(完整版)相交线与平行线讲义OK
相交线与平行线讲义
相交线与平行线讲义知识点精讲:一、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).二、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.三、三线八角由前面的教具演示引出.如图,直线a,b被直线c所截,形成的8个角中,其中对顶角有______对.______邻补角有______对.______同位角有______对,______内错角有______对,______同旁内角有______ 对.______ 四、典例探究(一)、平行性质与判定的综合应用1、如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F ,能辨认∠1=∠2吗?试说明理由.C2、如图,已知∠1=∠2,再添上什么条件可使AB ∥CD 成立?并就你添上的条件证明AB ∥CD .3、如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,求∠2的度数。
第五章平行线与相交线讲义
第五章 相交线与平行线一、学习目标重点:垂直的概念,平行线的判定和性质; 难点:用定理或性质进行简单的推理 二、知识要点 第一节 相交线知识点1.相交线---对顶角、邻补角 1.对顶角(1)定义:有一个公共顶点,并且有一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角 (2)性质:对顶角相等 2.邻补角(1)定义:有公共顶点,且有一条公共边,另一条边互为 反向延长线,具有这 种位置关系的两个角,互为邻补角。
(2)性质:邻补角互补例.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:____ _ ___ __; (2)写出∠COE 的邻补角: __; (3)写出∠BOC 的邻补角:____ _ ___ __; (4)写出∠BOD 的对顶角:____ _.基础练习:1.直线AD 、BC 交于O 点,∠+∠=︒A O B C O D 110, 则∠C O D的度数为 . 2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______拓展练习:AB O CD图1FE OD CB A123 4知识点2垂线及其性质1、定义:当两条直线相交所形成的四个角中,有一个角是直角,那么这两条直线互相垂直,交点叫做垂足,其中一条直线叫做另一条直线的垂线。
2、表示方法:用“⊥”表示垂直,读作“垂直于”3、性质:过一点有且只有一条直线与已知直线垂直。
4、垂线的画法基础练习:1.过P 点,画出OA 、OB 的垂线.APO BAO P B知识点3 垂线段与点到直线的距离1、垂线段:P 为直线l 外一点,PC ⊥l ,垂足为C ,则线段PC 就是点P 到直线l 的垂线段。
2、点到直线的距离:直线外一点到这条直线的垂线段的长度。
人教数学七下《平行线》相交线与平行线PPT精品课件
平行 )
A
B
C
D
E
F
课堂检测 能力提升题
如图所示,AD∥BC,P是AB的中点. (1)画出线段PQ,使PQ∥AD,PQ与DC交于Q点;
(2)PQ与BC平行吗?为什么?
(3)测量DQ、CQ,判断DQ和CQ是否相等?测量AD、BC、
PQ,判断AD+BC=2PQ是否成立?
课堂检测
答:(1)线段PQ如图所示; (2)PQ与BC平行,理由如下:
(1)如图,因为AB // DE,BC // DE(已知),所以A,B,C三
点 在同一直线上
;
( 经过直线外一点,有且只有一条直线与这条直线平行 ).
A··B C·
D
E
课堂检测
(2)如图,因为AB // CD,CD // EF(已知),
所以____A_B___ // ___E__F____.
( 如果两条直线都和第三条直线平行,那么这两条直线也互相
如图,在△ ABC中, P是AC边上一点.过点 P画AB的平行线.
解:如图所示: B PD就是所要画的直线.
A D
P C
巩固练习
如图,在△ABC 中,P是AC边上一点.过点P画BC的平行线.
A
PE
B
C
解:PE就是所要画的直线.
探究新知
知识点 3 平行公理及其推论
(1)经过点C能画出几条直线? 无数条.
c的左侧与直线b相交逐步变为在c的右侧与b相交.想象一下,在
这个过程中,c有没有直a线a与c 直线b不相交的位c置呢?
a
a
b
b
b
探究新知
在木条转动过程中,存在一个直线a与直线b不相交的位 置,这时我们说直线a与b互相平行.
平行线与相交线 讲义
相 交 线 和 平 行 线一、知识结构:⑴直线公理 ⑵线段公理⑶相交线⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧同旁内角内错角同位角所截两条直线被第三条直线点到直线的距离垂线的性质唯一性互相垂直对顶角邻补角一般情况两条直线相交 ⑷平行线⎪⎪⎩⎪⎪⎨⎧ 平移的特征平行线的性质及其推论平行线的判定平行公理及其推论重要考点:1、认识常用角的概念、性质、计算2、垂线、垂线的性质3、平行线的性质与判定4、平移的性质与应用 综合考点: 1、公理的应用2、平行线的性质与判定的综合3、平行线与角平分线的综合4、平面内直线交点的个数二、典型例题:例1.已知mm 26,mm 42,30===︒=∠BC BA MBN (如图所示),过点A 分别画AB 和BC 的垂线,画点C 到AB 的垂线段,画点B 到AC 的垂线段,并量出点A 到BC 的距离和点C 到AB 的距离及A ,C 两点间的距离.例2. 如图,直线DE 交射线BA 和BC 于点F 和G ,请找出CGD ∠的同位角与B ∠的同旁内角.例3 .如图 1-18,直线a ∥b ,直线 AB 交 a 与 b 于 A ,B ,CA 平分∠1,CB平分∠ 2,求证:∠C=90°.变式练习:如图 1-20,CA ,CB 分别是∠BAE 与∠ABF 的平分线,若∠C=90°,问直线a 与直线b 是否一定平行?例4 .如图1-21所示,AA 1∥BA 2求∠A 1-∠B 1+∠A 2.变式1. 如图1-24所示.∠A 1+∠A 2=∠B 1,问AA 1与BA 2是否平行?变式2. 如图1-25所示.若∠A1+∠A 2+…+∠A n =∠B 1+∠B 2+…+∠B n-1,问AA 1与BA n 是否平行?例5 .如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .例6. 如图1-30所示.∠1=∠2,∠D=90°,EF ⊥CD .求证:∠3=∠B .例7.如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠3 试说明:AD 平分∠BAC 答:因为AD ⊥BC ,EG ⊥BC所以AD ∥EG ( ) 所以∠1=∠E ( )∠2=∠3( ) 又因为∠3=∠E 所以∠1=∠2所以AD 平分∠BAC ( ) 例8. 