太极实业:关于股东减持达到1%的提示性公告
HISHOCK 3D眼镜 DS01 产品介绍
HI-SHOCK主动式3D眼镜DSDS0101销售型号DS01工作模式光阀快门液晶场频96~480Hz同步信号传输方式Bluetooth透光率38+/-2%对比度1200:1工作电流0.7mA待机电流5uA电源供应方式电池式(CR2032)充电接口Min USB连续工作时间120h产品重量47g工作温度0℃~40℃储存温度-10℃~75℃兼容电视品牌三星>>智能兼容轻松享受Hi-Shock DS01快门3D眼镜搭载美国最新Smart智慧控制芯片,可以全自动兼容三星3D电视,让你一镜在手,畅游无限3D乐趣!>>全新的极速回应光阀LCD技术,呈现高对比度、高亮度的清晰自然画质。
3D成像需要极高的亮度及对比度来呈现完美的影像。
Hi-Shock DS01快门3D眼镜采用美国最新研发的小于1.5ms极速回应及高透光率与对比度光阀LCD镜片,呈现高对比度、高亮度的清晰自然画质,有效减少重影,鬼影,消除眼镜疲劳,呈现更真实动感的3D画面。
普通TV快门3D眼镜Hi-SHOCK TV快门3D眼镜>>FULL HD极致晶晰的高清画面Hi-Shock DS01快门3D眼镜通过中国电子协会认证,清晰度达到1080p,实现全高清画质,展现高清精彩细节。
带来栩栩如生,鲜艳自然的高清画质>>全智能同步,无须手工切换,轻松享受3D乐趣!Hi-Shock快门3D眼镜系列产品可以在96Hz~480Hz间全智慧自动调整对应显示终端的回应频率,无需手工切换。
>>广阔的接收角度,让你无处不在享受稳定的3D精彩视界Hi-Shock DS01快门3D眼镜采用广角178°信号接收视窗设计,让你在家庭或影院的任一位置都能稳定自如的欣赏到无比的震撼3D视觉。
>>宽广的视角范围,让你躺着也能看3D!宽广的视角范围,让你从各个角度享受稳定、清晰、明亮的3D图像。
与传统3D眼镜不同的是,Hi-Shock快门3D眼镜可使您躺着或后仰看电视也会轻松享受3D影像,提供广阔的3D 视角,让更多观众一同分享。
JSDEP简易手册 (V01)
■警告及注意事項:■安全注意事項:在安裝、運轉、保養、點檢前,請詳閱本說明書。
另外,唯有具備專業資格的人員才可進行裝配線工作。
說明書中安全注意事項區分為「警告」與「注意」兩項。
:表示可能的危險情況,如忽略會造成人員死亡或重大損傷。
:表示可能的危險情況,如未排除會造成人員較小或輕微的損傷及機器設備的損壞。
所以應詳閱本簡易說明書及產品技術手冊後,再使用此伺服驅動器。
注意�當伺服驅動器安裝於控制盤內,若周溫過高時,請加裝散熱風扇。
�不可對伺服驅動器作耐壓測試。
�機械開始運轉前,確認是否可以隨時啟動緊急開關停機。
�機械開始運轉前,須配合機械來改變使用者參數設定值。
未調整到相符的正確設定值,可能會導致機械失去控制或發生故障。
�機械開始運轉前,務必確認參數Cn030:系列化機種設定,需選取正確的驅動器和馬達匹配組合!!首先,感謝您採用東元電機伺服驅動器JSDEP系列(以下簡稱JSDEP)和伺服馬達。
JSDEP可由數位面板操作器或透過PC人機程式來操作,提供多樣化的機能,使產品更能符合客戶各種不同的應用需求。
在使用JSDEP前,請先閱讀本簡易說明書及產品技術手冊,主要內容包括:�伺服系統的檢查、安裝及配線步驟。
�數位面板操作器的操作步驟、狀態顯示、異常警報及處理對策說明。
�伺服系統控制機能、試運轉及調整步驟。
�伺服驅動器所有參數一覽說明。
�標準機種的額定規格。
為了方便作日常的檢查、維護及瞭解異常發生之原因及處理對策,請妥善保管本說明書在安全的地點,以便隨時參閱。
註:請將此說明書交給最終之使用者,以使伺服驅動器發揮最大效用。
目錄第一章產品檢查及安裝1-1產品檢查 (1)1-1-1伺服驅動器機種確認 (1)1-1-2伺服馬達機種確認 (2)1-1-3伺服驅動器與伺服馬達搭配對照表 (2)1-2伺服驅動器操作模式簡介 (4)1-3伺服驅動器安裝環境條件與方法 (5)1-3-1安裝環境條件 (5)1-3-2安裝方向及間隔 (5)1-4伺服馬達安裝環境條件與方法 (6)1-4-1安裝環境條件 (6)1-4-2安裝方式 (6)1-4-3其他注意事項 (7)第二章配線準備2-1系統組成及配線 (8)2-1-1伺服驅動器電源及週邊裝置配線圖 (8)2-1-2伺服驅動器配線說明 (9)2-1-3電線規格 (10)2-1-4馬達端出線 (11)2-1-5馬達及電源標準接線圖 (13)2-1-6TB端子說明 (14)2-1-7馬達附機械式剎車(BRAKE)接線說明 (14)2-2I/O信號端子說明 (15)2-2-1CN1控制信號端子說明 (16)2-2-2CN2編碼器信號端子說明 (17)2-2-3CN3/CN4通訊信號端子說明 (18)2-3控制信號標準接線圖 (19)2-3-1位置控制(Pe Mode)接線圖(Line Driver) (19)2-3-2位置控制(Pe Mode)接線圖(Open Collector) (20)2-3-3位置控制(Pi Mode)接線圖 (21)2-3-4速度控制(S Mode)接線圖 (22)2-3-5轉矩控制(T Mode)接線圖 (23)第三章面板及試運轉操作說明3-1面板操作說明 (24)3-2試運轉操作說明 (25)第四章參數機能4-1參數群組說明 (26)4-2參數機能表 (26)第五章異常警報排除5-1異常警報說明 (60)5-2異常排除對策 (61)第一章產品檢查及安裝1-1產品檢查本伺服產品在出廠前均做過完整之功能測試,為防止產品運送過程中之疏忽導致產品不正常,拆封後請詳細檢查下列事項:�檢查伺服驅動器與伺服馬達型號是否與訂購的機型相同。
2011考研数一真题答案及详细解析
所以 x1= -./k二[是极小值点, X2 =.fl..厂二了是极大值点;
由千 f(O)=O, 则 f(x) 的极大值 f (./1..言刁-)>0, J(x) 的极小值 f(- ,/k — 1 ) < 0.
又lim f(x)= +=,lim J(x) = —=,J(O) =0,
工j—00
.,•-•j-0<>
00) e一1 sinx
解 由条件知: P(x)=1,Q(x) =尸cosx'于是微分方程通解为
(J (J y=e-I压)扛 Q(x)eJP<x)d丑'dx +c) =e寸ld工 尸cosx ef1凸 dx +c) (J =e一1 cosxdx +C)=尸(sinx +C),
由y(O)=O得C=O,因此所求特解为
J'(y) , f(y)
a飞 a正
=f
,,(x)lnf(y),
一3一五—= 妇办
J'(x)•
J'(y) f(y)'
a飞
尸(y汀(y) -[f'(y)J 2
ay2 =f(x)
尸(y)
若函数乏 = f位) Inf Cy)在(0,0) 处取得极小值 , 则
�o, (�'"·"�J'(O)ln::�:
-I f ay co.o> = f(O)• Co) = O,
则E(XY 2 )
=EX• E(Y2 )
=EX•
[DY+(EY) 2 ]
= 叭矿+矿)
= µ
rJ
2
+矿.
