连接区域的密度聚类⽅法。
DBSCAN通过检查数据库中每个点的ε-邻域来寻找聚类。
如果⼀个点p的ε-邻域包含多于MinPts个点,则创建⼀个以p作为核⼼对象的新簇。
然后,DBSCAN反复地寻找从这些核⼼对象直接密度可达的对象,这个过程可能涉及⼀些密度可达簇的合并[9]。
当没有新的点可以被添加到任何簇时,该过程结束。
python代码如下:from sklearn.cluster import DBSCANfrom sklearn import datasetsfrom dask.array.learn import predictimport numpy as npiris = datasets.load_iris()X = iris.datay = iris.targetprint(y)clf=DBSCAN()predicted=clf.fit_predict(X)#设置区间print(predicted)k2y = np.array([0,1,2])print(k2y[predicted])print((k2y[predicted] == y).astype(int).mean())我们可以看出聚类精度0.687MeanShiftfrom sklearn.cluster import MeanShiftfrom sklearn import datasetsfrom dask.array.learn import predictimport numpy as npiris = datasets.load_iris()X = iris.datay = iris.targetprint(y)clf=MeanShift()predicted=clf.fit_predict(X)#设置区间print(predicted)k2y = np.array([1,0])print(k2y[predicted])print((k2y[predicted] == y).astype(int).mean())聚类精度0.66。
聚类系数和密度的关系
聚类系数和密度的关系聚类系数和密度是社交网络分析中两个经典的参数,可以帮助我们识别社交网络中的社群、关键节点等信息。
这两个参数之间有着密切的关系,下面将详细介绍一下这方面的知识,帮助读者更好地了解社交网络分析的基础知识。
1. 聚类系数的定义和计算聚类系数是指某个节点的邻居节点之间实际边数与可能边数之比,即反映了某个节点周围的节点间联系程度。
聚类系数越高,则表明该节点所在的社群越紧密,越有可能是一个核心节点。
聚类系数的计算公式为:$$ C_u = \frac{2\times |E_u|}{k_u \times (k_u -1)} $$其中,$C_u$表示节点$u$的聚类系数,$|E_u|$表示节点$u$的边数,$k_u$表示节点$u$的度数。
其中,$D$表示社交网络的密度,$|E|$表示社交网络中的边数,$|V|$表示社交网络中的节点数。
由上述定义和计算公式,我们可以看出聚类系数和密度之间并没有直接的关系。
不过,它们又不是完全独立的两个参数,它们之间还是有联系的。
下面我们将从多个方面来分析这种联系:(1) 社群间紧密程度的关系社群内的联系越紧密,其聚类系数也就越高,而社群之间的联系也就越弱,其聚类系数则较低。
这样来看,聚类系数可以反映社交网络中社群的紧密程度,而密度可以反映整个社交网络的紧密程度。
(2) 节点重要度的关系在社交网络中,聚类系数高的节点往往是比较重要的节点,它们往往是社群的核心节点或关键节点。
而在一个紧密的社交网络中,节点之间的联系也会更加紧密,节点重要度也就更高。
(3) 分析方法的关系在社交网络分析中,我们往往需要通过计算聚类系数和密度来识别出社群和关键节点等信息。
通过计算聚类系数,我们可以确定社群的紧密程度,而通过计算密度,我们可以确定社交网络的紧密程度。
通过对聚类系数和密度的综合分析,我们可以得到较为全面的社交网络特征分析结果。
