高二数学12月月考试题 理(无答案)
上海市高二上学期12月月考数学试题(解析版)
一、填空题1.抛掷两枚硬币,恰好出现一次正面向上的概率是__________. 【答案】##0.512【分析】列举出所有的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】同时抛掷两枚硬币,可能出现的所有结果有:(正,正)、(正,反)、(反,正)、(反,反).恰好出现一次正面向上的概率:.21=42P =故答案为:.122.用斜二测画法画出的水平放置的的直观图如图,其中,若原的面积ABC 1B O C O ''''==ABC 为2,则______. A O ''=【答案】1【分析】根据斜二测画法原则可还原,利用面积公式计算即可求解.ABC 【详解】由直观图可还原,如下图所示, ABC其中,又因 1,2OB O B OC O C BC B C ¢¢¢¢¢¢======,2OA BC AO A O ¢¢^=所以 11222222ABC S BC A O A O ¢¢¢¢=´=´´=即得1A O ¢¢=故答案为: .13.已知圆锥的侧面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径是_________.2π【答案】1【分析】设出圆锥底面半径和母线长,利用侧面展开后,扇形弧长公式和面积公式进行求解.【详解】设圆锥的底面半径为r ,圆锥的母线长为l ,则,解得:,又21π2π2l =2l =2ππ2πr l ==,解得:.1r =故答案为:14.已知事件A 与事件B 相互独立,若,,则______.()0.3P A =()0.6P B =()P A B ⋂=【答案】0.42## 2150【分析】根据相互独立事件概率乘法公式以及对立事件的概率公式求得正确答案.【详解】.()()()()10.30.60.42P A B P A P B ⋂=⨯=-⨯=故答案为:0.425.在四棱台中的12条棱所在直线中,与直线是异面直线的共有______条1111ABCD A B C D -1AB 【答案】6【分析】根据异面直线的定义来确定正确答案.【详解】根据异面直线的定义可知,与直线是异面直线的有:1AB ,共条,111111,,,,,A D BC CD DD D C C C 6故答案为:66.为了了解某水库里大概有多少条鱼,先打捞出了1000条鱼,在鱼身上标记一个不会掉落的印记后放回水库,过一段时间后再次捕捞了200条鱼,发现其中5条鱼有印记.则这个水库里大概有______条鱼【答案】40000【分析】利用“捉放捉”原则即可求得这个水库里大概有40000条鱼【详解】设水库里大概有x 条鱼,则,解之得 10005200x =40000x =故答案为:400007.正四面体ABCD 的各棱长均为2,则点A 到平面BCD 的距离为______.【分析】设是底面的中心,则的长是点A 到平面BCD 的距离,由勾股定理计算可O BCD △AO 得.【详解】如图,是底面的中心,则平面,平面,,O BCD △AO ⊥BCD BO ⊂BCD AO BO ⊥正四面体ABCD 的棱长均为2,则, 223BO ==. AO ===8.下列说法中正确的是______.①一组数据中比中位数大的数和比中位数小的数一样多;②极差、方差、标准差都是描述一组数据的离散程度的统计量;③平均数、众数和中位数都是描述一组数据的集中趋势的统计量.【答案】②③【分析】根据中位数,平均数、众数、极差、方差和标准差的定义即可判断.【详解】对于①,中位数是一组数据按照从小到大的顺序排列,位于中间的那个数据(或中间两个数据的平均数),但是也有一些特殊的,比如:这组数据,中位数是,而比小1,2,3,4,4,5,6,7,844的数据是个,比大的数据却是个,所以一组数据中比中位数大的数和比中位数小的数不一定344一样多,故①说法错误;对于②,极差反映的是一组数据最大值与最小值的差,方差和标准差反映了数据分散程度的大小,所以说极差、方差、标准差都是描述一组数据的离散程度的统计量,故②说法正确;对于③,平均数、众数和中位数都是描述一组数据的集中趋势的量,所以说平均数、众数和中位数都是描述一组数据的集中趋势的统计量,故③说法正确,故答案为:②③.9.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时,测得水深为3cm .若不计容器的厚度,则球的体积为______3cm【答案】## 1256π1256π【分析】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD 水面是过点的虚数,它与圆相切,然后根据圆(球)的性质计算出球半径,从而得体积.E 【详解】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD ,线段是正方体上底面截球所得截面圆直径,虚线表示水面,,设球半径4AB =AB 431EF =-=为,则,, R 1OE R =-122AF AB ==由勾股定理得,即,解得, 222OA AF OF =+2222(1)R R =+-52R =所以球体积为. 33445125()3326V R πππ==⨯=故答案为:. 1256π10.甲、乙两人进行某项比赛,采用三局两胜模式,假定甲每一局比赛赢的概率都为0.6,则甲最终赢得比赛的概率为______.【答案】0.648【分析】分析试验过程,分别求出两局比赛后甲获胜和三局比赛后甲获胜的概率,即可求解.【详解】甲、乙两人进行某项比赛,每局比赛相互独立.两局比赛后甲获胜的概率为:;0.60.60.36⨯=三局比赛后甲获胜的概率为:;20.60.40.60.288⨯⨯⨯=所以甲最终赢得比赛的概率为:.0.360.2880.648+=故答案为:0.64811.从编号分别为1、2、3、4、5的5个大小与质地相同的小球中随机取出3个,则恰有2个小球编号相邻的概率为______. 【答案】##0.6 35【分析】利用列举法写出所有可能的基本事件,并列出所有满足恰好两个小球编号相邻的可能情况,然后利用古典概型求解.【详解】依题意得,取出的三个小球编号的所有可能为,123,124,125,134,135,145,234,235,245,345共种,其中恰好两个小球编号相邻的有,共种,根据古典概型的计算10124,125,134,145,235,2456公式,恰有2个小球编号相邻的概率为:. 63105=故答案为: 3512.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 侧面BCC 1B 1的交线长为________..【分析】根据已知条件易得侧面,可得侧面与球面的交线上的点1D E 1D E ⊥11B C CB 11B C CB到与球面的交线是扇形的弧,再根据弧长公式可求得结E 11B C CB EFG FG果.【详解】如图:取的中点为,的中点为,的中点为,11B C E 1BB F 1CC G 因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以BAD ∠=1111ABCD A B C D -111D B C,1D E 111D E B C ⊥又四棱柱为直四棱柱,所以平面,所以,1111ABCD A B C D -1BB ⊥1111D C B A 111BB B C ⊥因为,所以侧面,1111BB B C B = 1D E ⊥11B C CB 设为侧面与球面的交线上的点,则,P 11B C CB 1D E EP ⊥,所以1D E =||EP ===所以侧面与球面的交线上的点到,11B C CB E因为与球面的交线是扇形的弧, ||||EF EG ==11B C CB EFG FG因为,所以, 114B EF C EG π∠=∠=2FEG π∠=所以根据弧长公式可得. 2FGπ==. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.二、单选题13.平面与平面相交于直线l ,点A 、B 在平面上,点C 在平面上但不在直线l 上,直线αβαβAB 与直线l 相交于点D .设A 、B 、C 三点确定的平面为,则与的交线是( )γβγA .直线ACB .直线ABC .直线CD D .直线BC【答案】C【分析】根据已知得既在平面上又在平面可得答案.D C 、βγ【详解】因为直线AB 与直线l 相交于点D ,,所以平面,D ∈l D ∈β又点C 在平面上,所以平面,βCD ⊂β因为平面,点在直线AB 上,所以平面,AB ⊂γD D ∈γ又平面,所以平面,C ∈γCD ⊂γ所以与的交线是直线.βγCD 故选:C.14.掷一颗骰子,设事件:落地时向上的点数是奇数,事件:落地时向上的点数是偶数,事件A B :落地时向上的点数是的倍数,事件:落地时向上的点数是.则下列每对事件中,不是互C 3D 4斥事件的为( )A .与B .与C .与D .与A B B C A D C D 【答案】B【分析】判断选项中的两个事件是否可以同时发生即可.【详解】对于A ,“落地时向上的点数是奇数”与“落地时向上的点数是偶数”不可能同时发生, ∴,事件与事件互斥,故选项A 不正确;A B ⋂=∅A B 对于B ,“落地时向上的点数是偶数”与“落地时向上的点数是的倍数”同时发生即“落地时向上的点3数是”,6∴“落地时向上的点数是”,事件与事件不是互斥事件,故选项B 正确;B C ⋂=6B C 对于C ,“落地时向上的点数是奇数”与“落地时向上的点数是” 不可能同时发生,4∴,事件与事件互斥,故选项C 不正确;A D ⋂=∅A D 对于D ,“落地时向上的点数是的倍数”与“落地时向上的点数是” 不可能同时发生, 34∴,事件与事件互斥,故选项D 不正确.C D ⋂=∅C D 故选:B.15.某地教育行政部门为了解“双减”政策的落实情况,在某校随机抽取了100名学生,调查他们课后完成作业的时间,根据调查结果绘制如下频率直方图.根据此频率直方图,下列结论中错误的是( )A .估计该校学生的平均完成作业的时间超过2.7小时B .所抽取的学生中有25人在2小时至2.5小时之间完成作业C .该校学生完成作业的时间超过3.5小时的概率估计为20%D .估计该校有一半以上的学生完成作业的时间在2小时至3小时之间【答案】D【分析】对A ,根据直方图中平均数的公式计算,可判断A;对B ,利用直方图中2小时至小时2.5之间的频率判断B;对C ,计算超过3.5小时的频率可判断C;对D ,计算做作业的时间在2小时至3小时之间的频率,可判断D.【详解】对A ,直方图可计算学生做作业的时间的平均数为:1.250.05 1.750.152.250.25 2.750.203.250.15⨯+⨯+⨯+⨯+⨯ 3.750.104.250.05 4.750.05+⨯+⨯+⨯,所以A 正确;2.75 2.7=>对B ,直方图中2小时至小时之间的频率为,故所抽取的学生中有2.5()2.520.50.25-⨯=25人在2小时至小时之间完成作业,故B 正确;1000.25⨯= 2.5对C ,由直方图得超过3.5小时的频率为,所以C 正确;0.5(0.20.10.1)0.2⨯++=对D ,做作业的时间在2小时至3小时之间的频率为,所以D 错误. 0.5(0.50.4)0.450.5⨯+=<故选:D16.在棱长为2的正方体中,E 为棱BC 的中点,F 是侧面内的动点,若1111ABCD A B C D -11B BCC 平面,则点F 轨迹的长度为( )1//A F 1AD EA B C D .【答案】B【分析】取中点,中点,连接,则易证平面平面,进而得当F 的轨1BB M 11B C N MN 1//A MN 1AD E 迹为线段时,则有平面,再根据勾股定理及三角形的中位线计算即可.MN 1//A F 1AD E 【详解】如图所示:取中点,中点,连接,1BB M 11B C N MN 因为,,//MN 1BC 1//BC 1AD 所以,//MN 1AD 平面,平面,MN ⊄1AD E 1AD ⊂1AD E 所以平面,//MN 1AD E 同理可证明平面,1//A N 1AD E 又因为,平面,1MN A N N = 1,MN A N ⊂1A MN 所以平面平面,1//A MN 1AD E 当F 的轨迹为线段时,此时平面,则有平面,MN 1A F ⊂1A MN 1//A F 1AD E此时. 11122MN BC ==⨯=故选:B.三、解答题17.某校共有在校学生200人,为了了解该校学生的体能情况,对该校所有学生进行体能测试,然后采用分层抽样的方法随机抽取了20名学生的成绩,整理得到如下茎叶图:(1)求该校女学生人数、样本中女生成绩的极差、25百分数;(2)已知全体女生的平均成绩为70,全体男生的平均成绩为72,求该校全体学生的平均成绩.【答案】(1)80,32,62(2)71.2【分析】(1)利用样本与总体的关系即可求得该校女学生人数;依据极差定义即可求得样本中女生成绩的极差;依据百分位数定义即可求得样本中女生成绩的25百分数;(2)利用平均数定义即可求得该校全体学生的平均成绩.【详解】(1)样本中女生有8人,则该校女学生人数为 20880200÷=样本中女生成绩由小到大排列为 5659656873747788,,,,,,,则样本中女生成绩的极差为885632-=由,可得样本中女生成绩的25百分数为 80.252⨯=5965622+=(2)由(1)可得该校女学生人数为,则该校男生人数为120 80又全体女生的平均成绩为70,全体男生的平均成绩为72,则该校全体学生的平均成绩为 80701207271.2200⨯+⨯=18.如图,在圆柱中,底面直径AB 等于母线.1AA(1)若AB =2,求圆柱的侧面积;(2)设AB 与CD 是底面互相垂直的两条直径,求异面直线AC 与所成角的大小.1A B 【答案】(1);4π(2). π3【分析】(1)由已知得到底面半径以及母线的值,代入公式即可求出; r l (2)用向量、、来表示出、,进而求出它们的夹角,即可求出结果.AB DC 1AA AC 1A B u u u r 【详解】(1)由已知可得,底面半径,母线,1r =12l AA ==所以圆柱的侧面积.2π4πS rl ==(2)由已知可得,两两垂直,且相等,1,,AB CD AA设,则,. 2AB =1OA OC ==AC =1A B ==又, , 1122AC OC OA DC AB =-=+u u u r u u u r u u r u u u r u u u r 11A B AB AA =-u u u r u u u r u u u r 则. ()111122AC A B DC AB AB AA ⎛⎫⋅=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 21111112222DC AB DC AA AB AB AA =⋅-⋅+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2122AB ==u u u r所以,11cos ,2AC A B =u u u r u u u r 又,所以, 10,πAC A B ≤≤u u u r u u u r 1π,3AC A B =u u u r u u u r 所以异面直线AC 与所成角的大小为. 1A B π319.如图,已知三棱柱的高为2,底面ABC 是边长为2的正三角形.111ABC A B C -(1)求四棱锥的体积;111A BBCC -(2)若,求证:侧面为矩形.11A B A C =11B BCC 【答案】(2)证明见解析【分析】(1)三棱柱可分割成三棱锥和四棱锥两部分,因此用三111ABC A B C -1A ABC -111A B BCC -棱柱的体积减三棱锥的体积就能得到四棱锥的体积; 111ABC A B C -1A ABC -111A B BCC -(2)由棱柱定义知,四边形为平行四边形,因此只需借助空间中直线、平面的垂直关系,11B BCC 证明其中一个角为直角即可.【详解】(1)三棱柱可分割成三棱锥和四棱锥两部分,111ABC A B C -1A ABC-111A B BCC -三棱柱的体积, 111ABC A B C -1111=22sin 6022ABC A B CABC V S h -=⨯⨯⨯︒⨯= 三棱锥的体积 1A ABC -11=3A ABC ABC VS h -= ∴四棱锥的体积. 111A B BCC -1111111A B BCC ABC A B C A ABC V V V ---=-==(2)取中点,连接,, BC M AM 1A M ∵是等边三角形,是边上的中线,ABC AM BC ∴也是边上的高,即,AM BC AM BC ⊥又∵,∴是等腰三角形,11A B A C =1A BC ∴是边上的中线,也是边上的高,即,1A M BC BC 1A M BC ⊥又∵,平面,平面,1AM A M M ⋂=AM ⊂1AMA 1A M ⊂1AMA ∴平面,BC ⊥1AMA ∵平面,1AA ⊂1AMA ∴,1BC AA ⊥由棱柱定义知,,,111AA BB CC ∥∥111AA BB CC ==∴,四边形为平行四边形,1BC BB ⊥11B BCC ∴侧面四边形为矩形.11B BCC 20.掷黑、白两枚骰子.(1)设事件A 为:两枚骰子的点数和为7,事件B 为:白色骰子的点数是1.判断事件A 和事件B 是否独立,并说明理由;(2)设事件C 为:两枚骰子中至少有一枚的点数是1且两枚骰子点数之和不是7.求事件C 的概率.【答案】(1)是,理由见解析 (2)14【分析】(1)写出所有的基本事件,再求出A ,B 发生的概率,根据概率公式 ()()()·P AB P A P B =来判断A ,B 事件是否独立;(2)根据事件C 包含的基本事件数,按照古典概型概率计算公式可求出事件C 的概率.【详解】(1)投掷黑、白两枚骰子一次的点数记作,所有基本事件如下: (),x y ,()2:1,1 ,()()3:1,2,2,1 ,()()()4:2,2,1,3,3,1 ,()()()()5:1,4,4,1,2,3,3,2 ,()()()()()6:3,3,1,5,5,1,2,4,4,2 ,()()()()()()7:1,6,6,1,2,5,5,2,3,4,4,3 ,()()()()()8:4,4,2,6,6,2,3,5,5,3 ,()()()()9:3,6,6,3,4,5,5,4 ,()()()10:5,5,4,6,6,4 ,()()11:5,6,6,5 ,()12:6,6共36个,事件包含6个基本事件,即,A ()()()()()()1,6,6,1,2,5,5,2,3,4,4,3事件包含6个基本事件,即,B ()()()()()()1,1,2,1,3,1,4,1,5,1,6,1事件只包含,C ()6,1所以, ,所以A ,B 是独立事件; ()()()()()61611,,36636636P A P B P AB P A P B ======(2)根据(1)所列出的基本事件,事件包含9个基本事件,即C ,所以,. ()()()()()()()()()1,1,1,2,2,1,1,3,3,1,1,4,4,1,1,5,5,1()91364P C ==综上,A ,B 是独立事件, . ()14P C =21.如图,在四棱锥中,底面为直角梯形,,,P ABCD -ABCD AD BC ∥AB BC ⊥分别为棱中点.2AB AD BC AB E F ==,,、BC BP 、(1)求证:平面平面;AEF ∥DCP (2)若平面平面,直线与平面所成的角为,且,求二面角PBC ⊥ABCD AP PBC 45 CP PB ⊥的大小.P AB D --【答案】(1)证明见解析 (2)3π【分析】(1)证明平面,平面,即可证明结论;//EF PCD //AE PCD (2)根据面面垂直性质定理得,进而得,再根据题意证明平面可45APB ∠= AB PB =PC ⊥ABP 得为直角三角形,再根据几何关系得,进而根据是二面角的平PBC 60PBC ∠= PBC ∠P AB D --面角求解即可.【详解】(1)证明:因为分别为棱中点,E F 、BC BP 、所以,在中,,PBC //EF PC 因为平面,平面,EF ⊄PCD PC ⊂PCD 所以,平面,//EF PCD 因为,为棱中点.AD BC ∥2BC AB E =,BC 所以,,//,AD CE AD CE =所以,四边形是平行四边形,ADCE 所以,//CD AE 因为平面,平面,AE ⊄PCD DC ⊂PCD 所以,平面,//AE PCD 因为平面,,,AE EF E AE EF ⋂=⊂AEF 所以,平面平面AEF ∥DCP (2)解:因为平面平面,平面平面,,平面PBC ⊥ABCD PBC ⋂ABCD BC =AB BC ⊥AB ⊂,ABCD 所以,平面AB ⊥PBC 所以,是直线与平面所成的角,APB ∠AP PBC 因为,直线与平面所成的角为,AP PBC 45所以,,45APB ∠= 所以,AB PB =因为平面,,PC PB ⊂PBC 所以,,AB PC ⊥AB PB ⊥因为,,平面, CP PB ⊥AB BP B = ,AB BP ⊂ABP 所以平面,PC ⊥ABP 因为平面,PB ⊂ABP 所以,即为直角三角形,PC PB ⊥PBC所以,在中,由可得, PBC 22BC AB PB ==PC所以,, tan PC PBC PB∠==60PBC ∠= 因为,,AB PB ⊥AB BC ⊥所以,是二面角的平面角, PBC ∠P AB D --所以,二面角的大小为.P AB D --60。
广西“贵百河”2023-2024学年高二上学期12月新高考月考测试数学试题
广西“贵百河”2023-2024学年高二上学期12月新高考月考测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .()12b c a+-B .125.在棱长为a 的正方体ABCD A .60°C .90°6.已知命题p :方程25x m m +-不必要条件是()A .35m <<B .4<7.国家速滑馆又称“冰丝带”,是北京冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中二、多选题三、单选题11.为了考查某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为()A .9B .10C .11D .12四、多选题12.已知3log ,a e =2log 3b =,ln 3c =,则()A .a b c <<B .a c b <<C .a c b+>D .a c b+<五、填空题六、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2,==PA AD E 为PB 的中点,F 为AC 与BD 的交点.(1)证明:EF //平面PCD ;(2)求三棱锥E ABF -的体积.18.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足22()b c a bc -=-.(1)求角A 的大小;(2)若2,sin 2sin a C B ==,求△ABC 的面积.19.已知直线:20,R l x ay a --=∈.(1)求证:直线l 与圆224x y +=恒有公共点;(2)若直线l 与圆心为C 的圆22()(1)4x a y -+-=相交于A B 、两点,且ABC 为直角三角形,求a 的值.20.甲、乙两人玩一个摸球猜猜的游戏,规则如下:一个袋子中有4个大小和质地完全相同的小球,其中2个红球,2个白球,甲采取不放回方式从中依次随机地取出2个球,然后让乙猜.若乙猜出的结果与摸出的2个球特征相符,则乙获胜,否则甲获胜,一轮游戏结束,然后进行下一轮(每轮游戏都由甲摸球).乙所要猜的方案从以下两种猜法中选择一种;猜法一:猜“第二次取出的球是红球”;猜法二:猜“两次取出球的颜色不同”.请回答:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜法,并说明理由;(2)假定每轮游戏结果相互独立,规定有人首先获胜两次则为游戏获胜方,且整个游戏停止.若乙按照(1)中的选择猜法进行游戏,求乙获得游戏胜利的概率.21.如图,已知点()11,0F -,圆222:(1)16F x y -+=,点Q 在圆2F 上运动,1QF 的垂直平分线交2QF 于点P .(1)求动点P 的轨迹C 的方程;(2)直线l 与曲线C 交于M N 、两点,且MN 中点为()1,1,求直线l 的方程及1F MN △的面积.22.如图,在三棱锥-P ABC 中,PAC △是正三角形,AC BC ⊥,2AC BC ==,D 是AB 的中点.(1)证明:AC PD ⊥;(2)若二面角P AC D --为150︒,求直线BC 与平面PAB 所成角的正弦值.。
2022-2023学年辽宁省本溪市本溪满族自治县高级中学高二上学期12月月考数学试题(解析版)
2022-2023学年辽宁省本溪市本溪满族自治县高级中学高二上学期12月月考数学试题一、单选题 1.复数13i3iz +=-(i 为虚数单位)的共轭复数=z ( ) A .i B .i - C .3i D .3i -【答案】B【分析】根据复数的除法运算及共轭复数的概念求解. 【详解】因为13i (13i)(3i)i 3i (3i)(3i)z +++===--+,所以i z =-. 故选:B.2.以点(3,2)-为圆心,且与直线310x y -+=相切的圆的方程是( ) A .22(3)(2)10x y -++= B .22(3)(2)1x y ++-= C .22(3)(2)10x y ++-= D .22(3)(2)1x y -++=【答案】C【分析】根据直线与圆的位置关系求得圆的半径,即可求得结果.【详解】因为点(3,2)-到直线310x y -+=的距离是d ==,所以圆的方程为22(3)(2)10x y ++-=. 故选:C.3.小明每天上学途中必须经过2个红绿灯,经过一段时间观察发现如下规律:在第一个红绿灯处遇到红灯的概率是13,连续两次遇到红灯的概率是14,则在第一个红绿灯处小明遇到红灯的条件下,第二个红绿灯处小明也遇到红灯的概率为( ) A .23B .34C .14D .13【答案】B【分析】由条件概率公式求解即可【详解】设“小明在第一个红绿灯处遇到红灯”为事件A , “小明在第二个红绿灯处遇到红灯”为事件B , 则由题意可得()()11,34P A P AB ==,则在第一个红绿灯处小明遇到红灯的条件下,第二个红绿灯处小明也遇到红灯的概率为()()()34P AB P B A P A ==∣. 故选:B .4.以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =- B .210x y =-或28y x = C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.5.若角θ的终边经过点()1,2-,则sin (1sin 2)sin cos θθθθ+=+( )A .65B .65-C .25D .25-【答案】C【分析】根据题意可求得tan 2θ=-,利用同角的三角函数关系结合二倍角公式化简sin (1sin 2)sin cos θθθθ++,代入求值,可得答案.【详解】根据角θ的终边经过点()1,2-,得tan 2θ=-, 又2sin (1sin 2)sin (sin cos )sin cos sin cos θθθθθθθθθ++=++()2222sin sin cos sin sin cos sin sin c o os sin c s θθθθθθθθθθθ+=+=+=+22tan tan 422tan 1415θθθ+-===++, 故选:C.另解:根据三角函数的定义,得sin θ=cos θ=,所以4sin 22sin cos 25θθθ⎛===- ⎝⎭,所以41sin (1sin 2)2sin cos 5θθθθ⎛⎫- ⎪+==+, 故选:C.6.已知双曲线2222:1x y C a b-=C过点)1-,直线():2l y k x =-与C 的右支有两个不同的交点,则实数k 的取值范围是( ) A .()(),11,-∞-⋃+∞ B .()1,1- C.( D.((),2,-∞+∞【答案】A【分析】联立直线与双曲线方程,根据双曲线与双曲线右支有两个不同的交点,利用韦达定理列出不等式进行求解.【详解】的双曲线是等轴双曲线,所以可设双曲线C 的方程是()220x y λλ-=≠,将点)1-的坐标代入得1λ=,所以C 的方程是221x y -=,将()2y k x =-代入上式并消去y 整理得()222214410k xk x k -+--=,则24222122212210Δ164(1)(41)04014101k k k k k x x k k x x k ⎧-≠⎪=---->⎪⎪⎨+=->-⎪⎪+⎪=->-⎩解得1k <-或1k >.故选:A.7.中国空间站已经进入正式建造阶段,天和核心舱、问天实验舱和梦天实验舱将在2022年全部对接,形成“T "字结构.在中国空间站建造阶段,有6名航天员共同停留在空间站,预计在某项建造任务中,需6名航天员在天和核心舱、问天实验舱和梦天实验舱这三个舱内同时进行工作,由于空间限制,每个舱至少1人,至多3人,则不同的安排方案共有( ) A .360种 B .180种C .720种D .450种【答案】D【分析】根据分组分配问题的处理步骤,先将6人分成三组,再将三组分到三个舱内即可.【详解】方案一:每个舱各安排2人,共有2223642333C C C A 90A ⋅=(种)不同的方案; 方案二:分别安排3人,2人,1人,共有32136313C C C A 360=(种)不同的方案.所以共有90360450+=(种)不同的安排方案. 故选:D .8.香港科技大学“逸夫演艺中心”鸟瞰图如图1所示,最上面两层类似于离心率相同的两个椭圆,我们把离心率相同的两个椭圆叫做“相似椭圆”.如图2所示,在“相似椭圆”12,C C 中,由外层椭圆1C 的下顶点A 和右顶点C 分别向内层椭圆2C 引切线,AB CD ,且两切线斜率之积等于34,则该组“相似椭圆”的离心率为( )A .34B .14C 3D .12【答案】D【分析】分别写出切线,AB CD 的方程,与内层椭圆联立方程,根据判别式为零分别表示出12,k k ,再根据斜率之积等于34解出离心率.【详解】设内层椭圆2C 的方程为22221(0)x y a b a b+=>>,因为内外椭圆离心率相同,所以外层椭圆1C 可设成22221(1)()()x y m ma mb +=>, 设切线AB 的方程为1y k x mb =-,与22221x y a b+=联立,得()()2222222211210b a k x mk a bx m a b +-+-=,又Δ0=,所以()222121b k m a=-.设切线CD 的方程为()2y k x ma =-,与22221x y a b+=联立,得()2222232242222220ba k x mk a x k m a ab +-+-=,又Δ0=,所以2222211b k a m =⋅-.又1234k k ⋅=,所以2234b a =,因此12c e a ====.故选:D.二、多选题9.已知圆221:66140C x y x y +-++=和圆222:230C x y y +--=,则( ) A .125C C = B .两圆半径都是4 C .两圆相交 D .两圆外离【答案】AD【分析】先根据配方法确定两个圆的圆心和半径,根据圆心距和半径的关系可判断两圆的位置. 【详解】圆1C 的标准方程为22(3)(3)4x y -++=,圆心为()13,3C -,半径为12r =,圆2C 的标准方程为22(1)4x y +-=,圆心为()20,1C ,半径为22r =,所以125C C =,故A 正确,B 错误;因为1212C C r r >+,所以两圆外离,故C 错误,D 正确. 故选:AD .10.已知e 是自然对数的底数,函数()e e x x f x -=-,实数,m n 满足不等式(32)(2)0f n m f n -+->,则下列结论正确的是( ) A .e 2e m n > B .若1,n >-则11n nm m+>+ C .ln()0m n -> D .20222022m n >【答案】ABC【分析】根据函数的单调性和奇偶性性质得到1m n >+,利用不等式的性质即可一一判断.【详解】()f x 的定义域为R ,()()e e x xf x f x --=-=-,所以()f x 是奇函数.因为1e e xx y -⎛⎫== ⎪⎝⎭,e x y =-在R 上都单调递减,所以()f x 在R 上是减函数.又()()3220f n m f n -+->,则()()322f n m f n ->--,即()()322f n m f n ->-,所以322n m n -<-,即1m n >+.因为e x y =在R 上是增函数,所以1e e 2e m n n +>>,故A 正确; 因为1n >-,所以110m m n +>>+>,所以()()()()1110111m n n m n n m nm m m m m m +-++--==>+++,故B 正确; 因为ln y x =在()0,∞+上是增函数,所以()ln ln1m n ->,即()ln 0m n ->,故C 正确; 取1m =,3n =-,满足1m n >+, 但20222022m n >不成立,故D 错误. 故选:ABC .11.已知2nx⎛ ⎝的展开式中第4项与第7项的二项式系数相等,且展开式的各项系数之和为0,则( ) A .9n =B .2nx⎛⎝的展开式中有理项有5项C .2nx⎛⎝的展开式中偶数项的二项式系数和为512D .