用六根火柴摆三角形.(1)摆出三个三角形,(2)摆出六个三角形; (3)摆出八个三角形;(4)摆出四个三角形.三、练习题1.填空题(1)在同一平面内,经过直线上或直线外一点,有且只有________条直线与已知直线垂直. (2)如图(1),︒=∠⊥⊥28,,AOC BO AO DO CO ,那么.________=∠BOD (3)如图(2),BC AD AC AB ⊥⊥,,垂足分别为D A ,点,C 点到直线AB 的距离是垂线段______的长度,B 点到直线AD 的距离是垂线段_________的长度,A 点到直线BC 的距离是垂线段的__________的长度,A 点到B 点的距离是线段_________的长度. (4)如图(3),已知AB 和CD 相交于O 点,︒=∠︒=∠18,50AOE BOC ,那么._______=∠COE (5)如图(4),①1∠和2∠是_____和______被_______截得的_________________; ②_______和_______被_________所截,1∠和B ∠是_________角; ③_______和_______被_________所截,EFC ∠和C ∠是_______角.2.选择题(1)下列图中,1∠和2∠不是同位角的是( )(2)图中,3∠和4∠不是内错角的是( )图8(3)图中,5∠和6∠不是同旁内角的是( )(4)观察图知,在下列语句中,正确的是( )A .若21∠=∠,则CD AB //. B .若21∠=∠,则BC AD //. C .若BCD B ∠=∠,则AD BC //. D .若D B ∠=∠,则AD BC //. (5)如果1∠和2∠是同旁内角,且︒=∠751,那么=∠2( )A .75°B .105°C .75°或105°D .大小不定.(6)如果两个角的一边在同一直线上,另一边互相平行,那么,这两个角( ) A .相等. B .互补. C .相等或互补. D .相等且互补. (7)有下列语句:①直线a 与b 相交,若c a //,则b 不与c 平行. ②直线a 、b 被直线c 所截,同位角相等.③如果直线AB 与直线CD 平行,则点A 、B 在直线CD 的同侧. ④如果直线AB 与直线CD 相交,则点A 、B 在直线CD 的异侧. 其中,正确的是( )A .①②③④.B .①③.C .①③④.D .①②④.(8)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50(9). 如图4,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,若∠COE=55°,则∠BOD 的度数为(A. 40° B. 45° C. 30° D. 35°(10). 如图5,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( )A. 过两点只有一条直线B. 经过一点有且只有一条直线垂直于已知直线C. 垂线段最短D. 过一点只能作一条垂线(11).下列说法正确的有( ) ①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②互为邻补角的角平分线互相垂直;③过一点有且只有一条直线和已知直线垂直;④直线外一点到这条直线的垂线的长叫做这点到这条直线的距离。
(人教版七年级数学)第1讲-相交线与平行线(经典讲义)
第一讲相交线与平行线◆了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等.◆了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义.◆知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.◆知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线.◆知道两直线平行的条件并会正确判断.◆知道两直线平行同位角相等,进一步探索平行线的性质.◆体会两条平行线之间距离的意义,会度量两条平行线之间的距离.◆利用相关知识会进行有关推理和计算.◆会借助长方体了解直线与直线、直线与平面、平面与平面的位置关系.➢点、线、角1.点、直线、面(不定义概念)及其表示;2.射线、线段、线段的中点及其表示;3.两点确定一条直线;4.两点之间线段最短(两点之间的距离);5.角、角的顶点、边、角平分线的表示及其性质;6.角的分类(锐角、直角、钝角、平角、周角)、度量(度、分、秒)及计算.➢关系角及其性质1.对顶角、余角、补角(邻补角)、同位角,内错角、同旁内角;2.对顶角相等;3.同角(或等角)的余角(或补角)相等.➢相交线、平行线1.垂线、垂线段最短(点到直线的距离);2.过一点(直线上或直线外)有且只有一条直线和已知直线垂直;3.会过一点画(作)已知直线的垂线;(一落,二靠,三画)4.过直线外一点,有且只有一条直线与已知直线平行;5.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.6.三线八角与平行线的关系;①判定公理:同位角相等,两直线平行.∵∠1=∠2,∴a∥b.②判定定理1:内错角相等,两直线平行.∵∠1=∠2,∴a∥b.③判定定理2:同旁内角互补,两直线平行.∵∠1+∠2=1800,∴a∥b.④性质公理:两直线平行,同位角相等.∵a∥b,∴∠1=∠2.⑤性质定理1:两直线平行,内错角相等.∵a∥b,∴∠1=∠2.⑥性质定理2:两直线平行,同旁内角互补.∵a∥b,∴∠1+∠2=1800.7.平行线之间的距离.8.会过直线外一点,画已知直线的平行线.【例题1】(06南通)已知∠α=35°19′,则∠α的余角等于()A.144°41′ B.144°81′ C.54°41′ D.54°81′【例题2】(05南通)已知,如图(1)直线AB、CD被直线EF所截,则∠EMB的同位角是() A.∠AMF B.∠BMF C.∠ENC D.∠END【例题3】(06南通)如图(2),AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于G,若∠EFG=72°,则∠EGF等于()A.36° B.54° C.72° D.108°【例题4】(04南通)如图(3),在正方体ABCD—A1B1C1D1中,下列棱中与面CC1D1D垂直的棱()A.A1B1 B.CC1 C.BC D.CD【例题5】如图所示,已知∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°.在OB上有一点P,从P 点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60° B.80° C.100° D.120°【例题6】如图,已知∠C=∠AOC,OC平分∠AOD,OC⊥OE,∠D=54°.求∠C、∠BOE的度数.