总之,聚类系数和密度是社交网络分析中的两个基础参数,它们之间虽然没有直接的关系,但是相互影响。
密度聚类算法详解
密度聚类算法详解密度聚类是一种数据挖掘和机器学习中常用的聚类算法,它能够发现具有类似密度的数据点,并将它们划分为不同的聚类。
与传统的聚类算法(如K均值和层次聚类)相比,密度聚类不需要提前指定聚类的个数,能够自动发现数据中的不同密度区域,并将其归为一个簇。
本文将详细介绍密度聚类算法的原理、步骤和应用。
一、密度聚类的原理密度聚类的核心概念是密度可达性和密度直达性。
密度可达性指的是如果一个样本A位于另一个样本B的ε-邻域内,并且样本B是在该邻域内密度最大的点,则样本A被认为是从样本B密度可达。
密度直达性是密度可达性的传递性,如果存在样本序列A1,A2,...,An,使得A1从样本A2,A2从A3,...,An-1从An密度可达,则样本A1从样本An密度直达。
密度聚类的基本思想是通过计算每个样本点的密度来发现簇结构。
算法从一个未访问的样本点开始,计算其ε-邻域内的样本点个数,如果该个数大于等于预设的阈值MinPts,则将该样本点标记为核心对象,并将其密度直达的样本点加入到同一个簇中。
对于不满足MinPts条件的样本点,如果其ε-邻域内存在核心对象,则将其归属于该核心对象所在的簇中,否则将其视为噪声。
二、密度聚类的步骤密度聚类的步骤如下:1. 初始化:设置邻域半径ε和核心对象的最小邻域数目MinPts。
2.计算密度:计算每个样本点的ε-邻域内的样本数。
3. 标记核心对象:将邻域内样本数大于等于MinPts的样本点标记为核心对象,将邻域内的样本点加入到对应的簇中。
4.扩展簇:对每个核心对象进行扩展,将其密度直达的样本点加入到相应的簇中。
5.去噪声:将不属于任何簇的样本点标记为噪声或离群点。
三、密度聚类的应用密度聚类广泛应用于各种数据挖掘和机器学习任务中,如图像分割、异常检测、文本聚类等。
以下是一些密度聚类的应用示例:1.图像分割:密度聚类可以用于将图像中的像素点划分为不同的区域,从而实现图像的分割和提取。
2.异常检测:密度聚类可以用于识别数据中的异常点或离群点,这些异常点通常具有与其他样本点不同的密度特征。
聚类分析的类型简介及应用
聚类分析的类型简介及应用聚类分析是一种无监督学习的方法,它将数据集中的对象按照其相似性分为若干个互不重叠的子集,每个子集被称为一个簇。
不同的聚类分析方法根据其内聚力和分离力的不同标准,可以分为层次聚类、划分聚类、密度聚类和模型聚类等类型。
下面将对这些聚类分析的类型进行详细介绍,并介绍它们的应用领域。
1. 层次聚类:层次聚类根据簇间的连续关系进行分类,可以形成一个层次性的聚类结果。
层次聚类分为凝聚式和分离式两种方法。
凝聚式聚类从每个数据点开始,逐渐合并相邻的数据点,直到所有的数据点都被合并成一个簇。
分离式聚类从所有的数据点开始,逐渐将它们分成更小的簇,直到每个数据点都成为一个簇。
层次聚类的优点是不需要事先指定簇的个数,缺点是时间复杂度较高,适用于数据较少、簇的个数未知的情况。
层次聚类的应用包括社交网络分析、生物信息学、图像分析等。
2. 划分聚类:划分聚类根据簇内的相似性和簇间的分离度将数据集划分成不同的簇。
常用的划分聚类方法有K-means聚类和K-medoids聚类。
K-means聚类将数据集分成K个簇,每个簇的中心是该簇中所有数据点的均值。
K-medoids 聚类是K-means聚类的扩展,每个簇的中心是该簇中离其他数据点最近的数据点。
划分聚类的优点是计算速度快,缺点是对初始簇中心的选择敏感,适用于大规模数据集和已知簇个数的情况。
划分聚类的应用包括市场细分、用户分类、图像压缩等。
3. 密度聚类:密度聚类根据数据点的密度将其划分成不同的簇。
常用的密度聚类方法有DBSCAN和OPTICS。
DBSCAN通过设置一个半径范围和一个最小邻居数目的阈值,标记样本点为核心点、边界点或噪声点,并将核心点连接成簇。
OPTICS根据样本点之间的密度和距离建立一个可达距离图,通过截取距离图的高度获得不同的簇。