三、解答题
ln(l +x)�
图纸公差符号全解
度直垂�2
�注
。间之面平行平两的线轴准基于行平上向方定给在且 ��1.0=t�t 值差公为离距于位须必线轴测被�义释注标 。值许允大最差误的行平 �边�面平一另于对相�边�面平一中其即�度程的行平线直两者或面平两指�度行平
度行平.1
差公置位�二
解详差公位形用常间车工加
。动跳向轴的生产面端的柱圆是的量测动跳圆面端 而�动跳向径的生产动转的准基绕柱圆随面表外柱圆是的量测动跳圆向径�别区 。间之面两的 �1.0=t�t 为距相在须必围范动移 的面端�示所图右如�1.0 于大得不均量动跳向轴的点一任的面端 �时周一转旋�线轴的件零中图�D 准基绕面端测被�义释注标 动跳圆面端.⑵
由理 起收
分评人 1 有已
。线实细是线 的外头箭的号符动跳但� �宽线实粗为 b�b�2/b 为度宽型线的号符差公位形�注
解详差公位形用常间车工加
` 3` -A 'w (H ,D 2 。域区的间之圆 心同两的 t 值差公为差径半上面截正一同在是带差公——义定带差公 r ,r 'G !l )t *Z 5T :W #度 圆 .3 h &n +? !V 1z %z -S ! l "w 5@ 0v #m 。内面平行平两的 1.0 值差 :n -| " 。内面平行平两的 L 1S (W K \ 1j 7@ 5J 2Y ,S 9T )C 3u ( 公 为 离 距 于 位 须 必 6X ;R $W "m -1.0 值差公为 �围范的 001×001 意任上面表 �例图 离距于正修须必面表上�例图
i +r 5\ &A 5G )z 。 - 内面柱 圆的 50.0 值差公为径 直于位须必线轴的件 零个整 )� K /b 9D 7E /U 0d %Z ;U * 。内 面柱圆的 40.0 值差公 为径直于位须必线轴 的体柱圆 dφ )� v 6C 3v "C 0? 9g "L 2�例图
ABB01中文
EL6010 分析仪已经被尤其为危险的区域使用设计. 他们的防火附件符合新的ATEX 指导的94/9/EC 被检定. 分析者在种类II2 G 被聚集和可能被用于工厂地域 1 和地域2的可能地易爆发的瓦斯大气 2.应用制造, 储藏, 处理而且易燃的和非可燃传送危险的区域瓦斯.工业/设备化学的工业,程序工业,药学的工业, 来自废弃的处理沼气位置。
设计EL6010 瓦斯分析仪者由一个分析者和一个控制单位组成,每个由于一件防火的附件符合团体IIC 的最高需求. 他们能,因此,被用于大气包含氢和乙炔.两根原装电缆作为来自在控制单位中被适应的通常以电力驱动的单位沟通和力量补给. 附加地,控制单位用增加具有一个终端机盒子。
(EEx e)在你也能连接其他的信号线的地方,举例来说. 因为类比输出或状态信号.优势: 和展览的控制单位和那个操作元素在眼睛水平被安装,而且分析者单位在程序的适当地方中被安装.操作EL6010 系列分析仪可能容易地被使用者控制. 他们被缝制到危险的区域申请的需求而且提供所有的必需结构选项. 菜单结构对所有的三个分析仪类型是相同的.装置可能安乐地没有打开住屋而在危险的区域中被操作。
所有的必需功能经过只有四支创新的探头被控制. 这些探头经过一块爆发实验,操作随时是安全的和可靠的.接口此外和RS232 和RS435 联编者的一个Modbus 接口在装置中被整合和可能被经由菜单选择的类比输出. 藉由这一个接口,数传联编在EL6010 分析仪和一个个人计算机,PLC 或程序控制系统之间可能被建立. 一个DDE 驾驶者是可得的在与装置一起递送,而且为容易的整合提供的唯读光盘上. 分析仪数据能如此被藉由使用被连接的个人计算机的适当窗口计画读, 文件而且看得见.成熟的测量技术关于使用过的测量技术越来越完善。
EL6010 分析仪使用一样的可靠测定的原则而且有一样的健康设计如另一个被广为人知而且证明分析仪像Uras ,Magnos ,Caldos 和先进的Optima 系列的装置.红外线的瓦斯分析仪EL6010-Uras14红外线的瓦斯分析仪Uras 14 选择地测量达到二个瓦斯成份的集中。
Ra-01S规格书说明书
Ra-01S规格书版本V1.0版权©2020免责申明和版权公告本文中的信息,包括供参考的URL地址,如有变更,恕不另行通知。
文档“按现状”提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。
本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。
本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。
文中所得测试数据均为安信可实验室测试所得,实际结果可能略有差异。
文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。
最终解释权归深圳市安信可科技有限公司所有。
注意由于产品版本升级或其他原因,本手册内容有可能变更。
深圳市安信可科技有限公司保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。
本手册仅作为使用指导,深圳市安信可科技有限公司尽全力在本手册中提供准确的信息,但是深圳市安信可科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。
文件制定/修订/废止履历表版本日期制定/修订内容制定核准V1.02020.8.12首版徐目录一、产品概述 (5)二、电气参数 (7)三、外观尺寸 (9)四、管脚定义 (10)五、原理图 (11)六、设计指导 (12)七、回流焊曲线图 (14)八、包装信息 (15)九、联系我们 (15)一、产品概述安信可LoRa系列模块(Ra-01S)由安信可科技设计开发。
该模组用于超长距离扩频通信,其射频芯片SX1268主要采用LoRa™远程调制解调器,用于超长距离扩频通信,抗干扰性强,能够最大限度降低电流消耗。
借助SEMTECH的LoRa™专利调制技术,SX1268具有超过-148dBm的高灵敏度,+22dBm的功率输出,传输距离远,可靠性高。
同时,相对传统调制技术,LoRa™调制技术在抗阻塞和选择方面也具有明显优势,解决了传统设计方案无法同时兼顾距离、抗干扰和功耗的问题。
卫生统计习题软件分析教程习题SPSS01
第一篇认识数据二、综合分析题1.(1)编制生命质量评分数据的频数分布表并绘制直方图,概括描述其分布特征。
【操作】1)建立数据库:激活SPSS的数据编辑窗口,单击窗口左下角的Variable View,定义变量名score,如图1-1-1所示。
点击菜单File→Save as,以“综合分析1-1.sav”文件名保存。
图1-1-1 SPSS的Variable View窗口2)输入数据:点击数据编辑窗口左下角的Date View,按顺序输入数据,如图1-1-2所示。
图1-1-2 SPSS的Date View窗口3)重新分段编码:点击Transform菜单下的Recode into Different Variables,如图1-1-3所示,系统弹出Recode主对话框,将变量“score”选入Input Variable →Output Variable框中,在Output Variable框中输入新变量名“subscore”,在Lable栏中输入“分组”,单击Change,如图1-1-4所示。
图1-1-3 Transform → Recode into Different Variables操作图1-1-4 Recode 主对话框单击Old and New Values,系统弹出Old and New Values子对话框。
根据手工分组,最小值为27,最大值为189,极差为162,分为9组,组距为10,第一组为20~39,第二组为40~59,依此类推。
在Old Value的Range栏中输入组下限,在through栏中输入组上限,在New Value的Value栏输入对应的新变量值,单击Add,Old→New框中就会加入赋值的内容,如图1-1-5所示,完成后单击Continue,再单击OK,系统就会按要求生成新变量“subscore”。
图1-1-5 Old and New Values子对话框4)绘制频率分布表和直方图:点击Analyze菜单中的下的Descriptive Statistics子菜单,选择Frequencies选项,如图1-1-6所示,系统弹出Frequencies主对话框,点击变量subscore进入Variable(s)框内,如图1-1-7所示。
AT4202 4204 4208 多路温度测试仦用户手册说明书
!$Instruments常州安柏精密仪器[AT4202/4204/4208 多路温度测试仪]用户手册AT4202/4204/4208 用户手册声明根据国际版权法,未经常州安柏精密仪器有限公司(Applent Instruments Inc.)事先允许和书面同意,不得以任何形式复制本文内容。
安全信息为避免可能的电击和人身安全,请遵循以下指南进行操作。
免责声明用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条款而造成的人身安全和财产损失,安柏仪器将不承担任何责任。
仪器接地为防止电击危险,请连接好电源地线。
不可在爆炸性气体环境使用仪器不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。
在此类环境使用任何电子设备,都是对人身安全的冒险。
不可打开仪器外壳非专业维护人员不可打开仪器外壳,以试图维修仪器。
仪器在关机后一段时间内仍存在未释放干净的电荷,这可能对人身造成电击危险。
不要超出本说明书指定的方式使用仪器超出范围,仪器所提供的保护措施将失效。
警告:不要加直流电压或电流到测试端,否则会损坏仪器。
警告:测试电容器前,确保电容器已放电,否则会损坏仪器。
安全标志:设备由双重绝缘或加强绝缘保护废弃电气和电子设备(WEEE) 指令2002/96/EC切勿丢弃在垃圾桶内目录有限担保和责任范围常州安柏精密仪器有限公司(以下简称Applent)保证您购买的每一台AT4202/4204/4208在质量和计量上都是完全合格的。
此项保证不包括保险丝以及因疏忽、误用、污染、意外或非正常状况使用造成的损坏。
本项保证仅适用于原购买者,并且不可转让。
自发货之日起,Applent提供玖拾(90)天保换和贰年免费保修,此保证也包括VFD或LCD。
玖拾天保换期内由于使用者操作不当引起的损坏,保换条款终止。
贰年包修期内由于使用者操作不当而引起仪器损坏,维修费用由用户承担。
贰年后直到仪表终生,Applent将以收费方式提供维修。
氨水储罐呼吸阀通气量计算的探讨
2361 呼吸阀结构及工作原理呼吸阀是储罐的一个重要安全附件,当罐内气体的压力超过呼吸阀的整定压力值时,压力阀顶开,真空阀仍处于关闭状态,罐内上部气体从罐内呼出,使罐内的压力不再继续增高;而当罐内气体的真空度超过储罐的设计真空度时,真空阀开,压力阀仍处于关闭状态,吸入新鲜惰性气体维持储罐内的压力平衡。
2 呼吸阀超压/真空工况计算原理2.1 超压/真空的原因在确定储罐超压或真空的可能原因时,应考虑以下因素:(1)由于液体从罐中最大流出速率而导致的正常吸入(液体转移效应);(2)由于蒸汽空间温度的最大降低量(热效应)引起的蒸汽收缩或冷凝而导致的正常吸入;(3)因液体流入罐内最大速率而导致的正常呼气,以及由此产生的最大汽化量(液体转移效应);(4)由于蒸汽空间温度的最大增加量(热效应)引起的膨胀和汽化而导致的正常呼气;(5)火灾暴露引起的紧急排放。
在确定总的正常吸气或呼气时,至少应考虑液体转移效应和热效应所导致的正常排气的组合。
2.2 进液和出液所需的流通能力(1)呼气在储罐蒸汽空间的实际压力和温度条件下,呼出的体积流量V op 应通过以下公式给出:V op =2×V pf (1)式中:V pf 是挥发性液体的最大体积填充率,单位为m 3/h。
(2)吸气吸气通风要求V ip (单位:m 3/h),应为储罐的最大规定液体排放量,应通过以下公式给出:V ip -V pe (2)式中:V pe 是液体排出的最大速率,单位为m 3/h。
3 因热呼气和热吸入所需的流通能力(1)热呼气计算热呼出量(即加热时的最大热流量)V ot ,用国际标准单位表示:m 3/h。
V ot =Y ×V 0.9tk ×R i (3)式中:Y 是纬度的一个因子(见表1);V tk 为储罐容积,m 3;R i 是保温的降低因子(如果储罐无保温R i =1;如果储罐部分保温R i =R inp ;如果储罐全保温R i =R in );˗�������������������1����������1(4)式中:A TTS 是储罐总表面积(外壳和顶部),m 2;A inp 是储罐保温表面积,m 2。
bis0001
1上海京西电子信息系统有限公司BISS0001红外传感信号处理器特点z CMOS 数模混合专用集成电路。
z 具有独立的高输入阻抗运算放大器,可与多种传感器匹配,进行信号与处理。
z 双向鉴幅器,可有效抑制干扰。
z 内设延迟时间定时器和封锁时间定时器,结构新颖,稳定可靠,调节范围宽。
z 内置参考电压。
z 工作电压范围+3V —+5V 。
z采用16脚DIP 封装或SOP 封装。
外引线连接图图1 BISS0001外引线连接图原理框图图2 BISS0001原理框图2上海京西电子信息系统有限公司工作原理图2为BIS0001红外传感器信号处理器的原理框图。
外界元件由使用者根据需要选择。
由图可见BISS0001是由运算放大器、电压比较器和状态控制器、延迟时间定时器、封锁时间定时器及参考电压源等构成的数模混合专用集成电路。
可广泛应用于多种传感器和延时控制器。
各引脚的定义和功能如下:V DD —工作电源正端。
范围为3~5V 。
Vss —工作电源负端。
一般接0V 。
I B —运算放大器偏置电流设置端。
经R B 接VSS 端,R B 取值为1M 左右。
1IN-—第一级运放放大器的反相输入端。
1IN+—第一级运放放大器的同相输入端。
1OUT —第一级运算放大器的输出端。
2IN-—第二级运算放大器的反相输出端。
2OUT —第二级运算放大器的输出端。
Vc —触发禁止端。
当Vc <V R 时禁止触发;当V C >V R 时允许触发。
V R ≈0.2VDD 。
V RF —参考电压及复位输入端。
一般接VDD 。
接“0”时可使定时器复位。
A —可重复触发和不可重复触发控制端。
当A=“1”时,允许重复触发,当A=“0”时,不可重复触发。
Vo —控制信号输出端。
由Vs 上跳边沿触发使Vo 从低电平跳变到高电平时为有效触发。
在输出延时间Tx 之外和无Vs 上跳变时Vo 为低电平状态。
RR 1RC 1—输出延迟时间Tx 的调节端。
01.数字码序(1-3d)3077.P0241-0260.P1046汉字基本集V186
《永明》漢字數字編碼系統
F1 F2 F3 F4 F5 G
第241/1046頁 v186版 YBBHFZ
S#_01 TYM#H
SUN
SZBMd1-3
ZM1-3
Az
A134
Ahs A1bh
YBHL BHL
KAI
4801 077F2
矲 胤 矪 罆 矬 雉 缹 牋 牘 牔 氭 氪 牍 歓 勧 観 氫 气 氬 氞
4822 06C29
4823 0520F
4824 06C19
4825 05C13
4826 07247
4827 0516A
4828 06C1D
4829 065A4
4830 06C18
4831 06C1A
4832 07248
4833 06C1B
4834 06C21
4835 07250
9 13 4 8
4836 06B23
S#_01 TYM#H
SUN
SZBMd1-3
ZM1-3
Az
A134
Ahs A1bh
YBHL BHL
KAI
4821 09880
颀 氩 刏 氙 尓 片 兪 氝 斤 氘 氚 版 氛 氡 牐 欣 氣 牖 牓 牑
斤 页 e e e 2 31_17_39 TFW 斤 3132 4 3312 气 亚 e e e 2 31_17_71 TFH 气 3116 4 3116 气 刂 e e e 2 31_22_22 TJJ 气 3116 4 3116 气 山 e e e 2 31_22_72 TJJ 气 3116 4 3116 ������ 小 e e e 2 31_24_34 TLW ������ 3111 2 31 片 e e e e 1 31_25_12 TMF 片 3125 4 3215 ������ ⺝ 巜 e e 3 31_27_88 TJE ������ 3191 3 391 气 内 e e e 2 31_29_64 TLS 气 3116 4 3116 斤 e e e e 1 31_32_13 TRD 斤 3132 4 3312 气 介 e e e 2 31_32_22 TRJ 气 3116 4 3116 气 川 e e e 2 31_32_72 TRJ 气 3116 4 3116 片 ⺁ 又 e e 3 31_33_65 TEA 片 3125 4 3215 气 八 刀 e e 3 31_34_53 TWC 气 3116 4 3116 气 夂 ⺀ e e 3 31_35_92 TQU 气 3116 4 3116 片 千 臼 e e 3 31_38_36 TET 片 3125 4 3215 斤 欠 e e e 2 31_38_59 TEX 斤 3132 4 3312 气 米 e e e 2 31_40_34 TPW 气 3116 4 3116 片 户 甫 e e 3 31_41_06 TYB 片 3125 4 3215 片 亠 丷 冖 方 5 31_41_45 TYP 片 3125 4 3215 片 户 ������ e e 3 31_41_76 TYH 片 3125 4 3215
ePass2001硬件说明2.0版
i
EnterSafe 软件开发协议