(7)n a -除以9余8 【答案】ABD【分析】由二项式系数的概念与组合数的性质可判断A ;由二项式的通向结合有理项的概念判断B ;由偶数项的二项式系数和判断C ;由二项式定理判断D【详解】对于A ,因为第4项与第7项的二项式系数相等,所以36C C n n =,由组合数的性质知9n =,故A 正确;对于B ,在92x⎛ ⎝的展开式中,令1x =,得9(1)0a +=,所以1a =-,所以92x⎛ ⎝的二项式通项为518219(1)C kk k k T x -+=-⋅.由5182k -为整数,得0,2,4,6,8k =,所以展开式中有理项有5项,故B 正确;对于C ,展开式中偶数项的二项式系数和为1398999C C C 2256+++==,故C 错误;对于D ,由B 知1a =-,则()()99909188081789999997(71)8(91)C 9C 9C 919C 9C 9C 18na -=+==-=-++-=-++-+,所以()7na -除以9余8,故D 正确. 故选:ABD.12.已知抛物线2:2(0)C x py p =>的焦点为F ,过点F 的直线l 交C 于()()1122,,,A x y B x y 两点,则下列结论正确的是( )A .以AB 为直径的圆与抛物线C 的准线相切B .221212,4p x x y y p ==-C .112||||AF BF p+= D .若直线l 的倾斜角为π6,且12x x <,则||1||3AF BF = 【答案】ACD【分析】根据抛物线焦点弦性质,抛物线定义,数形结合思想解决即可.【详解】抛物线22x py =的焦点坐标为(0,)2P F ,准线方程是2py =-,由题意知,直线l 的斜率一定存在,设其方程为2p y kx =+,联立22,,2x py p y kx ⎧=⎪⎨=+⎪⎩消去y 得2220x pkx p --=, 设线段AB 的中点00(,)M x y , 所以121200,22x x y y x y ++==, 所以点M 到准线2py =-的距离120||222p y y p AB d y ++=+==, 所以以AB 为直径的圆与抛物线C 的准线相切,故A 正确;由韦达定理,得2222121212,224x x p x x p y y p p =-=⨯=,故B 错误;()212122y y k x x p pk p +=++=+, 所以()1221212121111||||2224y y p p p p p AF BF y y y y y y +++=+==+++++()()()22222222122212424p k pk p p p p p p k pk p ++==++++,故C 正确;若直线l 的倾斜角为π6,且12x x <,则点A 在点B 左侧,如图,直线l 与准线交于点D ,,AA BB ''分别表示点,A B 到准线2py =-的距离,则1sin ||2AA ADA AD ='='∠,设||AF t =,则,||2AA t AD t '==, 又sin ||BB BDB BD ∠=''=||1||||||2||2BB BF AD AF BF t t BF ==++++', 所以||3BF t =,所以||1||33AF t BF t ==,故D 正确. 故选:ACD.三、填空题13.张勇同学在上学期的8次物理测试中的成绩(单位:分)分别是:78,82,76,85,88,94,95,86,则这8次成绩的75%分位数为______. 【答案】91【分析】根据百分位数的计算方法计算即可.【详解】解:先将这8次成绩从小到大排列为76,78,82,85,86,88,94,95, 因为875%6⨯=, 所以75%分位数为8894912+=. 故答案为:9114.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,DC 边上,且DF FC =,2CE EB =,若120ABC ∠=︒,8AB =,6AD =,则DE BF ⋅=______.【答案】24-【分析】由题知23DE AB BC =-,12BF BC AB =-,再根据数量积的运算律运算求解即可.【详解】解:因为DF FC =,2CE EB =,所以,23DE DC CE AB BC =+=-,12BF BC CF BC AB =+=-,因为120ABC ∠=︒,8AB =,6AD =, 所以222141232323DE BF AB BC BC AB AB BC AB BC ⎛⎫⎛⎫⋅=-⋅-=⋅-- ⎪ ⎪⎝⎭⎝⎭2241128686243223=⨯⨯⨯-⨯-⨯=-.故答案为:24-15.已知椭圆C 的方程为22142x y +=,其左、右顶点分别为,A B ,一条垂直于x 轴的直线l 交椭圆C 于,E F 两点,直线AE 与直线BF 相交于点M ,则点M 的轨迹方程为___________.【答案】()221242x y x -=≠±【分析】设直线l 为()()00002,,x x x E x y =≠±,()()00,,,F x y M x y -,由,,A E M 三点共线及,,B F M 三点共线,可得22022044y y x x =---,又2200142x y +=,代入即可求解 【详解】由题意知()()2,0,2,0A B -,设直线l 为()()00002,,x x x E x y =≠±,()()00,,,F x y M x y -, 由,,A E M 三点共线及,,B F M 三点共线, 得0000,2222y y y y x x x x -==++--, 两式相乘化简,得22022044y y x x =---, 又2200142x y +=, 所以2202201442y y x x =-=--,即22142x y -=, 又240x -≠,即2x ≠±,所以点M 的轨迹方程为()221242x y x -=≠±.故答案为:()221242x y x -=≠±16.在菱形ABCD 中,=4AB ,120BAD ∠=︒,M 为BC 的中点,将ABM △沿直线AM 翻折成1AB M △,如图所示,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的体积是______.【答案】642π3##642π3 【分析】易得平面1AB M ⊥平面AMD 时三棱锥1B AMD -的体积最大,要求三棱锥1B AMD -外接球体积,利用长方体外接球,求出球的半径,即可求解【详解】易得平面1AB M ⊥平面AMD 时三棱锥1B AMD -的体积最大, 由题意知BM AM ⊥,故1B M AM ⊥,当平面1AB M ⊥平面AMD 时,1B M ⊥平面AMD , 因为90DAM DAB BAM ∠=∠-∠=︒, 所以AM AD ⊥.如图所示,要求三棱锥1B AMD -外接球体积,即求如图所示的长方体外接球的体积, 由已知得长方体的长、宽、高分别为4,23,2,则长方体外接球半径()2224232222r ++==,则球的体积是34642ππ33r =.故答案为:642π3四、解答题17.已知直线l 经过直线350x y ++=和3270x y --=的交点,且与直线50x y -+=垂直.(1)求直线l 的方程;(2)若圆C 过点()2,0-,且圆心C 在y 轴的负半轴上,直线l 被圆C 所截得的弦长为211,求圆C 的标准方程.【答案】(1)10x y ++=; (2)22(3)13x y ++=.【分析】(1)将两直线联立方程求出交点,再根据垂直的条件求出直线l 的斜率,代入点斜式可得直线方程;(2)设出圆的圆心和半径,圆过点()2,0-和弦长公式可联立方程解方程可得.【详解】(1)由已知,得350,3270,x y x y ++=⎧⎨--=⎩解得两直线交点为1,2,设直线l 的斜率为k ,因为直线l 与50x y -+=垂直,所以11k ⨯=-,解得1k =-, 所以直线l 的方程为()21y x +=--,即10x y ++=. (2)设圆C 的标准方程为222()(0)x y b r b +-=<, 则由题意,得()()()2222222,111,2b r b r ⎧-+-=⎪⎪⎨⎛⎫++=⎪ ⎪⎪⎝⎭⎩ 解得3b =-或5b =(舍去),所以13r =,所以圆C 的标准方程为:22(3)13x y ++=.18.已知四棱锥M ABCD -的底面为直角梯形,//AB CD ,90ADC ︒∠=,MD ⊥底面ABCD ,且22MD DC AD AB ====,P 是MC 的中点.(1)证明://BP 平面MAD ;(2)求直线MB 与平面DBP 所成角的正弦值.【答案】(1)证明见解析 (2)49【分析】(1)取MD 的中点为Q ,连接PQ 、AQ ,即可证明四边形ABPQ 是平行四边形,从而得到//BP AQ ,即可得证;(2)建立空间直角坐标系,利用空间向量法计算可得. 【详解】(1)证明:取MD 的中点为Q ,连接PQ 、AQ , 因为P 、Q 分别是MC 、MD 的中点,所以//PQ DC 且12PQ DC =, 又//AB DC 且12AB DC =,所以//PQ AB 且PQ AB =,所以四边形ABPQ 是平行四边形,所以//BP AQ , 又BP ⊄平面MAD ,AQ ⊂平面MAD ,所以//BP 平面MAD .(2)解:因为90ADC ∠=,MD ⊥底面ABCD ,所以,,DA DC DM 两两互相垂直,以D 为坐标原点, 以,,DA DC DM 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系如图所示, 则()()()()()()0,0,0,2,0,0,0,2,0,2,1,0,0,0,2,0,1,1D A C B M P , 则()()()2,1,2,2,1,0,0,1,1MB DB DP =-==,设平面DBP 的一个法向量为(),,m x y z =,所以=0=0m DB m DP ⎧⋅⎨⋅⎩,即200x y y z +=⎧⎨+=⎩,令1x=,则()1,2,2m =-,设直线MB 与平面DBP 所成角为θ,则44sin 339MB m MB mθ⋅-===⨯⋅, 即直线MB 与平面DBP 所成角的正弦值为49.19.已知抛物线2:2C y px =的焦点为()0,2,F P y 是抛物线C 上一点,且4PF =.(1)求抛物线C 的标准方程;(2)直线():20l y x m m =+≠与抛物线C 交于,M N 两点,若以MN 为直径的圆过原点O ,求直线l 的方程.【答案】(1)28y x =; (2)216=-y x .【分析】(1)根据抛物线的定义,到焦点的距离与到准线的距离相等,转化焦半径,可得p ,从而求出抛物线方程;(2)直线与抛物线相交,采用标准计算步骤设而不求的思想可解得. 【详解】(1)抛物线2:2C y px =的准线为2p x =-,所以242pPF =+=, 解得4p =,所以抛物线C 的标准方程为28y x =.(2)设()()1122,,,M x y N x y ,联立28y x =与2y x m =+,消去x 得2440,Δ16160y y m m -+==->,即1m <;由韦达定理有:12124,4y y y y m +==,因为以MN 为直径的圆过原点O ,所以12120OM ON x x y y ⋅=+=, 即1212022y m y m y y --⋅+=,化简可得:()2121250444m m y y y y -++=, 代入韦达定理得:()25440444m m m ⨯-⨯+=,解得16m =-或0m =(舍去), 所以直线l 的方程为216=-y x .20.如图,四棱柱1111ABCD A B C D -的底面ABCD 为矩形,2,AD AB M =为BC 中点,平面11AA D D ⊥平面11,ABCD AA A D AD ==.(1)证明:1A D ⊥平面11ABB A ;(2)求二面角1B A A M --的平面角的余弦值. 【答案】(1)证明见解析 6【分析】(1)由面面垂直的性质可得AB ⊥平面11AA D D ,再由线面垂直的性质可得1AB A D ⊥,由勾股定理的逆定理可得11AA A D ⊥,然后利用线面垂直的判定定理可证得结论;(2)取AD 的中点O ,连接1A O ,由已知可证得1,,OM AD OA 两两互相垂直,所以以O 为坐标原点,1,,OM OD OA 为,,x y z 轴的正方向建立空间直角坐标系,求出两平面的法向量,利用空间向量求解即可.【详解】(1)证明:因为底面ABCD 是矩形, 所以AB AD ⊥,又平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面,ABCD AD AB =⊂平面ABCD , 所以AB ⊥平面11AA D D ,又1A D ⊂平面11AA D D , 所以1AB A D ⊥, 因为112AA A D AD ==,所以22211AA A D AD +=, 所以11AA A D ⊥,又11,,AA AB A AA AB ⋂=⊂平面11ABB A , 所以1A D ⊥平面11ABB A ;(2)取AD 的中点O ,连接1A O ,因为11A A A D =, 所以1A O AD ⊥,又平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面1,ABCD AD AO =⊂平面11AA D D , 所以1A O ⊥平面ABCD ,连接OM ,又底面ABCD 为矩形,所以OM AD ⊥, 所以1,,OM AD OA 两两互相垂直,以O 为坐标原点,1,,OM OD OA 为,,x y z 轴的正方向建立空间直角坐标系,设1AB =, 则()()()()10,1,0,0,1,0,0,0,1,1,0,0A D A M -, 所以()()()110,1,1,0,1,1,1,1,0AA A D AM ==-=.由(1)知1A D ⊥平面11ABB A ,所以1A D 是平面11ABB A 的一个法向量. 设平面1A AM 的一个法向量为(),,n x y z =,则 10n AA y z n AM x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则()1,1,1n =-. 设二面角1B A A M --的平面角为θ,则1126cos 323A D n A D nθ⋅===⨯⋅ 由图可知二面角1B A A M --的平面角为锐角, 所以二面角1B A A M --的平面角的余弦值为63.21.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为8,双曲线C 的左焦点到渐近线的距离为2.(1)求双曲线C 的方程;(2)设,A B 分别是双曲线C 的左、右顶点,P 为双曲线C 上任意一点(P 不与,A B 重合),线段BP 的垂直平分线交直线BP 于点M ,交直线AP 于点N ,设点,M N 的横坐标分别为,M N x x ,求证:M N x x -为定值.【答案】(1)221124x y -=; (2)证明见解析【分析】(1)根据焦距为8,可得c ,再用点到直线的距离公式可解;(2)先写出,,A B P 的坐标,进而求出BP 的斜率,可得线段BP 的垂直平分线方程,分别求出其与,AP BP 的交点横坐标,代入M N x x -可证.【详解】(1)双曲线2222:1x y C a b-=的渐近线为0bx ay ±=,左焦点为(),0c -,所以d b ==,所以2b =.又焦距为8,所以4c =,所以a =C 的方程为221124x y -=.(2)证明:设()()000,0P x y y ≠,由(1)得()(),A B -,又点M 是线段BP的中点,则点02y M ⎫⎪⎪⎝⎭, 直线BPAP又BP MN ⊥,则直线MN的方程为002y y x -=⎝⎭,即200001222x y y y -++ 又直线AP的方程为y x =+,联立方程2000012,22,x y y x y y x ⎧-=++⎪⎪⎨⎪=+⎪⎩得()2220001222x y x x x -+++, 又22004112x y ⎛⎫=- ⎪⎝⎭,代入消去20y,得()()(2000212133x x x x x -+=-+, 因为00y ≠,所以00x -≠.所以((02133x x x +-+=+,解得x =即点N,则M N x x -==,所以M N x x -为定值. 【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为8,O 是坐标原点,12,F F 分别为椭圆C 的左、右焦点,点()0,2M x 在椭圆C 上,且12MF F △的内切圆半径为23. (1)求椭圆C 的方程;(2)设直线:(0,0)l y kx m k m =+>>与椭圆C 交于,E F 两点,且直线,OE OF 的斜率之和为2k -. ①求直线l 经过的定点的坐标; ②求OEF 的面积的最大值. 【答案】(1)2211612x y +=; (2)①()0,26;②43.【分析】(1)根据长轴长为8可求出a ,再根据12MF F △的面积公式可求出c ,进而确定椭圆的方程;(2)①设出直线方程与椭圆进行联立,标准设而不求的步骤后,将韦达定理代入斜率和为2-的表达式中可得定点;②将①中求出的参数代入韦达定理,表示出OEF 的面积,求此表达式的最大值即可.【详解】(1)由题意可知121228,2MF MF a F F c +===,又12MF F △的内切圆半径为23,所以()()12121212182233MF F SMF MF F F c =++⨯=+, 又12121122222MF F M SF F y c c =⨯=⨯⨯=,所以()18223c c +=,解得2c =.因为22212b a c =-=,所以椭圆C 的方程为2211612x y +=. (2)①设()()1122,,,E x y F x y ,联立22,1,1612y kx m x y =+⎧⎪⎨+=⎪⎩整理,得()2223484480k x kmx m +++-=,所以()()2222Δ644344480k m k m =-+->,可得221216m k <+,21212228448,3434km m x x x x k k-+=-=++, 设直线,OE OF 的斜率分别为12,k k ,因为直线,OE OF 的斜率之和为2k -,所以122k k k +=-,即()()2121212221212122242224401212k m m x x y y kx m kx m km k k k k m x x x x x x m m -+++-++=++=+=+⋅==--,所以224m =,又0m >,所以m =l经过的定点的坐标为(0,. ②设直线l经过的定点为(N,则1212OEF OEN OFNSSSx=-=⨯-==,设0t ,则21242662OEFt St t t==⨯=++6t t=时,即t =294k =时取等号,此时0∆>,所以43OEFS ,即OEF 的面积的最大值为【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
通河县民族中学2018-2019学年上学期高二数学12月月考试题含解析
通河县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 函数的定义域是()A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)2. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A .B .C .D .π1492+π1482+π2492+π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.3. 函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为()A .B .C .D .4. 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为()(A ) 8( B ) 4(C )83(D )435. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=()A .2B .C .3D .6. 将函数()的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的()sin 2y x ϕ=+0ϕ>x 8πϕ最小值为( )(A )( B )(C )(D )43π83π4π8π7. 如图甲所示, 三棱锥 的高 ,P ABC -8,3,30PO AC BC ACB ===∠=分别在,M N BC和上,且,图乙的四个图象大致描绘了三棱锥PO (),203CM x PN x x ==∈(,的体积与N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]8. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于()ABD 9. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .10.下列说法正确的是()A .类比推理是由特殊到一般的推理B .演绎推理是特殊到一般的推理C .归纳推理是个别到一般的推理D .合情推理可以作为证明的步骤11.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中()A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点12.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )A .1B .2C .3D .4二、填空题13.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .14.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>xxe xf e 中为自然对数的底数)的解集为.15.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .16.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.17.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .18.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 . 222sinsin sin αβγ++=三、解答题19.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am 2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am 2;已知旧住房总面积为32am 2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m 2?(Ⅱ),求前n (1≤n ≤10且n ∈N )年新建住房总面积S n20.已知椭圆E : =1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.21.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.22.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.23.已知f(x)=x2﹣(a+b)x+3a.(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;(2)若b=3,求不等式f(x)>0的解集.24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.V(1)求该几何体的体积;111]S(2)求该几何体的表面积.通河县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,因为2>1,所以指数函数y=2x为增函数,则x≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.2.【答案】A3.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.4.【答案】A【解析】根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于12232238⨯⨯-⨯⨯⨯=35.【答案】B【解析】解:双曲线C :x 2﹣=1(b >0)的顶点为(±1,0),渐近线方程为y=±bx ,由题意可得=,解得b=1,c==,即有离心率e==.故选:B .【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题. 6. 【答案】B【解析】将函数的图象沿轴向左平移个单位后,得到一个偶函数()()sin 20y x ϕϕ=+>x 8π的图象,可得,求得的最小值为,故选B .sin 2sin 284[(]()y x x ππϕϕ=++=++42ππϕ+=ϕ4π7. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.8. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+=⎪⎝⎭.9. 【答案】D【解析】解:将sin α+cos α=①两边平方得:(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=﹣<0,∵0<α<π,∴<α<π,∴sin α﹣cos α>0,∴(sin α﹣cos α)2=1﹣2sin αcos α=,即sin α﹣cos α=②,联立①②解得:sin α=,cos α=﹣,则tan α=﹣.故选:D .10.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C .【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.11.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.12.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.二、填空题13.【答案】 2 .【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.14.【答案】),0(+∞【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即()()01>-'+x f x f xe ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可()()0>-'+x x x e xf e x f e ()()x x e x f e xg -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 15.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键.16.【答案】D【解析】17.【答案】 A <G .【解析】解:由题意可得A=,G=±,由基本不等式可得A ≥G ,当且仅当a=b 取等号,由题意a ,b 是互异的负数,故A <G .故答案是:A <G .【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.18.【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:1AC 1111,,AC D AC B AC A ∆∆∆.2222221111222111sin sin sin BC DC A C AC AC AC αβγ++=++2221212()2AB AD AA AC ++==考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.三、解答题19.【答案】【解析】解:(I )10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a .设每年拆除的旧住房为xm 2,则42a+(32a ﹣10x )=2×32a ,解得x=a ,即每年拆除的旧住房面积是am 2(Ⅱ)设第n 年新建住房面积为a ,则a n=所以当1≤n ≤4时,S n =(2n ﹣1)a ;当5≤n ≤10时,S n =a+2a+4a+8a+7a+6a+(12﹣n )a=故【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.20.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a2=4,b2=1;故椭圆E的方程为+y2=1;(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,直线MN与y轴垂直,则点N的纵坐标为0,故k2=k1=0,这与k2≠k1矛盾.当k1≠0时,直线PM:y=k1(x+2);由得,(+4)y2﹣=0;解得,y M=;∴M(,),同理N(,),由直线MN与y轴垂直,则=;∴(k2﹣k1)(4k2k1﹣1)=0,∴k2k1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.21.【答案】【解析】解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.∴2(a1+a2+2a3)=2a1+a1+2a2.∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=.∴a n=.(II)∵数列{b n}满足a n+1=(),∴=,∴b n=n,∴b n=n•2n﹣1.∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,∴T n=(n﹣1)•2n+1.22.【答案】【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,即有f(1)=a+,f′(1)=1+a,则切线方程为y﹣(a+)=(1+a)(x﹣1),令x=0,得y=为定值; (Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,得xe x+mx2﹣m2x≥0对x≥0时恒成立,即e x+mx﹣m2≥0对x≥0时恒成立,则(e x+mx﹣m2)min≥0,记g(x)=e x+mx﹣m2,g′(x)=e x+m,由x≥0,e x≥1,若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,∴,则有﹣1≤m≤1,若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,∴,∴1﹣ln(﹣m)+m≥0,令﹣m=t,则t+lnt﹣1≤0(t>1),φ(t)=t+lnt﹣1,显然是增函数,由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.综上,实数m的取值范围是﹣1≤m≤1.【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.23.【答案】【解析】解:(1)∵函数f(x)=x2﹣(a+b)x+3a,当不等式f(x)≤0的解集为[1,3]时,方程x2﹣(a+b)x+3a=0的两根为1和3,由根与系数的关系得,解得a=1,b=3;(2)当b=3时,不等式f(x)>0可化为x2﹣(a+3)x+3a>0,即(x﹣a)(x﹣3)>0;∴当a>3时,原不等式的解集为:{x|x<3或x>a};当a<3时,原不等式的解集为:{x|x<a或x>3};当a=3时,原不等式的解集为:{x|x≠3,x∈R}.【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目.624.【答案】(1;(2).【解析】(2)由三视图可知,该平行六面体中平面,平面,1A D ⊥ABCD CD ⊥11BCC B ∴,侧面,均为矩形,12AA =11ABB A 11CDD C.12(11112)6S =⨯++⨯=+考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.。
高二数学12月月考试题03