【例题7】探究:如图所示,已知: AB∥CD,分别探究下面三个图形中∠A、∠C、∠P之间的数量关系,并选一个给予证明.【精练1】如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2 B.∠2-∠1图(3)图(1)图(2)例5图C.180°-∠2 +∠1 D.180°-∠1+∠2【精练2】如图1,小明要由A村去B村,现有三条路可走,走路最近理由是.【精练3】如图2,要从水渠向水池C引水,在哪里开沟可使水渠最短,请画出图形.理由是.【精练4】如图3,已知,∠1=35°,AB⊥CD,垂足为O,EF经过点O.则∠2= 度,∠3= 度,∠4= 度.【精练5】(05年临汾)如图4,将一副三角板的直角顶点重合,•摆放在桌面上,•若∠AOD=145°,则∠BOC=_______度.【精练6】(05年烟台)如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120○,第二次拐的角∠B是150○,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是【精练7】判断题:(1)和为180°的两个角是邻补角.()(2)如果两个角不相等,那么这两个角不是对顶角.()(3)两条直线被第三条直线所截,同位角相等.()(4)邻补角的角平分线所在的两条直线互相垂直.()(5)两条直线相交,所成的四个角中,一定有一个是锐角.()【精练8】如图1,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.图3图4图3图1图2【精练9】如图2,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=_____.【精练10】如图3,∠1=82°,∠2=98°,∠3=80°,则∠4=.【精练11】下列语句中,正确的是()A.有一条公共边且和为180°的两个角是邻补角 B.互为邻补角的两个角不相等C.两边互为反向延长线的两个角是对顶角 D.交于一点的三条直线形成3对对顶角.【精练12】如图,AB∥CD.若∠2是∠1的两倍,则∠2等于()A.60°B. 90°C. 120°D. 150°【精练13】一学员在广场上练习驾驶汽车,若其两次拐弯后仍沿原方向前进,则两次拐弯的角度可能是() A.第一次向左拐30○,第二次向右拐 30○B.第一次向右拐30○,第二次向左拐130○C.第一次向右拐50○,第二次向右拐130○D.第一次向左拐50○.第二次向左拐130○【精练14】如图,已知:AB∥CD,∠1=55°∠2=80°,求∠3的度数.【精练15】如图,已知: AB∥CD,BE∥CF.求证:∠1=∠4.。
七年级下册第二章 相交线与平行线讲义
七年级下册第二章相交线与平行线知识点一:对顶角与邻补角一、对顶角1、定义:2、性质:二、邻补角1、定义:2、性质:特别说明:在图形中若出来了上述的两种现象,可以直接当条件来用.典例1:(1)如图,已知直线AB、CD、EF相交于点O,∠1:∠2:∠3=6:1:2,求∠DOE的度数.(2)如图,∠2+∠3=153o,且∠3=2∠2,求∠1和∠4的度数.变式训练:1、按下面的方法折纸,然后回答问题:(1)∠2= o.2、已知直线AB、CD、EF相交于点O,OG是∠AOC的平分线,若∠EOB=2∠COE,∠GOE=70,求∠DOF的度数.知识点二:垂线及其性质应用1、在同一平面内,过一点有且只有一条直线与已知直线垂直;2、两条直线垂直是位置关系,两条直线的夹角为90o,是数量关系,它们之间可以互相转化;3、垂线段最短.典例2:1、已知直线AB⊥CD,垂足为O,OE在∠BOD内部,∠COE=125°,OF⊥OE于点O,求∠AOF的度数.2、下列说法正确的个数是()①连接两点的线中,垂线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线.A.2 B.3 C.4 D.5变式训练:1、如图所示,已知直线AB、CD交于点O,OE⊥AB于点O,且∠1比∠2大20 o,则∠AOC=______.第1题图第2题图第3题图2、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为()A.65°B.55°C.45°D.35°3、如图,CA⊥BE于A,AD⊥BF于D,下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DAC C.∠ACF是α的余角D.α与∠ACF互补4、下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.5、如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30o,求∠BOE及∠AOG的度数.4、如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70 o,求∠DOG的度数.知识点三:三线八角八个角依照其相对位置有不同的名称(如右图) 三线八角同位角:∠1和∠5、∠2和∠6、∠3和∠7、∠4和∠8相对位置相同,称为"同位角".同位角的形状似字母F.内错角:∠2和∠8、∠3和∠5相互交错,且均在内部,称为"内错角".内错角的形状似字母Z.同旁内角:∠2和∠5、∠3和∠8在截线同旁,且均在内部,称为"同旁内角".同旁内角的形状似字母U或门框形.典例3:看图填空:(1)如图①,同位角有对,内错角有对,同旁内角有对;(2)如图②,同位角有对,内错角有对,同旁内角有对;(3)如图③,同位角有对,内错角有对,同旁内角有对;(4)如图④,同位角有对,内错角有对,同旁内角有对.变式训练:1、如图,∠1与∠4是______角,∠1与∠3是______角,∠3与∠5是______角,∠3与∠4是______角.第1题图第2题图2、如图,按各组角的位置判断错误的是()A. ∠1与∠A是同旁内角B. ∠3与∠4是内错角C. ∠5与∠6是同旁内角D. ∠2与∠5是同位角知识点四:平行线的性质与判定1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a//b2、平行公理:经过直线外一点,有且只有.3、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行.即“”.4、两条直线的位置关系:在同一平面内,两条直线的位置关系只有两种:(1);(2).5、两条直线的判定方法(1)定义法:(2)平行公理的推论:(3)同位角,两直线;(4)内错角,两直线;(5)同旁内角,两直线;6、平行线的性质:(1)两直线,同位角,;(2)两直线,内错角;(3)两直线,同旁内角;典例4:1、如图,下列条件中,能判断直线a∥b的是()A.∠3=∠2 B.∠1=∠3 C.∠4+∠5=180°D.∠2=∠42、下列各图中,已知∠1=∠2.则能判断AB∥CD的是()A.B.C.D.变式训练:1、如图所示,下列推理中正确的数目有()①因为∠1=∠4,所以BC∥AD.