密度聚类的优点是不需要指定簇的个数,对噪声和离群点鲁棒性较强,缺点是对参数的选择敏感,计算复杂度较高,适用于数据集具有不规则形状的情况。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常见的数据分析方法,它可以帮助我们发现数据中的隐藏模式和结构。
在实际应用中,根据不同的数据情况和问题需求,我们可以选择不同类型的聚类分析方法。
本文将介绍聚类分析的类型与选择,帮助读者更好地理解和应用聚类分析方法。
一、聚类分析的类型1. 原型聚类原型聚类是一种常见的聚类分析方法,其核心思想是根据样本之间的相似度将它们划分到不同的类别中。
K均值聚类是原型聚类的典型代表,它通过迭代计算样本点到聚类中心的距离,并将样本划分到距离最近的聚类中心所对应的类别中。
2. 层次聚类层次聚类是另一种常见的聚类分析方法,其特点是不需要事先指定聚类个数,而是通过计算样本之间的相似性来构建一颗层次化的聚类树。
根据树状图可以灵活选择合适的聚类个数,从而达到最优的聚类效果。
3. 密度聚类密度聚类是一种基于样本点密度的聚类方法,其核心思想是寻找样本密度较大的区域,并将其划分为一个簇。
DBSCAN(Density-BasedSpatial Clustering of Applications with Noise)是密度聚类的代表算法之一,它能够发现任意形状的簇,并且具有对噪声点的鲁棒性。
4. 模型聚类模型聚类是一种基于概率模型或统计模型进行数据聚类的方法。
高斯混合模型(Gaussian Mixture Model,GMM)就是一种典型的模型聚类算法,它假设数据符合多维高斯分布,在对数据集进行了参数估计后,可以根据模型得出数据点属于每个簇的概率。
二、选择合适的聚类方法1. 根据数据特点选择在选择聚类方法时,首先需要考虑数据本身的特点。
如果数据呈现出明显的簇内紧密、簇间离散的特点,可以优先考虑使用K均值等原型聚类方法;如果数据具有层次化结构或者不同尺度上均有簇结构,则可以考虑使用层次聚类方法;当数据集呈现出复杂的非凸形状、噪声较多时,可以考虑使用DBSCAN等密度聚类方法;如果假定数据符合某种概率模型,并且希望得到每个样本点属于每个簇的概率值,则可以考虑使用模型聚类方法。
聚类分析讲义范文
聚类分析讲义范文一、聚类分析的基本原理聚类分析的基本原理是通过计算数据点之间的相似性度量,将相似性高的数据点归为一类,从而形成簇(cluster)。
相似性度量方法主要包括欧几里得距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离等。
欧几里得距离是最常用的相似性度量方法,其计算公式为:d(x, y) = sqrt((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2)聚类分析的基本步骤包括:1.选择合适的相似性度量方法和聚类算法。
2.初始化聚类中心,将数据点分配到最近的聚类中心。
3.更新聚类中心,重新计算每个聚类中心的位置。
4.重复第2步和第3步,直到聚类中心的位置不再变化为止。
5.输出聚类结果。
二、聚类分析的常用算法1. K-means算法:K-means算法是最常用的聚类算法之一、其核心思想是在每次迭代中,计算每个数据点到所有聚类中心的距离,并将每个数据点分配到距离最近的聚类中心。
然后,重新计算每个聚类中心的位置。
重复执行这两个步骤,直到聚类中心的位置不再变化。
K-means算法的优势是简单快速,但对初始聚类中心的选择较为敏感。
2.层次聚类算法:层次聚类算法通过计算所有数据点之间的相似性,构建一个层次性的聚类结果。
这个结果可以表示为一个树状结构,其中每个节点代表一个聚类。
层次聚类算法的优势是不需要预先指定聚类个数,但计算复杂度较高。
3.密度聚类算法:密度聚类算法将聚类看作是在数据空间中找到高密度区域的过程。