上学期高二数学12月月考试题03一、 选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1、已知角α的终边上一点的坐标为(sin 2π3,cos 2π3),则角α的最小正值为( )A.11π6 B.5π3 C. 5π6D.2π32、数列{n a }的通项公式是n a =122+n n(n ∈*N ),那么n a 与1+n a 的大小关系是( ) A.n a >1+n a B.n a <1+n a C.n a = 1+n a D.不能确定 3、已知函数f (x )=sin(ωx +π3)(ω>0)的最小正周期为π,则该函数图象( )A. 关于直线x =π4对称B. 关于点(π3,0)对称C. 关于点(π4,0)对称D. 关于直线x =π3对称4、)4tan(,41)4tan(,52)tan(παπββα+=-=+则的值是( ) A .1813 B .2213 C .223 D .615、函数b x A y ++=)sin(ϕω的图像如图所示,则它的解析式是( )6、若等差数列{}n a 满足234a S +=,3512a S +=,则47a S +的值是( )A .20B .24C .36D .72 7、数列2211,(12),(122),,(1222)n -+++++++的前n 项和为 ( ) A.21n - B. n n n -⋅2 C. 12n n +-D. 122n n +--8、已知正项等比数列}{n a 满足:5672a a a +=,若存在两项n m a a 、,使得14a a a n m =,则n m +的值为()A.10B.6C.4D.不存在9、数列{}()()=⊥+===+10011,,1,,,,1a b a n a b a n a a a n n n 则且中 ( )A .99100B .—99100C . 100D .—10010、将正偶数集合{} ,6,4,2从小到大按第n 组有n 2个偶数进行分组:{}{}{} ,24,22,20,18,16,14,12,10,8,6,4,2则2120位于第( )组A.33B.32C.31D.3011、数列{}n a 满足21(*)2n n n a a a n N ++=∈,且121,2a a ==,则数列{}n a 的前2011项的乘积为 ( ) A .20092B .20102C .20112D .2012212、数列{}n a 满足2*113,1()2n n n a a a a n N +==-+∈,则122009111m a a a =+++的整数部分是( )A .0B .1C .2D .3 二、填空题(每题5分,共20分。
2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题(解析版)
2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题一、单选题1.抛物线22y x =的焦点坐标是( )A .1,02⎛⎫ ⎪⎝⎭B .1,08⎛⎫ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭【答案】D【分析】先把抛物线化为标准方程,直接写出焦点坐标.【详解】抛物线22y x =的方程为212x y =,所以焦点在y 轴 由122p =, 所以焦点坐标为10,8⎛⎫⎪⎝⎭.故选:D .2.设n S 为等差数列{}n a 的前n 项和,已知311a =,1060S =,则5a =( ) A .7 B .8C .9D .10【答案】A【详解】设等差数列{}n a 的公差为d ,由题意建立方程,即可求出1a ,d ,再根据等差数列的通项公式,即可求出结果.【分析】设等差数列{}n a 的公差为d ,由题意可知11211?104560a d a d +=⎧⎨+=⎩,解得115a =,2d =-,所以5141587a a d =+=-=. 故选:A3.设点B 是(2,3,5)A 关于坐标平面xOy 的对称点,则||=AB ( ) A .10 BC .38D【答案】A【分析】根据空间直角坐标系的坐标特点得点B 坐标,根据空间中两点间的距离公式计算即可得||AB .【详解】解:因为点B 是(2,3,5)A 关于坐标平面xOy 的对称点,所以(2,3,5)B -所以10AB AB ==.故选:A.4.已知向量()()1,1,0,1,0,=-=a b m ,且ka b +与2a b -互相平行,则k =( ) A .114-B .15C .35D .12-【答案】D【分析】由空间向量平行的条件求解.【详解】由已知(1,,)ka b k k m +=-,2(3,1,2)a b m -=--, 因为ka b +与2a b -平行, 若0m =,则131k k -=-,12k =-, 若0m ≠,则1312k k mm-==--,k 无解. 综上,12k =-,故选:D .5.设向量OA ,OB ,OC 不共面,空间一点P 满足OP xOA yOB zOC =++,则A ,B ,C ,P 四点共面的一组数对(,,)x y z 是( )A .111(,,)432B .131(,,)442-C .(1,2,3)-D .121(,,)332-【答案】B【分析】由题设条件可知,A ,B ,C ,P 四点共面等价于1x y z ++=,由此对选项逐一检验即可. 【详解】因为向量OA ,OB ,OC 不共面,OP xOA yOB zOC =++, 所以当且仅当1x y z ++=时,A ,B ,C ,P 四点共面, 对于A ,1111432++≠,故A 错误;对于B ,1311442-++=,故B 正确;对于C ,1231-+≠,故C 错误;对于D ,1211332-++≠,故D 错误.故选:B.6.已知数列{}n a 中,11a =且()133nn n a a n a *+=∈+N ,则16a 为( )A .16B .14C .13D .12【答案】A【分析】采用倒数法可证得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,根据等差数列通项公式可推导得到n a ,代入16n =即可.【详解】由133n n n a a a +=+得:1311133n n n n a a a a ++==+,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,13为公差的等差数列,()1121133n n n a +∴=+-=,32n a n ∴=+,1616a ∴=. 故选:A.7.已知三个数1,a ,9成等比数列,则圆锥曲线2212x ya +=的离心率为( )A 3B 5C 510D 310 【答案】D【详解】椭圆、双曲线的方程简单性质,等比数列的性质,分类讨论,由已知求得a 值,然后分类讨论求得圆锥曲线2212x y a +=的离心率解决即可. 【解答】因为三个数1,a ,9成等比数列, 所以29a =,则3a =±.当3a =时,曲线方程为22132x y +=,表示椭圆, 31, 3 当3a =-时,曲线方程为22123y x -=,表示双曲线,255102. 故选:D8.若数列{}n a 是等差数列,首项10a >,公差()2020201920200,0d a a a <+<,则使数列{}n a 的前n 项和0n S >成立的最大自然数n 是( )A .4039B .4038C .4037D .4036【答案】B【分析】根据等差数列的单调性,结合等差数列前n 项和公式进行求解即可. 【详解】因为0d <,所以等差数列{}n a 是递减数列, 因为()2020201920200a a a +<,所以201920200,0a a ><,且20192020a a >,201920200a a +>, ()1403920192020403920204038201920204039()40390,403820190,22a a a a S a S a a ++===⨯=+所以使数列{}n a 的前n 项和0n S >成立的最大自然数n 是4038. 故选:B二、多选题9.下列结论错误的是( )A .过点()1,3A ,()3,1B -的直线的倾斜角为30︒B .若直线2360x y -+=与直线20ax y ++=平行,则23a =-C .直线240x y +-=与直线2410x y ++=D .已知()2,3A ,()1,1B -,点P 在x 轴上,则PA PB +的最小值是5 【答案】AC【分析】对于A ,tan AB k α=即可解决;对于B ,由题意得231a -=即可解决;对于C ,平行线间距离公式解决即可;对于D ,数形结合即可. 【详解】对于A ,131tan 312AB k α-===--,即30α≠︒,故A 错误; 对于B ,直线2360x y -+=与直线20ax y ++=平行,所以123a =-,解得23a =-,故B 正确;对于C ,直线240x y +-=与直线2410x y ++=(即1202x y ++=)之间的距离为d =故C 错误;对于D ,已知()2,3A ,()1,1B -,点P 在x 轴上,如图取()1,1B -关于x 轴的对称点()1,1B '--,连接AB '交x 轴于点P ,此时22(21)(31)5PA PB PA PB AB ''+=+≥=+++,所以PA PB +的最小值是5,故D 正确; 故选:AC.10.已知数列{}n a 的前n 项和为n S ,25n S n n =-,则下列说法不正确...的是( ) A .{}n a 为等差数列 B .0n a >C .n S 最小值为254- D .{}n a 为单调递增数列【答案】BC【分析】根据n S 求出n a ,并确定{}n a 为等差数列,进而可结合等差数列的性质以及前n 项和分析求解.【详解】对于A ,当2n ≥时,()()221515126n n n a S S n n n n n -⎡⎤==-----=-⎣⎦-, 1n =时114a S ==-满足上式,所以26,N n a n n *=-∈,所以()()1216262n n a a n n +-=+---=, 所以{}n a 为等差数列,故A 正确;对于B ,由上述过程可知26,N n a n n *=-∈,12340,20,0a a a =-<=-<=,故B 错误;对于C ,因为25n S n n =-,对称轴为52.52=, 又因为N n *∈,所以当2n =或3时,n S 最小值为6-,故C 错误; 对于D ,由上述过程可知{}n a 的公差等于2, 所以{}n a 为单调递增数列,故D 正确. 故选:BC.11.在正方体1111ABCD A B C D -中,E ,F ,G 分别为BC ,11CC BB ,的中点,则下列结论中正确的是( )A .1D D AF ⊥B .点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍 C .1//A G 平面AEFD .异面直线1A G 与EF 5【答案】BC【分析】对于选项A :由11//DD CC 以及1CC 与AF 不垂直,可知A 错误;对于选项B :利用等体积法,A GEF G AEF A CEF C AEF V V V V ----==,可求得结果,进而判断选项B 正确;对于选项C :取11B C 的中点M ,根据面面平行的性质即可得出1//A G 平面AEF ,可知选项C 正确; 对于选项D :根据线面垂直的判定定理和性质,结合二面角的定义可知D 错误;【详解】对于选项A :因为1AC AC ≠,所以1ACC △不是等腰三角形,所以1CC 与AF 不垂直,因为11//DD CC ,所以1DD 与AF 不垂直,故选项A 错误;对于选项B :设正方体的棱长为2,设点G 到平面AEF 的距离与点C 到平面AEF 的距离分别为12,h h ,则11133A GEF GEFG AEF AEFV AB S V h S--=⋅==⋅,21133A CEF CEFC AEF AEFV AB S V h S--=⋅==⋅,所以12121221112GEFCEFS h h S ⨯⨯===⨯⨯△△,故选项B 正确; 对于选项C :取11B C 的中点M ,连接11,,GM A M BC ,由题意可知:1//GM BC ,因为1//BC EF ,所以//GM EF ,GM ⊄平面AEF , EF ⊂平面AEF ,所以//GM 平面AEF ,因为1A M AE ∥,1A M 平面AEF , AE ⊂平面AEF ,所以1//A M 平面AEF ,因为11,,A MGM M A M GM =⊂平面1AGM ,所以平面AEF //平面1AGM , 因为1AG ⊂平面1AGM ,所以1//A G 平面AEF ,故选项C 正确; 对于选项D :因为111//,//AD EF AG D F ,所以异面直线1A G 与EF 所成的角为1AD F ∠(或其补角),设正方体的棱长为2,则22112253AD D F AF AC CF ===+=,,, 在1AD F △中,由余弦定理可得:2221111110cos 22225AD D F AF AD F AD D F +-∠===⋅⨯⨯D 错误,故选:BC .12.下列命题中,正确的命题有( ) A .a b a b +=-是a ,b 共线的充要条件 B .若//a b ,则存在唯一的实数λ,使得a b λ=C .对空间中任意一点O 和不共线的三点A ,B ,C ,若243OP OA OB OC =-+,则P ,A ,B ,C 四点共面D .若{},,a b c 为空间的一个基底,则{},2,3a b b c c a +++构成空间的另一个基底 【答案】CD【分析】对A ,向量a 、b 同向时a b a b +=-不成立; 对B , b 为零向量时不成立; 对C ,根据空间向量共面的条件判定; 对D ,根据能成为基底的条件判定.【详解】对A ,向量a 、b 同向时,a b a b +≠-,∴只满足充分性,不满足必要性,∴A 错误; 对B ,b 应该为非零向量,故B 错误; 对C ,由于243OP OA OB OC =-+得,1324PB PA PC =+, 若,PA PC 共线,则,,PA PC PB 三向量共线,故A ,B ,C 三点共线,与已知矛盾,故,PA PC 不共线,由向量共面的充要条件知,PB PA PC ,共面,而,PB PA PC ,过同一点P ,所以P ,A ,B ,C 四点共面,故C 正确;对D ,若{},,a b c 为空间的一个基底,则a ,b ,c 不共面, 假设a b +,2b c +,3c a +共面,设()()23a b x b c y c a +=+++,所以13102yxx y =⎧⎪=⎨⎪=+⎩ ,无解,故a b +,2b c +,3c a +不共面, 则{},2,3a b b c c a +++构成空间的另一个基底,故D 正确. 故选: CD .三、填空题13.等比数列{}n a 中,39a =-,114a =-,则7a =______. 【答案】6-【分析】由等比数列的性质计算.【详解】因为{}n a 是等比数列,所以2731136a a a ==,又{}n a 的所有奇数项同号,所以76a =-.故答案为:6-.14.直线230x y +-=被圆()()22214x y-++=截得的弦长____________【分析】首先求出圆心坐标与半径,再利用点到直线的距离公式求出圆心到直线的距离,最后利用勾股定理与垂径定理计算可得;【详解】圆()()22214x y -++=的圆心为2,1,半径2r =, 圆心2,1到直线的距离d ==所以直线被圆截得弦长为22223525522255r d ⎛⎫-=-= ⎪ ⎪⎝⎭. 故答案为:2555. 15.已知数列{}n a .的前n 项和为n S ,且()*2120N n n n a a a n +++-=∈.若11151912a a a ++=,则29S =______.【答案】116【分析】先判断出数列是等差数列,然后运用等差数列的性质可得答案.【详解】(){}*211220N ,2,n n n n n n n a a a n a a a a +++++-=∈∴=+∴为等差数列,111912915111519152,12,4,a a a a a a a a a ∴+=+=++=∴=129291529292941162a a S a +∴=⨯==⨯=. 故答案为:116.四、双空题16.如图,在棱长为1的正方体ABCD A B C D -''''中,M 为BC 的中点,则AM 与D B ''所成角的余弦值为___________;C 到平面DA C ''的距离为___________.【答案】103【分析】第一空根据向量法即可求得异面直线之间的夹角. 第二空利用等体积法即可求得.【详解】由已知连接BD ,如图所示建立空间直角坐标系,则()0,0,1A ,1,1,12M ⎛⎫⎪⎝⎭,()0,1,0B ',()1,0,0D '1,1,02AM ⎛⎫= ⎪⎝⎭()1,1,0D B ''=-10cos ,10AM D B AM D B AM D B ''''==''⋅ AM 与D B ''所成角的余弦值为1010如图所示设C 到平面DA C ''的距离为d 因为C A DC A DCC V V '''--=1111322sin 601113232d d ⨯⋅=⨯⨯⨯⨯⇒=103五、解答题17.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)12n n b -=;(2)当5q =-时,321S =.当4q =时,36S =-.【分析】设{}n a 的公差为d ,{}n b 的公比为q ,(1)由条件可得3d q +=和226d q +=,解方程得12d q =⎧⎨=⎩,进而可得通项公式; (2)由条件得2200q q +-=,解得5,4q q =-=,分类讨论即可得解.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则1(1)n a n d =-+-,1n n b q -=.由222a b +=得3d q +=.①(1)由335a b +=得226d q +=②联立①和②解得30d q =⎧⎨=⎩(舍去),12d q =⎧⎨=⎩ 因此{}n b 的通项公式为12n n b -=.(2)由131,21b T ==得2200q q +-=.解得5,4q q =-=.当5q =-时,由①得8d =,则321S =.当4q =时,由①得1d =-,则36S =-.【点睛】本题主要考查了等差数列和等比数列的基本量运算,属于基础题.18.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC .(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.【答案】(1)122AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC ,平方即求得模长.(2) 求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =,CB b =,1CC c =,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+, 所以()22211AC AC c a b ⎡⎤==-+⎣⎦ 222222c a b a c b c a b =++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++,1DC c a =-,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅=∴11CA DC ⊥∴异面直线1CA 与1DC 所成的角为90°.19.已知等差数列{}n a 的前n 项和为258,224,100n S a a S +==.(1)求{an }的通项公式;(2)若+11n n n b a a =,求数列{n b }的前n 项和Tn . 【答案】(1)31n a n =-(2)2(32)n n T n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果;(2)由裂项相消求和可得结果.【详解】(1)设等差数列{}n a 的公差为d ,由题意知,1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩ 解得:123a d =⎧⎨=⎩ ∴1(1)23(1)31n a a n d n n =+-=+-=-.故{}n a 的通项公式为31n a n =-.(2)∵1111()(31)(32)33132n b n n n n ==--+-+ 111111111111()()()()325358381133132111111111 ()325588113132111 =()3232=2(32)n T n n n n n n n =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++ 即:{}n b 的前n 项和2(32)n n T n =+. 20.如图,在直三棱柱111ABC A B C 中,2AB AC ==,14AA =,AB AC ⊥,1BE AB ⊥交1AA 于点E ,D 为1CC 的中点.(1)求证:BE ⊥平面1AB C ;(2)求直线1B D 与平面1AB C 所成角的正弦值.【答案】(1)证明见解析;15【分析】(1)先证明1AA AC ⊥,从而可得AC ⊥平面11AA B B ,进而可得AC BE ⊥,再由线面垂直的判定定理即得;(2)建立空间直角坐标系,利用线面角的向量求法即得.【详解】(1)因为三棱柱111ABC A B C 为直三棱柱,所以1AA ⊥平面ABC ,又AC ⊂平面ABC ,所以1AA AC ⊥,又AC AB ⊥,1AB AA A ⋂=,AB ⊂平面11AA B B ,1AA ⊂平面11AA B B ,所以AC ⊥平面11AA B B ,因为BE ⊂平面11AA B B ,所以AC BE ⊥,又因为1BE AB ⊥, 1AC AB A ⋂=,AC ⊂平面1AB C ,1AB ⊂平面1AB C ,所以BE ⊥平面1AB C ;(2)由(1)知AB ,AC ,1AA 两两垂直,如图建立空间直角坐标系A xyz -,则()0,0,0A ,()12,0,4B ,()0,2,0C ,()2,0,0B ,()0,2,2D ,设()0,0,E a ,()12,0,4AB =,()2,0,BE a =-,()0,2,0AC =,因为1AB BE ⊥,所以440a -=,即1a =,则()2,0,1BE =-,由(1)平面1AB C 的一个法向量为()2,0,1BE =-,又()12,2,2B D =--,设直线1B D 与平面1AB C 所成角的大小为π20θθ⎛⎫≤≤ ⎪⎝⎭,则 11115sin cos ,512BE B D BE B D BE B D θ⋅====⋅⋅, 因此,直线1B D 与平面1AB C 1521.已知数列{}1221,2,5,43.++===-n n n n a a a a a a(1)令1n n n b a a +=-,求证:数列{}n b 是等比数列;(2)若n n c nb =,求数列{}n c 的前n 项和n S .【答案】(1)见解析 (2)11133244n n S n +⎛⎫=-+ ⎪⎝⎭【分析】(1)根据递推公式证明2113n n n na a a a +++--为定值即可; (2)利用错位相减法求解即可.【详解】(1)证明:因为2143n n n a a a ++=-,所以()2113n n n n a a a a +++-=-,即13n n b b +=, 又1213b a a -==,所以数列{}n b 是以3为首项,3为公比的等比数列;(2)解:由(1)得11333n n n n a a +--=⋅=, 3n n n c nb n =⋅=,则23323333n n S n =+⨯+⨯++⋅,23413323333n n S n +=+⨯+⨯++⋅,两式相减得()2311131313233333331322n n n n n n S n n n +++-⎛⎫-=++++-⋅=-⋅=-- ⎪-⎝⎭, 所以11133244n n S n +⎛⎫=-+ ⎪⎝⎭. 22.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直,1//122AF DE DE AD AD BE AF AD DE AB ⊥⊥====,,,,.(1)求证:BF ∥平面CDE ;(2)求二面角B EF D --的余弦值;(3)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出BQ BE 的值,若不存在,说明理由.【答案】(1)详见解析 (2)63(3)存在点Q ;17BQ BE =【分析】(1)根据线面平行的判断定理,作辅助线,转化为证明线线平行;(2)证得DA ,DB ,DE 两两垂直,从而建立以D 点为原点的空间直角坐标系,求得平面DEF 和平面BEF 的一个法向量,根据法向量的夹角求得二面角的余弦值;(3)设()[]()0,,20,1BQ BE λλλλ==-∈,求得平面CDQ 的法向量为u ,若平面CDQ ⊥平面BEF ,则0m u =⋅,从而解得λ的值,找到Q 点的位置.【详解】(1)取DE 的中点M ,连结MF ,MC ,因为12AF DE =,所以AF DM =,且AF DM =, 所以四边形ADMF 是平行四边形,所以//MF AD ,且MF AD =,又因为//AD BD ,且AD BC =,所以//MF BC ,MF BC =,所以四边形BCMF 是平行四边形,所以//BF CM ,因为BF ⊄平面CDE ,CM ⊂平面CDE ,所以//BF 平面CDE ;(2)因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥, 所以DE ⊥平面ABCD ,DB ⊂平面ABCD ,则DE DB ⊥,故DA ,DB ,DE 两两垂直,所以以DA ,DB ,DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()0,1,0B ,()1,1,0C -,()0,0,2E ,()1,0,1F ,所以()0,1,2BE =-,()1,0,1EF =-,()0,1,0n =为平面DEF 的一个法向量. 设平面BEF 的一个法向量为(),,m x y z =,由0m BE ⋅=,0m EF ⋅=,得200y z x z -+=⎧⎨-=⎩, 令1z =,得()1,2,1m →=. 所以26cos ,36m n m n m n →→→→→→⋅===. 如图可得二面角B EF D --为锐角,所以二面角B EF D --的余弦值为63. (3)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . 证明如下:设()[]()0,,20,1BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(),,u a b c =,又因为()1,1,0DC =-, 所以0u DQ ⋅=,0u DC ⋅=,即(1)200b c a b λλ-+=⎧⎨-+=⎩, 若平面CDQ ⊥平面BEF ,则0m u =⋅,即20a b c ++=, 解得[]10,17λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF , 且此时17BQ BE =.。
2022-2023学年青海省西宁市城西区青海湟川中学高二上学期12月月考数学试题(解析版)
2022-2023学年青海省西宁市城西区青海湟川中学高二上学期12月月考数学试题一、单选题1.设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C . 【点睛】本题考点为共轭复数,为基础题目.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点,若BE =1xAA +y AB +z AD ,则( ).A .x =1,12y =,12z =-B .x =1,12y =-,12z =C .12x =,y =1,12z =-D .12x =-,y =1,12z =【答案】B【分析】利用空间向量的加减及数乘运算法则进行计算,解决空间向量基本定理问题. 【详解】由题意得:()11111111112BE BB B A A E AA AB A B A D =++=-++ 1111112222AA AB AB AD AA AB AD =-++=-+, 所以111,,22x y z ==-=故选:B3.设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【详解】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A. 【点睛】本题主要考查了向量垂直的数量积表示,属于基础题.4.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为. A .1415B .115C .29D .【答案】A【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求()P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以232101()=15C P A C =,因此114()1()=11515P A P A =--=,故本题选 A.【点睛】本题考查了求对立事件的概率问题,考查了运算能力. 5.已知向量()0,1,0a =,()3,0,2b =,()2,1,3c =-,则有( ). A .23a cb =-B .a b c +=C .()b ac ⊥- D .a b b c c a ⋅=⋅=⋅【答案】C【分析】对于A ,利用向量的线性运算的坐标表示即可求解; 对于B ,利用向量的摸的坐标表示即可求解;对于C ,利用向量的线性运算的坐标表示及向量垂直的坐标表示即可求解; 对于D ,利用向量的数量积的坐标运算即可求解.【详解】对于A ,因为()0,1,0a =,()3,0,2b =,()2,1,3c =-,所以242,0,33b ⎛⎫= ⎪⎝⎭,2140,1,33c b ⎛⎫-=- ⎪⎝⎭,所以23a c b ≠-,故A 不正确;对于B ,因为()0,1,0a =,()3,0,2b =,()2,1,3c =-,所以2011,a =+230b =+,221c =+=,所以a b c +≠,故B 不正确;对于C ,因为()0,1,0a =,()2,1,3c =-,所以()2,0,3a c -=-,又()3,0,2b =, 所以()()3200320b a c ⋅-=⨯-+⨯+⨯=,即()b ac ⊥-,故C 正确. 对于D ,因为()0,1,0a =,()3,0,2b =,()2,1,3c =-,所以0310020a b ⋅=⨯+⨯+⨯=,()3201230b c ⋅=⨯+⨯+⨯-=,()2011301c a ⋅=⨯+⨯+-⨯=,所以a b b c c a ⋅=⋅≠⋅,故D 不正确. 故选:C.6.已知sin cos αα-=α∈(0, π),则tan α=A .-1B .C .2D .1【答案】A【详解】sin cos αα-=()0,απ∈,12sin cos 2αα∴-=,即sin 21α=-,故34πα=1tan α∴=- 故选A 7.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为( )A .34πB .4π C .23π D .3π 【答案】A【分析】根据导数的几何意义得到点51,2⎛⎫- ⎪⎝⎭处切线的斜率,再根据斜率求倾斜角即可.【详解】=y x ',所以在点51,2⎛⎫- ⎪⎝⎭处的切线的斜率为-1,倾斜角为34π. 故选:A.8.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=【答案】A【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A9.四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OC 上,且2OM MC =,N 为BA 中点,则MN 为( ) A .121232a b c -+B .211322a b c -++C .112223a b c +-D .221332a b c ++【答案】C【分析】利用空间向量的线性运算及空间向量基本定理,结合图像即可得解. 【详解】解:根据题意可得,()2111232223MN MO ON OC OA OB a b c =+=-++=+-.故选:C.10.椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其左焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为( )A .2⎡⎤⎢⎥⎣⎦ B .26⎡⎢⎣⎦ C .6⎡⎫⎪⎢⎪⎣⎭ D .23⎡⎢⎣⎦【答案】B【分析】确定四边形1AFBF 为矩形,得到1π24e α=⎛⎫+ ⎪⎝⎭,根据三角函数的性质得到离心率范围.【详解】设椭圆右焦点为1F ,连接1AF ,1BF ,AF BF ⊥,则四边形1AFBF 为矩形, 则12sin 2cos 2AF AF AF BF c c a αα+=+=+=, 故11πsin cos 2sin 4e ααα==+⎛⎫+ ⎪⎝⎭,ππ124α⎡⎤∈⎢⎥⎣⎦,,则ππ32π,4α⎡⎤+∈⎢⎥⎣⎦,π3sin ,142α⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,26,23e ⎡⎤∈⎢⎥⎣⎦.故选:B.11.已知a<0,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为( ) A 72B 52C 5D 572【答案】A【分析】根据平行关系确定参数,结合平行线之间的距离公式即可得出. 【详解】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行,()120a a ∴+-=,解得2a =-或1a =,又a<0,所以2a =-,当2a =-时,直线1:2210l x y -+=与直线2:2280l x y -+=距离为7244==+故选:A12.若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是( ) A .(22,0)2)-⋃ B .(2,22)- C .(1,0)(0,1)- D .(1,1)-【答案】A【分析】将问题转化为圆22()(1)4x a y -+-=与221x y +=相交,从而可得2221121a -<+<+,进而可求出实数a 的取值范围.