本《软件开发协议》(以下简称《协议》)是用户(个人或者单一机构团体)与 EnterSafe 之间有 关随附本《协议》的 EnterSafe 软件产品的法律协议。本软件产品包括计算机软件,并且还可能包括电 子文档、相关媒体和印刷材料(以下简称“软件产品”)。您一旦安装、复制或以其他方式使用本“软 件产品”,即表示您同意接受本《协议》中的条款的约束。如果您不同意本《协议》中的条款,则您不 得安装、复制或以其他方式使用本“软件产品”;您可以将本“软件产品”退还原购买处并取得全额退 款。
ii
性、回应的准确性或完整性、结果或工艺的精良性、无病毒以及无疏忽;还包括通过本“软件产品”或 因使用本“软件产品”而提供或未提供支持服务或其他服务、信息、软件和相关内容。用户对本“软件 产品”没有所有权、不受干扰的使用权、不受干扰的占有权、与说明一致或不侵权的任何保证或条件。 6.版权所有
EnterSafe 保留所有本《协议》中未明确授予您的权利,本“软件产品”受版权和其它知识产权法 及相关条款的保护。EnterSafe 拥有本“软件产品”的所有权、版权和其他知识产权。 7.协议终止
EnterSafe 与其供应商在本协议条款下的所承担的全部责任以及全部损害的唯一补偿,不超出您购买本 “软件产品”所支付的款额。
5.免责声明 在适用法律所允许的最大范围内,EnterSafe 或其供应商按“现有状况且包含所有错误”提供本“软
件产品”或支持服务(如果有),并声明不承担所有其他明示、隐含或法定的担保、责任和条件。其中 包括但不限于下列任何担保、责任或条件(如果有):适销性、对于特定目的的适用性、可靠性或可用
ePass2001 的优点............................................................................................................................................................1 ePass2001 的硬件特性....................................................................................................................................................2 ePass2001 的技术参数....................................................................................................................................................2
MUSES01
High Quality Audio , J-FET Input, Dual Operational AmplifierThe MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork.It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound.FEATURES●Operating Voltage Vopr=±9V to ±16V ●Output noise 9.5nV/√Hz at f=1kHz ●Input Offset Voltage 0.8mV typ. 5mV max. ●Input Bias Current 200pA typ. 800pA max. at T a=25°C ●Voltage Gain 105dB typ. ●Slew Rate 12V/μs typ. ●Bipolar T echnology ●Package Outline DIP8PIN CONFIGURATION PACKAGE OUTLINE12348765PIN FUNCTION 1. A OUTPUT 2. A -INPUT3. A +INPUT4. V-5. B +INPUT6. B -INPUT7. B OUTPUT 8.V+ MUSES01DABSOLUTE MAXIMUM RATINGS (T a=25°C)PARAMETER SYMBOL RATING UNITSupply Voltage V+/V-±18 VCommon Mode Input Voltage V ICM±15 (Note1) VDifferential Input Voltage V ID±30 VPower Dissipation P D 910 mWOutput Current I O±25 mAOperating T emperature Range T opr-40 to +85 °CStorage T emperature Range T stg-50 to +150 °C(Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage.RECOMMENDED OPERATING CONDITION (T a=25°C)PARAMETER SYMBOLTESTCONDITION MIN.TYP.MAX.UNIT Supply Voltage V+/V- - ±9 - ±16 VELECTRIC CHARACTERISTICSDC CHARACTERISTICS(V+/V-=±15V, T a=25°C unless otherwise specified)PARAMETER SYMBOLTESTCONDITION MIN.TYP.MAX.UNIT Operating Current I cc NoSignal,R L=∞ -8.512.0mA Input Offset Voltage V IO Rs≤10kΩ (Note2, 3) - 0.8 5.0 mVInput Bias Current I B (Note2,3) - 200 800 pAInput Offset Current I IO (Note2,3) - 100 400 pAVoltage Gain A V R L≥2kΩ, V o=±10V 90 105 - dB Common Mode Rejection Ratio CMR V ICM=±8V (Note4) 60 75 - dBSupply Voltage Rejection Ratio SVR V +/V-=±9.0 to ±16.0V(Note2, 5)70 83 - dB Max Output Voltage 1 V OM1R L=10kΩ±12 ±13.5 - V Max Output Voltage 2 V OM2R L=2kΩ±10 ±12.5 - V Input Common Mode VoltageRangeV ICM CMR≥60dB ±8 ±9.5 - V (Note2) Measured at VICM=0V(Note3) Written by the absolute rate.(Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V)(Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V)AC CHARACTERISTICS(V+/V-=±15V, T a=25°C unless otherwise specified)PARAMETER SYMBOLTESTCONDITION MIN.TYP.MAX.UNIT Gain Bandwidth Product GB f=10kHz - 3.3 - MHzUnity Gain Frequency f T A V=+100, R S=100Ω,R L=2kΩ, C L=10pF- 3.0 - MHzPhase Margin φM A V=+100, R S=100Ω,R L=2kΩ,C L=10pF- 60 - degInput Noise Voltage1 V NI f=1kHz, A V=+100,R S=100Ω- 9.5 - nV/√HzInput Noise Voltage2 V N2RIAA, R S =2.2kΩ,30kHz LPF- 1.2 3.0μVrmsT otal Harmonic Distortion THD f=1kHz, A V=+10,R L=2kΩ, Vo=5Vrms- 0.002 - %Channel Separation CS f=1kHz, A V=-+100, R S=1kΩ,R L=2kΩ- 150 - dBPositive Slew Rate +SR A V=1, V IN=2V p-p,R L=2kΩ, C L=10pF- 12 - V/μsNegative Slew Rate -SR A V=1, V IN=2V p-p,R L=2kΩ, C L=10pF- 13 - V/μsApplication Notes•Package Power, Power Dissipation and Output PowerIC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation P D . The dependence of the MUSES01 P D on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is P D on ambient temperature 25°C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the P D lower than 25°C to it on 25°C. The P D is shown following formula as a function of the ambient temperature between those points.Dissipation Power [W] (Ta=25°C to Ta=150°C)Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, P D is different in each package.While, the actual measurement of dissipation power on MUSES01 is obtained using following equation.(Actual Dissipation Power) = (Supply Voltage V DD ) X (Supply Current I DD ) – (Output Power Po)The MUSES01 should be operated in lower than P D of the actual dissipation power.T o sustain the steady state operation, take account of the Dissipation Power and thermal design.P D [mW] Ta [deg](Topr max.) (Tstg max.)910Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01 Tjmax - Taθja P D=TYPICAL CHARACTERISTICSTO TA L H A R M O N I C D I S TO R TI O N + N O I S Evs O U TP U T A M P LI TU D E (FR E Q U E N C Y )V +/V -=±16V ,A V=+10, R g=1kohm ,R f =9.1kohm , R L=2kohm ,T a=25℃0.00010.0010.010.11100.010.1110O ut put A m pl i t ude [V r m s]T H D +N o i s e [%]T O T A L H A R M O N I C D I S T O R T I O N + N O I S E vs O U T P U T A M P LI T U D E (F R E Q U E N C Y )V +/V -=±15V ,A V =+10, R g=1kohm ,R f =9.1kohm , R L =2kohm ,T a=25℃0.00010.0010.010.11100.010.1110O ut put A m pl i t ude [V r m s]T H D +N o i s e [%]T O T A L H A R M O N I C D I S T O R T I O N + N O I S Evs O U T P U T A M P LI T U D E (F R E Q U E N C Y )V +/V -=±9V ,A V =+10, R g=1kohm ,R f =9.1kohm , R L=2kohm ,T a=25℃0.00010.0010.010.11100.010.1110O ut put A m pl i t ude [V r m s]T H D +N o i s e [%]C H A N N E L S E P A R A TI O N vs F R E Q U E N C YV +/V -=±16V ,A V =-100, R S =1kohm , R L =2kohm , V o=5V r m s, T a=25℃-180-170-160-150-140-130-12010100100010000100000F r equency [H z]C h a n n e l S e p a r a t i o n [d B]C H A N N E L S E P A R A T I O N vs F R E Q U E N C YV +/V -=±15V ,A V =-100, R S =1kohm , R L =2kohm , V o=5V r m s, T a=25℃-180-170-160-150-140-130-12010100100010000100000F r equency [H z]C h a n n e l S e p a r a t i o n [d B]C H A N N E L S E P A R A T I O N vs FR E Q U E N C YV +/V -=±9V ,A V =-100, R S =1kohm , R L =2kohm , V o=4V r m s, T a=25℃-180-170-160-150-140-130-12010100100010000100000F r equency [H z]C h a n n e l S e p a r a t i o n [d B ]T R A N S I E N T R E S P O N S E (TE M P E R A TU R E )V +/V -=±16V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm-2-10123456-2-1123456789Ti m e [μsec]O u t p u t V o l t a g e [V ]-6-5-4-3-2-1012I n p u t V o l t a g e [V ]S LE W R A TE vs TE M P E R A TU R EV +/V -=±16V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm048121620-50-25255075100125150Tem per at ur e [℃]S le w R a t e [V /μs e c ]T R A N S I E N T R E S P O N S E (T E M P E R A TU R E )V +/V -=±15V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm-2-10123456-2-1123456789T i m e [μsec]O u t p u t V o l t a g e [V ]-6-5-4-3-2-1012I n p u t V o l t a g e [V ]S LE W R A TE vs TE M P E R A TU R EV +/V -=±15V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm048121620-50-25255075100125150Tem per at ur e [℃]S le w R a t e [V /μs e c ]TR A N S I E N T R E S P O N S E (TE M P E R A T U R E )V +/V -=±9V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm-2-10123456-2-1123456789T i m e [μsec]O u t p u t V o l t a g e [V ]-6-5-4-3-2-1012I n p u t V o l t a g e [V ]S LE W R A TE vs TE M P E R A TU R EV +/V -=±9V ,V I N =2V P -P ,f =100kH zP ul seE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm048121620-50-25255075100125150Tem per at ur e [℃]S le w R a t e [V /μs e c ]SUPPLY CURRENT vs TEMPERATURE(SUPPLY VOLTAGE)G V =0dB,Vin=0V024681012-50-250255075100125150Temperature [℃]S u p p l y C u r r e n t [m A]SUPPLY CURRENT vs SUPPLY VOLTAGE(TEMPERATURE)G V =0dB,Vin=0V024681012369121518Supply Voltage [V +/V -]S u p p l y C u r r e n t [m A]INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE(TEMPERATURE)V ICM =0V,Vin=0V-5-4-3-2-1012345Supply Voltage [V +/V -]I n p u t O f f s e t V o l t a g e [m V ]POWER SUPPLY REJECTION RATIO vsTEMPERATUREV ICM =0V ,V+/V-=±9V to ±16V0102030405060708090100-50-25255075100125150Temperature [℃]P o w e r S u p p l y R e j e c t i o n R a t i o [d B ]INPUT BIAS CURRENT vs INPUT COMMON-MODEVOLTAGE (TEMPERATURE)V +/V -=±16V1101001,00010,000100,0001,000,000-16-12-8-40481216Common-Mode Votage [V]I n p u t B i a s C u r r e n t [p A ]INPUT BIAS CURRENT vs INPUT COMMON-MODEVOLTAGE (TEMPERATURE)V +/V -=±15V1101001,00010,000100,0001,000,000-15-12-9-6-303691215Common-Mode Voltage [V]I n p u t B i a s C u r r e n t [p A]INPUT BIAS CURRENT vs INPUT COMMON-MODEVOLTAGE (TEMPERATURE)+-COMMON-MODE REJECTION RATIO vs TEMPERATUER(INPUT COMMON-MODE VOLTAGE)V +/V -=±16V020406080100-50-25255075100125150Temperature [℃]C o m m o n -M o d e R e j e c t i o n R a t i o [dB ]COMMON-MODE REJECTION RATIO vs TEMPERATURE(INPUT COMMON-MODE VOLTAGE)V +/V -=±15V 020406080100-50-25255075100125150Temperature [℃]C o m m o n -M o d e R e j e c t i o n R a t i o [dB ]COMMON-MODE REJECTION RATIO vs TEMPERATURE(INPUT COMMON-MODE VOLTAGE)V +/V -=±9V020406080100-50-25255075100125150Temperature [℃]C o m m o n -M o d e R e j e c t i o n R a t i o [dB ]M A X I M U M O U TP U T V O LT A G E vs LO A D R E S I S TA N C E (TE M P E R A TU R E )V +/V -=±16V ,G v=open,R L t o 0V-18-15-12-9-6-3036912151810100100010000100000Load R esi st ance [ohm ]M a x i m u m O u t p u t V o l t a g e [V]M A X I M U M O U TP U T V O LTA G E vsLO A D R E S I S TA N C E (TE M P E R A TU R E )V +/V -=±15V ,G v=open,R L t o 0V-16-12-8-4048121610100100010000100000Load R esi st ance [ohm ]M a x i m u m O u t p u t V o t a g e [V]MUSES01M A X I M U M O U TP U T V O LTA G E vs LO A D R E S I S T A N C E (T E M P E R A TU R E )V +/V -=±9V ,G v=open,R L t o 0V-10-8-6-4-2024681010100100010000100000Load R esi st ance [ohm ]M a x i m u m O u t p u t V o l t a g e [V]M A X I M U M O U TP U T V O LTA G E vsTE M P E R A TU R E (S U P P LY V O LTA G E )G v=open,R L =2kohm t o 0V-18-15-12-9-6-30369121518-50-250255075100125150Tem per at ur e [℃]M a x i m u m O u t p u t V o l t a g e [V ]M A X I M U M O U TP U T V O LTA G E vsTE M P E R A TU R E (S U P P LY V O LTA G E )G v=open,R L =10kohm t o 0V-18-15-12-9-6-30369121518-50-25255075100125150Tem per at ur e [℃]M a x i m u m O u t p u t V o l t a g e [V]G A I N B A N D W I D T H P R O D U C T vs T E M P E R A T U R E(S U P P LY V O LT A G E )f =10kH z,A V =80dB , R S =10ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V I N =-50dB m0123456-50-25255075100125150Tem per at ur e [℃]G a i n B a n d w i d t h P r o d u c t [M H z]U N I TY G A I N FR E Q U E N C Y vs TE M P E R A TU R E(S U P P LY V O LTA G E )A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =56pF,V I N =-30dB m0123456-50-25255075100125150Tem per at ur e [℃]U n i t y G a i n F r e q u e n c y [M H z]P H A S E M A R G I N vs TE M P E R A TU R E(S U P P LY V O LTA G E )A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =10pF,V I N =-30dB m0306090-50-25255075100125150Tem per at ur e [℃]P h a s e M a r g i n [d e g]MUSES01 MEMO。
STC15F2K60S2系列单片机总体介绍
STC15F2K60S2系列单片机总体介绍1.STC15F2K60S2系列单片机简介STC15F2K60S2系列单片机是STC 生产的单时钟/机器周期(1T)的单片机,是高速/高可靠/低功耗/超强抗干扰的新一代8051单片机,�������代��技术,����,指�代�����������代��技术,����,指�代����指�代����容传统8051,但速度快8-12倍。
����高�度����高�度R/C 时钟(±0.3%),±1%温飘(-40℃~+85℃),常温下温飘±0.6%(-20℃~+65℃),ISP 编程时5MHz~35MHz 宽范围可设置,可彻底省掉外�昂贵的晶振和外�复位电路(��已��高可靠复位电路,ISP 编程时8级复位门槛电压可选)。
3路CCP/PWM/PCA ,8路高速10位A/D 转换(30万次/秒),�置2K 字节大容量SRAM ,2组超高速异步串行通信端口(UART1/UART2,可在5组管脚之间进行切换,分时复�可作5组串口使�),1组高速同步串行通信端口SPI ,���串行口通信���串行口通信�串行口通信/电机控制/强干扰场合。
在 Ke�lC Ke�l C 开发环境中,选择 Intel 8052 编译,头文件包含<reg51.h>即可现STC15系列单片机��STC-Y5超高速CPU �核,在相同的时钟频率下,速度又比STC 早期的1T 系列单片机(如STC12系列/STC11系列/STC10系列)的速度快20%.1.增强型 8051 CPU ,1T ,单时钟/机器周期,速度比普通8051快8-12倍2.工作电压:STC15F2K60S2 系列工作电压:5.5V - 4.5V (5V 单片机)STC15L2K60S2 系列工作电压:3.6V - 2.4V (3V 单片机)3.8K/16K/24K/32K/40K/48K/56K/60K/61K/63.5K 字节片�Flash 程序存储器,可擦写次数10万次以上4.片�大容量�大容量2048字节的的SRAM ,包括常规的256字节RAM <�data> 和��扩展的1792字节XRAM <xdata>5.大容量片�EEPROM ,擦写次数10万次以上6.ISP/IAP ,在系统可编程/在应�可编程,�需编程器,�需仿真器7.共8通道10位高速ADC ,速度可达30万次/秒,3路PWM 还可当3路D/A 使�8.共3通道捕获/比较单元(CCP/PWM/PCA)----也可�来再实现3个定时器或3个外�中断(支持上升沿/下降沿中断)或3路D/A9.利�CCP/PCA高速脉冲输出功能可实现3路9 ~ 16位PWM (每通道占�系统时间小于0.6%)10.利�定时器T0、T1或T2的时钟输出功能可实现高�度的8 ~ 16位PWM (占�系统时间小于0.4%)11.��高可靠复位,ISP编程时8级复位门槛电压可选,可彻底省掉外�复位电路12.工作频率范围:0MHz ~ 28MHz,相当于普通8051的0MHz~336MHz13.��高�度R/C时钟(±0.3%),±1%温飘(-40℃~+85℃),常温下温飘±0.6%(-20℃~+65℃),ISP编程时��时钟从5MHz~28MHz可设(5.5296MHz / 11.0592MHz / 22.1184MHz)14.不需外�晶振和外�复位,还可�外输出时钟和低电平复位信号15.两组超高速异步串行通信端口(可同时使�),可在5组管脚之间进行切换,分时复�可当5组串口使�:串口1(RxD/P3.0, TxD/P3.1)可以切换到(RxD_2/P3.6, TxD_2/P3.7),还可以切换到(RxD_3/P1.6, TxD_3/P1.7);串口2(RxD2/P1.0, TxD2/P1.1)可以切换到(RxD2_2/P4.6, TxD2_2/P4.7)注意:建议�户将串口1放在 P3.6/P3.7 或 P1.6/ P1.7 (P3.0/P3.1 作下载/仿真�);若�户不想切换,坚持使� P3.0/P3.1 或作为串口1进行通信,则务必在下载程序时,在软件上勾选“下次冷启动时,P3.2/P3.3为0/0时才可以下载程序”。
ADXL001_官方手册
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供
的最新英文版数据手册。
ADXL001
目录
产品特性 ............................................................................................ 1 应用..................................................................................................... 1 概述..................................................................................................... 1 功能框图 ............................................................................................ 1 修订历史 ............................................................................................ 2 技术规格 ............................................................................................ 3
Rev. A | Page 2 of 16
ADXL001
技术规格
TS01S
TS01S1-Ch Differential Sensitivity Calibration Capacitive Touch SensorSPECIFICATION V2.4February 2008ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)1 Specification1.1 General features 1-Channel capacitive touch sensor with differential sensitivity calibration Low power consumption Uniformly adjustable sensitivity Sync function for parallel operation Three steps sensitivity available without external component Open-drain digital output Internal power on reset Embedded common and normal noise elimination circuit RoHS compliant SOT-26 package1.2 Application Home appliance Mobile application (PMP, Navigation, MP3 etc) Membrane switch replacement Human interface for toys & interactive games Sealed control panels, keypads1.3 Package (SOT-26)TS01S SOT-26 (Drawings not to scale)ADSemiconductor Confidential1 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)2 Pin Description (SOT-26)PIN Number 1 2 Description Touch detect output Power (2.5V ~ 5.0V) Self operation signal output Analog Peripheral operation signal input 3 SYNC Input/Output Sensitivity selection input [Note1] 4 CS Analog Input Capacitive sensor input 5 GND Ground Supply ground Reference capacitive sensor input 6 CR Analog Input for differential sensitivity calibration Note1 : Refer to chapter 6.3, 6.4 SYNC implementation Name OUTPUT VDD I/O Digital Output Power Protection VDD/GND GND VDD/GND VDD/GND VDD VDD/GND3 Absolute Maximum RatingSupply voltage Maximum voltage on any pin Maximum current on any PAD Continuous power Dissipation Storage Temperature Operating Temperature Junction Temperature Note2 : Unless any other command is 5.5 V VDD+0.3 V 100mA 200mW -50 ~ 150℃ -20 ~ 75℃ 150℃ noted, all above are operated in normal temperature.4 ESD & Latch-up Characteristics4.1 ESD characteristicsMode