②因为∠2=∠3,所以AB∥CD.③因为∠BCD+∠ADC=180°,所以AD∥BC.④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个B.2个C.3个D.4个2、如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为度(用关于α的代数式表示).第2题图第3题图第4题图3、如图所示,AD∥BC,点O在AD上,BO,CO分别平分∠ABC,∠DCB,若∠A+∠D=m°,则∠BOC=.4、如图所示,已知a∥b,∠1=72°,∠2=40°,则∠3=.5、如图,DH∥EG∥BC,且EF∥DC,则图中与∠1相等的角(不包括∠1)的个数()A.2 B.4 C.5 D.6第5题图第6题图第7题图第8题图6、如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A. 26°B. 36°C. 46°D. 56°7、如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于______.8、如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .9、一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°第10题图10、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是度.11、如图所示,已知∠ADE=∠B,∠1=∠2,GF⊥AB,求证:CD⊥AB.证明:因为∠ADE=∠B( ),所以DE∥BC( ).所以∠1=∠3( ).因为∠1=∠2(已知),如图,已知∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵∠1+∠4=180°(),∠1+∠2=180°()∴EF∥AB()∴∠3=∠ADE()又∵∠B=∠3(已知)∴∠ADE=∠B()∴∥()∴∠AED=∠C()14、如图,已知∠ADE=∠B,∠EDC=∠FGB,GF⊥AB.试说明CD⊥AB.∴DE∥BC∴∠EDC=∠DCB∵∠EDC=∠FGB(已知)∴∠DCB=∠FGB()∴∥()∴∠CDB=∠GFB()∵GF⊥AB( )∴∠=90°()∴∠CDB=90°∴CD⊥AB.15、如图,已知AD⊥BC,EG⊥BC,D、G分别是垂足,∠GEC=∠3.求证:AD平分∠BAC.16、如图,GC交AB于点M,GH分别交AB、EF于点N、H两点,HD平分∠GHF,∠1+∠C=180°,∠2=∠3=60°,求证:CD∥EF.17、如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.知识点五:光的反射与平行线典例、如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′典例图第1题图第2题图变式训练:1、如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O′B 平行于α,则角θ等于度.2、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n 与光线m平行,且∠1=50°,则∠2=,∠3=.(2)在(1)中,若∠1=55°,则∠3=.(3)由(1)、(2),试猜想:当两平面镜a、b的夹角∠3=时,可以使任何射到平面镜a上的光线m(m一定能够被反射到平面镜b上)经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.请用本学期学过的数学知识证明你的结论的正确性.知识点六:拐点问题1、如图所示,直线a∥b,直线c和直线a、b分别交于C、D两点,点A、B分别是直线a、b上的点,点M是直线CD上的一点,连接AM,BM,(1)若点M在C、D之间,且∠1=25°,∠3=35°,求∠2的度数;(2)如果点M在直线CD上运动,问∠1、∠2、∠3之间有怎样的数量关系?请写出来,不必说明理由.变式训练:1、如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM的大小是.2、如图,已知AB∥CD,请完成下列填空:①在图(1)中,∠1+∠2=;②在图(2)中,∠1+∠2+∠3=;③在图(3)中,∠1+∠2+∠3+∠4=;④在图(4)中,∠1、∠2、∠3、∠4、∠5有什么关系呢?也请直接写出来.3、已知,AB∥CD,分别探讨四个图形中∠APC,∠PAB,∠PCD的关系.(1)请说明图1、图2中三个角的关系,并任选一个加以证明.(2)猜想图3、图4中三个角的关系,不必说明理由.(提示:注意适当添加辅助线吆!)4、已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要求证明)(2)当P运动到如图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由?(3)当P运动到如图3的位置时,上述结论还成立吗?(不要求说明理由)。
相交线与平行线讲义
相交线与平行线讲义(总9页) -本页仅作为预览文档封面,使用时请删除本页-本章总结本章主要讲述的知识点有相交线与平行线。
其中相交线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念。
相交的一种特殊情况是垂直,两条直线交角成90︒。
经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短。
两条直线的另外一种关系是平行,平行就是指两条直线永不相交。
平行线之间的距离处处相等。
过直线外一点,作已知直线的平行线,有且只有一条。
当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。
平行线判定定理:两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢答案是可以的。
两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行:平行线判定定理1:同位角相等,两直线平行如图所示,只要满足∠1=∠2(或者∠3=∠4;∠5=∠7;∠6=∠8),就可以说AB∠∠∠∠∠∠︒∠∠︒∠∠︒∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠∠图,3∠1=2∠3,求∠1,∠2,∠3,∠4的度数。
人教数学七下《平行线》相交线与平行线PPT优质教学课件
图5-2-2
探 理解平行公理,了解其推论
究 与
问题1 如何画平行线呢?给定一条直线a(如图5-2-3),你能画
应 出直线a的平行线吗?能画几条呢?
用
解:用平推三角尺的方法画平行线;给定
一条直线a,能画出直线a的平行线.可以
图5-2-3
画出直线a的无数条平行线.