【详解】到点(,1)a 的距离为2的点在圆22()(1)4x a y -+-=上,所以问题等价于圆22()(1)4x a y -+-=上总存在两个点也在圆221x y +=上,即两圆相交,故2121-+,解得0a -<<或0a <<所以实数a的取值范围为(-⋃, 故选:A .二、填空题13.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB 的中点,则直线l 的方程是__________. 【答案】220x y +-=【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--, ∴直线AB 的方程为11(1)22y x -=--, 即220x y +-=.由于P 在椭圆内,故成立. 故答案为:220x y +-=.14.过点()1,2且与圆221x y +=相切的直线的方程是______. 【答案】1x =或3450x y -+=【分析】当直线斜率不存在时,可得直线:1l x =,分析可得直线与圆相切,满足题意,当直线斜率存在时,设斜率为k ,可得直线l的方程,由题意可得圆心到直线的距离1d r ===,即可求得k 值,综合即可得答案.【详解】当直线l 的斜率不存在时,因为过点()1,2, 所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r , 此时直线:1l x =与圆221x y +=相切,满足题意; 当直线l 的斜率存在时,设斜率为k , 所以:l 2(1)y k x -=-,即20kx y k --+=, 因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =, 所以直线l 的方程为3450x y -+=. 综上:直线的方程为1x =或3450x y -+= 故答案为:1x =或3450x y -+=15.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF △的周长是___.【答案】16【解析】根据椭圆的定义求解.【详解】由椭圆的定义知12122,2,BF BF a AF AF a ⎧+=⎪⎨+=⎪⎩所以22||416AB AF BF a ++==.故答案为:16.16.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________. 【答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d ==,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故答案为:3.三、解答题17.已知直线12:310,:(2)0l ax y l x a y a ++=+-+=. (1)若12l l ⊥,求实数a 的值;(2)当12l l //时,求直线1l 与2l 之间的距离. 【答案】(1)32a =;(2)423. 【分析】(1)由垂直可得两直线系数关系,即可得关于实数a 的方程.(2)由平行可得两直线系数关系,即可得关于实数a 的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线1l 与2l 之间的距离. 【详解】(1)由12l l ⊥知3(2)0a a +-=,解得32a =. (2)当12l l //时,有(2)303(2)0a a a a --=⎧⎨--≠⎩,解得3a =.此时12:3310,:30l x y l x y ++=++=,即233:90x y l ++=, 则直线1l 与2l 之间的距离22|91|42333d -==+. 【点睛】本题考查了由两直线平行求参数,考查了由两直线垂直求参数的值,属于基础题. 18.在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且bsinA=3acosB . (1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值 【答案】(1)B =60°(2)3,23a c == 【详解】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理 19.如图,已知正方体1111ABCD A B C D -的棱长为2, E 、F 分别为1AD 、1CD 中点.(1)求证:EF BD ⊥;(2)求两异面直线BD 与1CD 所成角的大小. 【答案】(1)见解析 (2)3π【分析】(1)利用向量乘积为0证明即可; (2)利用向量法求异面直线所成的角.【详解】(1)如图,建立空间直角坐标系D xyz - 则(0,0,0),(2,2,0),(1,0,1),(0,1,1)D B E F (1,1,0),(2,2,0)EF BD =-=--因为2200EF BD ⋅=-+= 所以EF BD ⊥,即EF BD ⊥(2)11(0,2,0),(0,0,2),(0,2,2)C D CD =- 1111cos ,22222||BD CD BD CD BD CD ⋅===⨯设异面直线BD 与1CD 所成角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦所以3πθ=,即异面直线BD 与1CD 所成角的大小为3π20.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2BC =2CC 1=2,点E 是DC 的中点.(1)求点D 到平面AD 1E 的距离; (2)求证:平面AD 1E ⊥平面EBB 1. 【答案】(1)33; (2)证明过程见解析.【分析】(1)建立空间直角坐标系,求出平面1D AE 的法向量,利用点到平面距离公式求出答案; (2)利用空间向量的数量积为0证明出1,EA EB EA BB ⊥⊥,从而证明出线面垂直,进而证明出面面垂直.【详解】(1)以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()()110,0,0,1,0,0,0,1,0,0,0,1,1,2,0,1,2,1D A E D B B , 设平面1D AE 的法向量为(),,m x y z =, 则()()()()1,,1,0,10,,1,1,00m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以()1,1,1m =,则点D 到平面AD 1E 的距离为()()1,0,01,1,133111DA m d m ⋅⋅===++;(2)()()11,1,0,0,0,1EB BB ==,所以()()1,1,01,1,0110EA EB ⋅=-⋅=-=,()()11,1,00,0,10EA BB ⋅=-⋅=,所以1,EA EB EA BB ⊥⊥,因为1EB BB B =,1,EB BB ⊂平面1EBB , 所以EA ⊥平面1EBB ,因为EA ⊂平面1D AE ,所以平面1D AE ⊥平面1EBB .21.某企业为了了解职工对某部门的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示):(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分的中位数与平均值;(3)从评分在[)40,60 的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.【答案】(1)0.006a =;(2)中位数为5357,均值为76.2; (3)110【分析】(1)根据频率和为1可求频率分布直方图中a 的值;(2)根据组中值可求平均值,根据前3组、前4组的频率和可求中位数.(3)利用古典概型的概率计算公式可求概率.【详解】(1)由直方图可得(0.0040.0180.02220.028)101a +++⨯+⨯=,故0.006a =.(2)由直方图可得平均数为(0.004450.006550.018950.022650.022850.02875)1076.2⨯+⨯+⨯+⨯+⨯+⨯⨯=.前3组的频率和为0.0040.0060.022)100.32++⨯=,前3组的频率和为0.0040.0060.0220.028)100.6+++⨯=,故中位数在[)70,80,设中位数为x ,则700.320.280.510x -+⨯=,故5357x =.故中位数为5357.(3)评分在[)40,60 的受访职工的人数为()0.0040.00610505+⨯⨯=,其中评分在[)40,50的受访职工的人数为2,记为,a b在[)50,60的受访职工人数为3,记为,,A B C ,从5人任取2人,所有的基本事件如下:{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,基本事件的总数为10,而2人评分都在[)40,50的基本事件为{},a b ,故2人评分都在[)40,50的概率为110.22.如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别是,A B ,且经过点31,2⎛⎫- ⎪ ⎪⎝⎭, 直线:1l x ty =-恒过定点F 且交椭圆于,D E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记BDE △的面积为S ,求S 的最大值.【答案】(1)2214x y +=33【分析】(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设()()1122,,,E x y D x y ,直线l 方程与椭圆方程联立消元后应用韦达定理得12122223,44t y y y y t t +==-++, 计算弦长DE ,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.【详解】(1)由题意可得,直线:1l x ty =-恒过定点(1,0)F -,因为F 为OA 的中点, 所以||2OA =, 即2a =.因为椭圆C 经过点1,⎛ ⎝⎭,所以2222112b ⎛ ⎝⎭+=, 解得1b =, 所以椭圆C 的方程为2214x y +=. (2)设()()1122,,,E x y D x y .由22441x y x ty ⎧+=⎨=-⎩得 ()224230,0t y ty +--=∆>恒成立, 则12122223,44t y y y y t t +==-++,则||ED = 又因为点B 到直线l 的距离d =,所以11||22S ED d =⨯⨯==令33m =,26611m m m m ==++, 因为1y m m=+,m ≥2110y m'=->,1y m m =+在)m ∈+∞上单调递增,所以当mmin 1m m ⎛⎫+= ⎪⎝⎭max S =. 即S的最大值为 【点睛】方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.。
辽宁省大连市第八中学2023-2024学年高二上学期12月月考数学试题
辽宁省大连市第八中学2023-2024学年高二上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .1x =,12y =,12z =-C .12x =,1y =,12z =-4.已知抛物线2:C y x =的焦点为为B ,1BF =,则BAF ∠=(A .30°B .45°5.美术绘图中常采用“三庭五眼鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为中提供的直线AB 近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为(A .524C .9246.已知双曲线221(0)x y m m-=>曲线的渐近线方程为()A .2y x=±B .y =±7.已知直线20kx y k -+=与直线二、多选题9.4名男生和3名女生排队(排成一排)照相,下列说法正确的是()A .若女生必须站在一起,那么一共有5335A A 种排法B .若女生互不相邻,那么一共有3434A A 种排法C .若甲不站最中间,那么一共有1666C A 种排法A .无论λ取何值,三棱锥B .若24λ=,则EG ⋅ C .点1D 到平面EFG 的距离为D .若异面直线EF 与AG 12.法国数学家加斯帕·蒙日被称为相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,圆的蒙日圆.若椭圆Γ:22x a 动点M 作Γ的两条切线,分别与A .2a b=B .MPQ 面积的最大值为C .M 到Γ的左焦点的距离的最小值为D .若动点D 在Γ上,将直线三、填空题四、解答题(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成角的余弦值.18.已知圆C 过点(02)M -,,(1)求圆C 的标准方程.(2)设直线10ax y -+=与圆C 的直线l 垂直平分弦AB ?若存在,求出实数19.已知圆22:22M x y x ++(1)求曲线E 的方程;(2)点A 是曲线E 与y 轴正半轴的交点,过点,AB AC 的斜率分别是12,k k ,试探索12k k ⋅是否为定值,若是,求出该定值;若不是,请说明理由.20.如图,在四棱锥P ABCD -中,ABC ∠=∠二面角P AD B --为直二面角.(1)求证:PA BD ⊥;(2)若直线PB 与平面PAD 弦值.21.已知双曲线C :22x a -A(1)求双曲线C 的方程(2)动直线12y x t =+交双曲线22.抛物线1C :24x y =,双曲线一点3,4M m ⎛⎫⎪⎝⎭作1C 的切线,其斜率为(1)求2C 的标准方程;。
上海市新场中学2020-2021学年高二上学期第二次月考(12月)数学试题
新场中学2020学年度高二第一学期阶段数学试卷(完卷时间:90分钟 满分:100分)一、填空题(本大题满分36分)本大题共有12题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得3分,否则一律得零分. 1. 直线210x +=的一个方向向量d =______________;()0,1(答案不唯一)在直线210x +=上取点1,02A ⎛⎫- ⎪⎝⎭、1,12B ⎛⎫- ⎪⎝⎭,可得出直线210x +=的一个方向向量d AB =.在直线210x +=上取点1,02A ⎛⎫- ⎪⎝⎭、1,12B ⎛⎫- ⎪⎝⎭,则直线210x +=的一个方向向量()0,1d AB ==. 故答案为:()0,1(答案不唯一).2. 已知斜率为3的直线过点(1,1)和(,4)x ,则实数x 的值为_____________; 2由斜率公式求解即可4131k x -==-,可得2x = 故答案为:23. 若{}n a 是等差数列,且13a =,3518a a +=,则7a =________. 15利用等差数列的性质:若p q m n +=+,则p q m n a a a a +=+,即可求解. 因为数列{}n a 是等差数列, 则351718a a a a +=+=,又13a =,715a ∴=,故答案为:15.4. 直线l 经过点(2,3)P ,且与向量(8,4)n =-垂直的直线方程为_____________________;210x y --=设直线l 上的任意一点(,)A x y ,根据垂直,利用向量的数量积为0,得到关于x ,y 的关系即为直线l 的方程.设直线l 上的任意一点(,)A x y ,(2,3)PA x y =-- 直线l 与向量(8,4)n =-垂直,(2x ∴-,3)(8y -⋅-,4)0=即8(2)4(3)0x y --+-=整理得:8440210x y x y -++=⇒--=. 故答案为:210x y --=.5. 点(2,3)P -到直线:3410l x y -=的距离为______________;285直接利用点到直线距离公式求解即可. 点(2,3)P -到直线:3410l x y -=的距离为:285d ==, 故答案为:2856. 行列式101213131---中元素3的代数余子式的值为________. 3写出行列式的3的代数余子式,再计算,即可得出结果.由题意,行列式101213131---中3的代数余子式为()()()231011301313+-⨯=-⨯--⨯-=⎡⎤⎣⎦--故答案为:3.7. 已知直线1y kx =+与曲线22y x =只有一个交点,则实数k 的值为______________; 0或12联立直线方程与抛物线方程得到关于x 一元二次方程,分类讨论,求解方程只有一个解时k 的值.联立直线方程与抛物线方程可得:22(22)10k x k x +-+=, ①若0k =,则11,2y x ==,满足题意; ②若0k ≠,则22(22)40k k ∆=--=,解得12k =. 综上所述,k =0或 12. 故答案为:0或128. 已知()222220a x a y ax a +++-=表示圆,则实数a 的值为______________;2将方程化为一般方程,利用方程表示的曲线为圆可得出关于实数a 的等式,求出a 的值,然后代值检验即可得解. 由题意可得0a ≠,方程2222210a x y x a a a+++-=. 所以,221a a+=,即220a a --=,解得1a =-或2a =. 当1a =-时,方程为22210x y x +-+=,化为标准方程得()2210x y -+=,不合乎题意;当2a =时,方程为22102x y x ++-=,化为标准方程得221324x y ⎛⎫++= ⎪⎝⎭,合乎题意. 综上所述,2a =. 故答案为:2.9. 若方程22212x y m m +=-表示焦点在x 轴上椭圆,则实数m 的取值范围是_______________;)2方程22212x y m m +=-表示焦点在x 轴上的椭圆,可得220m m >->,解不等式即可得答案. 方程22212x y m m +=-表示焦点在x 轴上的椭圆, 220m m ∴>->,2m <.m ∴的取值范围是)2.故答案为:)2.10. 在无穷等比数列{}n a 中,若121lim()3n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是________112(0,)(,)333先设等比数列{}n a 的公比为q ,根据题意,得到1q <且0q ≠,1113=-a q ,分别讨论10q -<<,和01q <<,即可得出结果.设等比数列{}n a 的公比为q ,则其前n 项和为:11(1),11,1n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩,若1q =时,1211lim()lim 3→∞→∞++⋅⋅⋅+=≠n n n a a a na , 若1q ≠时,112(1)1lim()lim 13→∞→∞-++⋅⋅⋅+==-n n n n a q a a a q , 因此1q <且0q ≠,1113=-a q ,即()1113=-a q , 所以当10q -<<时,()11121,333⎛⎫=-∈ ⎪⎝⎭a q ; 当01q <<时,()11110,33⎛⎫=-∈ ⎪⎝⎭a q . 因此,1a 的取值范围是112(0,)(,)333.故答案为:112(0,)(,)333本题主要考查由等比数列的极限求参数的问题,熟记极限的运算法则,以及等比数列的求和公式即可,属于常考题型.11. 椭圆22194x y +=的内接矩形面积的最大值是__________.12设出椭圆的内接矩形的一个顶点坐标,表示出面积的表达式,然后求出最大值.解:设椭圆内接矩形在第一象限内的点的坐标为(3cos ,2sin )θθ,(0,)2πθ∈所以椭圆22194x y +=的内接矩形面积43cos 2sin 12sin212S θθθ=⨯=.故答案为:12.12. 已知圆22:(4)(3)4C x y -+-=和两点 (,?0),?(,?0)(0)A m B m m ->,若圆C 上至少存在一点P ,使得90APB ∠=︒,则m 的取值范围是________.[3?7],;由于A B 、两点在以原点为圆心,m 为半径的圆上,若圆C 上至少存在一点P ,使得90APB ∠=︒,则两圆有公共点,设圆心距为d ,5d =,则22d m d -≤≤+,则3m 7≤≤,则m 的取值范围是[3,7].二、选择题 本大题共有4题,每题有且只有一个正确答案,选对得3分,否则一律得零分. 13. 平面直角坐标系上动点(),M x y6=,则动点M 的轨迹是( ) A .直线 B. 线段 C. 圆 D. 椭圆B由题意可知,动点M 到两个定点的距离的和为6, 又两个定点的距离为6,即得结论. 设点()()123,0,3,0F F -,动点(),M x y6=,∴126MF MF +=,又26FF =,1212MF MF F F ∴+=, 所以动点M 的轨迹是线段.故选:B .本题考查平面内两点间的距离公式,属于基础题. 14.设椭圆的一个焦点为),且2a b =,则椭圆的标准方程为( )A. 2214x y +=B. 2212x y +=C. 2214y x +=D. 2212y x +=A由已知可设椭圆的标准方程为222214x y b b+=,根据a ,b ,c 之间的关系,可得椭圆的标准方程.∵2a b =,椭圆的一个焦点为),∴设椭圆的标准方程为222214x y b b+=,∴22233a b b -==,故椭圆的标准方程为2214x y +=,故选:A本题主要考查了椭圆的基本量求法,属于基础题型.15. 已知直线:(12)(32)0l a x a y a -++-=,若不论a 为何值时,直线l 总经过一个定点,则这个定点的坐标是( ) A. (2,1)- B. (1,0)-C. 21,77⎛⎫- ⎪⎝⎭D. 12,77⎛⎫- ⎪⎝⎭C先变形解析式得到关于a 的不定方程(321)(2)0a y x x y --++=,由于a 有无数个解,则3210y x --=且20x y +=,然后求出x 和y 的值即可得到定点坐标.【详解】由直线:(12)(32)0l a x a y a -++-=,知(321)(2)0a y x x y --++=.不论a 为何值时,直线:(12)(32)0l a x a y a -++-=总经过一个定点,即a 有无数个解,3210y x ∴--=且20x y +=,27x ∴=-,17y =,∴这个定点的坐标是21(,)77-.故选:C .16. 直线l :34120x y +-=与椭圆221169x y +=相交于A 、B 两点,点P 是椭圆上的一点,若三角形PAB 的面积为12,则满足条件的点P 的个数为( ) A. 1个 B. 2个C. 3个D. 4个B由题意可得5AB =,则由三角形PAB 的面积为12可得以AB 底的三角形的高245h =,作与AB平行的直线l ,使l 与椭圆221169x y +=相切,设直线l 的方程为43x y k +=,把l 的方程代入椭圆方程化简,由判别式等于0 解得k 值,从而得到直线l 的方程,求出直线l 与AB 间的距离,将此距离和h 作比较,从而得出结论. 由已知可得(4,0)A ,(0,3)B ,5AB =, 由1122AB h =⨯,可得P 到AB 的距离245h =. 作与AB 平行的直线l ,使l 与椭圆221169x y +=相切,设直线l 的方程为43x yk +=, 把l 的方程代入椭圆方程化简可得224880x kx k -+-=, 由△221632(1)0k k =--=k ∴,或k =故直线l的方程为43x y +43x y+=因为43x y+=与AB245<,43x y+=-AB245>.故这样的点P 共有 2个,故选:B .方法点睛:转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将点P 的个数为问题转化为直线与椭圆的交点个数问题是解题的关键. 三、解答题.本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17. 已知直线1:240l mx y ++=和2:240l x my ++=. (1)当m 为何值时两直线平行;(2)当1m =时,求直线1l 与2l 所成夹角的大小.(用反三角表示)(1)12m =-;(2)3arctan 4(1)根据两直线平行的等价条件2211m m ⨯=⨯且 1442m ⨯≠⨯即可求解;(2)分别求出直线1l ,2l 的斜率,设直线1l 与2l 所成夹角为α,再利用公式2112tan 1k k k k α-=+⋅即可求夹角的正切值,即可求解.(1)若直线1:240l mx y ++=和2:240l x my ++=平行.则2211m m ⨯=⨯且 1442m ⨯≠⨯,解得:12m =-,(2)当1m =时,直线1:240l x y ++=和2:240l x y ++=.直线1l 的斜率为12k =-,直线2l 的斜率为212k =-,设直线1l 与2l 所成夹角为α,则()()21121232tan 114122k k k k α----===+⋅⎛⎫+-⨯- ⎪⎝⎭,可得3arctan4α=, 所以直线1l 与2l 所成夹角为3arctan 4.18. 已知向量a 和b 的夹角为60°,且||3a =,||4b =. (1)求向量b 在a 方向上的投影;(2)若||13ka b -≥,求实数k 的取值范围.(1)2;(2)13k ≤或1k.(1)根据投影的定义计算;(2)把模用数量积表示出来后解不等式可得.由题意1cos603462a b a b ⋅=︒=⨯⨯=,(1)向量b 在a 方向上的投影是623a b a ⋅==; (2)由||13ka b -≥得2||13ka b -≥,即222213k a ka b b -⋅+≥,∴29121613k k -+≥,解得13k ≤或1k.本题考查向量的投影,考查向量模与数量积的关系.向量的模与数量积的关系是:2a a =.19. 已知动直线10kx y ++=和圆221x y +=相交于,A B 点. (1)当1k =时,求||AB 的值; (2)求弦AB 的中点的轨迹方程.(1,(2)220(1)x y y y +=≠-+(1)求出圆心到直线的距离,结合圆的半径为1r =,利用勾股定理求解即可;(2)由直线系方程判断出直线过圆上的定点,设出弦中点的坐标,由中点坐标公式得到弦与圆的另一交点坐标,代入圆的方程即可得到答案. (1)1k =时,直线方程为10x y ++=,圆心()0,0到直线10x y ++=距离d == 又因为圆的半径为1r =,所以||AB === (2)动直线10kx y ++=经过定点(0,1)-, 而点(0,1)-在圆221x y +=上,设为(0,1)A -.设弦AB 的中点坐标为(,)x y ,则点B 的坐标为(2,21)x y +, 把B 点代入圆方程:22(2)(21)1x y ++= 化简,得220x y y ++=.因为直线与圆相交,所以,A B 不重合,则1y ≠-, 所以弦AB 的中点的轨迹方程为220(1)x y y y +=≠-+.方法点睛:求轨迹方程常见方法:定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等.20. 数列{}n a 的前n 项和为n S ,已知()114n n S a n *=+∈N .(1)求数列{}n a 的通项公式;(2)设数列{}n b ,且21n n b a -=,求证:{}n b 是等比数列;(3)求()12lim n n b b b →∞++⋅⋅⋅+的值.(1)14133n n a -⎛⎫=⋅- ⎪⎝⎭(2)证明见解析(3)32(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求得数列{}n a 的通项公式.(2)根据(1)的结论,求得数列{}n b 的通项公式,由此证得数列{}n b 是等比数列. (3)先求得{}n b 的前n 项和,由此求得极限的值. (1)143a =,当2n ≥时,1n n n a S S -=-1111144n n a a -⎛⎫=+-+ ⎪⎝⎭,得13n n a a -=-,即113n n a a -=-,数列{}n a 成等比数列,14133n n a -⎛⎫=⋅- ⎪⎝⎭.当1n =时上式也符合.(2)由(1)可知14139n n b -⎛⎫=⋅ ⎪⎝⎭,所以数列{}n b 是首项为43,公比为19的等比数列.(3)()12441333lim lim 111921199n n n n b b b →∞→∞⎛⎫++⋅⋅⋅+=-== ⎪⎝⎭--. 本小题主要考查已知n S 求n a ,考查等比数列前n 项和公式,考查极限的计算,属于中档题.21. 椭圆C :22221(0)x y a b a b+=>>过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点.设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k . (1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值;(3)探讨12k k +是否为定值?如果是,求出该定值;如果不是,求出12k k +的取值范围.(1)22143x y +=;(2)12;(3)2.(1)根据椭圆过点(2,0)M ,且右焦点为(1,0)F ,得到2,1a c ==求解.(2)设直线l 的方程为1y x =-+,联立221143y x x y =-+⎧⎪⎨+=⎪⎩,然后利用韦达定理和斜率公式求解.(3)分直线AB 的斜率不存在和直线AB 的斜率存在讨论,当直线AB 的斜率不存在时求得A ,B 的坐标,利用斜率公式求解;当直线AB 的斜率存在时,设()1y k x =-,联立 ()221143y k x x y ⎧=-⎪⎨+=⎪⎩,然后利用韦达定理和斜率公式求解.(1)因为椭圆C :22221(0)x y a b a b+=>>过点(2,0)M ,且右焦点为(1,0)F , 所以2,1a c ==,所以 23b =,所以椭圆C 的方程是22143x y +=; (2)设直线l 的方程为1y x =-+,()()1122,,,A x y B x y , 由221143y x x y =-+⎧⎪⎨+=⎪⎩得27880x x --=, 由根与系数的关系得121288,77x x x x +=⋅=-, 所以1212123344y y k k x x --=⋅--, 12122244x x x x ----=⋅--, ()()121212122214162x x x x x x x x ⋅+++==⋅-++. (3)当直线AB 的斜率不存在时,331,,1,22A B ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, 则1233332221414k k ---+=⋅=--, 当直线AB 的斜率存在时,设()1y k x =-,()()1122,,,A x y B x y ,由()221143y k x x y ⎧=-⎪⎨+=⎪⎩得()()22224384120k x k x k +-+-=,由根与系数的关系得221212228412,4343k k x x x x k k -+=⋅=++, 所以1212123344y y k k x x --+=+--, ()()()()1212121225383416kx x k x x k x x x x ⋅-++++=⋅-++. ()()()()22222222224128253837214343241283614164343k k k k k k k k k k k k k ⎛⎫⎛⎫--+++ ⎪ ⎪+++⎝⎭⎝⎭===⎛⎫-+-+ ⎪++⎝⎭.。
2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)