H.B.M Polarity Pos / Neg Minimum Level 8000V 8000V 8000V 500V 500V 500V 800V Reference VDD VSS P to P VDD VSS P to P DIRECTM.M C.D.MPos / Neg Pos / Neg4.2Latch-up characteristicsMode I Test Polarity Positive Negative Positive Minimum Level 25mA ~ 100mA -25mA ~ -100mA 1V ~ 7.5V Test Step 25mA 0.5VV supply over 5.0VADSemiconductor Confidential2 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)5 Electrical Characteristics▪VDD=3.3V (Unless otherwise noted), TA = 25℃Characteristics Operating supply voltage Current consumption Output maximum sink current Internal reset criterion VDD voltage Sense input capacitance range[Note3]Symbol VDD IDD IOUT VDD_RST CSTest ConditionMin 2.5Typ 3.3 25 40 10Max 5.0 40 70 4.00.3∙VDDUnits V ㎂ ㎃ VVDD= 3.3V VDD= 5.0VTA = 25℃-TA = 25℃100 ㎊Reference input capacitance range[Note4]CR RS ΔCS Zo TCAL TR_VDD RSYNC CS = 10pF ΔCS > 0.2pF ΔCS < 0.2pF0.2 112 200 12 30M 200 2100 1000 Ω 100 20 ms ms MΩ Ω ㎊Sense input resistance range Minimum detectable capacitance variation Output impedance (open drain) Self calibration time after VDD setting Maximum supply voltage rising time Recommended sync resistance rangeNote 3: The sensitivity can be increased with lower CS value. The recommended value of CS is 10pF when using 3T PC(Poly Carbonate) cover and 10 ㎜ x 7 ㎜ touch pattern and middle sensitivity selection. Note 4: CR value is recommended as same that of CS_TOT as possible for effective differential sensitivity calibration. CS_TOT = CS + CPARA (CPARA is parasitic capacitance of CS pin) If proper CR capacitor value is used, CR pin has almost same frequency as that of CS pin.ADSemiconductor Confidential3 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)6 TS01S Implementation6.1 Current consumptionTS01S uses internal bias circuit, so internal clock frequency and current consumption is not adjusted. The typical current consumption curve of TS01S is represented in accordance with VDD voltage as below. The higher VDD requires more current consumption. Internal bias circuit can make the circuit design simple and reduce external components.IDD [uA]45403530252015 2.02.53.03.5VDD [V]4.04.55.05.5Typical current consumption curve of TS01SADSemiconductor Confidential4 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) 6.2 CS and CR implementationCS << CS RS Touch PADCR << CRThe parallel capacitor CS is added to CS and CR to CR to adjust fine sensitivity. The major factor of the sensitivity is CS. The sensitivity would be increased when smaller CS value is used. (Ref. below Sensitivity Example Figure) The CR value should be almost the same as the total CS capacitance (CS_TOT) for effective differential sensitivity calibration. The total CS capacitance is composed of CS which is set for optimal sensitivity and parasitic capacitance of CS pattern (CPARA). The parasitic capacitance of CS pattern is about 2pF if normal touch pattern size is used. But in the case of using larger touch pattern, CPARA is bigger than normal value. The RS is serial connection resistor to avoid malfunction from external surge and ESD. (It might be optional.) From 200Ω to 1kΩ is recommended for RS. The size and shape of touch PAD might have influence on the sensitivity. The sensitivity will be optimal when the size of PAD is approximately an half of the first knuckle (it’s about 10 ㎜x 7 ㎜). The connection line of CS to the touch PAD is recommended to be routed as short as possible to prevent from abnormal touch detection caused by connection line.Sensitivity example figure of TS01S (when normal sensitivity selection selected)ADSemiconductor Confidential5 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) 6.3 SYNC implementationSYNC << 1st TS01SRSYNCSYNC << 2nd TS01S or TS** From two TS01S to ten TS01S (or other TS series touch sensor) can work on the one application at the same time thanks to SYNC function with this pin. The SYNC pulse prevents over two sensing signal from interfering with each other. During the sense disenable period and SYNC input becomes high, internal clock is suspended. The RSYNC is pull-down resistor of SYNC pin. Too big value of RSYNC makes the SYNC pulse falling delay, and too small value of R SYNC makes rising delay. The typical value of RSYNC is 2MΩ. TS01S has high sensitivity when SYNC is implemented as above figure (connect RSYNC between SYNC and GND).6.4 SYNC implementation for sensitivity selection.VDD SYNC << Sync connection for middle sensitivitySYNC <<Sync connection for low sensitivityAnother function of SYNC pin of TS01S is the selection of sensitivity without any additional external component. The SYNC implementation for sensitivity selection is informed as below chart. SYNC Connection Sensitivity Using RSYNC Connection High Connected to VDD Middle Connected to GND LowADSemiconductor Confidential6 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) 6.5 OUTPUT implementationVDDROUTOUT >>OUTPUTThe OUT is an open drain structure. For this reason, the connection of pull-up resistor ROUT is required between OUT and VDD or another lower voltage node. When ROUT is connected to higher voltage node than VDD, the output current passes through protection diode to VDD and abnormal operation may be occurred. The maximum output sink current is 4mA, so over a few kΩ must be used as ROUT. Normally 10kΩ is used as ROUT. The OUT is high in normal situation, and the value is low when a touch is detected on CS.6.6 Internal reset operationThe TS01S has stable internal reset circuit that offers reset pulse to digital block. The supply voltage for a system start or restart should be under 0.3∙VDD of normal operation VDD. No external components required for TS01S power reset, thus it helps simple circuit design and minimize the cost of application. ☞ CAUTION: The VDD rising time should be less then 100ms for proper power on reset.ADSemiconductor Confidential7 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)7 Recommended Circuit Diagram7.1 Apllication ExampleThe capacitor and resistor might be connected with CS (pin4) for getting a stable sensitivity. The capacitor value which is connected to CR pin (CR) should be almost the same as the total CS capacitance (include parasitic capacitance) for an effective differential sensitivity calibration. TS01S is reset by internal reset circuit. VDD voltage rising time should be shorter than 100msec for proper operation. The sensitivity can be adjusted through a connection of SYNC pin. (Refer to chapter 6.4) From two TS01S to ten TS01S (or other TS series touch sensor) can work on the one application at the same time thanks to SYNC function. (Refer to chapter 6.3) TS01S OUT port has an open drain structure. The pull-up resistor should therefore be needed as above figure. VDD periodic voltage ripples over 50mV or the ripple frequency which is lower than 10 kHz it can cause wrong sensitivity calibration. To prevent above problem, power (VDD, GND) line of touch circuit should be separated from the other circuit. Especially the LED driver power line or digital switching circuit power line should be certainly treated to be separated from touch circuit. The CS pattern should be routed as short as possible and the width of the line should be around 0.25mm. The CS pattern routing should be formed by bottom metal (opposite metal of touch PAD). The capacitor which is between VDD and GND is an obligation. It should be placed as close as possible from TS01S. The empty space of PCB must be filled with GND pattern to strengthen GND pattern and to prevent external noise that causes interference with the sensing frequency.ADSemiconductor Confidential8 / 12ADSemiconductor®TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) 7.2 Example - Power Line Split StrategyA. Not split power line (Bad power line design)The noise that is generated by AC load or relay can be loaded at VDD power line. A big inductance might be appeared in case of the connection line between main board and display board is too long, moreover the voltage ripple could be generated by LED (LCD) display driver at VDD. B. Split power line (One 5V regulator used) – RecommendedC. Split power line (Separated 5V regulator used) – Strongly recommendedADSemiconductor Confidential9 / 12TS01S(1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) 8 PACKAGE DESCRIPTIONTS01S(1-CH Differential Sensitivity Calibration Capacitive Touch Sensor) NOTE:1. Dimensions and tolerances are as per ANSI Y14.5, 1982.2. Package surface to be matte finish VDI 11 ~ 13.