该算法通过计算每个数据点在其邻域内的密度,将高密度区域作为簇的候选。
然后,通过在高密度区域之间构建连接来将簇进行合并。
密度聚类算法的优势在于可以发现任意形状和大小的簇,对于噪声和异常点具有较好的鲁棒性。
三、聚类分析的评估方法四、聚类分析的应用聚类分析在市场调研中可以帮助企业识别相似的顾客群体,从而定制合适的产品和推广策略。
在社交网络分析中,聚类分析可以用来发现具有相似兴趣和行为的用户群体,从而进行精准广告投放。
聚类分析方法及其应用
聚类分析方法及其应用聚类分析是一种通过寻找数据中相似模式并将其组织成群集的方法。
它在许多领域中得到广泛应用,如数据挖掘、机器学习、图像处理等。
本文将介绍聚类分析的基本概念和常用方法,并讨论其在实际应用中的一些案例。
一、聚类分析的基本概念聚类分析是一种无监督学习方法,它将数据集中的样本根据相似性进行分组。
相似的样本被分配到同一个群集中,而不相似的样本则分配到不同的群集。
聚类分析的目标是从数据中发现隐藏的结构和模式,并为进一步的分析和决策提供基础。
二、常用的聚类分析方法1. K-means聚类K-means聚类是最常用的聚类算法之一。
它将样本分为K个群集,其中K是用户定义的参数。
算法的核心思想是通过迭代优化,将样本逐步分配到最近的群集中心。
K-means聚类对于处理大规模数据集时具有较高的效率和可伸缩性。
2. 层次聚类层次聚类是一种基于距离和相似性的分层方法。
它从一个群集开始,然后逐步合并或划分群集,直到满足预定义的停止条件。
层次聚类的优势在于不需要预先指定聚类的数量,并且可以生成树状的聚类图谱。
3. 密度聚类密度聚类算法将样本分配到高密度区域,并将低密度区域作为噪声或离群点。
其中最著名的方法是DBSCAN(Density-Based Spatial Clustering of Applications with Noise),它通过定义样本之间的距离和邻域密度来确定聚类。
三、聚类分析的应用案例1. 客户细分聚类分析可以帮助企业将客户分为不同的细分市场。
通过分析客户的购买行为、兴趣偏好等因素,可以发现潜在的市场需求和消费习惯。
2. 社交网络分析聚类分析可以帮助社交媒体平台挖掘用户之间的关系和兴趣群体。
通过聚类分析,可以将用户分为相似的群集,并提供个性化的推荐和广告。
3. 医学图像处理在医学领域,聚类分析可以帮助医生对疾病进行分类和诊断。
通过分析医学图像中的不同特征,可以将病灶分为不同的类型,并辅助医生做出准确的诊断。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据分析方法,通过对数据进行分类和分组,揭示数据内在的结构和规律。
在实际应用中,不同的聚类算法适用于不同类型的数据,选择合适的聚类算法对于分析结果的准确性和可解释性至关重要。
本文将介绍聚类分析的类型与选择,帮助读者更好地理解和应用聚类分析。
一、聚类分析的类型1. 划分式聚类(Partitioning Clustering)划分式聚类是将数据划分为若干个不相交的子集,每个子集即为一个簇。
K均值(K-means)是最常用的划分式聚类算法之一,通过迭代优化簇的均值来实现数据的划分。
K均值算法简单易懂,适用于大规模数据集,但对初始聚类中心的选择敏感,容易陷入局部最优解。
2. 层次式聚类(Hierarchical Clustering)层次式聚类是将数据逐步合并或分裂,形成层次化的聚类结构。
层次式聚类分为凝聚式(Agglomerative)和分裂式(Divisive)两种方法。
凝聚式聚类从单个数据点开始,逐渐合并成越来越大的簇;分裂式聚类则从整体出发,逐渐分裂成越来越小的簇。
层次式聚类不需要预先指定簇的个数,但计算复杂度较高。
3. 密度聚类(Density-based Clustering)密度聚类是基于数据点的密度来划分簇的方法,常用的算法包括DBSCAN(Density-Based Spatial Clustering of Applications with Noise)和OPTICS(Ordering Points To Identify the Clustering Structure)。