探 问题2 在图5-2-1转动木条a的过程中,有几个位置使得直线
究
与 左 侧,顺时针转动a,直线a与直线b的交点逐渐向 左 移
应
用 动,当转动到某个位置时,直线a与直线b没有交点,此时直线a 与直线b 不相交 .再继续转动a,直线 a与直线b又相交,交点出现在直线c的
右 侧.
图5-2-1
探 定义 在同一平面内,不 相交 的两条直线叫做平行线.
究
与 直线a与b是平行线,记作a∥b.
究
与 a与b平行?如图5-2-4,过点B画直线a的平行线,能画出几条?
应
用 再过点C画直线a的平行线,它和前面过点B画出的直线平
行吗? 图5-2-3
图5-2-4
探 探究 (1)在转动木条a的过程中,有 一 个位置使得直线a与b
究
与 平行.
应 用
(2)如图5-2-5,过点B画直线a的平行线b,能画出 1
条;再
过点C画直线a的平行线c,能画出
1 条,由作图可知,直线c
与直线b 互相平行 .
图5-2-5
探
究 基本事实(平行公理):经过直线外一点,有且只有 一 条直
与
应 线与这条直线平行.
用
探 例3 (教材补充例题)如图5-2-6,AB,CD是一条河的两岸,并且
(完整版)相交线与平行线讲义OK
相交线与平行线讲义例题分析:【知识点一】相交线的性质:两条直线相交,有且只有一个交点。
例1、(河南)两条直线相交所成的四个角中,下列说法正确的是()A、一定有一个锐角 B、一定有一个钝角C、一定有一个直角D、一定有一个不是钝角例2、(绵阳)在一个平面上任意画3条直线,最多可以把平面分成的部分是()A、4个B、6个C、7个D、8个例3、(鄂州)在同一个平面内,四条直线的交点个数不能是()A、2个B、3个C、4个D、5个例4、(宿迁)一块长方体橡皮被刀切了3次,最多能被分成块.例5、在一个平面内,任意四条直线相交,交点的个数最多有()A、7个B、6个C、5个D、4个例6、平面内6条直线两两相交,但仅有3条通过同一点,则截得不重叠线段共()A、24条B、21条C、33条D、36条例7、如右图,两条非平行的直线AB ,CD 被第三条直线EF 所截,交点为PQ ,那么这3条直线将所在平面分成( )A 、5个部分B 、6个部分C 、7个部分D 、8个部分【知识点二】对顶角、邻补角: 对顶角定义:两个角有一个公共的顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种关系的两个角互为对顶角。
邻补角定义:两个角有一个公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角。
对顶角的性质:对顶角相等。
邻补角的性质:邻补角互补。
例1、(漳州)如右图,直线b a 、相交于点o ,若∠1等于40°,则∠2等于( )A 、50°B 、60°C 、140°D 、160°例2、(辽宁)如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC=100°, 则∠BOD 的度数是( )A 、20°B 、40°C 、50°D 、80°例3、(湘西州)如图,直线AB ,CD 相交于O 点,若∠1=30°,则∠2,∠3的度数分别为( )A 、120°,60°B 、130°,50°C 、140°,40°D 、150°,30° 例4、如右图,图中有 对对顶角.例5、(1)延长射线OM ;(2)平角是一条射线;(3)线段、射线都是直线的一部分;(4)锐角一定小于它的余角;(5)大于直角的角是钝角;(6)一个锐角的补角与这个锐角的余角的差是90°;(7)相等的两个角是对顶角;(8)若∠A+∠B+∠C=180°,则这三个角互补;(9)互为邻补角的两个角的平分线互相垂直.以上说法正确的有( )例7例1例2 例3例4A 、2个B 、3个C 、4个D 、5个例6、命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果22b a =,那么b a =;⑧如果∠A+∠B=90°,那么∠A 与∠B 互余.其中真命题有( )A 、3个B 、4个C 、5个D 、6个【知识点三】垂线:垂线的定义:当两条直线相交所成的四个角中有一个角为90°时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
平行线与相交线讲义
相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:___________和___________。
2.两条不同的直线,若它们只有一个公共点,就说它们相交。
即,两条直线相交有___________交点。
3.垂直是相交的特殊情况。
有关两直线垂直,有两个重要的结论:(1)过一点有___________条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,___________最短。
4. 余角、补角及其性质定义:如果两个角的和是直角,那么称这两个角互为,如果两个角的和是平角,那么称这两个角互为。
同角或等角的余角,同角或等角的补角。
5、对顶角概念:直线AB与CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为反向延长线,这样的两个角叫做。
性质:对顶角___________ 。
6.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中:⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么__ ___________________.(___________________________ )8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.D C B A⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ . 10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________________。
(完整)相交线与平行线