® TS01S (1-CH Differential Sensitivity Calibration Capacitive Touch Sensor)ADSemiconductor Confidential 12/12NOTES:LIFE SUPPORT POLICYAD SEMICONDUCTOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF AD SEMICONDUCTOR CORPORATIONThe ADS logo is a registered trademark of ADSemiconductorⓒ 2006 ADSemiconductor – All Rights Reserved www.adsemicon.co.kr。
Moore Industries STAR Center 产品说明书
ot · tiom r -_ ris -i ,e rUSEI ·,s I ANUAL J a nu a r y 2018No. 150-704-00 FTable of C ontentsIntroduction 1 1 3 6 0.sCfipt i on Calibration InstallationInstallation in H azardous Locations Specific Conditions of U se Maintenance & Troubleshoot i ng4S�LIVERY�llld kt � TOL L F REE 1-800-999-2900U n 'ei!d K ifio d OfflF REE PHONE0800 525107 ... , .... TOLL mEE008 261928l 06$0�CIO!ll.,...1 S..,wcll,, C.bN Ill� U .SA. ltt 18181 8'11,7111 • T Iii! 8S-JSt.i F�:(,18)891•2'1•OONt<et�WS(l'Ul.VEOA , uo,,,,. co...,,.� AoJo •, °'-"rW &u.-RH 1f)201J ,UriWld '°"domT -0'2li0 S I • ... • T tlc 87&67F AX:0:53�Moore Industries" STAR" C ent e r has a w i de variety of quaJ i ty instrumentat i on in stock and ready to s h i p .•S i gnal Transm i tters• Temperature Transm i tters • P /1 and 1/P Converters •Isolators and Converters • I nd i cators and D i splays • A l ann Trips•Integrators and Total i zers •Power Transducers•Instrument Power Suppl i es • R acks, Rails and Enc l osuresMost instruments can be custom i zed to m eet yoor needs. Even then, you·n never have to wa i t more than a few days.8118IntroductionMoore l ndustflos' IOO P-PQWe<ed P oteot l ometer Transmll1er, t he PTX, s a dev i oe u sed to converts1andard, three-w i r e pot entlomttor (poQ i n put 10pl'0p011i0na l curre n t output.Th i s ma n ual cont a i ns all o f the i ntotmatiO,n nt tded 10 ca l ibrate, CIS*'att, and m a i n ta i n lhe P TX. 11 al soi ncludes a brief descriptio n of t he u ni! and its c.apa·biti i es and oplk)n s,a llstlng of u n it specif ica t i ons, and a n overview o4 Moort l nct.,str l es' u nll data lraeklng system and lab eling.A A awe,ndix a.t l ht tnd � lhe manual provid es th9 tionnatlo n reql.A'ed tOJ l n st.al i ng N PTX i n h aJard·ous e n v i r ontl'ltf'IIS. Such inStaHatlo n$ r equ i r e o n e o l ht availab&e l n t.rl n sic S afety (S) o ptions. de scribed la1e<.I.Nhere they appea, a, '9lt1 o r f igur.s, "N OTES'" art uS6d to draw at t ef'lli O n to p taetioe s t hal cou l d olhefwiSe r esul I n lnoonv enienoes to t he user. "WARN· INGS" po i nt o ut practices that, u.-U avoic5td, could result in pe r so n a l injury,DescriptionThe PTX tra n srrittor is a va i l ab&t n e i ther a D IN-style, or Moo r e l rd.tst r i es'hOCMy·p.,ck (HP) hOus l ng. n measu r es variable reSiSUve l l'l)UI b y oon,parfno Input m i lli vo lt$ wl h 1ht drop across a n Interna l,pr ec i sio n vo l tage dMder. II p rovides co n stant voltage ox:cila·tlo n l o a Slanda r d, 3-wir e pot, and OUtpulS a p,opor·tlo n aS 4-20 °' 1 ()..50 mAcurre n t based on the pors w i pe r pos i tio n. t accepts� f rom any 100 10 10,000n.3-w i,e pot.The unil IS IOOp-powe r eCI (12·42 Vdc-). Some S options req.ii r e 12�24 or 12-28 V dc powe r i ng. Re:tet 10 t h& l n S1ala!ion Sect ion of th i s manuat f or i n lonnatioo on u ni e l9Ctrieal con n oeliOns.1"N a vai1'ble hOus l ng styles ro r the PTX, t he H P-o r DIN-style, a flon:I t he use, w ith a wide vatiely of mounthg options. I n additio n to lh8 Sland·ak>ne unil. mounthg hardware optio n s nclude tl3"0&$ l o, u se wih re l ay track O f surf a ce mount, e xp l osiOnptOOt enclosu r es,and NEMA bO xes. co n sult wh h you r Moore l nc:klstrics' Sa l e$ RepresenlaJ l ve fo r mo r ei nformauon o o ava�1e mounlfng h ardwa r e options.Pag e 1PTXTht HP•Style PTX. This styt& oC u nit S inl e nded 10 runot l on as a modutar rep&aoomenl n appllcatio ns whe r e conduit a nd encfO-Su res may alr e ady be i n place. when a special en closure i s n()1 1&qui-ed, or In appllcatlons where the O N•sty l e u n i t 1$ not otherwise appropri at e,l l i s atso avallab l e mou n ted in a separate, dQme<I, explos l onproof enclosure. secured n s i de with s pr�clips; n o drilli ng o, lapp i ng s r equ i red. Othe r r if·slo n s h:WG h;a,ctwsre l o r surf ace mounl and retay tractt1n sianatto n s.Tho D N·stYIJO PTX. Th i s style soaps on t o G·YP8 DIN rails (01N EN50035), I I ii most O lte n used In applic a lions ,e�l r l ng a la r ge n urrt>e, of units In are l atlvefy smal space. TeSl j adl.$ o n the t,o n t panel allow tor basic f uncliOn Check$ wtl hOOI having tor emove the PTX l rom the process l oop,Tab l e 1 IISls t he p erf o rmance and operat10n a1 speclfl. catio n s k>r M oo r e l ndustr i os' P TX. Flgv r e 1 shows the r elationsh i p between the po wer souroe u sed i n a PTX ai,s:lli l ion and t he u n it's load capab i l ity,Controls and IndicatorsLabe l ed pots 10 oo n trO unit zero and sp a n are located on !he fro n t p ane l o1 bo th the D N-and H P·sty l o PTX. The Calibration Sectio n Of t h i s ma n ua lde&Cflbes hOw these pois ca n be a djusted. Sc:,ec l l'lcatiOns to r ad j uslabll ity appea r in table 1,OptionsThe follow i ng li SI provides a n oveNlew o f some of the PTX optio n s. Comp&e l e n formatio n o n mour¥i ng harttNam and f unclion&optio n s, o r curr80lfy avaiable c ert ll icatio n s and approva l s is avalab l e trom yQUr Moore l nd.Jstries Salos ROPf0$0nlatlv e. Usef'S may also con tact the factory Clite,ct l y at 1--800-999-2900 in t he U.S.A.IS(X) o,mo n-Intrinsic Sa lety.U n hs equi pped w l l h options such a s tSB and SC a r e rna n ufac:tu r eo acoo r d l n g 10 t he specifications of thit'di)any cenlfy l r q agencies l o meet vamus teQJitements 10f l nt r l n s l·cally safe flsta11ation i n haza r(IOus e n viro n me n ts. Refe r 10 lht PTX d�l{I Sheet.o r consu l t the lactory lor i n lo,tmalion on currenl IS oe rtif i cali0n$,Page2PIXno,-1. PTX Pa tformaf'IC6 and Opa ratlonal Spec{fica6onsCh1ractertsUc:Spectr J ca U o n slnpY t k i t e poientlome,1-rtated f rom 0·100 O to 0-10,000 a Sen.« Current; l mA,, maximumftan9e:M i n i mums,�n Is 15%0, potv-.i•. Mall l n-..m o'™'t l o r � 18 (t00%• -0%')-10%• po l v a l ueo u t putF eic.Ory-.ML 4-20 m A 01 10-50 m Aacco rd in g ID ou s llo m or spoc il icmion ill li mo or otdo r Limit ing: ,.20 m A units 1rnc.d 10 30 m A . maxltnl.lTI 10-so m A 1,W!h & fm l � 10 65 fflA tnax lmu m .... ,12-42 V d oSome IS options require other pow9r r.i�. Refer to � o r <XltliUII wllh your Moor• fndustlios' Sa l es Ropte:Mnlilllv• l or (l etah,,M ax im u m : Un l e3n s lJSIUI u p to 80 V do w l hio ut darn a g ci Contro l •Z.ro : Labs l ed pot o n f ron t p,;,M,I pn,v ido s ad ju stmcinl ID O"-o f ou!p t.C s p an 11()%. wit h O"-l'l pu tZ.ro Ran g •: Min1nwm zero Is 15%Cf inputpo t v aruo Spa n : Labo l od pot on f lQnl panel .cl j i..1, f u ll «* 10 100%PlorformanoeAccuracy: i-0.1% ot tplVI ltldud l ng l nta r ly at'l d 1tp&atabifty Load Capebllity: Sae r-.;w• l Loop Load t Un• Voflege) E H•ct: :t0.002'% oC span 1)61 VOl tel\tlnge, as m.asured' at the inpultarmilalsA ,,..,._. T empe r •t w e Effect : .t0.01%oi s pan po, •F c h ange Env 1r on me n ia JA � Amb i e n t �allng Tem p e r a1u,. Rango : -29 lo 82•c (--20 ID 1so •F )Rat ingWe l g :11HP.atyto : Appw l m .i !el)' 141.8 g (5 Ol)O I N •aty le : App 10x i m a,8'y 224 g {7SI OZ)NOT ES : 1. Consult your Moo re Industrias'$"" Rop,ettnlllllve l or Information Ct'I 81)41(:IIM!tlliof'lt. Pf lc l ng a nda vailabii t y oi oplions .2. Rotor to the In stal l ation 1on t or PTX outJne <f lll'let1sbne.RF Op tion -RadiO F rllQUOllcy a nd Elec.tromagnetlc lntorlerence (RFVEMI) Filtering. F1Jielf:d term i na l sand cuep rovid0$50 V/m eter. a bc:. 