密度聚类能够有效处理噪声和异常点,对簇的形状和大小没有假设,但对参数的选择较为敏感。
4. 模型式聚类(Model-based Clustering)模型式聚类假设数据由某种概率模型生成,通过最大化模型似然度来进行聚类。
高斯混合模型(Gaussian Mixture Model)是常用的模型式聚类方法,通过估计多个高斯分布的参数来描述数据的分布。
数据挖掘中聚类分析的使用教程
数据挖掘中聚类分析的使用教程数据挖掘是一个广泛应用于计算机科学和统计学的领域,它旨在从大量的数据中发现隐藏的模式和关联。
聚类分析是数据挖掘中最常用的技术之一,它可以将相似的数据点归类到同一个群组中。
本文将介绍聚类分析的基本概念、常用算法以及如何在实际应用中使用。
一、什么是聚类分析?聚类分析是一种无监督学习方法,它通过计算数据点之间的相似性来将它们划分为不同的群组。
聚类分析的目标是使同一群组内的数据点尽可能相似,而不同群组之间的数据点尽可能不同。
聚类分析可以帮助我们发现数据中的潜在模式、结构和关联。
二、常用的聚类算法1. K-means算法K-means算法是最常用的聚类算法之一,它将数据点划分为预先设定的K个簇。
算法的基本思想是通过计算数据点与簇中心的距离,将每个数据点分配到距离最近的簇中心。
然后,重新计算每个簇的中心点,并重复此过程直到簇心不再发生变化或达到预定的迭代次数。
2. 层次聚类算法层次聚类算法是一种自底向上或自顶向下的递归分割方法。
它的特点是不需要预先设定聚类簇的个数,而是通过计算数据点之间的距离或相似性,逐步合并或分割簇。
层次聚类可以生成一棵树形结构,称为聚类树或谱系树,通过对树进行剪枝可以得到不同个数的簇。
3. 密度聚类算法密度聚类算法基于数据点之间的密度来识别具有高密度的区域。
算法的核心思想是计算每个数据点的密度,并将高密度区域作为簇的中心进行扩展。
最常用的密度聚类算法是DBSCAN,它使用一个邻域半径和最小密度来定义一个核心点,从而将数据点划分为核心点、边界点和噪声点。
三、如何使用聚类分析1. 准备数据在使用聚类分析前,首先需要准备好适合进行聚类的数据。
这些数据可以是数字、文本或图像等形式,但需要将其转化为计算机能够处理的格式。
同时,数据应该经过预处理,例如去除噪声、处理缺失值和标准化等。
2. 选择适当的聚类算法根据数据的特点和问题的需求,选择合适的聚类算法。
例如,如果数据点的分布呈现明显的球状或椭球状,可以选择K-means算法;如果数据点的分布具有一定的层次结构,可以选择层次聚类算法;如果数据点的分布具有不同的密度区域,可以选择密度聚类算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=6mm
p
’=3m
m
P的核心距离
20
=6mm
p
’=3m q1
m
q2 可达距离 (p,q1)=’=3mm 可达距离 (p,q2)=d(p,q2)
例 如 : 假 设 邻 域 半 径 E=2, minPts=3 , 存 在 点 A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2) 点A为核心对象,在A的E领域中有点{A,B,C,D,E,F},其 中 A 的 核 心 距 离 为 E’=1 , 因 为 在 点 A 的 E’ 邻 域 中 有 点 {A,B,D,E}>3; 点F到核心对象点A的可达距离为 ,因为A到F的欧几里 得距离 大于点A的核心距离1.
12
DBSCAN(续)
算法 任意选取一个点 p 得到所有从p 关于 Eps 和 MinPts密度可达的点. 如果p 是一个核心点, 则找到一个聚类. 如果 p 是一个边界点, 没有从p 密度可达的点, DBSCAN 将 访问数据库中的下一个点. 继续这一过程, 直到数据库中的所有点都被处理.