2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题一、单选题1.沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛, 6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场. 故选:D.2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先根据焦点在x 轴上的椭圆求出m ,再根据充分性,必要性的概念得答案.【详解】由方程22212x y m m +=+表示焦点在x 轴上的椭圆得:220m m >+>, 解得21m -<<-或m>2, 由充分性,必要性的概念知,“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的充分不必要条件.故选:A.合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断.【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确;对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C.【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.4.()823x y z ++的展开式中,共有多少项?( ) A .45 B .36 C .28 D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项; 故选:A.5.已知()52232x x --21001210a a x a x a x =++++,则0110a a a ++=( )【答案】A【分析】首先令0x =,这样可以求出0a 的值,然后把2232x x --因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出110a a 、的会下,最后可以计算出0110a a a ++的值.【详解】令0x =,由已知等式可得:50=232a =,()55552[(12)(2)]2((2)3122)x x x x x x =-+=-⋅+--,设5(12)x -的通项公式为:51551(2)(2)rrr r r r r T C x C x -+=⋅⋅-=⋅-⋅,则常数项、x 的系数、5x 的系数分别为:0155555(2)2C C C --⋅⋅、、;设5(2)x +的通项公式为:5512r r r r T C x -+=⋅⋅‘’‘’‘,则常数项、x 的系数、5x 的系数分别为: 4501555522C C C ⋅⋅、、,0115401555522)(2240,a C C C C =⋅⋅⋅=-⋅⋅+-5551055(2)32a C C =-⋅⋅=-,所以01103224032240a a a ++=--=-,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.6.平行四边形ABCD 内接于椭圆22221x y a b +=()0a b >>AB 的斜率为1,则直线AD 的斜率为( )A .1-4B .1-2C .D .-1【答案】A【分析】利用对称关系转化为中点弦问题即可求解. 【详解】22222223331,,,2444c c a b b a a a a -=∴==∴=, 设112233(,),(,),(,),A x y B x y D x y设E 为AD 中点,由于O 为BD 中点,所以//OE AB ,所以1OE k =, 因为1133(,),(,)A x y D x y 在椭圆上,所以22112222332211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2131321313OE AD y y y y b k k a x x x x +--=⋅=⋅+-, 所以22114AD b k a ⨯=-=-,即14AD k =-.故选:A.7.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为12,e e ,则121e e ⋅+的取值范围是A .()1,+∞B .4,3⎛⎫+∞ ⎪⎝⎭C .6,5⎛⎫+∞ ⎪⎝⎭D .10,9⎛⎫+∞ ⎪⎝⎭【答案】B【分析】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲线的定义,根据已知条件有22PF c =,利用定义列出两个离心率的表达式,根据题意求121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.【详解】设椭圆方程为()222221122111x y a b c a b +=-=,双曲线方程为()222221122111x y a b c a b -=+=,由椭圆和双曲线的几何性质可得,1211222,2PF PF a PF PF a +=-=,依题意可知22PF c =,110PF =,代入可得,125,5a c a c =+=-.故2122212251112525c c c e e a a c c ⋅+=⋅+=+=--,三角形两边的和大于第三边,故5410,2c c >>,120,0a a >>,故5c <故22223745402554252525c c c <⇒<⇒<-><-. 故选:B.【点睛】(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a +=,得到a ,c 的关系.(2)双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.8.已知A ,B ,C ,D 是椭圆E :22143x y +=上四个不同的点,且()1,1M 是线段AB ,CD 的交点,且3AM CM BMDM==,若l AC ⊥,则直线l 的斜率为( )A .12B .34C .43D .2【答案】C【分析】设出点的坐标()()()()11223344,,,,,,,A x y B x y C x y D x y ,由3AMBM=得到3AM MB =,列出方程,得到12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,分别把()()1122,,,A x y B x y 代入椭圆,得到()()111122143x y -+-=,同理得到()()331122143x y -+-=,两式相减得到34AC k =-,利用直线垂直斜率的关系求出直线l 的斜率. 【详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为3AM BM =,故3AM MB =,所以()()1212131131x x y y ⎧-=-⎪⎨-=-⎪⎩,则12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,又()()1122,,,A x y B x y 都在椭圆上,故2211143x y +=,且()()22119114443x y -+-=, 两式相减得:()()1181142442443x y -⨯+-⨯=,即()()111122143x y -+-=①, 同理可得:()()11221x y -+-=②,②-①得:()()131311043x x y y -+-=, 所以131334ACy y k x x -==--, 因为l AC ⊥,所以直线l 的斜率为143AC k -=. 故选:C【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.二、多选题9.已知两点(5,0),(5,0)M N -,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.下列直线中为“B 型直线”的是( ) A .1y x =+ B .2y = C .43y x =D .2y x =【答案】AB【解析】首先根据题意,结合双曲线的定义,可得满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支;进而可得其方程,若该直线为“B 型直线”,则这条直线必与双曲线的右支相交,依次分析4条直线与双曲线的右支是否相交,可得答案.【详解】解:根据题意,满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支; 则其中焦点坐标为(5,0)M -和(5,0)N ,即5c =,3a =, 可得4b =;故双曲线的方程为221916x y -=,(0)x > 双曲线的渐近线方程为43y x =±∴直线43y x =与双曲线没有公共点, 直线2y x =经过点(0,0)斜率43k >,与双曲线也没有公共点 而直线1y x =+、与直线2y =都与双曲线221916x y-=,(0)x >有交点 因此,在1y x =+与2y =上存在点P 使||||6PM PN -=,满足B 型直线的条件 只有AB 正确 故选:AB .10.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,分别以12,A A 表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( ) A .12,A A 两两互斥B .()22|3P B A = C .事件B 与事件2A 相互独立 D .()914P B =【答案】AD【分析】根据条件概率、全概率公式、互斥事件的概念等知识,逐一分析选项,即可得答案. 【详解】因为每次取一球,所以12,A A 是两两互斥的事件,故A 项正确; 因为()()1212P A P A ==,()()()2225|7P BA P B A P A ==,故B 项错误; 又()()()1114|7P BA P B A P A ==,所以()()()1214159272714P B P BA P BA =+=⨯+⨯=,故D 项正确.从甲箱中取出黑球,放入乙箱中,则乙箱中黑球变为5个,取出黑球概率发生变化,所以事件B 与事件2A 不相互独立,故C 项错误. 故选:AD11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( ) A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQ λ= 【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭- 化简得4133y x =-,由24133y x y x⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =, 故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故121125116216AB x x p =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以,,C B Q 三点共线,故D 正确.故选:ACD . 12.已知当随机变量()2,XN μσ时,随机变量X Z μσ-=也服从正态分布.若()2,,X X N Z μμσσ-~=,则下列结论正确的是( )A .()0,1ZNB .()12(1)P X P Z μσ-<=-<C .当μ减小,σ增大时,(2)P X μσ-<不变D .当,μσ都增大时,(3)P X μσ-<增大 【答案】AC【分析】根据正态分布与标准正态分布的关系以及正态分布的性质及特点可判断各选项正误. 【详解】对任意正态分布()2,X N μσ,X Z μσ-=服从标准正态分布()0,1ZN 可知A 正确,由于X Z μ-=,结合正态分布的对称性可得()(1)12(1)P X P Z P Z μσ-<=<=->,可知B 错误,已知正态分布()2,X N μσ,对于给定的*N k ∈,()P X k μσ-<是一个只与k 有关的定值,所以C正确,D 错误. 故选:AC.三、填空题 13.设()2,XB p ,若()519P X ≥=,则p =_________ .【答案】13【分析】由二项分布的概率公式()()1n kk kn P X k p p -==-C ,代入()()()112P X P X P X ≥==+=可得结果. 【详解】()2,XB p ,()()()()()0122222112C 1+C 12P X P X P X p p p p p p ∴≥==+==--=-,2529p p ∴-=,解得:13p ∴=或53p =(舍去)故答案为:13.14.已知()35P A =,()12P B A =,()23P B A =,则()P B =______. 【答案】1330【分析】根据已知条件结合全概率公式求解即可 【详解】因为()35P A =,所以32()1()155P A P A =-=-=, 因为()23P B A =,所以()()211133P B A P B A =-=-=, 所以由全概率公式可得()()()()()P B P B A P A P B A P A =+ 131213253530=⨯+⨯=, 故答案为:133015.现有三位男生和三位女生,共六位同学,随机地站成一排,在男生甲不站两端的条件下,有且只有两位女生相邻的概率是______. 【答案】2##0.4.【分析】先计算出男生甲不站两端,3位女生中有且只有两位女生相邻的总情况,再按照古典概型计算概率即可.【详解】3位男生和3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422A (A A 6A A )-种不同排法,因此所求概率为232223342266A (A A 6A A )2=.A 5- 故答案为:25.16.关于曲线C :22111x y +=,有如下结论: ①曲线C 关于原点对称; ②曲线C 关于直线0x y ±=对称; ③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点; 其中所有正确结论的序号为_________. 【答案】①②④【分析】利用曲线方程的性质,对称性的应用及曲线间的位置关系即可判断上述结论是否正确. 【详解】对于①,将方程中的x 换为x -,y 换为y -,得()()222211111x y x y +=+=--,所以曲线C 关于原点对称,故①正确;对于②,将方程中的x 换为y 或y -,y 换为x 或x -,得()()2222221111111y x x y y x +=+=+=--,所以曲线C 关于直线0x y ±=对称,故②正确; 对于③,由22111x y +=得221110y x=-≥,即21x ≥,同理21y ≥,显然曲线C 不是封闭图形,故③错误;对于④,由③知曲线C 不是封闭图形,联立22221112x y x y ⎧+=⎪⎨⎪+=⎩,消去2y ,得42220x x -+=,令2t x =,则上式转化为2220t t -+=,由()224240∆=--⨯=-<可知方程无解,因此曲线C 与圆222x y +=无公共点,故④正确. 故答案为:①②④.四、解答题17.给出下列条件:①若展开式前三项的二项式系数的和等于16;②若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,___________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.【答案】(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【分析】(1)无论选①还是选②,根据题设条件可求5n =,从而可求二项式系数最大的项. (2)利用二项展开式的通项公式可求展开式中所有的有理项. 【详解】(1)二项展开式的通项公式为:211C C ,0,1,2,,2rr r rr n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,∴()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),∴5n =.若选②,则由题得()221111C 22141C 22n n nn n n n n n n ----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,∴5n =, 展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭. (2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52rr r rr r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭.当52rZ -∈即0,2,4r =时得展开式中的有理项,所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭.18.已知圆()22:()(21)4C x a y a a -+-+=∈R ,定点()1,2M -.(1)过点M 作圆C 的切线,切点是A ,若线段MA C 的标准方程;(2)过点M 且斜率为1的直线l ,若圆C 上有且仅有4个点到l 的距离为1,求a 的取值范围. 【答案】(1)22(3)(5)4x y -+-=或22(1)(3)4x y +++=(2)(4【分析】(1)由题可知,圆心(),21C a a -,2r =,由勾股定理有222MC MA r =+,根据两点间距离公式计算即可求出a 的值,进而得出圆的方程;(2)因为圆C 上有且仅有4个点到l 的距离为1,圆C 的半径为2,因此需圆心C 到直线l 的距离小于1,设直线l 的方程为:()211y x -=+,根据点到直线的距离公式列出不等式,即可求出a 的取值范围.【详解】(1)解:由题可知,圆心(),21C a a -,2r =由勾股定理有222MC MA r =+,则222(1)(23)225a a ++-=+= 即2510150a a --=,解得:3a =或1a =-,所以圆C 的标准方程为:22(3)(5)4x y -+-=或22(1)(3)4x y +++=. (2)解:设直线l 的方程为:()211y x -=+,即30x y -+=, 由题,只需圆心C 到直线l 的距离小于1即可,所以1d =<,所以4a -44a <所以a 的取值范围为(4.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记ζ为“植株死亡”的数量,求ζ得分布列和期望E ζ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求D η.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关;(2)①分布列见解析,125E ζ=,②240 【解析】(1)已知“植株存活”但“制剂吸收不足量”的植株共1株,由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填表即可(2)代入公式计算2220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯,有关(3)①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3,根据古典概型计算即可. ②“植株存活”且“制剂吸收足量”的概率为123205p ==,332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【详解】解:(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填写列联表如下:吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计 155202220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关. ①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株, 所以抽取的3株中ξ的可能取值是2,3.其中24353(2)5C P C ξ===, 34352(3)5C P C ξ===ξ的分布列为: ξ2 3 P3525所以321223555E ξ=⨯+⨯=. ②332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【点睛】考查完成22⨯列联表、离散型随机变量的分布列、期望以及二项分布的方差,难题. 20.安排5个大学生到,,A B C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.【答案】(1);(2)详见解析.【详解】试题分析:(1)5个大学生去三所学校支教,共有种方法,若恰有2人去A 校支教,那就从5人中先选2人,去A 大学,然后剩下的3人去B 和C 大学支教,有种方法,最后根据古典概型求概率;(2)根据题意,,表示5人都去了同一所大学支教,表示5人去了其中2所大学支教,那可以将5人分组,分为4和1,或是3和2,然后再分配到2所大学,计算概率,表示5人去了3所大学支教,那分组为113,或是122型,再将三组分配到三所大学,计算概率,最后列分布列.试题解析:(1)5个大学生到三所学校支教的所有可能为53243=种,设“恰有2个人去A 校支教”为事件M ,则有352280C ⋅=种,∴80()243P M =. 答:5个大学生中恰有2个人去A 校支教的概率80243. (2)由题得:1,2,3ξ=,15ξ=⇒人去同一所学校,有133C =种,∴ 31(1)24381P ξ===, 25ξ=⇒人去两所学校,即分为4,1或3,2有24323552()90C C C A ⋅+⋅=种,∴ 903010(2)2438127P ξ====, 35ξ=⇒人去三所学校,即分为3,1,1或2,2,1有312235253311()1502!2!C C C C A ⋅⋅⋅⋅+⋅= 种,∴15050(3)24381P ξ===. ∴ 的分布列为【解析】1.排列组合;2.离散型随机变量的分布列.21.已知椭圆22:143x y Γ+=的右焦点为F ,过F 的直线l 交Γ于,A B 两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆Γ上存在点C 使得||||AC BC =,且△ABC 的重心G 在y 轴上,求此时直线l 的方程. 【答案】(1)3 (2)32(3):1l x =、:0l y =或3:1l x y =+【分析】(1)根据直线垂直x 轴,可得,A B 坐标,进而可求线段长度.(2)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,进而根据三角形面积求表达式,进而根据函数最值进行求面积最大值.(3)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,以及重心坐标公式,即可求解.【详解】(1)因为(1,0)F ,令1x =,得21143y +=,所以32y =±,所以||3AB = (2)设直线:1(0)l x my m =+≠,1122(,),(,)A x y B x y ,不妨设210,0y y ><,由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=, 2144(1)m ∆=+,122634m y y m -+=+,122934y y m -=+, ()2221122221212169434434m y y y y y m m m y --⎛⎫- ⎪++-+-==+⎝⎭2211112122AOBm SOF y y +=⋅-=21m t +=,则1t ≥,2661313AOB t S t t t==++△,记1()3h t t t =+,可得1()3h t t t=+在[)1,+∞上单调递增所以211322AOBSOF y y =⋅-≤当且仅当0m =时取到, 即AOB 面积的最大值为32;(3)①当直线l 不与x 轴重合时,设直线:1l x my =+,1122(,),(,)A x y B x y ,AB 中点为M .由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因为ABC 的重心G 在y 轴上,所以120C x x x ++=, 所以121228()234C x x x m y y m -=--=-+-=+,又()12122242234M m y y x x x m +++===+,1223234M y y my m +-==+, 因为||||AC BC =,所以CM AB ⊥ ,故直线:()M M CM y y m x x -=--,所以29()34C M C M m y y m x x m =--=+,从而2289,3434m C m m -⎛⎫ ⎪++⎝⎭, 代入22143x y +=得22(31)0m m -=,所以0,m =:1l x =或:1l x y =+.② 当直线l 与x 轴重合时,点C 位于椭圆的上、下顶点显然满足条件,此时:0l y =. 综上,:1l x =,:0l y =或:1l x y =+. 22.已知双曲线2222:100x y C a b a b-=>>(,),1F 、2F 分别是它的左、右焦点,(1,0)A -是其左顶点,且双曲线的离心率为2e =.设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12x =交于M N 、两点,证明22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由. 【答案】(1)2213y x -= (2)证明见解析 (3)存在,2【分析】(1)根据题意可得1a =,2ce a==,即可求解,b c 的值,进而得到双曲线方程; (2)设直线l 的方程及点,P Q 的坐标,直线l 的方程与双曲线C 的方程联立,得到1212,y y y y +的值,进而得到点,M N 的坐标,计算22MF NF ⋅的值即可;(3)在直线斜率不存在的特殊情况下易得2λ=,再证明222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,将角度问题转化为斜率问题,即222tan 21PAPAk PAF k ∠=-,22tan PF AF P k ∠=-,即可求解=2λ. 【详解】(1)解:由题可知:1a = ∵2ce a==,∴c =2 ∵222+=a b c ,∴b = ∴双曲线C 的方程为:2213y x -=(2)证明:设直线l 的方程为:2x ty =+,另设:()11,P x y ,()22,Q x y ,∴()2222131129032y x t y ty x ty ⎧⎪⎨⎪-=⇒-++==+⎩, ∴121222129,3131t y y y y t t -+==--,又直线AP 的方程为()1111y y x x =++,代入()11311,2221y x M x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, 同理,直线AQ 的方程为()2211y y x x =++,代入()22311,2221y x N x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, ∴()()1222123333,,,221221y y MF NF x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,∴()()()()()12121222212121212999999441144334439y y y y y y MF NF x x ty ty t y y t y y ⋅=+=+=+++++⎡⎤+++⎣⎦2222999993109124444393131t t t t t t ⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭,故22MF NF ⋅为定值.(3)解:当直线l 的方程为2x =时,解得(2,3)P , 易知此时2AF P △为等腰直角三角形,其中22,24AF P PAF ππ∠=∠=,即222AF P PAF ∠=∠,也即:=2λ,下证:222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,121112222212112122tan 212(1)tan 21tan 1(1)1()1PAPAy PAF k x y x PAF y PAF k x y x ⨯∠++∠====-∠-+--+,∵()222211111313y x y x -=⇒=-,∴()()()()()()11111222121112121tan 22122131y x y x y PAF x x x x x ++∠===--+--+--,∴21221tan tan 22PF y AF P k PAF x ∠=-=-=∠-, ∴结合正切函数在0,,22πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上的图像可知,222AF P PAF ∠=∠,。
北京市陈经纶中学2023-2024学年高二上学期12月月考数学试题
设双曲线方程为:x2 a2-Fra biblioteky2 b2
= 1(a
> 0,b
> 0) ,则 2a
= 8, 2c
= 10 ,所以 a = 4,c = 5 ,
所以 b2
=
c2
- a2
=
9 ,所以双曲线方程为 x2
16
-
y2 9
=1,
即化简方程
令t =
x2
+
y2
(t
³
0)
,上述方程可化为
y
=
t
-
t2
=
-
æ çè
t
-
1 2
ö2 ÷ø
+
1 4
£
1 4
结合上图得, y 的整数取值为 0,-1,-2.
y = 0 时, x = ±1 或 x = 0 ;
-1)
,
r b
=
(t,
t
+1,
t
-1)
若
r a
^
r b
,则
t
=
(
)
D.135o
A. -1
B.0
C.1
D.2
3.已知等差数列{an} 中, a1 = 1,公差 d ¹ 0 ,如果 a1 , a2 , a5 成等比数列,那么d 等
于( )
A.2 或 -2
B. -2
C.2
D.3
4.已知圆 C 的圆心在直线 y = x 上,且圆 C 经过坐标原点,则圆 C 的方程可以为 ()
y
=±
2x ,
2023-2024学年上海市高二上学期12月月考数学试题(含解析)