第9讲相交线与平行线同学们对两条直线相交、平行一定不陌生吧!纵横交错的公路,棋盘中的横线和竖线,操场上的双杠,教室中的课桌面、黑板面相邻的两条边与相对的两条边……都给我们以相交线和平行线的形象.专题简介暑期我们学习了几何图形-—线段、直线、射线和角.本讲将进一步学习平面内不重合的两条直线间的位置关系:相交和平行.对于相交,我们要研究两条直线相交所成的角的位置关系和数量关系;对于平行,我们要借助于一条与两条平行直线相交的直线,通过研究相交所得角的位置和数量关系,进而得出平行线的性质和判定.同时,我们还会学习通过简单的逻辑推理证明数学结论的方法,培养分析问题的能力,树立言之有据的思考习惯.模块分类1.相交线相关概念.2.平行线性质和判定.3.平行线四大模型.学习目标1.掌握与相交线和平行线的相关概念和性质.2.掌握平行线的判定和性质.3.掌握平行线四大模型.考点汇总考试频率对应例题对应练习题相交线相关概念☆☆☆例1、2练1、2平行线性质和判定☆☆☆☆☆例3、4练3、4平行线四大模型☆☆☆☆例5~8练5模块一相交线相关概念题型一邻补角、对顶角、垂线段知识点睛相交线任意两条相交的直线,将圆周角一分为四,如图,∠1和∠2有一条公共边OC,它们的另一边互为反向延长线,(即∠1+∠2= ),具有这种关系的两个角,互为.如图,∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为.如图,因为∠1与∠2互补,∠3与∠2互补(邻补角的定义),所以∠1=∠3(同角的补角相等).由此我们得到对顶角的性质:对顶角相等.垂直如图,若两条直线AB、CD所成的夹角α=90°,我们说AB、CD互相.其中一条直线叫做另一条直线的,它们的交点叫做.如图,AB⊥CD,垂足为O.如果两条直线相交所成的四个角中任意一个角等于90°,那么这两条直线垂直.如果AB和CD交于点O,∠AOC=90°,那么AB⊥CD.如图,连接直线l外一点P与直线l上格点O,A1,A2,A3,……,其中PO⊥l(称PO为P到直线l的垂线段),这些连成的线段中,不难发现, 最短.于是我们得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即在同一平面内,过一点有且只有一条直线与已知直线垂直.基础夯实【例1】(1)如果∠AOB+∠DOE=180°,∠AOB和∠BOC互为邻补角,那么∠DOE与∠BOC的关系是.(2)如图,三条直线a、b、c相交于一点,则∠1+∠2+∠3=.【练1】(1)下列语句,正确的有 (只填序号).□,1有公共顶点且相等的两个角是对顶角;错误!有公共顶点且互补的两个角是邻补角;错误!对顶角的角平分线在同一直线上;错误!对顶角相等但不一定互补;错误!对顶角有公共的邻补角.(2)如图,EF、CD交于点O,OA⊥OB,且OD平分∠AOF,∠BOE=2∠AOE,求∠EOD的度数.题型二同位角、内错角、同旁内角知识点睛同位角如图,直线AB,CD和EF相交(也可以说两条线AB、CD被第三条直线EF所截),构成8个角.现在我们关注那些没有公共顶点的两个角的关系.∠1和∠5这两个角分别在直线AB、CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做同位角.思考:图中还有哪些角是构成同位角?内错角∠3和∠5这两个角都在直线AB、CD之间,并且分别在直线EF两侧(∠3在EF左侧,∠5在EF右侧),具有这种位置关系的一对角叫做内错角.思考:图中还有哪些角是构成内错角?同旁内角∠3和∠6也都在直线AB、CD之间,但它们都在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做同旁内角.思考:图中还有哪些角是构成同旁内角?同位角:“F字型”内错角:“Z字型”同旁内角:“C字型”基础夯实【例2】(1)如图,∠DCE与∠B是直线AB、被直线所截而成的角;∠ACB与∠A是直线AB、被直线所截而成的角;∠ACE和∠A是直线AB、被直线所截而成的角.(2)如图,直线a、b、c两两相交,形成12个角中,完成填空:错误!∠1与∠2是,错误!∠3与∠5是,○3∠2与∠5是,错误!∠7与∠12是,错误!∠6与∠7是 ,错误!∠8与∠2是,强化挑战【练2】(1)(“希望杯”邀请赛)如图,平行直线AB、CD与相交直线EF、GH相交,图中同旁内角共有________ .(2)在如下所示的图中,一共有对内错角.(3)用数码标记出下图与∠1是同位角的所有角.模块二平行线的性质与判定知识点睛同一平面内,不相交的两条直线叫做平行线.如图,过点B作直线a的平行线,能画几条?再过点C画直线a的平行线,和前面过点B画出的直线平行吗?通过观察和画图,我们可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与已知直线平行.由平行公理,进一步可以得到如下结论:如图两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果b∥a,c∥a,那么b∥c.平行线三大判定:根据平行线的定义,如果平面内两条直线不相交,就可以判断两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义判断两条直线是否平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.示意图判定同位角相等,两直线平行若∠1=∠2,则AB∥CD.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行.示意图判定内错角相等,两直线平行若∠1=∠4,则AB∥CD.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.示意图判定同旁内角互补,两直线平行若∠1+∠3=180°,则AB∥CD.平行线三大性质:将平行线三大判定的条件和结论互换,就可以得到平行线的三大性质.性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质1:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.基础夯实【例3】如图,已知EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程补充完整.解:∵EF∥AD()∴∠2=()又∠1=∠2( )∴∠1=∠3( )∴AB∥()∴∠BAC+=180°()又∠BAC=70°( )∴∠AGD=()【练3】如图,∠A=60°,∠ABD=∠BDC,求∠ADC的度数是多少?强化挑战【例4】如图,∠1=∠2,∠3=∠4,∠5=∠6,求证:CE∥DF.【练4】已知∠1=∠2,∠5=∠6,AD∥BC,求证:∠3=∠4.模块三平行线四大模型知识点睛铅笔模型结论若AE∥CF,则∠P+∠E+∠F=360°猪蹄模型结论若AE∥CF,则∠P=∠E+∠F臭脚模型结论若AE∥CF,则∠P=∠E-∠F骨折模型结论若AE∥CF,则∠P=∠F-∠E总结:以上结论不要“机械地”记忆,要在掌握证明方法基础上,带着理解去记忆.不难发现,过拐点P点作平行线再导角,是证明这类结论的通法,这些模型是平行线问题中的常见模型,同学们需熟练掌握证明过程.