象的直接可达对象,并按可达距离升序排列;结果队列用来存储样本点的输出次序);
2 如果所有样本集D中所有点都处理完毕,则算法结束。否则,选择一个未处理(即 不在结果队列中)且为核心对象的样本点,找到其所有直接密度可达样本点,如 过该样本点不存在于结果队列中,则将其放入有序队列中,并按可达距离排序;
3 如果有序队列为空,则跳至步骤2,否则,从有序队列中取出第一个样本点(即可达距离最小的样 本点)进行拓展,并将取出的样本点保存至结果队列中,如果它不存在结果队列当中的话。
OPTICS算法额外存储了每个对象的核心距离和可达距离。 基于OPTICS产生的排序信息来提取类簇。
2019/5/30
OPTICS算法
输入:样本集D, 邻域半径E, 给定点在E领域内成为核心对象的最小领域点数MinPts 输出:具有可达距离信息的样本点输出排序 方法:1 创建两个队列,有序队列和结果队列。(有序队列用来存储核心对象及其该核心对
c直接密度可达a,a直接密度可达b, 所以c密度可达b, 同理b不密度可达c,但b和c密度 连通
2019/5/30
DBSCAN(1996)
DBSCAN(Density Based Spatial Clustering of Applications with Noise) 一个基于密度的聚类算法
点 {m,q,p,m1,m2}, 点 q的 领域中有 {q,m}, 点 o 的 领 域中有点 {o,p,s}, 点 s 的 领域中有点 {o,s,s1}. 那么核心对象有 p,m,o,s(q 不是核心对象,因为它对应 的 领域中点数量等于 2 ,小于 MinPts=3) ; 点 m 从点 p 直接密度可达,因为 m 在 p 的 领域内,并 且 p 为核心对象; 点 q 从点 p 密度可达,因为点 q 从点 m 直接密度可达,并 且点 m 从点 p 直接密度可达; 点 q 到点 s 密度相连,因为点 q 从点 p 密度可达,并 且 s 从点 p 密度可达。
1) p 属于 NEps(q) 2) 核心点条件:
|NEps (q)| >= MinPts
p
MinPts = 5
q
Eps = 1 cm
3
密度概念
核心对象 (Core object): 一个对象的–邻域至少包含最小数
目MinPts个对象,
不是核心点 ,但落在某个核心 点的 Eps 邻域内的对象称为边
3.1 判断该拓展点是否是核心对象,如果不是,回到步骤3,否则找到该拓展点所有的直接密度可达点;
3.2 判断该直接密度可达样本点是否已经存在结果队列,是则不处理,否则下一步;
3.2 如果有序队列中已经存在该直接密度可达点,如果此时新的可达距离小于旧的可达距离,则用新可达 距离取代旧可达距离,有序队列重新排序; 重新排序;
密度可达:
点 p 关于Eps, MinPts 是从 q密度可
p
达的, 如果 p1 = q, pn =
存p 使在得一个pi+节1 是点从链pip直1,接…密, pn,
q
p1
度可达的
密度相连的:
点 p关于 Eps, MinPts 与点 q是密度
相连的, 如果 存在点 o 使得, p 和 q p
DBSCAN的复杂度 采用空间索引, 复杂度为O(nlog n), 否则为O(n2)
DBSCAN的缺点: 对用户定义的参数是敏感的, 参数难以确定(特别是对于高 维数据), 设置的细微不同可能导致差别很大的聚类. (数据倾斜分布)全局密度参数不能刻画内在的聚类结构
13
DBSCAN从任一对象p开始,根据参数e和MinPts提取所有从p密 度可达对象,得到一个聚类。 1. 从任一对象p开始。 a) 如果p是核心对象,则p和p直接密度可达的所有对象被 标记为类i。递归p直接密度可达的所有对象qi(即用qi代替p回 到第一步)。 b) 如果p是一个边界对象,那么p被标记为噪声。 2. i++ 3. 如果还有没被标记的对象,则从中任选一个作为p,回到 第一步。
双层正方形或者三维同心球
x sin cos
y
sin
sin
z cos
U[0, 2 ] U[0, ]
其中第一类样本的参数, 服从均匀布U[0,50] ,第二
类样本的参数服从均匀分布 U[50,100] ,随机产生
20000个样本数据进行聚类.