2023-2024学年上海市高二上册12月月考数学试题一、填空题1.已知等比数列}{n a 中,12452,16a a a a +=+=,则}{n a 的公比为__.【正确答案】2【分析】设公比为q ,再根据题意作商即可得解.【详解】设公比为q ,则345128a a q a a +==+,所以2q =.故答案为.22.已知直棱柱的底面周长为12,高为4,则这个棱柱的侧面积等于___________.【正确答案】48【分析】根据直棱柱的侧面积公式直接求解即可【详解】因为直棱柱的底面周长为12,高为4,所以这个棱柱的侧面积为12448⨯=,故483.直线0mx y -=与直线220x my --=平行,则m 的值是__________.【正确答案】【分析】利用直线的平行条件即得.【详解】∵直线0mx y -=与直线220x my --=平行,∴122m m -=≠--,∴m =故答案为.m =4.经过两直线2x +y -1=0与x -y -2=0的交点,且在两坐标轴上的截距互为相反数的直线方程是___________.【正确答案】x +y =0或x -y -2=0【分析】先求解两直线的交点坐标,再运用截距式求解直线的方程可得出结果.【详解】解:联立两直线方程可得:21020x y x y +-=⎧⎨--=⎩,解得11x y =⎧⎨=-⎩,可得两条直线交点P (1,-1).①直线经过原点时,可得直线方程为y =-x ;②直线不经过原点时,设直线方程为1x y a a+=-,把交点P (1,-1)代入可得111a a-+=-,解得a =2.所以直线的方程为x -y-2=0.综上直线方程为:x +y =0或x -y -2=0.故x +y =0或x -y -2=0.5.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是一个半径为2的半圆,则该几何体的体积为________.【分析】根据圆锥的侧面展开图是一个半径为2的半圆,由22r l πππ==,求得底面半径,进而得到高,再利用锥体的体积公式求解.【详解】设圆锥的母线长为l ,高为h ,底面半径为r ,因为圆锥的侧面展开图是一个半径为2的半圆,所以22r l πππ==,解得1r =,所以h =所以圆锥的体积为:1133V Sh π==⨯⨯,故36.如果二面角l αβ--的平面角是锐角,空间一点Р到平面α、β和棱l 的距离分别为、4和l αβ--的大小为_______________.【正确答案】75 或15【分析】分点P 在二面角l αβ--的内部和外部,利用二面角的定义求解.【详解】当点P 在二面角l αβ--的内部,如图所示:,,PA PB PC l αβ⊥⊥⊥,A ,C ,B ,P 四点共面,ACB ∠是二面角的平面角,因为Р到平面α、β和棱l 的距离分别为、4和所以1sin ,sin2ACP BCP ∠=∠=所以30,45ACP BCP ∠=∠= ,则453075ACB BCP ACP ∠=∠+∠=+= ;当点P 在二面角l αβ--的外部,如图所示:,,PA PB PC l αβ⊥⊥⊥,A ,C ,B ,P 四点共面,ACB ∠是二面角的平面角,因为Р到平面α、β和棱l 的距离分别为、4和所以所以1sin ,sin2ACP BCP ∠=∠=所以30,45ACP BCP ∠=∠= ,30,45ACP BCP ∠=∠= ,则453015ACB BCP ACP ∠=∠-∠=-= .故75 或157.已知圆台的上、下底面半径分别为2和5,圆台的高为3,则此圆台的体积为__.【正确答案】39π【分析】由圆台的体积公式代入求解即可.【详解】由题意知,122,5,3r r h ===,则()()22121211ππ42510339π33V r r r r h =++⨯=++⨯=.故答案为.39π8.如图,是一个正方体的平面展开图,在这个正方体中,①BM 与ED 是异面直线;②CN 与BE 平行;③CN 与BM 成60 角④DM 与BN 垂直,请写出正确结论的个数为__个.【正确答案】4【分析】画出该平面展开图合起来后的正方体后,逐项判断.【详解】解:该平面展开图合起来后的正方体,如图所示:由图形得BM 与ED 是异面直线,故①正确;CN 与BE 平行,故②正确;连接EM ,则BEM △为等边三角形,所以BE 与BM 所成角为60︒,因为//CN BE ,所以CN 与BM 成60︒角,故③正确;对于④,连接CN ,BC ⊥平面CDNM ,DM ⊂平面CDNM ,所以BC DM ⊥,又DM CN ⊥,,,CN BC C CN BC ⋂=⊂面BCN ,所以DM ⊥平面BCN ,BN ⊂平面BCN ,所以DM BN ⊥,故④正确.所以正确结论的个数是4个.故49.若圆222:()0O x y r r +=>上恰有相异两点到直线40x y --=2r 的取值范围是__.【正确答案】(2,32【分析】计算圆心到直线的距离为22||2<d r -.【详解】圆心(0,0)到直线40x y --=的距离d =因为圆上恰有相异两点到直线40x y --=,所以||d r -即||r r <<故10.过点1,12⎛⎫- ⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.【正确答案】2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程.【详解】设点1,12A ⎛⎫- ⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA ,则OB 为原点O 到直线l 的距离,在直角三角形AOB 中,OA 为斜边,所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大,而1212OA k -==-,所以12l k =,所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭,整理得:2450x y --=本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.11.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.15【分析】将四边形面积的最小时,等价于圆心C 到直线34130x y ++=的距离最小,求出最小距离,进而利用三角形面积公式求出最小面积.【详解】解:由题意知,A ,B 是切点,是圆心()1,1C ,且圆的半径为1所以221PB PA PC ==-四边形PACB 面积为:221212S PB r PC =⨯⋅=-所以当PC 取最小值时,S 取最小值由点P 在直线上运动可知,当PC 与直线34130x y ++=垂直时PC 取最小值此时PC 为圆心C 到直线34130x y ++=的距离即22314113434PC ⨯+⨯+==+故四边形PACB 最小面积为:224115S =-=故答案为15关键点睛:本题的关键是将面积的最值转化为点到直线上点的距离的最值,进而转化为点到直线的距离.12.我们将函数图象绕原点逆时针旋转()02θθπ≤≤后仍为函数图象的函数称为JP 函数,θ为其旋转角,若函数02y x ⎫=≤⎪⎪⎭为JP 函数,则其旋转角θ所有可取值的集合为___________【正确答案】2350,,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦【分析】由解析式可知原函数图象为圆弧AB ,根据函数的定义可知若旋转后不再是函数,则必存在垂直于x 轴的切线,且切点异于弧AB 端点,A B ,通过图形进行分析可得结果.【详解】02y x ⎫=≤≤⎪⎪⎭为如图所示的一段圆弧AB ,其所对圆心角6AOB π∠=,若该函数图象绕原点逆时针旋转θ后不再是函数,则其旋转后的图象必存在垂直于x 轴的切线,且切点异于弧AB 端点,A B ,由图象可知:若6COD π∠=,则当A 点自C 向D 运动(不包含,C D )时,图象存在垂直于x 轴的切线,此时2,23ππθ⎛⎫∈ ⎪⎝⎭;若6EOF π∠=,则当A 点自E 向F 运动(不包含,E F )时,图象存在垂直于x 轴的切线,此时35,23ππθ⎛⎫∈ ⎪⎝⎭;∴若函数0y x =≤⎭为JP 函数,其旋转角()02θθπ≤≤所有可能值的集合为.2350,,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦故答案为.2350,,,22323πππππ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦13.设10x y -+=,求d =__.【正确答案】【分析】根据d 的表达式可知,其几何意义表示直线10x y -+=上一点(),P x y 到点()3,5A -和点()2,15B -的距离之和,根据“将军饮马”模型求解即可.【详解】根据题意可得d ,表示直线10x y -+=上一点(),P x y 到点()3,5A -和点()2,15B -的距离之和,点A 关于直线10x y -+=的对称点为(),C a b ,则满足513351022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩解得4,2a b ==-;所以点A 关于直线10x y -+=的对称点为()4,2C -,如下图所示:则PA PB PB PC BC+=+≥所以()min PA PB BC +==.故14.若,xy R ∈的最小值为___________.【分析】根据题意并结合两点间的距离公式,将原不等式转化为PA QB PQ =++,其中(),0P x 是x 轴上的动点,()0,Q y 是y 轴上的动点,()1,1A ,()1,2B 是定点,根据距离的几何意义和对称关系,可知当A '、P 、Q 、B '四点共线时,PA QB PQ ++取得最小值,则()min PA QB PQ A B ''++=,最后利用两点间的距离公式即可求得结果.根据两点间的距离公式可知,表示点(),0P x 到点()1,1A 的距离,表示点()0,Q y 到点()1,2B 的距离,表示点(),0P x 到点()0,Q y 的距离,其中(),0P x 是x 轴上的动点,()0,Q y 是y 轴上的动点,()1,1A ,()1,2B 是定点,PA QB PQ =++,如图,作A 关于x 轴的对称点()1,1A '-,B 关于y 轴的对称点()1,2B '-,的最小值,则需求PA QB PQ ++的最小值,可知当A '、P 、Q 、B '四点共线时,PA QB PQ ++取得最小值,即()min PA QB PQA B ''++==,故答案为二、单选题15.设29n a n =-,则当数列{an }的前n 项和取得最小值时,n 的值为()A .4B .5C .4或5D .5或6【正确答案】A 【分析】结合等差数列的性质得到100n n a a +≤⎧⎨≥⎩,解不等式组即可求出结果.【详解】由100n n a a +≤⎧⎨≥⎩,即()2902190n n -≤⎧⎨+-≥⎩,解得7922n ≤≤,因为n N *∈,故4n =.故选:A.16.已知三条不同的直线a ,b ,c ,两个不同的平面α,β,则下列说法错误的是()A .若a α⊥,//αβ,a b ⊥r r ,则b β//或b β⊂B .若a α⊥,b β⊥,//αβ,则a b⊥r r C .若a α⊥,b β⊥,αβ⊥,则a b⊥r r D .若a α⊥,⋂=c αβ,//b c ,则a b⊥r r 【正确答案】B【分析】根据线面位置关系逐项判断即可得出答案.【详解】选项A 中,//a ααβ⊥,,可得a β⊥,又//a b b β⊥∴或b β⊂,选项A 正确;选项B 中,//a a ααββ⊥∴⊥,,又b β⊥,则//a b ,选项B 错误;选项C 中,//a a ααββ⊥⊥∴,或a β⊂,又b β⊥//a β∴时,a b ⊥;a β⊂时,a b ⊥,选项C 正确;选项D 中,a c a c ααβ⊥⋂=∴⊥,,又//b c a b ∴⊥,选项D 正确故选:B.17.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M 与两个定点A ,B 的距离之比为λ(0λ>,且1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若平面内两定点A ,B 间的距离为2,动点P满足PA PB=22PA PB +的最大值为()A.16+B.8+C.7+D.3【正确答案】A【分析】设()()1,0,1,0A B -,(),P x y ,由PA PB=可得点P 的轨迹为以()2,0为圆心,的圆,又()222221PA PB x y +=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设()()1,0,1,0A B -,(),P x y ,因为PA PB==,即()2223x y-+=,所以点P 的轨迹为以()2,0因为()()()222222221121x y x y x y PA PB =++++-+=++,其中22x y +可看作圆()2223x y -+=上的点(),x y 到原点()0,0的距离的平方,所以()(222max27x y +==+,所以()22max21168x y ⎡⎤++=+⎣⎦22PA PB +的最大值为16+故选:A.18.已知长方体1111ABCD A B C D -的外接球O 的体积为323π,其中12BB =,则三棱锥O ABC -的体积的最大值为()A .1B .3C .2D .4【正确答案】A【分析】设,AB a AD b ==,根据长方体1111ABCD A B C D -的外接球O 的体积和12BB =,可求得外接球的半径2R =,根据基本不等式求得ABC S 的最大值,再代入三棱锥的体积公式,即可得到答案;【详解】设,AB a AD b ==,∵长方体1111ABCD A B C D -的外接球O 的体积为323π,12BB =,∴外接球O 的半径2R =,∴22416a b ++=,∴2212a b +=,∴2262a b ab +≤=,∵O 到平面ABC 的距离1112d BB ==,132ABC S ab =≤ ,∴三棱锥O ABC -的体积1131133ABC V S d =⨯⨯≤⨯⨯= .∴三棱锥O ABC -的体积的最大值为1.故选:A .19.如图,矩形ABCD 中,M 为BC 的中点,1AB BM ==,将ABM 沿直线AM 翻折成AB M '(B '不在平面AMCD 内),连结B D ',N 为B D '的中点,则在翻折过程中,下列说法中正确的个数是()①//CN 平面AB M ';②存在某个位置,使得CN AD ⊥;③线段CN 长度为定值;④当三棱锥B AMD '-的体积最大时,三棱锥B AMD '-的外接球的表面积是4π.A .1B .2C .3D .4【正确答案】C【分析】取AB '中点,利用线线平行推出线面平行可判断①;假设垂直,得到AB AD '<不成立,可判断②;由①知//CN MN ',且CN MN '=,可判断③;当平面B AM '⊥平面AMD 时,三棱锥B AMD '-体积最大,此时AD 中点为外接球球心,可判断④.【详解】对于①,取AB '的中点N ',连接NN ',则1////,2NN AD CM NN AD CM ''==,所以四边形N MCN '为平行四边形,所以//CN MN ',又MN '⊂平面AB M ',CN ⊄平面AB M ',即//CN 平面AB M ',故①正确;对于②,假设存在某个位置,使得CN AD ⊥,又,AD CD CN CD C ⊥= ,,CN CD ⊂平面CDN ,所以AD ⊥平面CDN ,又DN ⊂平面CDN ,所以AD ⊥DN ,即222AB AD DB ''=+,因为1,2,AB AD AB AD ''==<,所以不可能,故②错误;对于③,由①得CN MN '=,因为AB B M ''⊥,1AB B M ''==,所以2215122MN ⎛⎫'=+ ⎪⎝⎭为定值,所以CN 长度为定值,故③正确;对于④,取AD 的中点H ,当三棱锥B AMD '-的体积最大时,此时平面B AM '⊥平面AMD ,因为MD AM ⊥,MD ⊂平面AMD ,平面B AM ' 平面AMD AM =,所以MD ⊥平面B AM ',又AB '⊂平面B AM ',所以AB MD '⊥,又,B AB M M MD M B '''⊥= ,,D B M M '⊂平面B MD ',所以AB '⊥平面B MD ',B D '⊂平面B MD ',所以A B D B ''⊥,所以H 即为三棱锥B AMD '-的外接球球心,又1HA =,所以外接球的表面积是24π14π⨯=,故④正确.故选:C 三、解答题20.已知等差数列{}n a 中,1479,0a a a =+=.(1)求数列{}n a 的通项公式;(2)当n 为何值时,数列{}n a 的前n 项和取得最大值?【正确答案】(1)()112n a n n N *=-∈(2)5n =【分析】(1)结合等差数列的通项公式,求出公差,进而可以求出结果;(2)求出数列{}n a 的前n 项和,结合二次函数的性质即可求出结果.【详解】(1)由1479,0a a a =+=,得11360a d a d +++=,解得2d =-,()()11921112n a a n d n n =+-=--=-,所以数列{}n a 的通项公式()112n a n n N *=-∈.(2)19,2a d ==-,()()()22192105252n n n S n n n n -=+⨯-=-+=--+,∴当5n =时,n S 取得最大值.21.在四棱锥P –ABCD 中,底面ABCD 是边长为6的正方形,PD ⊥平面ABCD ,PD =8.(1)求异面直线PB 与DC 所成角的正切值;(2)求PA 与平面PBD 所成角的正弦值.【正确答案】(1)53(2)10【分析】(1)由//AB CD 可知PBA ∠就是异面直线PB 与DC 所成的角,利用线面垂直的判定定理可得AB ⊥平面PDA ,根据线面垂直的性质可得AB PA ⊥,进而求出tan PBA ∠即可;(2)连接AC ,与BD 交于点O ,连接PO ,利用线面垂直的判定定理可得AC ⊥平面PBD ,进而可知APO ∠为PA 与平面PBD 所成的角,求出AO 即可得出结果.【详解】(1)由题意知,//AB CD ,所以PBA ∠就是异面直线PB 与DC 所成的角,因为PD ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB PD ⊥,又AB AD ⊥,=PD AD D ⋂,所以AB ⊥平面PDA ,而PA ⊂平面PDA ,所以AB PA ⊥.在Rt PAB 中,106PA AB ===,,所以5tan 3PA PBA AB ∠==,即异面直线PB 与DC 所成的角的正切值为53;(2)连接AC ,与BD 交于点O ,连接PO ,由PD ⊥平面ABCD ,得PD AC ⊥,PD AD ⊥,因为底面ABCD 为边长为6的正方形,所以BD AC ⊥,AC =,又BD PD D PDBD =⊂ ,、平面PBD ,所以AC ⊥平面PBD ,所以PA 在平面PAD 内的射影为PO ,APO ∠为PA 与平面PBD 所成的角,又PD =8,AD =6,所以PA =10,12AO AC ==所以在Rt APO 中,sin AO APO PA ∠==即PA 与平面PBD22.已知直线l 的方程为()()()14232140m x m y m +--+-=.(1)证明:无论m 为何值,直线l 恒过定点,并求出定点的坐标;(2)若直线l 与x 、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在直线l 使得ABO 的面积为9.若存在,求出直线l 的方程;若不存,请说明理由.【正确答案】(1)证明见解析;()2,2(2)存在,2211660x y +-=或922660x y +-=【分析】(1)在直线的方程中,先分离参数,再令参数的系数等于零,求得x 、y 的值,可得直线经过定点的坐标.(2)求出A 、B 的坐标,根据ABO 的面积为9,求出m 的值,可得结论.【详解】(1)直线l 的方程为()()()14232140m x m y m +--+-=,即()()4314220m x y x y +-+-+=,令43140x y +-=,可得220x y -+=,求得2x =,2y =,可得该直线一定经过43140x y +-=和220x y -+=的交点()2,2.(2)若直线l 与x 、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则142,014m A m -⎛⎫ ⎪+⎝⎭、1420,32m B m -⎛⎫⎪-⎝⎭,且142014m m ->+,142032m m ->-,∴14m <-,或23m >.则ABO 的面积为1142142921432m m m m --⨯⨯=+-,即()()()227194132m m m ⨯-+-=,即21017200m m --=,∴52m =,或45m =-.故存在直线l 满足条件,且满足条件的出直线l 的方程为2211660x y +-=,或922660x y +-=.23.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为P ,圆柱的上、下底面的圆心分别为1O 、2O ,且该几何体有半径为1的外接球(即圆锥的项点与底面圆周在球面上,且圆柱的底面圆周也在球面上),外接球球心为O .(1)Ω的体积;(2)若112:1:3PO O O =,求几何体Ω的表面积.【正确答案】(1)78π(2)6425+【分析】(1)分别计算圆锥的体积与圆柱的体积,体积和即为所求;(2)根据比例关系,可分别求出圆锥与圆柱的高及底面半径,再利用表面积公式即可求解.【详解】(1)如图可知,过P 、1O 、2O 的截面为五边形ABCPD ,其中四边形ABCD 为矩形,三角形CPD 为等腰三角形,PC PD=在直角1OO D 中,1OD =,12O D =,则112OO =故圆锥的底面半径为2,高为111122O P =-=,其体积为2113228ππ⎛⨯⨯= ⎝⎭圆柱的底面半径为2,高为122112O O =⨯=,其体积为23124ππ⎛⨯= ⎝⎭所以几何体Ω的体积为37488πππ+=(2)若112:1:3PO O O =,设122O O h =,则123h PO =,故213h h +=,35h ∴=在直角1OO D 中,1OD =,135OO =,则154O D ==故圆锥的底面半径为45,高为125O P =5=,圆锥的侧面积为45525ππ⨯⨯=圆柱的底面半径为45,高为1265O O =,其侧面积为464825525ππ⨯⨯=所以几何体Ω2484255π⎛⎫++⨯= ⎪⎝⎭24.已知圆C 的圆心C 为(0,1),且圆C 与直线260x y -+=相切.(1)求圆C 的方程;(2)圆C 与x 轴交于A ,B 两点,若一条动直线l :x =x 0交圆于M ,N 两点,记圆心到直线AM 的距离为d .(ⅰ)当x 0=1时,求dBN的值.(ⅱ)当﹣2<x 0<2时,试问dBN是否为定值,并说明理由.【正确答案】(1)()2215x y +-=(2)(ⅰ)12;(ⅱ)d BN为定值12,理由见解析【分析】(1)求出圆心到直线的距离,则圆C 的方程可求;(2)(ⅰ)当x 0=1时,可得直线l :x =1,与圆的方程联立求得M 、N 的坐标,写出AM 的方程,求出圆心到直线AM 的距离d ,再求出|BN |,则答案可求;(ⅱ)联立直线与圆的方程,求得M 、N 的坐标,写出AM 的方程,求出圆心到直线AM 的距离d ,再求出|BN |,整理即可求得dBN为定值12.【详解】(1)圆C 的半径r ==则圆C 的方程为()2215x y +-=;(2)(ⅰ)由()2215x y +-=,取y =0,可得2x =±.∴A (﹣2,0),B (2,0),圆C 与动直线l :0x x =交于M ,N 两点,则2200(1)51x y x x x ⎧+-=⎪=⎨⎪=⎩,解得13x y =⎧⎨=⎩或11x y =⎧⎨=-⎩,∴M (1,3),N (1,﹣1),则直线AM 的方程y ﹣0()()3212x =+--,即20x y -+=.圆心到直线AM 的距离d ==|BN|==∴122d BN ==;(ⅱ)由圆C 与动直线l :0x x =交于M ,N 两点,设M (x 0,y 1),N (x 0,y 2),联立220(1)5x y x x ⎧+-=⎨=⎩,解得M(01x ,,N(01x ,,∴直线AM:)02y x =+.圆心(0,1)到直线AM 的距离d =.|BN|==则12d BN =.∴d BN为定值12.。
2022-2023学年山东省实验中学高二上学期12月月考数学试题(解析版)
2022-2023学年山东省实验中学高二上学期12月月考数学试题一、单选题1.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( )A .OA 、OB 、OC 共线 B .OA 、OB 共线 C .OB 、OC 共线D .O 、A 、B 、C 四点共面【答案】D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论. 【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底, 所以OA 、OB 、OC 共面, 所以O 、A 、B 、C 四点共面, 故选:D2.抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2C.D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.3.与曲线2211636x y +=共焦点,且与双曲线22146x y -=共渐近线的双曲线的方程为( ) A .221128y x -=B .221812y x -=C .221128x y -=D .221812x y -=【答案】A【分析】先由与椭圆共焦点得到220c =,且焦点在y 轴上,从而巧设所求双曲线为()22046x y λλ-=<,利用222c a b =+即可得解.【详解】因为曲线2211636x y +=为椭圆,焦点在y 轴上,且2361620c =-=,又因为所求双曲线与双曲线22146x y -=共渐近线,所以设所求双曲线为()22046x y λλ-=<,即22164y x λλ-=--,则26420c λλ=--=,解得2λ=-, 所以所求双曲线为221128y x -=.故选:A.4.《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为多少?( ) A .13B .23C .16D .56【答案】B【分析】设每人分到的钱数构成的等差数列为{}n a ,公差0d >,由题意可得,12345a a a a a ++=+,55S =,结合等差数列的通项公式及求和公式即可求解.【详解】解:设每人分到的钱数构成的等差数列为{}n a ,公差0d >, 由题意可得,12345a a a a a ++=+,55S =, 故113327a d a d +=+,15105a d +=, 解可得,123a =,16d =, 故任意两人所得的最大差值243d =. 故选:B .【点睛】本题主要考查了等差数列的通项公式及求和公式在实际问题中的应用,属于基础题. 5.设公差不为零的等差数列{}n a 的前n 项和为n S ,若()6353a a a =+,则117S S =( ) A .117B .227C .337D .667【答案】D【分析】先利用等差公数的通项公式得到15130a d +=,再利用等差公数的前n 项和公式即可得解. 【详解】因为{}n a 是公差不为零的等差数列,()6353a a a =+,所以()1115324a d a d a d +=+++,得15130a d +=, 令()50d k k =≠,则113a k =-,则所以()()()()1111711111011115111325111266276737131572772a d a d k k S S a d k k a d ⨯++-+⨯=====⨯+-+⨯+. 故选:D.6.已知圆22()()1x a y b -+-=经过原点,则圆上的点到直线2y x =+距离的最大值为( ) A .22 B .22+ C .21+ D .2【答案】B【分析】由题意画图,数形结合可知2=21+1OB =,当圆心(,)a b 在C 处时,点(,)a b 到直线2y x =+的距离最大,进而可求结果.【详解】如图:22()()1x a y b -+-=圆心为(,)a b ,经过原点,可得221a b += 则圆心(,)a b 在单位圆221x y +=上,原点(0,0)到直线2y x =+的距离为=21+1OB 延长BO 交221x y +=于点C ,以C 为圆心,OC 为半径作圆C ,BC 延长线交圆C 于点D , 当圆心(,)a b 在C 处时,点(,)a b 到直线2y x =+的距离最大为2+1OB 此时,圆22()()1x a y b -+-=上点D 到直线2y x =+的距离最大为22OB 故选:B【点睛】关键的点睛:由题意画图,数形结合可得,点D 到直线2y x =+的距离最大是解题的关键.本题考查了作图能力,数形结合思想,运算求解能力,属于一般题目.7.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点为1F 、2F ,点M ,N 在C 上,且123F F MN =,12F M F N ⊥,则双曲线C 的离心率为( )ABC .2D 【答案】D【分析】根据123F F MN =,12F M F N ⊥,由双曲线对称性可知,直线1F M 与2F N 交于y 轴上一点P ,且12PF F △为等腰直角三角形,可得N 的坐标,分别求出12,NF NF ,再根据双曲线的定义即可得出答案.【详解】解:因为123F F MN =,12F M F N ⊥,由双曲线对称性可知,直线1F M 与2F N 交于y 轴上一点P , 且12PF F △为等腰直角三角形, 所有1OP OF c ==,如图,则2,33c c N ⎛⎫⎪⎝⎭,()1,0F c -,()2,0F c ,所以1NF ==,23NF ==,则122NF NF a -==,即a =,则c e a === 故选:D.8.伦敦奥运会自行车赛车馆有一个明显的双曲线屋顶,该赛车馆是数学与建筑完美结合造就的艺术品,若将如图所示的双曲线屋顶的一段近似看成离心率为52的双曲线222:1(0)y C x a a -=>上支的一部分,点F 是C 的下焦点,若点P 为C 上支上的动点,则PF 与P 到C 的一条渐近线的距离之和的最小值为( )A .2B .3C .4D .5【答案】D【分析】先根据已知条件求出双曲线方程,则可求出焦点坐标和渐近线方程,上焦点为15)F ,则由双曲线的定义可得1124PF PF a PF =+=+,由双曲线的对称性取一条渐近线2y x =,设P 到2y x =的距离为d ,则将问题转化为求出14PF d ++,而1PF d +的最小值为15)F 到渐近线2y x=的距离,从而可求得答案【详解】因为双曲线222:1(0)y C x a a -=>5,215a +=24a =,则 双曲线方程为2214y x -=,5c =所以下焦点(0,5)F -,渐近线方程为2y x =±, 设上焦点为15)F ,则1124PF PF a PF =+=+,由双曲线的对称性,不妨取一条渐近线为2y x =,设P 到2y x =的距离为d ,则PF 与P 到C 的一条渐近线的距离之和为14PF d PF d +=++,因为1PF d +的最小值为1F 到渐近线2y x =1=,所以14PF d PF d +=++的最小值为415+=,即PF 与P 到C 的一条渐近线的距离之和的最小值为5, 故选:D二、多选题9.已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S【答案】BCD【分析】根据211n S n n =-,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC.【详解】解:因为22111211124n S n n n ⎛⎫=-=--+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =-,得()()211111n S n n -=---,两式相减得:212n a n =-+, 又110a =,适合上式, 所以212n a n =-+,故C 正确;因为120n n a a --=-<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD10.设等差数列{}n a 的前n 项和是n S ,若11m m a a a +-<<-(m ∈*N ,且2m ≥),则必定有( ) A .0m S > B .0m S <C .10m S +>D .10m S +<【答案】AD【分析】根据等差数列求和公式即可判断. 【详解】∵11m m a a a +-<<-, ∴10m a a +>,110m a a ++<, ∴()102m m a a m S +⨯=>,()()111102m m a a m S +++⨯+=<,故选:AD.11.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1126AC =B .BD ⊥平面1ACCC .向量1B C 与1AA 的夹角是60°D .直线1BD 与AC 6【答案】AC【分析】根据题意,利用空间向量的线性运算和数量积运算,对选项中的命题分析,判断正误即可. 【详解】解:对于111:A AC AB BC CC AB AD AA =++=++, ∴22221111222AC AB AD AA AB AD AD AA AD AA =+++⋅+⋅+⋅363636266cos60266cos60266cos60216=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,所以1||21666AC A 错误; 对于:B 11()()AC BD AB AD AA AD AB ⋅=++⋅-22110AB AD AB AD AB AD AA AD AA AB =⋅-+⋅+⋅--⋅=,所以10AC DB ⋅=,即1AC DB ⊥,2222()()0AC BD AB AD AD AB AD AB AD AB ⋅=+⋅-==--=,所以0AC BD ⋅=,即AC BD ⊥,因为1AC AC A ⋂=,1,AC AC ⊂平面1ACC ,所以BD ⊥平面1ACC ,选项B 正确;对于C :向量1B C 与1BB 的夹角是18060120︒-︒=︒,所以向量1B C 与1AA 的夹角也是120︒,选项C 错误;对于11:D BD AD AA AB =+-,AC AB AD =+所以()2222211111222BD AD AA AB AD AA AB AD AA AD AB AA AB =+-=+++⋅-⋅-⋅,1||36BD ∴= 同理,可得||63AC =11()()18183636181836AC BD AD AA AB AB AD ⋅=+-⋅+=+-++-=,所以111cos ||||63AC BD BD AC AC BD ⋅<⋅>==⋅,所以选项D 正确. 故选:AC .12.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,过点F 的直线l 交C 于不同的A ,B 两点,则下列说法正确的是( )A .若点()3,1Q ,则||AQ AF +的最小值是4B .3OA OB ⋅=-C .若12AF BF ⋅=,则直线AB 的斜率为D .4||AF BF +的最小值是9 【答案】ABD【分析】对于A ,过点A 作C 的准线的垂线,垂足为A ',则利用抛物线的定义结合图形求解即可,对于B ,设直线AB 的方程为1x my =+,()11,A x y ,()22,B x y ,将直线方程代入抛物线方程中,消去x ,利用根据与系数的关系,从而可求出OA OB ⋅的值,对于C ,由12AF BF ⋅=,可得AF BF ⋅()()211112x x =++=,化简后将选项B 中的式子代入可求出m 的值,从而可求出直线的斜率,对于D ,根据选项B 中的式子可求得111AF BF +=,则4AF BF +()114AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭化简后利用基本不等式可求得结果【详解】由题意知,C 的准线方程为=1x -,焦点F (1,0),过点A 作C 的准线的垂线,垂足为A ',则||AQ AF AQ AA +='+,故||||AQ AF +的最小值是点Q 到C 的准线的距离,即为4,故A 正确;设直线AB 的方程为1x my =+,()11,A x y ,()22,B x y ,由241y xx my ⎧=⎨=+⎩得2440y my --=.所以124y y =-,124y y m +=,221212144y y x x =⋅=,()21212242x x m y y m +=++=+, 所以OA OB ⋅=1212143x x y y +=-=-,故B 正确; 若||6AF BF ⋅=,又11AF x =+,21BF x =+,所以AF BF ⋅()()1211x x =++()22111x x x x =+++2142112m =+++=,解得2m =AB 的斜率为1k m =22==C 错误; 11AF BF +211111x x =+++()()12211111x x x x +++=++21122121x x x x x x ++=+++1=,所以4AF BF +()114AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭45+5249BF AF AF BF =+≥+=,当且仅当3||2AF =,3BF =时,等号成立,故D 正确,故选:ABD .三、填空题13.已知n S 为等比数列{}n a 的前n 项和,且38S =,67S =,则459a a a ++⋯+=________. 【答案】78-【解析】由题意及等比数列前n 项和的性质知3S ,63S S -,96S S -成等比数列,解得9S 的值,45993a a a S S +++=-,代入计算即可.