0.1% of f u ll ·sca l e s p anWhe n I H1ed aocotd i ng 10 PMC SAMA SUtfldard 33. 1,RTB Opflon -Removeable Terminal BIOCk. Pt0videst o r unn rep1a,Cemen1 w ithoutw i ri ng d i soonnect.J>W l i eable to 0/l'ktyte PTX�on,y.untt D ata Tracklng -ModCIJSOfla l NumbOr. MooroI ndustr i es keeps a record o l pr oduct l nlorma!io n on overy u n i t sold or s ervioed. Th i s record Is keyed t o I .he u nl model and �l'iO l ,.,.rr(lers.On DIN·$1)11e PTX's.. IOOk l ()t the model and st.ria l nul Tber& o n one o l the hous i n g side pane l s. The l ab e l on HP·Sly l e u n i ts i$ found c,1th0r on tho unit beck or front paneJ.Page 3P TX2400 ----..-----.------,-----.----�::!l:IO l-----------�-----1-..;,..._---+------...111"--'2000 1----"-----li-----t....&,,.. __ ...a..,,6.. __The e-xa"l)le on'Ll'lo following page '5how.s a tvpt:alP rx m::idei n umbor, breaking out ils �tq 1l e ltb forl ustr atb n purposes. Actor kl lh8 example Indeeil)l'lnt i ng the mode l n�r on your unil.H sol'Yice a6i&is1anc e Is ever fl oct u i rodl. m.ae e na1e or11'16 unit. model 1a1�er 1:1e,or-e contacti n g Lhe factory.1For rast:Ht as.sis t e nce. �l s.o no t e 100 IJf'lil t.oriaJnu l'l1'0r, o b 1a1n1Jer, and llrJe purCM$ ord'et mr.JEBrl.ffido, whic:.h it waS :shtppea. TlliS lntormatiOn assls1slh r ac:,o,y tepresenJetlve n p110viding )'OU with �heMS-wors you need a� e i1ilcie n l'.ty as po:s.sil1e.CalibrationP rio r 10 5h lpme n1, every P1X is m u ly t es.1e d IO enrureco mpliance with Moore lndustrles· slr1d Cl,.JaliLyoontfol ,guidelines. ee1·01e n s1al l3l lo ri, �·ov e r. yourunH(s) :smuld be benc h �ed In order to sol andwrir)r Lhe desired operamlng levels..This procedure should b e oonal!docJ in an o nvwo nmont co ns ide r ed awropriete •or general l es t� 04olcu::tronic atu:I pnel!lmatic equipment I t Is recomrnoncted lha11he pl'Dcedure5 In lhls :s.ea l o n no, beca rr i e d Otl'I In the IT-e.ld. Use a technician� ti cncn orin a Simi l a r lab-type selup, SQ lhat any u n i1 damag�um rnay have occt.1fifed during stilpmenll can bediS'.t'XMU ecl !iilfely, h.e., s:ewate-ll lrom tile lntcn(t(ldprocess 01 applfcstlon.POQG4PIXI EXAMPLE IPTX / 1K--0-100 / 4-20MA / 12-42DC / •RTB ·RF [HP)�--a�Unit T ypeTota l Res i stance of Po 1anOometer % o t PotonliOmoterTrave J IOObta i n0% O utpu1'Yo o t Poienlk>meter T rave l to Ctita l n F ull·&eale ( 100%) Outpu1Powot Optlon(s) Hou$1ngCalibration SetupTab l e 2 l ists t he OCJJ i pment you wil l ne&d to calbrate the PTX . These i tems aro not �plied by Moore Industries. rut shOuld be ava i lable I n env i rorwnents qua l if i ed to p erform the p,ooodure.'Ille termila l s t01oo mection of the c aM>rat i on equ i pme nt ate located on the unit fronl panel. H P · style un i ts U$O a she-place, n orrt>ered terminal block w i th term i na l 5 fl'l acttve , O I N·style units aJso h ave a six-place terminal l*x::k w ith the non-labeled l &rminal inadive. The term i na l s on both types of uM a e clear l y labeled.. Use +PS and -PS tOJ connection of the approp riate loop po wer and term i nals ·A·, "8", and ·c· t or conn(lclion o t pot i npu t Flgure 2 i ltlstra t es the hookup I Of standard PTX callbrat l o n The desfgnator "f\ • r efers to the eppn,.prlate p,ec:lslon res i stor.use the appropriate materials listed I n t l)ble 2 I n the l�up, app l y appr opriate power , and allow approx:!·mal e l y 5 m i n..r les for unil w�up a n d hoolQJp scab i llzaUo nCalibration ProcedureWith l he �l bratlon s etup c�l et8d as ShOwn. set bolh decade resistar.::e boxes to p rov i de z ero ohms ot res i stance. apply t he appropl'iale 10-42 voe powor , a nd 1um both the Z ero and Span pds on tne 1ro n t panel 011he PTX tu.lly oo unterdock w ise. AllOW appmximate l y l l ve m i n utes tor u n i t warm�p and se.tup stabi i z.a l i o n .1.Se1 d ecad e box A l o p r o v id i&r &&i s t a noo eq u ro to th e va l ue catted o ut in t he "% T rav el M>, 0%Ou 1pu1" fi e ld 01 vour un � mode l nu mbe r:2$e l box B t o v a ll e spec ified i n ..,..lo T r ave l t o,1� 0\11pur t l eld o f u nit mo de l num oo rFOR E XAMP L E ;For a PTXw i th •1K �25.75� l i st ed t n mo d elrunti er, s et d ec a de bo x A to 250 n afl(f b O x B t o p(OV lde 750 0.PIXEqufpment Spff:1Jle1Uo11sAlli.tafl� De.Id� BoltH Oallbnlted. Aeeura1a 10 :f0.05� mlnlrrwum.(2, Reci;,mm9.lld ESDI l!)Qieiibo• mock! 0862, or a:puivi1klnL00Vi:111milr GaJibtatiid. AIX.Ul--mei to :t0.005%. mlrinwm.Rocomrn a tal' K•lliikly mod 197, or e,q,ut.ralent.PIKl11Gn AN111or 2.50ll, ±0..01 ,I,. pr«lJl:!11 re 'klr 1or 4-20 mA L!llit5,1000. ±0..01 % remicr ior 1 o-5(1mA unia.P'Jw,arSoura C albr�id. Vwbii &Quro9 � of r�utz lm O:tJlpJ L .in Om12-42 Vdc r�.SCNwdmta-, Bli!dlili "'1idlh 2..5-4 rJlril [O. 1 ntti�. trWIITIIJffl.(·ilO� � ·�pt)10 0 0 0,,1 A10 0 0 O�I CDECADE R0!1STAHJC!;! BOX D3.14m zero pol CIOCkvdse u fMJ I' vottmeter reads 1-V, t-4mV,"· C:ti:ange "1t l PCJo• �e 'bo x A.Jo.pro,yli1ereSi:S t anc_p �Nd In stop 2 {% T tavel lor 1g o%� ft(!� �I 11R.inlb$r).PTX-5. Set decat;lel box B to Y al.Je 1rom s tep 1 t'¾ Tr.aveS.Of 0%}.X'.PS I I +��2\100l?OWEA,SOt.JACE-ff AV J\V� -DCVOLTMETER6.li'Um Span r::tOt" �lae U1iTII YOltrne'ler reads SV,.±4 mV.7.Aepeet s.1eps 11hrough 4 uhtll PTX oo1iiut is x:stable at !»In O¾o aoo l\ull-seale Input.8.Check linearity D')' cal'cula1ing 25%. 50'%, arid75o/ii o t ratod span W"h On setting on decadeto� 13-, set box A to eech level derived fro.,, tt.esucalcula11oPS.. error In u n o u t p u l wiU not ttxoood'0. 1 % 01 span.Pago 6PIXInstallationI nstallation of th e PTX i s p,osent.Od � th i s matlJa l i n 1w o phases. FirSI Is t he physical m ount i n g o f th eu n i t This I s fo l low e d by the e tectr l ca l con n ectio n s. hi s recommondod that i nsta.ll alion bO ca tfiOd out 111 lhlsotdOI.Befor e PTX I n st a llation.• l s 61tong l)' rec:olffll e nded that each urjl b e bonCh choeked,Re'lot to thei nstruct i ons f or triS p rocOOJte i n the C alibra t ion Stction, ea r l iet i n t h i s marua1.Atso. any requ i romenlS I Ot NMSic satoty i n t he Nended application must be considered.Intrinsic Safety Considerations Electrical ConnectionsF,gul'O 5i s the PTX �stall a t l oo hOokup d i ag ram. Wh e n th e u n it s have been ptOPOrty mou rned, ref e r to figure 5 t o connect them to power and other t l ekt devlees.As l he PTX i s a loop-pow e ted dO v iee n o addlllonaf elect r ical oonnecOons art re,qu l recl. Check t he "Powe,. l retd 01 vour u n lt'S mod e l n umber to venty appropr i ate IOOP volage.R e f e r 10 th e exp l anation Of the model n.,mt>er In t h e Oescq)tion S&ctiOn of th i s maf' l, and 10 th e speciica6ons liStOd i n l able 1 lor mor e I nforma t ion.A s s how n I n 1he f i gur es con n oct t he +P$ term i n a l of lhe PTX to the po sit i v e� tmm the power souroe In t h e loop. Co n n ect the -PS PTX torm l nal I n ser l e$w ith t h e pos i tive torm i n.alS or the other de v ices I n t he loop and th& negative term i nal of the loop power suppty.The po1enti0motcr w i t i ng I s oonnected to th e term ina l s ta be l Od A B.and c.Connoct.