19
OPTICS(续)
例: 设=6(mm), MinPts=5. p的核心距离是p与四个最近的数据对象之间的距离’.
q欧1关几于里p得的距可离达要距大离. 是p的核心距离(即’=3mm), 因为它比从p到q1的
q2关于p的可达距离是从p到q2的欧几里得距离, 它大于p的核心距离
界点,不属于任何簇的对象为噪声.
对于空间中的一个对象,如果它在给定半径e的邻域中的对
象个数大于密度阀值MinPts,则该对象被称为核心对象,否
则称为边界对象。
Outlier
Border Core
4
Eps = 1cm MinPts = 5
密度概念
直接密度可达的(Directly density reachable, DDR): 给定对 象集合D, 如果p是在q的–邻域内, 而q是核心对象, 我们说对 象p是从对象q直接密度可达的(如果q是一个核心对象,p属 于q的邻域,那么称p直接密度可达q。)
2019/5/30
OPTICS (1999)
OPTICS(Ordering Points To Identify the在前面介绍的DBSCAN算
法中,有两个初始参数 (邻域半径)和minPts(邻域最小点数)需要用户 手动设置输入,并且聚类的类簇结果对这两个参数的取值非常敏感,不同 的取值将产生不同的聚类结果,其实这也是大多数其他需要初始化参数聚 类算法的弊端。
q
都是关于Eps, MinPts 是从 o 密度可
达的(如果存在o,o密度可达q和p, 则称p和q是密度连通的)
o
由一个核心对象和其密度可达的所有对象构成一个聚类。
6
密度概念
Eg: 假设半径 Ε=3 , MinPts=3 , 点 p 的 领域中有点 {m,p,p1,p2,o}, 点 m 的 领域中有
util 所有输入点都判断完毕
repeat
针对所有核心对象的 邻域所有直接密度可达点找到最大密度相
连对象集合,
中间涉及到一些密度可达对象的合并。
Util 所有核心对象的 邻域都遍历完毕
15
作业(Due date:5月9日)
专题思路:把搜下来的网页进行聚类,将聚类结果显示给用 户,用户可以选择其中的一个类,标为关注,类的关键词作 为主题,用户就可以跟踪这主题、了解主题的文章的情感 (就是其它部分的功能)
Clustering Structure) Ankerst, Breunig, Kriegel, 和 Sander 提出(SIGMOD’99) 为自动和交互的聚类分析计算一个簇次序(cluster ordering ).
OPTICS并不显示的产生结果类簇,而是为聚类分析生成一个增广的簇 排序(比如,以可达距离为纵轴,样本点输出次序为横轴的坐标图), 这个排序代表了各样本点基于密度的聚类结构。它包含的信息等价于从 一个广泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序 中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。
17
OPTICS (1999)
这个次序代表了数据的基于密度的聚类结构。它包含了信息, 等同于从一个广域的参数设置所获得的基于密度的聚类
可用于自动和交互聚类分析, 包括发现内在聚类结构 可以使用图形或可视化技术表示
考虑DBSCAN, 对一个恒定的MinPts值, 关于高密度的(即较小 的值)的聚类结果被完全包含在根据较低密度所获得的密度 相连的集合中
扩展DBSCAN算法来同时处理一组距离参数值
18
OPTICS(续)
为了同时构建不同的聚类, 应当以特定的顺序来处理对象. 优 先选择最小的值密度可达的对象, 以便高密度的聚类能被首 先完成
每个对象需要存储两个值 对象p的核心距离(core-distance)是使得p成为核心对象的最 小。如果p不是核心对象, p的核心距离没有定义 对象q关于另一个对象p的可达距离(reachability-distance ) 是p的核心距离和p与q的欧几里得距离之间的较大值. 如果p 不是一个核心对象, p和q之间的可达距离没有定义
2: 邻域的最大半径