【详解】根据由题意知3S ,63S S -,96S S -成等比数列,即8,78-,97S -成等比数列,所以()29(1)87S -=-,解得9178S =.所以45993177888a a a S S +++=-=-=-.故答案为:78-14.已知向量()0,2,2a =-,向量()6,3,1b =,则向量a 在向量b 方向上的投影为____________.【答案】1-【分析】代入向量投影的计算公式即可求出结果. 【详解】因为()0,2,2a =-,()6,3,1b =,所以()0623214a b ⋅=⨯-⨯+⨯=-,22a =,4b =, 所以向量a 在b 方向上的投影数量为4cos ,14a b a b a a b a a bb⋅⋅-⋅=⋅===-⋅. 故答案为:1-.15.在平面直角坐标系xOy 中,直线20mx y -+=与曲线y =数m 的取值范围是__________. 【答案】3,14⎛⎤⎥⎝⎦【分析】做出曲线y 20mx y -+=过定点()02,,数形结合即可求出结果.【详解】由题意可知,曲线y ()1,0-,半径为1的圆的上半部分(含端点),则直线20mx y -+=与曲线y 20mx y -+=过定点()02,,可考虑临界状态,即直线与半圆相切时或直线经过点()2,0-, 当过点()2,0-时,2020m --+=,即1m =,当直线20mx y -+=20211m m --+=+,解得34m =,数形结合可知有两个不同的公共点时实数m 的取值范围为3,14⎛⎤⎥⎝⎦.故答案为:3,14⎛⎤⎥⎝⎦.四、双空题16.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,点P 在C 上,直线PF 2与y 轴交于点Q ,点P 在线段2F Q 上,1QPF 的内切圆的圆心为I ,若12IF F △为正三角形,则12F PF ∠=___________,C 的离心率的取值范围是___________.【答案】 603π︒## 132⎛ ⎝⎭【分析】设A 为上顶点,点P 位于第一象限,作212BF F F ⊥交椭圆于点B 如图所示,则()1211112F PF QF P FQP QF I FQI ∠=∠+∠=∠+∠,即可求解,又因为点P 位于点A 与B 之间,所以121260F BF F AF ∠<︒<∠,利用正切值即可求解离心率范围.【详解】设A 为上顶点,点P 位于第一象限,作212BF F F ⊥交椭圆于点B ,则2,b B c a ⎛⎫⎪⎝⎭如图所示:依题意得()121111223060F PF QF P FQP QF I FQI ∠=∠+∠=∠+∠=⨯︒=︒ 依题意得点P 位于点A 与B 之间,故121260F BF F AF ∠<︒<∠所以122tan tan 60tan tan 30F BF OAF ∠<︒⎧⎨∠>︒⎩,则22333cb ac b ⎧<⎪⎪⎨⎪⎪>⎩ 化为2323012e e e ⎧+-<⎪⎨>⎪⎩,解得1323e << 故答案为:60︒,13,23⎛⎫⎪ ⎪⎝⎭五、解答题17.已知()1,4,5a =-,()2,3,2b =-,点()3,2,3A --,()2,3,2B --. (1)求2a b +的值.(2)在线段AB 上,是否存在一点E ,使得OE b ⊥?若存在,求出点E 的坐标;若不存在,请说明理由.(O 为坐标原点) 【答案】(1)13(2)存在,152015,,777E ⎛⎫-- ⎪⎝⎭【分析】(1)利用空间向量的线性运算及模的运算公式即可得解;(2)利用空间向量共线定理得到OE 关于λ的关系式,再由空间向量垂直的坐标表示求得λ,从而得到点E 的坐标.【详解】(1)因为()1,4,5a =-,()2,3,2b =-,所以()()()()()221,4,52,3,22,8,102,32,20,5,1a b -+-=-+-=-+=⨯,则23201a b =++.(2)假设线段AB 上存在一点E ,使得OE b ⊥,则设()01AE AB λλ=≤≤, 因为()3,2,3A --,()2,3,2B --,所以()()()2,3,23,2,31,1,1AB ----=-=--, 又因为OE OA AE AB λ-==,所以()()(),,3,2,33,2,3OE AB OA λλλλλλλ=+=--+--=----+, 因为OE b ⊥,()2,3,2b =-,所以()()()2332230λλλ--+--+-+=,解得67λ=,满足01λ≤≤, 所以6661520153,2,3,,777777OE ⎛⎫⎛⎫=----+=-- ⎪ ⎪⎝⎭⎝⎭,即152015,,777E ⎛⎫-- ⎪⎝⎭,所以线段AB 上存在一点E ,使得OE b ⊥,且152015,,777E ⎛⎫-- ⎪⎝⎭.18.已知{}n a 是公差为d 的等差数列,其前n 项和是n S ,且25517,35a a S +==. (1)求数列{}n a 的通项公式; (2)若11,1,2,n n n b n a a +==,求数列{}n b 的前n 项和n T ; 【答案】(1)32n a n =-;(2)31+nn . 【分析】(1)由题设有11251751035a d a d +=⎧⎨+=⎩求1a 、d ,写出{}n a 的通项公式;(2)应用裂项相消法,求{}n b 的前n 项和n T 即可.【详解】(1)由题意,25151251751035a a a d S a d +=+=⎧⎨=+=⎩,解得113a d =⎧⎨=⎩,∴1(1)32n a a n d n =+-=-. (2)由111111()(32)(31)33231n n n b a a n n n n +===--+-+, ∴12111111...(1...)34473231n n T b b b n n =+++=⨯-+-++--+11(1)33131nn n =⨯-=++. 19.如图,四边形ABCD 为平行四边形,120BCD ∠=︒,四边形ACFE 为矩形,且FC ⊥平面ABCD ,12AD FC AB ==.(1)证明:平面ACFE ⊥平面BCF ;(2)若M 为EF 的中点,求平面ABM 与平面BCF 所成锐二面角的余弦值. 【答案】(1)详见解析;(2)21919. 【分析】(1)由题可得AC ⊥BC ,AC ⊥CF ,利用线面垂直的判定定理可得AC ⊥平面BCF ,再利用面面垂直的判定定理可证; (2)利用坐标法即求.【详解】∵四边形ABCD 为平行四边形,120BCD ∠=︒, ∴∠CBA =60°又12AD BC AB ==,∴在△ACB 中,∠ACB =90°,即AC ⊥BC , 又FC ⊥平面ABCD , ∴AC ⊥CF ,又BCCF C =,∴AC ⊥平面BCF ,又AC ⊂平面ACFE , ∴平面ACFE ⊥平面BCF .(2)如图以C 为原点建立空间直角坐标系,设AB =2,则AD =1,CF =1,AC =3,∴3(3,0,0),(0,1,0),((0,0,0),(0,0,1)A B M C F , 则3(3,1,0),(2AB AM =-=-, 设平面ABM 的法向量(,,)m x y z =,∴00m AB m AM ⎧⋅=⎨⋅=⎩,∴00y x z ⎧+=⎪⎨+=⎪⎩令2x =,则(2,23,m =,平面BCF 的法向量可取(3,0,0)n CA ==,∴cos ,412m n mn m n ⋅===+ ∴平面ABM 与平面BCF . 20.已知数列{}n a 是等差数列,且12312a a a ++=,816a =.(1)若数列{}n a 中依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{}n b ,试求出数列{}n b 的通项公式;(2)令3nn n c b =⋅,求数列{}n c 的前n 项和n S .【答案】(1)4n b n =,*n ∈N ;(2)()12133n n S n +=-⋅+.【分析】(1)利用等差数列性质求出数列{}n a 公差及通项公式,由2n n b a =求解作答. (2)由(1)的结论求出n c ,再用错位相减法计算作答.【详解】(1)等差数列{}n a 中,2123312a a a a =++=,解得24a =,公差28282a d a -==-, 则()()224222n a a n d n n =+-=+-⨯=,因此,2224n a n n =⨯=, 依题意,24n nb a n ==,所以数列{}n b 的通项公式4n b n =,*n ∈N .(2)由(1)知,343n nn n c b n =⋅=⋅,则()21438344343n nn S n n -=⋅+⋅+⋅⋅⋅+-⋅+⋅, 因此,()2313438344343n n n S n n +=⋅+⋅+⋅⋅⋅+-⋅+⋅,()()231113243333434(13)413363143nn n n n n n S n n n +++--=+++⋅⋅⋅+-⋅-⋅=--⋅=⨯-1(42)36n n +=--⋅-,所以()12133n n S n +=-+.21.如图,设点,A B 在x 轴上,且关于原点O 对称.点P 满足1tan 2,tan 2PAB PBA ∠=∠=,且PAB 的面积为20.(Ⅰ)求点P 的坐标;(Ⅱ)以,A B 为焦点,且过点P 的椭圆记为C .设00(,)M x y 是C 上一点,且013x -<<,求0y 的取值范围.【答案】(Ⅰ)(3,4)-;(Ⅱ)[25,4)(4,25]--.【分析】(Ⅰ)设(,0),(,0)A c B c -,根据点P 满足1tan 2,tan 2PAB PBA ∠=∠=,得到直线PA 的方程为2()y x c =+,直线PB 的方程为1()2y x c =--,两方程联立用c 表示点P 的坐标,再根据PAB 的面积为20,由1||||202P S AB y =⋅=求得c 即可.(Ⅱ)由(Ⅰ)得(5,0),(5,0)A B -,P (3,4)-,从而由1(||)2a PA PB =+求得a ,进而得到椭圆C 的方程,然后根据013x -<<求解. 【详解】(Ⅰ)如图所示:设(,0),(,0)A c B c -,则直线PA 的方程为2()y x c =+,直线PB 的方程为1()2y x c =--.由2(),1(),2y x c y x c =+⎧⎪⎨=--⎪⎩ 解得3,54.5c x c y ⎧=-⎪⎪⎨⎪=⎪⎩所以34(,)55c cP -. 故PAB 的面积214||||25P S AB y c =⋅=.所以24205c =, 解得5c =.所以点P 的坐标为(3,4)-. (Ⅱ)由(Ⅰ)得(5,0),(5,0)A B -.所以PAPB 设以,A B 为焦点且过点P 的椭圆方程为2222:1x y C a b +=.则1(||)2a PA PB =+=22220b a c =-=,所以椭圆C 的方程为2214520x y +=. 所以220014520x y +=, 即220020(1)45x y =-.因为013x -<<,所以209x <≤. 所以21620y <≤. 所以0y的取值范围是[4)(4,25]--.22.已知O 为坐标原点,1F ,2F 分别是双曲线C :22221x y a b -=(0a >,0b >)的左, 右焦点,126F F =,若直线10x y --=与双曲线C 点的右支有公共点P . (1)求C 的离心率的最小值;(2)当双曲线C 的离心率最小时,直线():2l y k x =+()0k ≠与C 交于M ,N 两点,求OMONk k k k +的值.【答案】(2)10【分析】(1) 由于3c =,所以离心率的最小值即为求a 的最大值,连接1PF ,2PF ,要使双曲线C 的离心率最小,只需a 最大,即122a PF PF =-最大,求出()23,0F 关于直线10x y --=的对称点为A ,连接PA ,1F A ,则12112a PF PF PF PA F A =-=-≤即可求出a 最大值,进而求出离心率最小值;(2)由(1)可得离心率最小值时的,a b ,可得双曲线方程,联立直线与双曲线方程,设M ,N 两点坐标,求出,OM ON k k ,代入上式即可.【详解】(1)解:由题知126F F =,()()123,03,0F F ∴-,,设2F 关于直线10x y --=的对称点为(),A x y , 则11331022yx x y ⎧⨯=-⎪⎪-⎨+⎪--=⎪⎩, 解得12x y =⎧⎨=⎩, 故()1,2A ,连接1PF ,2PF ,PA ,1F A , 则2PF PA =, 则122a PF PF =-1PF PA =- 1F A ≤==,故ac e a ∴=≥=故双曲线C ; (2)由(1)知双曲线C, 此时2a b ==,双曲线方程为22154x y -=,联立得()222154y k x x y ⎧=+⎪⎨-=⎪⎩, 消去y 并整理得()2222452020200k xk x k ----=,则有2450k -≠且()()()()222222044520208040k k k k ∆=-+⨯-+=->,即204k ≤<且245k ≠, 设()11,M x y ,()22,N x y ,则21222045k x x k +=-,2122202045k x x k +=--, 则12121111OM ONy y k k x x +=+1212x x y y =+ 122112x y x y y y +=()()()()12212122222x kx k x kx k k x x +++=++()()1212212122224kx x k x x k x x x x ++=+++⎡⎤⎣⎦222222222202020224545202020244545k k k k k k k k k k k ⎛⎫+⨯-+⨯ ⎪--⎝⎭=⎛⎫+-+⨯+ ⎪--⎝⎭ 10k=, 1101OMON OM ON k k k k k k k ⎛⎫∴+=+= ⎪⎝⎭. 【点睛】思路点睛:本题考查双曲线性质以及直线与双曲线的位置关系,属于难题,常用的解决直线与圆锥曲线位置关系的思路为:(1)设直线方程(注意斜率存在不存在以及斜率为0的情况),设交点坐标, (2)联立直线与圆锥曲线方程,(3)设为不求,韦达定理(注意判别式的正负), (4)列出满足题意的方程,进行化简.。
2022-2023学年湖北省襄阳市谷城县第一中学高二上学期12月月考数学试题(解析版)
2022-2023学年湖北省襄阳市谷城县第一中学高二上学期12月月考数学试题一、单选题1.抛物线22y x =的准线方程是( )A .18y =-B .14y =-C .12y =-D .1y =-【答案】A【分析】将抛物线方程化为标准方程,即可的准线的方程.【详解】由22y x =,得212x y =,所以其准线方程是18y =-. 故选: A2.如图,正四棱锥P ABCD -的侧面PAB 为正三角形,E 为PC 中点,则异面直线BE 和PA 所成角的余弦值为( )A 3B 3C 2D .12【答案】A【分析】通过中位线作出异面直线BE 和PA 所成角,解三角形求得其余弦值.【详解】连接,AC BD ,相交于O ,连接,OE OP .由于E 是PC 中点,O 是AC 中点,所以OE 是三角形PAC 的中位线,所以//AP OE ,所以EOB ∠是异面直线BE 和PA 所成角.由于几何体是正四棱锥,所以PO ⊥平面ABCD ,所以OP OB ⊥,而OB OC ⊥,所以OB ⊥平面PAC ,所以OB OE ⊥.由于三角形PAB 是等边三角形,而四边形ABCD 是正方形.设AB PB a ==,则22123,,22a OE PA OB BE OE OB ====+=.所以3cos OE EOB BE ∠==. 故选:A.【点睛】本小题主要考查异面直线所成角的余弦值的求法,考查正四棱锥的几何性质,考查空间想象能力和逻辑推理能力,属于基础题. 3.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007 B .1008 C .1009.5 D .1010【答案】D【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案.【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-=所以20173672210102S =⨯+=.故选:D.【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.4.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =C 的实轴长为( )A .2B .22C .4D .8【答案】C【分析】设出双曲线方程,求出抛物线的准线方程,利用||3AB =. 【详解】解:设等轴双曲线C 的方程为22x y λ-=, 抛物线216y x =,216p =,则8p =,∴42p=, ∴抛物线的准线方程为4x =-,设等轴双曲线与抛物线的准线4x =-的两个交点(4,)A y -,(4,)(0)B y y -->, 则|||(|3)24AB y y y =--==, 23∴=y .将4x =-,23y =代入22x y λ-=,得22(4)(23)λ--=,4λ∴=,∴等轴双曲线C 的方程为224x y -=,即22144x y -=,C ∴的实轴长为4.故选:C.5.已知A 、B 是椭圆E :22221(0)x y a b a b+=>>上的两点,且A 、B 关于坐标原点对称,F 是椭圆的一个焦点,若ABF ∆面积的最大值恰为2,则椭圆E 的长轴长的最小值为 A .1 B .2C .3D .4【答案】D【分析】本题首先可以根据题意画出椭圆的图像,然后设出A 、B 两点的坐标并写出ABF S ∆的面积公式,再然后根据ABF ∆面积的最大值为2得出2cb ,最后根据基本不等式的相关性质以及222a b c =+即可得出结果.【详解】根据题意可画出图像,如图所示, 因为A 、B 关于坐标原点对称, 所以设()11,A x y 、()11,B x y --,因为(),0F c ,所以()11112ABF S c y y cy ∆=⋅⋅+=,因为ABF ∆面积的最大值为2,[]10,y b ∈, 所以当1y b =时ABF ∆面积取最大值,2cb ,22224a b c bc =+≥=,当且仅当b c ==“=”号成立,此时2a =,24a =,故选D .【点睛】本题考查椭圆的相关性质,主要考查椭圆的定义以及椭圆焦点的运用,考查基本不等式的使用以及三角形面积的相关性质,考查计算能力与推理能力,体现了综合性,是中档题. 6.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+,则220715a a b b ++等于( )A .10724B .724C .14912D .1493【答案】A【分析】根据给定条件,利用等差数列前n 项和公式结合等差数列性质计算作答. 【详解】两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,且523n n S n T n +=+, 所以1212201212112171512121215212107221324212a a a a a a S b b b b b b T +⨯++⨯+=====++++⨯. 故选:A7.若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2.则双曲线C 的离心率为 ABCD【答案】B【分析】先求出双曲线的渐近线方程,再根据弦长求出2213b a =,再求双曲线C 的离心率得解.【详解】双曲线2222:1(0,0)x y C a b a b-=>>的渐近线方程为b y x a =±,由对称性,不妨取by x a=,即0bx ay -=.又曲线22420x y x +-+=化为()2222x y -+=, 则其圆心的坐标为()2,0由题得,圆心到直线的距离1d =,1d ==.解得2213b a=,所以e == 故选B .【点睛】本题主要考查双曲线的简单几何性质,考查直线和圆的位置关系和弦长的计算,意在考查学生对这些知识的理解掌握水平和计算能力.8.已知抛物线2:4C y x =,点P 为抛物线上任意一点,过点P 向圆22:680D x y x +-+=作切线,切点分别为,A B ,则四边形PADB 的面积的最小值为( ) A .3 B .22 C .7 D .5【答案】C【分析】由Rt 2PAD PADB S S PA ==四边形△21PD =-,当PD 最小时求解.【详解】解:如图所示:设00(,)P x y ,2004y x =,连接PD ,圆D 为:()2231x y -+=,则222220000000(3)(3)429(1)8PD x y x x x x x -+-+=-+-+则Rt 2PAD PADB S S PA r PA ==⋅=四边形△2201(1)7PD x =-=-+当点01x =时,PD 的最小值为2 所以()2min min17PADB S PD =-=四边形故选:C二、多选题9.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则下列结论正确的是( ) A .230a a += B .25n a n =- C .()4n S n n =- D .2d =-【答案】ABC【分析】根据等差数列的性质判断A ,利用等差数列的前n 项和及通项公式列方程组,运算可判断BD ,由前n 项和公式判断D. 【详解】S 4=()1442a a +=0,∴a 1+a 4=a 2+a 3=0,A 正确; a 5=a 1+4d =5, (*),a 1+a 4=a 1+a 1+3d =0, (**),联立(*)(**)解得132a d =-⎧⎨=⎩,∴an =-3+(n -1)×2=2n -5,B 正确,D 错误; 2(1)324(4)2n n n S n n n n n -=-+⨯=-=-,C 正确. 故答案为:ABC10.在棱长为2的正方体1111ABCD A B C D -中,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则下列选项正确的是( )A .若点M 在平面AEF 内,则必存在实数x ,y 使得MA xME yMF =+B .直线1A G 与EF 10C .点1A 到直线EF 34D .存在实数λ、μ使得1λμ=+AG AF AE 【答案】BCD【分析】根据空间向量共面定理,异面直线夹角和点到直线距离的求解方法,以及线面平行的判定定理,对每个选项进行逐一分析,即可判断和选择.【详解】对A :若,,M E F 三点共线,则不存在实数x ,y 使得MA xME yMF =+,故A 错误; 对B :取11B C 的中点为H ,连接11,,A H GH BC ,如下所示:在三角形1CBC 中,,E F 分别为1,BC CC 的中点,故可得EF //1BC , 在三角形11B BC 中,,G H 分别为111,BB B C 的中点,故可得GH //1BC , 则EF //GH ,故直线1,EF A G 所成的角即为1AGH ∠或其补角; 在三角形1A GH 中,2211111415AG A B B G A H =+=+==, 22112HG B H B G =+=,由余弦定理可得:222111110cos 210AG GH A H AGH AG GH +-∠==⨯, 即直线1A G 与EF 所成角的余弦值为1010,故B 正确; 对C :连接1111,,A F A E AC 如下图所示:在三角形1A EF 中,2211453A E A A AE =++=,221111813A F AC C F =++=,2EF =故点1A 到直线EF 的距离即为三角形1A EF 中EF 边上的高,设其为h , 则2211922EF h A E ⎛⎫=-=-=⎪⎝⎭34.故C 正确; 对D :记11B C 的中点为H ,连接1,A H GH ,如下所示:由B 选项所证,GH //EF ,又EF ⊂面,AEF GH ⊄面AEF ,故GH //面AEF ; 易知1A H //AE ,又AE ⊂面1,AEF A H ⊄面AEF ,故1A H //面AEF , 又1,GH A H ⊂面11,A HG GH A H H ⋂=,故平面1A HG //面AEF , 又1AG ⊂面1A GH ,故可得1A G //面AEF , 故存在实数λ、μ使得1λμ=+AG AF AE ,D 正确. 故选:BCD.【点睛】关键点点睛:本题考查立体几何中四点共面、线面平行、线线角,以及点到直线距离的求解,处理问题的关键是准确把握本题中向量的表达形式,属综合基础题.11.设等差数列{}n a 的前n 项和是n S ,已知140S >,150S <,则下列选项正确的有( ) A .10a >,0d <B .780a a +>C .6S 与7S 均为n S 的最大值D .80a <【答案】ABD【分析】根据140S >,150S <,利用等差数列前n 项和公式得到780a a +>,80a <,再逐项判断. 【详解】因为140S >,150S <, 所以114141147814()7()7()02a a S a a a a ⨯+==+=+>, 即780a a +>, 因为11515815()1502a a S a ⨯+==<, 所以80a <, 所以70a >,所以等差数列{}n a 的前7项为正数,从第8项开始为负数,则10a >,0d <,7S 为n S 的最大值. 故选:ABD .12.设双曲线2222:1(0,0)x y C a b a b-=>>左、右焦点分别为12,F F ,左、右顶点分别为12,A A ,下列命题正确的是( )A .双曲线C 上存在点P ,使得122PF PF a +=B .双曲线2222:1y x C b a-=的焦点在以12F F 为直径的圆上C .双曲线C 上有且仅有4个点P ,使得12PF F △是直角三角形D .若P 在双曲线上,1222PA PA b k k a= 【答案】BD【分析】A.根据双曲线的定义即可判断;B,求出两个曲线的焦点,以及圆的方程,即可判断;C.确定圆222x y c +=与双曲线的交点的个数,以及分别过点12,F F ,且垂直于x 轴的直线与双曲线的交点个数,即可判断;D.利用斜率公式以及双曲线方程,即可判断选项.【详解】A.根据双曲线的定义可知,122PF PF a -=,不妨设122PF PF a -=,与 122PF PF a +=联立,解出12PF a =,20PF =,所以不存在点P ,使得122PF PF a +=,故A 错误;B. 双曲线2222:1(0,0)x y C a b a b-=>>,()1,0F c -,()1,0F c ,以122F F c =为直径的圆222x y c +=,双曲线2222:1y x C b a-=的焦点()0,c ±,很显然,()0,c ±在圆222x y c +=上,故B 正确;C.以122F F c =为直径的圆222x y c +=与双曲线有4个交点,过点1F 且垂直于x 的直线与双曲线有2个交点,过点2F 且垂直于x 的直线与双曲线也有2个交点,所以双曲线C 上有且仅有8个点P ,使得12PF F △是直角三角形,故C 错误;D.设()00,P x y ,其中0x a ≠±,()1,0A a -,()2,0A a ,100PA y k x a =+,200PA y k x a=-, 所以12220222022222001PA PA x b a y b k k x a x a a⎛⎫- ⎪⎝⎭===--,故D 正确.故选:BD.三、填空题13.已知双曲线的焦距为6,且焦点到渐近线的距离为2,则双曲线的标准方程为______. 【答案】22154x y -=或22154y x -=【分析】根据双曲线的性质和点到直线距离公式即可求解.【详解】若双曲线的焦点在x 轴上,设方程为22221x ya b-=,双曲线的焦距为6,所以3c =,焦点(,0)c 到渐近线0bx ay ±=的距离为2,2bcb c===,所以a 22154x y -=.若双曲线的焦点在y 轴上,设方程为22221y xab-=,双曲线的焦距为6,所以3c =,焦点(0,)c 到渐近线0ax by ±=的距离为2,2bcb c===,所以a 22154y x -=.14.已知等差数列{}n a 的前n 项和为n S ,若1010S =,3080S =,则20S =______. 【答案】1103【分析】待定系数法求出111,46a d ==后,可计算出答案.【详解】设等差数列()11n a a n d +-=, 则101104510S a d =+=,3013043580S a d =+=, 解得111,46a d ==,201110201903S a d =+=, 故答案为:1103. 15.已知直线220kx y -+=与椭圆221(0)9x y m m+=>恒有公共点,则实数m 的取值范围为___________.【答案】[)()4,99,∞⋃+【分析】首先求出直线过定点坐标,依题意定点在椭圆上或椭圆内,即可求出参数的取值范围,再由椭圆方程得到9m ≠,即可得解.【详解】解:直线220kx y -+=,令2020x y =⎧⎨-+=⎩,解得02x y =⎧⎨=⎩,所以直线220kx y -+=恒过定点()0,2P ,∴直线220kx y -+=与椭圆221(0)9x y m m+=>恒有公共点, 即点()0,2P 在椭圆内或椭圆上,0419m∴+≤,即4m ≥, 又9m ≠,否则2219x y m+=是圆而非椭圆, 49m ∴≤<或9m >,即实数m 的取值范围是[)()4,99,∞⋃+.故答案为:[)()4,99,∞⋃+16.直线l 交椭圆22:14x C y +=于A ,B 两点,线段AB 的中点为()1,M t ,直线m 是线段AB 的垂直平分线,则直线m 经过的定点坐标是______. 【答案】3,04⎛⎫ ⎪⎝⎭【分析】利用点差法得到14AB OM k k ⋅=-,求出直线AB 的斜率,根据垂直关系求出直线m 的斜率,并用点斜式求得方程,进而分析出定点坐标.【详解】解:设1122(,),(,)A x y B x y , 则221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2222121204-+-=x x y y 整理得12121212+1+4y y y y x x x x -⋅=--,即14AB OM k k ⋅=-, 已知()1,M t ,则OM k t =,所以14AB k t=-, 因为直线m 是线段AB 的垂直平分线,所以1144AB m m m k k k k t t⋅=-⋅=-⇒=, 直线m 的方程为:()41y t t x -=-,整理得344y t x ⎛⎫=- ⎪⎝⎭, 所以直线m 过定点3,04⎛⎫ ⎪⎝⎭,故答案为:3,04⎛⎫ ⎪⎝⎭四、解答题17.已知圆C :(x-2)2+(y-3)2=4外有一点P (4,-1),过点P 作直线l .(1)当直线l 与圆C 相切时,求直线l 的方程;(2)当直线l 的倾斜角为135°时,求直线l 被圆C 所截得的弦长.【答案】(1)x =4或3x +4y-8=0.(2)【分析】(1)对斜率存在和斜率不存在两种情况分类讨论,由点到直线的距离为半径即可求得直线方程;(2)由倾斜角可写出直线方程,求出点到直线的距离,再由勾股定理即可求出弦长.【详解】(1)由题意知,圆C 的圆心为(2,3),半径r =2当斜率不存在时,直线l 的方程为x =4,此时圆C 与直线l 相切;当斜率存在时,设直线l 的方程为y +1=k (x -4),即kx -y -4k -1=0,则圆心到直线的距离为d r =2=,解得34k =-, 所以此时直线l 的方程为3x +4y-8=0.综上,直线l 的方程为x =4或3x +4y-8=0.(2)当直线l 的倾斜角为135°时,直线l 的方程为x +y-3=0,圆心到直线l 的距离d ==故所求弦长为:=18.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足2465a a =,1518a a +=.(1)求数列{}n a 的通项公式;(2)是否存在常数k ,使得数列为等差数列?若存在,求出常数k ;若不存在,请说明理由. 【答案】(1)43n a n =-(2)存在,理由见解析【分析】(1)设等差数列{}n a 的公差为d ,且0d >,根据2465a a =,1518a a +=解得1,a d 可得答案;(2)由(1)求出n S ,假设存在常数k使得数列为等差数列,则由数列的前3项成等差数列求出k,再验证数列为等差数列即可. 【详解】(1)设等差数列{}n a 的公差为d ,且0d >,由2465a a =,1518a a +=得()()24111513652418a a a d a d a a a d ⎧=++=⎨+=+=⎩,解得114a d =⎧⎨=⎩, 所以()14143n a n n =+-=-;(2)由(1)()143212+-==-n n n n n S , 假设存在常数k,使得数列为等差数列,所以=1k =,,当2n ≥)1-n所以数列为等差数列, 故存在常数1k =,使得数列为等差数列. 19.已知双曲线C :2222x y -=与点()1,2P .(1)是否存在过点P 的弦AB ,使得AB 的中点为P ;(2)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,证明:A 、B 、C 、D 四点共圆.【答案】(1)存在;(2)证明见解析.【分析】(1)利用点差法求解;(2)利用点差法和弦长公式求出相关线段的长度,再利用距离公式证明线段相等,可求证得四点共圆.【详解】解:(1)双曲线的标准方程为2212y x -=,21a ∴=,22b =. 