强化挑战【例5】如图,已知AB∥CD,∠EAF=14∠EAB,∠ECF=14∠ECD,求证:∠AFC=34∠AEC.【练5】已知,AD∥BC,BE平分∠ABC,DE平分∠ADC.求证:∠E=(12∠A+∠C).巅峰突破【例6】如图,∠DAB+∠ABC+∠BCE=360°,(1)说明AD和CE的位置关系,并说明理由.(2)作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数.【例7】(武昌区期末考试)如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,H是直线CD上一动点(不与点D重合),BI平分∠HBD,写出∠EDI与∠BHD的数量关系,并说明理由.【例8】(2013-2014洪山区期中统考)如左图,D为△ABC延长线上的一点,CE∥AB.(1)求证:∠ACD=∠A+∠B;(2)若右图,过A点作BC的平行线交CE于点H,CF平分∠ECD、FA平分∠HAD,若∠BAD=70°,求∠F的度数;(3)如图,AH∥BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QM∥GR,猜想∠MQN与∠ACB的关系,说明理由.第9讲课后作业【习1】证明:过点O任意作7条直线,则在所有以O为顶点的角中,必有一个小于26°.【习2】下图中一共有对同旁内角?【习3】已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.证明:∵AB∥CD(已知)∴∠4=∠( )∵∠3=∠4(已知)∴∠3=∠ (等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠∴∠3=∠(等量代换)∴AD∥BE( )【习4】如图,AB∥CD,AE平分为∠BAD,CD与AE相交于F,∠CFE=∠E,求证:AD∥BC.【习5】如图,已知AB∥EF,求∠1-∠2+∠3+∠4=.【习6】已知:AB∥CD,∠FBC=13∠ABF,∠FDC=13∠FDE,求∠C、∠F的关系.【习7】已知:AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.【习8】已知:AB∥GF,∠B=50°,∠BCD=120°,∠E=30°,∠F=100°,求证:BC∥DE.【习9】如图,四边形ABCD中,AE平分∠DAB,CF平分∠DCB,且AE∥CF.(1)求证:∠B=∠D;(2)延长AE、BC交于G,若∠ADC=90°,∠G=55°,求∠DAB的度数.【习10】如图,已知∠FEA=∠EAF,EA平分∠CAF.(1)求证:EF∥AC;(2)若CA平分∠DAB,∠BAF与∠BAD互补,∠FEA-∠DAC=50°,求∠F.【习11】已知,如图1,∠1+∠2=180°,∠AEF=∠HLN.(1)判断图1中平行的直线,并给予证明;(2)如图2,∠PMQ=2∠QMB,∠PNQ=2∠QND,请判断∠P与∠Q的数量关系,并证明.图1 图2【习12】如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.求证:∠EDF=∠BDF.【习13】如图,已知:DE∥AC,CD平分∠ACB,EF平分∠DEC,∠BDG与∠ADC互余.求证:DG∥EF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线讲义例题分析:【知识点一】相交线的性质:两条直线相交,有且只有一个交点。
例1、(河南)两条直线相交所成的四个角中,下列说法正确的是()A、一定有一个锐角 B、一定有一个钝角C、一定有一个直角D、一定有一个不是钝角例2、(绵阳)在一个平面上任意画3条直线,最多可以把平面分成的部分是()A、4个B、6个C、7个D、8个例3、(鄂州)在同一个平面内,四条直线的交点个数不能是()A、2个B、3个C、4个D、5个例4、(宿迁)一块长方体橡皮被刀切了3次,最多能被分成块.例5、在一个平面内,任意四条直线相交,交点的个数最多有()A、7个B、6个C、5个D、4个例6、平面内6条直线两两相交,但仅有3条通过同一点,则截得不重叠线段共()A、24条B、21条C、33条D、36条例7、如右图,两条非平行的直线AB ,CD 被第三条直线EF 所截,交点为PQ ,那么这3条直线将所在平面分成( )A 、5个部分B 、6个部分C 、7个部分D 、8个部分【知识点二】对顶角、邻补角: 对顶角定义:两个角有一个公共的顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种关系的两个角互为对顶角。
邻补角定义:两个角有一个公共边,它们的另一条边互为反向延长线,具有这种关系的两个角互为邻补角。
对顶角的性质:对顶角相等。
邻补角的性质:邻补角互补。
例1、(漳州)如右图,直线b a 、相交于点o ,若∠1等于40°,则∠2等于( )A 、50°B 、60°C 、140°D 、160°例2、(辽宁)如图,已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC=100°, 则∠BOD 的度数是( )A 、20°B 、40°C 、50°D 、80°例3、(湘西州)如图,直线AB ,CD 相交于O 点,若∠1=30°,则∠2,∠3的度数分别为( )A 、120°,60°B 、130°,50°C 、140°,40°D 、150°,30° 例4、如右图,图中有 对对顶角.例5、(1)延长射线OM ;(2)平角是一条射线;(3)线段、射线都是直线的一部分;(4)锐角一定小于它的余角;(5)大于直角的角是钝角;(6)一个锐角的补角与这个锐角的余角的差是90°;(7)相等的两个角是对顶角;(8)若∠A+∠B+∠C=180°,则这三个角互补;(9)互为邻补角的两个角的平分线互相垂直.以上说法正确的有( )例7例1例2 例3例4A 、2个B 、3个C 、4个D 、5个例6、命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果22b a =,那么b a =;⑧如果∠A+∠B=90°,那么∠A 与∠B 互余.其中真命题有( )A 、3个B 、4个C 、5个D 、6个【知识点三】垂线:垂线的定义:当两条直线相交所成的四个角中有一个角为90°时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
垂线的性质一:过一点有且只有一条直线与已知直线垂直。
垂线的性质二:连接直线外一点与直线上各点的所有线段中,垂线段最短,即垂线段最短。