-.g w i te.s u se<I ShOu l d b e betw e e n,,. a n d 22 AWG.Connections are mad e w i lh oomprossiOnscrew socket s Use a slott e d·l:4> screwdl'Worwilh a head w idth n o g r e at e r lhan 2.54 nm (0,1inch). Ground i ng. To ground the HP·Sly l e unll. m ake s u,e a shie lded g rounding lead iS c:onnected to the GND screw o n l h8 u nit front panel Th i$ screw Is loca ted to th e rigft of the Z•ro act j ustmenl pot, and Is l y p l·cally fitted w ith a w i re or wlt e term i nat i ng lu g. Typieally, whe n MP·style unlls are equ_,ped w ith explOS I Of'C.\l'OOf e.n ctosures,th e u n it gro unding s crew 1$ attac:heci lo th e en closur e ground pr l0< to Shipment.To ground tho O I N•Sly l e PTX, the use ot sh l e tded twiStOd•pait w i Mg, QtOUncle<f as ne a r a s poss i ble 10 the u n it Ilse.It l s recomm en ded.Physical Mounting of the PTXF I QUte 3 shOws the mount i ng d l me n sJo n s k>r the H P·&tyle PTX, and th e O I N•51y l e PTX hous i ng d i l'l'IOnslOns are ShOw n i n t igure 4Tht M P musltatiOn shc>w'S ttwt u anoe mouni hat<fwa re option.Whe n us i n g 1he H P PTX wilh e x p l o.s i O(l)roof eocto-sures,spring t;t l p$ ex1end from the uni fronlpa n el Reier 10 t he approp r1ale Moore l ndU$l t\es Cata)Og d a1asheet ro r enctosure d i me n s i ons.Installation in Hazardous LocationsThis section contains important information regarding the installation of the PTX in Hazardous Area Locations.Specific Conditions of UseCSA InstallationsInstallation of the Model PTX into a Class 1 Division 1 location requires the use of a CSA Certified Intrinsic Safety Barrier with the following output parameters.Uz = 27V, Imax out = 100mA, Wmax out =0.68W or Uz = 28V, Imax out = 93mA, Wmax out = 0.67W.4-4.S.mn:11 �(1,75 h] -.U,7f811"141e;e1,1.rn�tl'!m--------[�.87in)-----lll"iI Cle ll!'l rl',,.. _____ (4,251f\J _____ _-:\'' ,, '',,II'' ''. ,,l:-: =�p1J KPIX{_�3,W :R E POT 0-1000ID 0-,0,0000 114 ,PS B PTX C -PS �12-42.\!DC POWER SOURCE -.. DLIRREJff DRi\10\1 --SEB NOTE!DEYVlCE NOTE; Som e as a� rBqlite dilfilll!nt Wlhlil!i r ana • a �r � ••�,I!� cw aiodl l ilt:1;1,y bf lnformalio� Maintenance & TroubleshootingOnce pmpcdy 1nsta11ee1 an.1 oonneded, IJ'to PTX i u nc Uons: u n :ane n de<I , A 'Simp e , perloo!C c:heok or @Meclbns. � a ll th.at Is re-q u l fed •o rna ln 1a1n u nll ope r a1km. Moore I nd u5:tl1es. 5ug9es.1, a &-im:>mti 9dledu l e fo r mal nte n anc e Checks .t problems. �e ln the �l,ll"il;lon o1 �he u n � In I t � awllc.a'lbn,•Maka SIJilO lhat 1npu1. and o u 1pu1. eoM«tlon.s .aro clean Md Ugh'l.•Ro mo ve · tM unill I m m Hrviee aM iltc.alibra,e,� su,e that bench inSlruments. usedl are pr,ope.l'il!,' c a ll bla t e(I .Vern loop p!Wt'4r IIOvels,tr, afte r re-ca.tbratlan. me PTX rails lo pe-f1o rm u p 1o sp;eciUcatiOM, co nl aci your 10cal Cl.iSlome r Service D-epartroont. Pl'IDne l'IU!fbers o4 o� STAR cen,ats are lls.1ed Inside lhe fr(lnl OOYTilt ol Urli:S mainu l �n.i clk>n !ii lor 1he r,etu m of tne u ,o tho tactory IOr fur1he r lesliflg or ran.m can bOi lound on lh.e back OOv,&t.Wha 1 cal 101 aulsJan::e, ahNays. r e tM mbe r ,o �i:, t taotory with ltte mod.el and !i(l!ilel number' 011no ot r e � unh, and i. po�1e. �ith Uis fob oomber alld tile !PUrc�e, order ni,imbet u ndB r whiCh Ote unit was ordered. Test J�k,. The OIN-�le PTX Is equipped ww, W.'O Leos4 Jacu. Locat� on Lhe f'ronl pan o l , mese Jaci<.s p ro,v ld'e a. convenient lltlsa.M om votifying l oo p ClU ff ie nt when th e uni:C is Installed! aild op rating,. CoooeeJlng a: m l ll �a e r to the [a.ck&, l abelled ·+ l'" and ·-T", when ·til e u n � b powenKI up. �cs a reedino, 111 mTil!ami;,e. ot lhe cu�nt in tno klop, i'O. 1¾. II desired. �s.u r a ttie vOflaga Cll'Op across a 1 o n cto.OS%) r es l 5,1or 00meo1ed 1o 'the �. The o-urnmt In ·t he ilQop �hQujj �,ch that obt;eii\'o dl iln lhe reslst o r , ±0.01%.© 2018 Moore Industries-International, Inc.Specifications and Information subject to change without notice.。
NDS-1完整说明书
NDS-1 型电子式扭转试验机使用说明书宁夏青山试验机有限公司本产品出厂前非油漆面均涂有防锈膜,请在使用前用汽油清洗干净目录一.设备主要功能: (1)二.设备构成: (1)三.主要技术性能: (2)四、上位机软件使用说明 (3)五.试验方法 (6)六.附图 (9)主机结构图(附图1) (9)电气原理框图(附图2) (10)一.设备主要功能:本系列试验机适用于金属材料、非金属材料、复合材料以及构件的扭转性能测试试验,可根据国家标准《GB/T10128-1988金属室温扭转试验方法》进行试验和提供数据。
二.设备构成:微机控制电子扭转试验机主要由主机、扭角测量装置(可另购)M210测控驱动系统和计算机四大部分组成。
试验过程中,由计算机软件发送指令给M210控制单元使伺服系统带动电机转动,伺服电机通过皮带带动减速机、减速机带动夹头转动,当夹头转动时,给试样施加一个扭矩,这个扭矩通过试样传递到定夹头上的传感器上,扭矩传感器上的输出信号送入M210控制单元的测量放大电路,再经过A/D 转换进入计算机,扭角测量通过光电编码器来测量,扭角的另一种测量方法是用扭角计测量。
在试样的标距处固定两个转盘,两个光电编码器分别附着在两个转盘上,两个转盘之间的转角差也就是两个光电编码器的转角差,两个光电编码器的脉冲信号输入到计算机,通过计算机处理,可得到精确的扭角值。
三.主要技术性能:1、负荷测量范围:正扭:10-500N²m反扭:10-500N²m2、负荷测量相对误差:±1%3、负荷显示:直读式显示4、扭矩传感器:500N²m5、转动夹头的转角:正反两方向的任意角度6、转交显示相对误差:±1%7、转角显示:直读式显示8、加载速度:夹头转角速度范围 1°-360°/min9、加载方式:无级10、记录装置:试验机配置一台激光打印机,可打印出试验结果及试验曲线。
编译原理及实现课后习题答案孙悦红 (1)
|xyz|=7 | (xy)3 |=12
2.3 设有文法 G[S]�S∷=SS*|SS+|a�写出符号串 aa+a*规范推导�并构造语 法树。
S => SS* => Sa* => SS+a* => Sa+a* => aa+a*
S
S
S
*
SS+a
aa
2.4 已知文法 G[Z]�Z∷=U0∣V1 、 U∷=Z1∣1 、 V∷=Z0∣0 ,请写出 全部由此文法描述的只含有四个符号的句子。
+i#
POP,NEXTSYM
18
#E’T
i#
POP,PUSH(T’F)
所用产生式 E→TE’ T→FT’ F→i
T’→ε E’→+TE’
T→FT’ F→i
T’→*FT’
F→i
T’→ε E’→+TE’
T→FT’
19 20 21 22 23 �2�i*(i+i+i) 步骤
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 错误
INPUTSYM=下一个符号
INPUTSYM=’b’ Y
N 出口
4.2 设有文法 G[Z]� Z∷=(A) , A∷=a|Bb , B∷=Aab 若采用递归下降分析方法�对此文法来说�在分析过程中�能否避免回溯�为什么�
解�若采用递归下降分析方法�对此文法来说�在分析过程中不能避免回朔。因为规则 A ∷=a|Bb 和规则 B∷=Aab 构成了间接左递归�不满足实现没有回溯的递归下降分析方法的 条件�1��书 P67��且规则 A: := a|Bb�FIRST(a)={a}�FIRST(Bb)={a}�即此规则候选式 的首符号集有相交�不满足实现没有回溯的递归下降分析方法的条件�2��书 P67��在分 析过程中�将造成回溯。
OPTICAL SCANNER
专利名称:OPTICAL SCANNER发明人:SHIKII SHINICHI,式井 愼一申请号:JP2004065349申请日:20040309公开号:JP2005257736A公开日:20050922专利内容由知识产权出版社提供专利附图:摘要:PROBLEM TO BE SOLVED: To stably rotationally control a polygon mirror by reducing noise mixed into a clock signal even when an external clock substrate is independently provided.SOLUTION: In this optical scanner in which a polygon substrate 2 on which the polygon mirror 3 rotated with a motor is mounted and an external clock substrate 7 are independently provided, a clock supply wire 11 which supplies the clock signal from the external clock substrate 7 to the polygon substrate 2 is provided independently of other wires 12, the polygon substrate 2 and the external clock substrate 7 are directly connected with the clock supply wire 11. Thus, the probability of mixing of noise in the clock signal in the wire 11 is reduced.COPYRIGHT: (C)2005,JPO&NCIPI申请人:FUJI PHOTO FILM CO LTD,富士写真フイルム株式会社地址:神奈川県南足柄市中沼210番地国籍:JP代理人:小栗 昌平,本多 弘徳,市川 利光,高松 猛,濱田 百合子更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证券代码:600667 证券简称:太极实业公告编号:临2020-028 无锡市太极实业股份有限公司
关于股东减持达到1%的提示性公告
重要内容提示:
●本次权益变动为履行此前披露的股份减持计划,不触及要约收购,不会
使公司控股股东及实际控制人发生变化。
●本次权益变动后,信息披露义务人及其一致行动人持有上市公司股份比
例将从34.6833%减少至33.6833%。
无锡市太极实业股份有限公司(“公司”或“太极实业”)于2020年5月14日收到公司股东无锡创业投资集团有限公司(“无锡创投”或“信息披露义务人”)及其一致行动人无锡产业发展集团有限公司(“产业集团”)发来的《关于减持计划实施进展情况的告知函》。
现将其有关权益变动情况公告如下:
一、本次权益变动情况
(一)信息披露义务人
(二)一致行动人
备注:
1、信息披露义务人及其一致行动人于2018年6月7日披露《简式权益变动报告书》,该次权益变动后,信息披露义务人及其一致行动人合计持有上市公司股份730,496,442股,占上市公司总股本的34.6833%。
2、本次权益变动所涉及股份均享有表决权,不存在表决权委托或受限等任何权利限制或被限制转让的情况。
3、本次变动不存在违反《证券法》《上市公司收购管理办法》等法律法规和上海证券交易所业务规则等相关规定情形及其相关承诺。
二、本次权益变动前后,投资者及其一致行动人拥有上市公司权益的股份情况
以上所有表格中数据尾差为数据四舍五入加和所致。
备注:本次权益变动后所持有的公司股份均享有表决权,不存在表决权委托或受限等任何权利限制或被限制转让的情况。
三、其他情况说明
1、本次权益变动为减持,不涉及资金来源。
2、本次权益变动为履行本次减持计划:
公司于2020年3月20日披露了《股东减持股份计划公告》(公告编号:临2020-009),无锡创投拟以集中竞价交易或大宗交易或集中竞价与大宗交易混合的方式减持公司股份不超过40,000,000股(即不超过公司总股本的1.8992%)。
其中通过集中竞价方式减持的自本公告之日起15个交易日之后的6个月内进行,且任意连续90个自然日内通过集中竞价方式减持股份不超过公司总股本的1%;
通过大宗交易方式减持的自本公告之日起6个月内进行,且任意连续90个自然日内减持股份总数不超过公司总股本的1.8992%。
截至本公告披露日,无锡创投通过集中竞价方式减持21,061,891股,尚未通过大宗交易方式减持股份。
3、本次权益变动不会导致控股股东、实际控制人的变化。
特此公告。
无锡市太极实业股份有限公司
董事会
2020年5月15日。