例1、(宁波)如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD=45°,则∠COE 的度数是( )A 、125°B 、135°C 、145°D 、155°例2、(郴州)如图,直线1l 与2l 相交于点O ,OM ⊥1l ,若α=44°,则β=( )A 、56°B 、46°C 、45°D 、44°例3、(贺州)在直线AB 上任取一点O ,过点O 作射线OC ,OD ,使OC ⊥OD , 当∠AOC=30°时,∠BOD 的度数是( )A 、60°B 、120°C 、60°或90°D 、60°或120°例5、用3根火柴棒最多能拼出( )A 、4个直角B 、8个直角C 、12个直角D 、16个直角例6、已知,OA ⊥OC ,且∠AOB :∠AOC=2:3,则∠BOC 的度数为( )A 、30°B 、150°C 、30°或150°D 、90° 例7、(台州)如右图,△ABC 中,∠C=90°,AC=3,点P 是边BC 上的动点,则AP 的长不可能是( )例 1 例 2例7A、2.5B、3C、4D、5例8、体育课上,老师测量跳远成绩的依据是()A、平行线间的距离相等B、两点之间,线段最短C、垂线段最短D、两点确定一条直线例9、如右图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是.【知识点四】点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
例1、(湖南)下列说法中,正确的是()A、一条射线把一个角分成两个角,这条射线叫做这个角的平分线B、P是直线l外一点,A,B,C分别是l上的三点,已知PA=1,PB=2,PC=3,则点P到l的距离一定是1C、相等的角是对顶角D、钝角的补角一定是锐角例2、(江西)在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线 .例3、如图,在△ABC中,AC⊥BC,CD⊥AB,则图中能表示点到直线(或线段)的距离的线段有()A、2条B、3条C、4条D、5条例4、如图,在平面内,两条直线2,1ll相交于点o,对于平面内任意一点M,若p,q分别是点M到直线2,1ll的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A、1个B、2个C、3个D、4个例5、若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A、10cmB、4cmC、4cm或10cmD、至少4cm 例3 例4例9【知识点五】同位角、内错角、同旁内角同位角定义:两条同位角都在两条被截线同一方,并在截线的同侧,这样的一对角叫做同位角。
形如字母F.内错角定义:两个角都在两条被截线之间,并且在截线的两侧,这样的一对角叫做内错角。
形如字母Z.同旁内角定义:两个角都在被截线之间,并且在截线的同侧,这样的一对角叫做同旁内角。
形如字母U.注意:(1)这三种角讲的都是位置关系,而不是大小关系,通常情况,其大小是不确定的。
(2)同位角、内错角、同旁内角都是成对出现的。
(3)两条直线被第三条直线截成的8个角中共有4对同位角、2对内错角、2对同旁内角。
例1、(桂林)如图,在所标识的角中,同位角是( )A 、∠1和∠2B 、∠1和∠3C 、∠1和∠4D 、∠2和∠3 例2、(梧州)有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是( )A 、2个B 、3个C 、4个D 、5个例3、(南通)已知:如图,直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( )A 、∠AMFB 、∠BMFC 、∠ENCD 、∠END例4、(哈尔滨)下列命题中,正确的是( )A 、任何数的平方都是正数B 、相等的角是对顶角C 、内错角相等D 、直角都相等 例5、(梧州)有下列命题:①两条直线被第三条直线所截,内错角相等;②两点之间,线段最短;③对顶角相等;④两个锐角的和不一定是锐角;⑤同角或等角的补角相等.正确命题的个数是( )A 、2个B 、3个C 、4个D 、5个例 1 例3例6、下列所示的四个图形中,∠1和∠2是同位角的是( )A 、②③B 、①②③C 、①②④D 、①④ 例7、如右图所示,同位角共有( )A 、6对B 、8对C 、10对D 、12对 例8、某城市有四条直线型主干道分别为4321,,,l l l l ,3l 和4l 相交,1l 和2l 相互平行且与43l l 、相交成如图所示的图形,则共可得同旁内角( )对.A 、4B 、8C 、12D 、16【知识点六】平行线平行线定义:在同一平面内,不相交的两条直线叫做平行线。
注意:(1)前提“在同一平面内”不可忽视,因为在空间图形中存在两条直线既不平行也不相交的情形;(2)平行线指的是两条直线,而不是射线或线段,虽然有时我们也说线段或射线平行,但实际上是他们所在的直线平行;(3)我们把相互重合的两条直线认为是同一条直线,所以在同一平面内,如果两条直线不平行,那么它们一定相交;反之,在同一平面内,如果两条直线不相交,那么它们一定平行。
平行线的表示方法:如果直线AB 平行于直线CD ,我们可以写成:AB ∥CD. 例1、(哈尔滨)下列命题中,真命题是( )A 、互补两角若相等,则此两角都是直角B 、直线是平角C 、不相交的两条直线叫做平行线D 、和为180°的两个角叫做邻补角 例2、下列说法不正确的是( )A 、过任意一点可作已知直线的一条平行线B 、同一平面内两条不相交的直线是平行线C 、在同一平面内,过直线外一点只能画一条直线与已知直线垂直D 、平行于同一直线的两直线平行例7 例8例3、下列语句:①同一平面上,三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A、①、②是正确的命题B、②、③是正确命题C、①、③是正确命题D、以上结论皆错例4、下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点最多可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有() A、2个 B、3个 C、4个 D、5个例5、下列语句正确的是()A、平角是直线B、画5cm长的射线C、平行线就是不相交的两条直线D、在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行例6、如右图,共有组平行线段.【知识点七】平行公理及推论例6平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
注意:把握“有且只有”的含义,它包含两层含义:“有”——存在性,即存在一条与已知直线平行的直线;“只有”——唯一性,即与已知直线平行的直线是惟一的。