设存在过点P 的弦AB ,使得AB 的中点为P ,设()11,A x y ,()22,B x y ,221112-=y x ,222212-=y x两式相减得2121221212y y y y b x x x x a -+⋅=-+,即2221AB b k a⋅=得:22k ⋅=,1k ∴=. ∴存在这样的弦.这时直线l 的方程为1y x =+.(2)设CD 直线方程为0x y m ++=,则点()1,2P 在直线CD 上.则3m =-,直线CD 的方程为30x y +-=,设()33,C x y ,()44,D x y ,CD 的中点为()00,Q x y ,223312y x -=,224412y x -= 两式相减得2020CD y b k x a⋅=,则0012y x -⋅=,则002y x =- 又因为()00,Q x y 在直线CD 上有0030x y +-=,解得()3,6Q -,221022x y x y -+=⎧⎨-=⎩,解得()1,0A -,()3,4B , 223022x y x y +-=⎧⎨-=⎩,整理得26110x x +-=,则3434611x x x x +=-⎧⎨⋅=-⎩则34CD x -=由距离公式得QA QB QC QD ====所以A 、B 、C 、D 四点共圆.20.n S 为数列{}n a 的前n 项和.已知20,24 3.n n n n a a a S >+=+(1)求{}n a 的通项公式:(2)设112n n n b a a +=,求数列{}n b 的前n 项和 【答案】(1)n a =21n (2)1181122n -+【分析】(1)先用数列第n 项与前n 项和的关系求出数列{}n a 的递推公式,再由等差数列的定义写出数列{}n a 的通项公式;(2)根据(1)数列{}n b 的通项公式,再由裂项相消求和法求其前n 项和.【详解】(1)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以12n n a a --=,所以数列{n a }是首项为3,公差为2的等差数列,所以n a =21n ;(2)由(1)知,n b =1111()2(21)(23)42123n n n n =-++++, 所以数列{n b }前n 项和为12n b b b +++=1111111435572123n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦1182121n =-+. 21.平面上两个等腰直角PAC △和ABC ,AC 既是PAC △的斜边又是ABC 的直角边,沿AC 边折叠使得平面PAC ⊥平面ABC ,M 为斜边AB 的中点.(1)求证:AC PM ⊥.(2)求PC 与平面PAB 所成角的正弦值.(3)在线段PB 上是否存在点N ,使得平面CNM ⊥平面PAB ?若存在,求出PN PB的值;若不存在,说明理由.【答案】(1)证明见解析;(2)63; (3)存在,13PN PB =. 【分析】(1)取AC 中点D ,连接,MD PD ,可由线面垂直证明线线垂直得证;(2)建立空间直角坐标系,利用向量法求解线面角;(3)求出平面CNM 的一个法向量,根据平面垂直可得法向量数量积为0求解即可.【详解】(1)取AC 中点D ,连接,MD PD ,如图,又M 为AB 的中点,//MD BC ∴,由AC BC ⊥,则MD AC ⊥,又PAC △为等腰直角三角形,PA PC ⊥,PA PC =,PD AC ∴⊥,又MD PD D ⋂=,,MD PD ⊂平面PMD ,AC ∴⊥平面PMD ,又PM ⊂平面PMD ,.M AC P ∴⊥(2)由(1)知,PD AC ⊥,又平面PAC ⊥平面ABC ,AC 是交线,PD ⊂平面PAC , 所以PD ⊥平面ABC ,即,,PD AC DM 两两互相垂直,故以D 为原点,,,DA DM DP 为x 、y 、z 轴正方向建立空间直角坐标系,如图,设2AC =,则(1,0,0),(1,2,0),(1,0,0),(0,0,1)P A B C --,(1,0,1)CP ∴=,(1,0,1)AP =-,(1,2,1)BP =-,设(,,)n x y z =为平面PAB 的一个法向量,则020AP n x z BP n x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令1z =,即(1,1,1)n =, 设PC 与平面PAB 所成角为θ, 26sin cos ,23CP nCP n CP n θ⋅∴====⨯ 即PC 与平面PAB 6. (3)若存在N 使得平面CNM ⊥平面PAB ,且PN PB λ=,01λ≤≤, 则(1,2,1)PN PB λλ→→==--,解得 (,2,1)N λλλ--,又(0,1,0)M ,则(1,2,1)CN λλλ=--,(1,1,0)CM =,设(,,)m a b c =是平面CNM 的一个法向量,则(1)2(1)00CN m a b c CM m a b λλλ⎧⋅=-++-=⎪⎨⋅=+=⎪⎩,令b =l ,则13(1,1,)1m λλ-=--, 131101m n λλ-∴⋅=-++=-,解得13λ=,故存在N 使得平面CNM ⊥平面PAB ,此时13PN PB =. 22.在直角坐标系xOy 中,已知点(2,2)A -,(2,2)B ,直线AD ,BD 交于D ,且它们的斜率满足:2AD BD k k -=-.(1)求点D 的轨迹C 的方程;(2)设过点(0,2)的直线l 交曲线C 于P ,Q 两点,直线OP 与OQ 分别交直线1y =- 于点M ,N ,是否存在常数λ,使O N OPQ M S S λ=,若存在,求出λ的值;若不存在,说明理由.【答案】(1)22x y =()2x ≠±;(2)存在,λ的值为4.【分析】(1)设出点D 的坐标,根据给定条件列式、化简整理即可作答.(2)设出直线l 的方程,与轨迹C 的方程联立,借助韦达定理计算三角形面积即可判断作答.【详解】(1)设(,)D x y ,而点(2,2)A -,(2,2)B ,则22AD y k x -=+,22BD y k x -=-, 又2AD BD k k -=-,于是得22222y y x x ---=-+-,化简整理得:22x y =()2x ≠±, 所以点D 的轨迹C 的方程是:22x y =()2x ≠±.(2)存在常数4λ=,使O N OPQ M SS λ=,如图,依题意,直线l 的斜率存在且不为0,设直线l :2y kx =+,11(,)P x y ,22(,)Q x y ,由222y kx x y=+⎧⎨=⎩消去y 得:2240x kx --=,则122x x k +=,124x x =-, ()222121212||44164x x x x x x k k -=+-+=+则1212||2OPQ Sx x =⨯⨯-= 直线OP :11y y x x =,取1y =-,得点M 横坐标11M x x y =-,同理得点N 的横坐标22N x x y =-, 则2121122112211212|(2)(2)||||||(2)(2)|||M N x x x y x y x kx x kx x x y y y y kx kx -+-+-=-==++2121212|2()||2()4|x x k x x k x x -==⋅+++因此有11||2OMN M N S x x =⨯⨯-= 于是得4OPQ OMN S S =△△,所以存在常数4λ=,使O N OPQ M SS λ=.。
千人桥中学高二数学12月月考试卷理(无答案)(2021年整理)
安徽省舒城县千人桥中学2016-2017学年高二数学12月月考试卷理(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省舒城县千人桥中学2016-2017学年高二数学12月月考试卷理(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省舒城县千人桥中学2016-2017学年高二数学12月月考试卷理(无答案)的全部内容。
千人桥中学高二年级十二月份月考试卷理数一.选择题(本大题共12小题,每小题5分,计60分)1.下列判断正确的是( )A 、若命题p 为真命题,命题q 为假命题,则命题q p ∧为真命题.B 、命题“若0=xy ,则0=x ”的否命题为“若0,0≠=x xy 则”C 、“21cos =α”是“3πα=”的充分不必要条件. D 、命题“02,>∈∀xR x ”的否定是“02,00≤∈∃x R x ” 2.“8<m ”是“方程181022=---m y m x 表示双曲线”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件3.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则P 的值为( ) A 、2- B 、2 C 、4- D 、44。
点B 是点)3,2,1(A 在坐标平面yoz 内的射影,则||OB 等于 ( ) A 、13 B 、14 C 、32 D 、105.已知向量()1,1,0a =,()1,0,2b =-,且ka b +与2a b -互相垂直,则k 的值为( )A 、1B 、15C 、35D 、756。
2022-2023学年上海市建平中学高二上学期12月月考数学试题(解析版)
2022-2023学年上海市建平中学高二上学期12月月考数学试题一、填空题1.命题“空间中任意3点确定一个平面”是___________命题.(填“真”,“假”) 【答案】假【分析】当三点共线时,可以知命题不成立,即可得正确答案. 【详解】因为过不在一条直线上的三点,有且只有一个平面, 当三点共线时可以确定无数个平面, 故答案为:假.2.边长2和4的矩形直观图面积为______.【答案】【分析】. 【详解】由题知,直观图面积为24⨯=3.若圆锥的侧面积为2π,母线长为2,则此圆锥的体积为______.【分析】由侧面积公式解得1r =,进而求出圆锥的高,即可由体积公式求得体积【详解】设圆锥的底面半径为r ,高为h ,因为圆锥的母线长2l =,其侧面积为2rl ππ=,所以1r =,所以h 2211133V r h ππ==⨯.4.正四棱柱的底面积为4,高为3,则它的侧面积为______. 【答案】24【分析】先求出底面四边形的边长,再利用柱体的侧面积公式进行求解. 【详解】因为正四棱柱的底面是正方形,且面积为4, 所以底面的边长为2,又因为棱柱的高为3, 所以侧面积为42324⨯⨯=. 故答案为:24.5.在长方体1111ABCD A B C D -中,12,1AB BC AA ===,则1BC 与平面11BB D D 所成角的大小为______.【答案】15arccos5【分析】首先连接11A C 交于点O ,连接BO ,然后证明1OC ⊥面11BB D D ,根据线面角的定义得到1C BO ∠为1BC 与平面11BB D D 所成角,在1Rt BOC 中求解1C BO ∠的余弦值即可求出1BC 与平面11BB D D 所成角. 【详解】连接11A C 交于点O ,连接BO ,由2AB BC ==,得1111D C B A 为正方形,即111OC B D ⊥, 由长方体的性质得1BB ⊥面11111,A B C D OC ⊂面1111D C B A , 所以11OC BB ⊥,且1111BB B D B ⋂=,所以1OC ⊥面11BB D D , 则1C BO ∠为1BC 与平面11BB D D 所成角, 在1Rt BOC 中,112,5,3OC BC OB ===, 所以11315cos 55OB OBC BC ∠===, 即1BC 与平面11BB D D 所成角为15arccos 5. 故答案为:15arccos56.如图,边长为2的两个等边三角形,ABC DBC ,若点A 到平面BCD 的距离为1,则二面角A BC D --的大小为______.【答案】3【分析】先判断得二面角A BC D --的平面角为AEF ∠,再利用线面垂直的判定定理证得AF ⊥平面BCD ,从而得到1AF =,进而求得sin AEF ∠,由此得解.【详解】取BC 中点E ,连接,AE EF ,过A 作AF DE ⊥于F , 因为,ABC DBC △△是正三角形,所以,AE BC DE BC ⊥⊥, 所以二面角A BC D --的平面角为AEF ∠, 又AEDE E =,,AE DE ⊂面AEF ,所以BC ⊥面AEF ,又AF ⊂面AEF ,所以BC AF ⊥, 因为AF DE ⊥,,,DEBC E DE BC =⊂平面BCD ,所以AF ⊥平面BCD ,则点A 到平面BCD 的距离为AF ,即1AF =, 又在边长为2的ABC 中,22132AE AB BC ⎛⎫=-= ⎪⎝⎭,所以13sin 33AF AEF AE ∠===,AEF ∠是锐角, 则二面角A BC D --的大小为3arcsin 3. 故答案为:3arcsin3.7.如图,在正四面体A BCD -中,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是_____【答案】23【分析】连接BM 取其中点P ,连接,PN PA ,则NAP ∠即为所求角或其补角,再利用余弦定理解三角形即可.【详解】如图,连接BM 取其中点P ,连接,PN PA ,∵N 是BC 中点,∴//PN CM ,∴异面直线AN ,CM 所成的角就是NAP ∠(或其补角), 设正四面体的棱长为1,则32AN CM ==,1324NP CM ==,在ABP ∆中1324BP BM ==, 222223372cos 1()21cos304416AP BA BP BA BP ABM =+-⋅∠=+-⨯⨯︒=, 在APN ∆中,22222337()()22416cos 2333224AN NP APANP AN NP+-+-∠===⋅⨯⨯.异面直线AN ,CM 所成的角的余弦值为23. 故答案为:23.【点睛】本题考查异面直线夹角的求解,属中档题题.8.圆柱形容器内部盛有高度为2cm 的水,若放入一个球(球的半径与圆柱的底面半径相同)后,水恰好淹没球(如图所示),则球的半径是________cm .【答案】3【分析】根据水的体积与球的体积之和为一个高为2R 的圆柱的体积即可求解. 【详解】设球的半径为R ,根据题意,水的体积与球的体积之和等于高为2R 的圆柱的体积, 所以2234223R R R R πππ⋅=⋅+,解得3R =. 故答案为:39.三棱柱111ABC A B C 的各条棱长均为112,60A AB A AC BAC ∠∠∠===,则该三棱柱的侧面积为______.【答案】4##4+【分析】根据题意知1A A 在平面ABC 内的射影是BAC ∠的角平分线.如图过点1A 作1A H ⊥平面ABC ,垂足为H ,延长AH 交BC 于D ,则AD BC ⊥,利用线面垂直的判定定理和性质可证四边形11BCC B 为矩形,结合矩形和平行四边形的面积公式计算即可. 【详解】由题意知,在三棱柱111ABC A B C 中,1160A AB A AC BAC ︒∠=∠=∠=,所以1A A 在平面ABC 内的射影是BAC ∠的角平分线.如图,过点1A 作1A H ⊥平面ABC ,垂足为H ,延长AH 交BC 于D , 则AD 是BAC ∠的角平分线,所以AD BC ⊥, 又BC ⊂平面ABC ,所以1A H ⊥BC , 由11,ADA H H AD A H =⊂、平面1A AH ,得BC ⊥平面1A AH ,又1AA ⊂平面1A AH ,所以1BC AA ⊥,因为11//AA BB ,所以1BC BB ⊥,故四边形11BCC B 为矩形,所以11224BCC B S =⨯=矩形,又111122sin 60ABB A ACC A S S ︒==⨯=平行四边形平行四边形所以三棱柱的侧面积为4.故答案为:4.10.我国古代数学名著《九章算术》中,定义了三个特别重要而基本的多面体,它们是:(1)“堑堵”:两个底面为直角三角形的直棱柱;(2)“阳马”:底面为长方形,且有一棱与底面垂直的棱锥;(3)“鳖臑(biēnào )”:每个面都为直角三角形的四面体.魏晋时期的大数学家刘徽进一步研究发现:任何一个“堑堵”都可以分割成一个“阳马”和一个“鳖臑”且“阳马”和“鳖臑”的体积比为定值.则此定值为______. 【答案】2:1【分析】画出图形,在图形中分别表示出“阳马”和“鳖臑”的体积即可求解. 【详解】如图所示,图为底面为直角三角形的直三棱柱“崭堵”,90ABC ∠=, 若以111A B C △作为“鳖臑”的底面,则可选点A 或点C 作为顶点, 我们选取点C 为例,连接11,B C A C ,则四面体111C A B C -满足条件, 且棱锥11C AA B B -也满足“阳马”的条件,BC ⊥面11AA B B 且四边形11AA B B 为长方形,设1,,,AB c BC a AC b BB h ====,则“堑堵”的体积为1122ac h ach ⋅=,“鳖臑”的体积为111236ac h ach ⋅⨯=,所以“阳马”的体积为111263ach ach ach -=,所以“阳马”和“鳖臑”的体积比为2:1.故答案为:2:1.11.在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是______. 【答案】抛物线【分析】点P 到直线11C D 的距离即1PC ,根据抛物线的定义判断轨迹图形. 【详解】由题意得直线11C D ⊥平面11BB C C ,则111C D PC ⊥, 即1PC 就是点P 到直线11C D 的距离,所以点P 到直线BC 的距离等于它到点1C 的距离,所以点P 的轨迹是抛物线. 故答案为:抛物线.12.一个“皇冠”状的空间图形(如图)由一个正方形和四个正三角形组成,并且正方形与每个正三角形所成的二面角的大小均为θ.如果把两个这样的“皇冠”倒扣在一起,可以围成一个十面体,则cos θ的值为______.【答案】363- 【分析】根据题意可知,该几何体的侧面是全等的正三角形,只需利用三垂线定理做出二面角的平面角再结合勾股定理即可求出余弦值的大小.【详解】一个“皇冠”状的空间图形由一个正方形和四个正三角形组成, 并且正方形与每个正三角形所成的二面角的大小均为θ过点A 作底面的垂线,垂足为B O O ',、分別为上下底面正方形的中心, 连接AO BO BO '、,交CD 于F ,连接AF ,如图所示,由题意得,AF CD OF CD ⊥⊥,所以AFO ∠即为正方形与正三角形所成的二面角的平面角,且为钝角; 所以AFO θ∠=,所以sin sin AFB θ∠=,由三角形都为正三角形得,AO BO AF '==,设正方形边长为2a ,则,BO FO a ==,所以,BF a AF =-=,所以cos BF AF θ=-==二、单选题13.三个平面不可能将空间分成( )个部分 A .5 B .6C .7D .8【答案】A【分析】分三个平面互相平行,三个平面有两个平行,第三个平面与其它两个平面相交,三个平面交于一条直线,三个平面两两相交且三条交线平行,三个平面两两相交且三条交线交于一点,六种情况讨论即可.【详解】若三个平面互相平行,则可将空间分为4个部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6个部分; 若三个平面交于一条直线,则可将空间分为6个部分; 若三个平面两两相交且三条交线平行,则可将空间分为7部分; 若三个平面两两相交且三条交线交于一点,则可将空间分为8部分 故n 的取值为4,6,7,8,所以n 不可能是5. 故选:A.14.已知直线m 、n ,平面α、β,满足n αβ=且αβ⊥,则“m β⊥”是“m n ⊥”的( )条件A .充分非必要B .必要非充分条C .充要D .既非充分又非必要【答案】A【分析】利用空间中的垂直关系和充分条件、必要条件的定义进行判定. 【详解】因为n αβ=,所以n β⊂,又因为m β⊥,所以m n ⊥, 即“m β⊥”是“m n ⊥”的充分条件;如图,在长方体中,设面ABCD 为面α、面BCEF 为面β, 则m n ⊥,且m 与面β不垂直, 即“m β⊥”不是“m n ⊥”的必要条件; 所以“m β⊥”是“m n ⊥”的充分不必要条件. 故选:A.15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( ) A .三角形 B .长方形C .对角线不相等的菱形D .六边形【答案】A【分析】根据截面经过几个面得到的截面就是几边形判断即可.【详解】过正方体中心的平面截正方体所得的截面,至少与正方体的四个面相交,所以不可能是三角形. 故选:A .16.如图为正方体ABCD ﹣A 1B 1C 1D 1,动点M 从B 1点出发,在正方体表面沿逆时针方向运动一周后,再回到B 1的运动过程中,点M 与平面A 1DC 1的距离保持不变,运动的路程x 与l =MA 1+MC 1+MD 之间满足函数关系l =f (x ),则此函数图象大致是( )A .B .C .D .【答案】C【分析】可知点M 沿着1ACB 运动,设点P 为B 1C 的中点,分析当M 从B 1到P 时,在平面A 1B 1CD 内,作点A 1关于B 1B 的对称点A ′,由MA 1+MD =MA ′+MD ,MC 1221PC PM =+,分析排除即得解 【详解】由于点M 与平面A 1DC 1的距离保持不变,且从B 1点出发,因此点M 沿着1ACB 运动.设点P 为B 1C 的中点,当M 从B 1到P 时,如图所示在平面A 1B 1CD 内,作点A 1关于B 1B 的对称点A ′, 则MA 1+MD =MA ′+MD ,由图象可知,当M 从B 1到P 时,MA 1+MD 是减小的,MC 1是由大变小的, 所以当M 从B 1到P 时,l =MA 1+MC 1+MD 是逐渐减小的,故排除B ,D ;因为PC 1是定值,MC 1221PC PM =+,函数是减函数,类似双曲线形式,所以C 正确; 故选:C三、解答题17.己知正四棱锥P ABCD -中,1,2AB PA ==.(1)求侧棱与底面所成角;(2)求正四棱锥P ABCD -的侧面积.【答案】(1)14arcsin 4 (2)15【分析】(1)先由正四棱锥的定义得到侧棱与底面所成角为PAO ∠,再求得PO 的长度,从而得到sin PAO ∠,由此得解;(2)结合(1)中结论,求出斜高PE ,从而即可求得正四棱锥P ABCD -的侧面积.【详解】(1)连接AC 、BD ,设ACBD O =,连接PO ,因为棱锥P ABCD -为正四棱锥,所以PO ⊥底面,ABCD O 为底面正方形ABCD 的中心,则侧棱与底面所成角为PAO ∠, 因为1,2AB PA ==,所以222AC AB BC =+=,2222214222PO PA AO ⎛⎫=-=-= ⎪ ⎪⎝⎭. 所以14sin 4PO PAO AP ∠==,即侧棱与底面所成角为14arcsin 4. .(2)过P 作PE BC ⊥于E ,连接OE ,因为PB PC =,PE BC ⊥,所以E 是BC 的中点,又O 是AC 的中点,所以1122OE AB ==, 又在Rt POE 中,14PO =2215PE PO OE =+=, 所以四棱锥P ABCD -的侧面积为1154421152PBC S S PE BC ==⨯⋅==18.如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5AB BC ==,3CD =.(1)求二面角A DC B --的大小;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD 的三边在旋转过程中所围成的几何体的体积.【答案】(1)5arctan 4; (2)15π.【分析】(1)由已知可推得,二向角A DC B --的平面角为ADB ∠,在Rt △ABD 中,求解即可得到结果;(2)ACD 绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可.【详解】(1)由题意得BD CD ⊥,所以224BD BC CD -=,AB ⊥平面BCD ,CD ⊂平面BCD ,所以AB CD ⊥,又BD AB B ⋂=,AB ⊂平面ABD ,BD ⊂平面ABD ,所以CD ⊥平面ABD ,又AD ⊂平面ABD ,所以CD AD ⊥,即二向角A DC B --的平面角为ADB ∠,在Rt △ABD 中,4t n 5a AB ADB BD ∠==,所以5arctan 4ADB ∠=, 所以二面角A DC B --的大小为5arctan4. (2)由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,体积22111125ππ55π333V BC AB =⋅⋅=⨯⨯=, 线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,体积2221180ππ45π333V BD AB =⋅⋅=⨯⨯=, 所以以ACD 绕AB 旋转一周而成的封闭几何体的体积为:1215πV V V =-=.19.如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知球的直径是6cm ,圆柱筒长2cm .(1)这种“浮球”的体积是多少3cm (结果精确到0.1)?(2)要在这样10000个“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,共需胶多少?【答案】(1)169.6(cm 3)(2)4800π(克).【分析】(1)分别求出两个半球的体积1V ,和圆柱体的体积2V ,即可求出“浮球”的体积;(2)先求出一个“浮球”的表面积,再求出10000个的面积,即可求解.【详解】(1)因为该“浮球”的圆柱筒直径d =6cm,所以半球的直径也是6cm,可得半径r =3cm,所以两个半球的体积之和为3314433633V r πππ==⨯=(cm 3). 圆柱的体积22·9218V r h πππ==⨯⨯=(cm 3). 所以该“浮球”的体积是21613654169.8V V V πππ=+=≈=+(cm 3).(2)根据题意,上下两个半球的表面积是2144936S r πππ==⨯⨯=(cm 2).而“浮球”的圆柱筒侧面积为2223212S r h πππ=⋅=⨯⨯⨯=(cm 2).1个“浮球”的表面积为12361248S S S πππ=+=+=(cm 2) 即为4810000S π=(m 2). 所以要在这样10000个“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,共需胶4810000100480010000ππ⨯⨯=(克). 20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,,,1AD AB DC AB PA ⊥=∥,2,2AB PD BC ===(1)求证:平面PAD ⊥平面PCD ;(2)试在棱PB 上确定一点E ,使截面AEC 把该几何体分成的两部分PDCEA 与EACB 的体积比为2:1;(3)在(2)的条件下,求二面角E AC P --的余弦值.【答案】(1)见解析;(2)E 为PB 的中点;(3)33. 【分析】(1)证明CD ⊥平面P AD 即可;(2)过E 作EF ⊥AB 于F ,则EF 为E -ABC 的高,分别求出P -ABCD 和E -ABC 的体积,再求出PDCEA 部分体积,由体积比即可得EF 与P A 的关系,即可知E 点的位置;(3)连接FC 、FD ,FD 与AC 交于点O ,连接OE ,二面角E AC P --的平面角与∠EOF 互余,故解三角形EOF 即可.【详解】(1)∵,AD AB DC AB ⊥∥,∴DC AD ⊥.∵PA ⊥平面ABCD ,DC ⊂平面ABCD ,∴DC PA ⊥.∵AD PA A ⋂=,∴DC ⊥平面PAD .∵DC ⊂平面PCD ,∴平面PAD ⊥平面PCD .(2)作EF AB ⊥于F 点,∵在ABP 中,PA AB ⊥,∴EF PA ∥,∴EF ⊥平面ABCD .设221,1,12ABC EF h AD PD PA S AB AD ==-=⋅=△, 则1133E ABC ABC V S h h -=⋅=△. ()12111113322P ABCD ABCD V S PA -+⨯=⋅=⨯⨯=. 由:2:1PDCEA EACB V V =,得111:2:1233h h ⎛⎫-= ⎪⎝⎭,解得12h =,即12EF PA =,故E 为PB 的中点; (3)连接FC 、FD ,FD 与AC 交于点O ,连接OE ,由(2)可知EF ⊥平面ABCD ,∴EF AC ⊥.易知ADCF 为正方形,∴FO AC ⊥.∵FO EF F ⋂=,∴AC ⊥平面EFO ,故EO AC ⊥.∴EOF ∠是二面角E AC B --的平面角.由PA ⊥平面ABCD ,可知平面PAC ⊥平面ABCD .∴二面角E AC B --与平面角E AC P --互余.设二面角E AC P --的平面角为θ,则cos sin EOF θ=∠,在Rt EOF △中,123,,222EF FO EO ===, 3cos sin 3EOF θ=∠=, ∴二面角E AC P --的余弦值为33. 21.已知圆锥的侧面展开图是一个半圆;(1)求圆锥的母线与底面所成的角;(2)过底面中心1O 且平行于母线AB 的截平面,若截面与圆锥侧面的交线是焦参数(焦点到准线的距离)为p 的抛物线,求圆锥的底面半径;(3)过底面点C 作垂直且于母线AB 的截面,若截面与圆锥侧面的交线是长轴为2a 的椭圆,求椭圆的短轴长.【答案】(1)3π (2)2r p =(3)263a 【分析】(1)根据侧面展开图的特征列方程得出底面半径和母线的关系,从而得出母线与底面所成的角;(2)根据抛物线的一条弦为圆锥底面直径得出底面半径和p 的关系,从而可得圆锥的底面半径;(3)利用三角形相似和圆锥的特点得出椭圆的长轴,短轴和底面半径的关系,从而可得长短轴的关系,得出答案.【详解】(1)设圆锥的底面半径为r ,母线长为l ,则圆锥侧面展开图的半径为l ,弧长为2r π, 因为圆锥的侧面展开图是一个半圆,所以r l 2π=π,所以2l r =所以圆锥的轴截面为等边三角形,所以圆锥的母线与底面所成的角为3π. (2)设抛物线的顶点M ,则M 为AC 的中点以点M 为坐标原点,建立如下图所示的直角坐标系(DE 是圆锥底面的直径)设抛物线方程为22y px =,设(),D x r ,把y r =代入抛物线方程得22r x p =, 所以212r O M p =,于是母线212r l AB O M p===, 由(1)得2l r =,即22r r p=,所以2r p =. (3)设AB 的中点为N ,则N 和C 为椭圆的长轴顶点,取CN 的中点P ,则P 为椭圆的中心,连接AP 并延长,交BC 于Q ,过Q 作QR BC ⊥,交圆锥底面圆周于R , 则23CN a r ==,即3r = 过N 作NS BC ∥交AQ 于S ,由NPS CPR ~得QC NS =,又12NS BQ =,所以Q 为BC 靠近C 的三等分点, 22277r r r QR AQ AP === 过点P 作PG QR ∥,交AR 于G因为平面ABC 与底面垂直,QR BC ⊥,QR 在底面中且平面ABC 与底面的交线为BC ,所以由面面垂直的性质可知,QR ⊥平面ABC ,所以PG ⊥平面ABC ,所以PG 为该椭圆的短半轴,即PG b =,因为APG AQR ~△△,所以,b AP QR AQ =所以22b r =,即63b a =, 所以椭圆的短轴长为2623b a =.【点睛】思路点睛:对于圆锥,我们利用不同的平面去截其表面可得不同的圆锥曲线,在计算圆锥曲线的基本量的时候,注意利用空间中的位置关系去构建基本量的关系.。
2022-2023学年四川省成都外国语学校高二上学期12月月考数学(理)试题 (解析版)
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数小于乙的成绩的中位数
C.甲的成绩的方差大于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
【答案】D
【解析】
【分析】根据条形统计图可分别计算出甲、乙的平均数、中位数、极差,从而判断出 的正误;根据成绩的分散程度可判断 的正误.
【详解】同时掷3枚硬币,至少有1枚正面包括有一正两反,两正一反,三正三种情况,
最多有1枚正面包括一正两反,三反,两种情况,故A不正确,
最多有1枚正面包括一正两反,三反与恰有2枚正面是互斥的但不是对立事件,故B不正确,
至多1枚正面一正两反,三反,至少有2枚正面包括2正和三正,故C正确,
至少有2枚正面包括2正和三正,与恰有1枚正面是互斥事件,故D不正确,
成都外国语学校高2024届2022-2023学年度12月月考
理科数学
一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.命题“ , ”的否定为()
A. , B. ,
C. , D. ,
【答案】A
【解析】
【分析】含有一个量词的命题的否定步骤为:改量词,否结论.
甲的成绩的极差大于乙的成绩的极差,故 不正确.
本题正确选项:
【点睛】本题考查根据条形统计图判断平均数、中位数、极差和方差的问题,属于基础题.
5.已知 的三个顶点分别为 , , ,则 边上的中线长为()
A. B. C. D.
【答案】B
【解析】
【分析】求得 的中点坐标,利用两点间的距离公式即可求得答案.
江苏省苏州园三2023-2024学年高二上学期12月月考数学试题(解析版)
2023-2024学年高二年级12月三校联合调研测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知等比数列{}n a 中,11a =,48a=−,则公比q =( )A. 2B. 4−C. 4D. 2−【答案】D 【解析】【分析】根据等比数列的知识求得正确答案.【详解】依题意33418,2a a q q q ===−=−. 故选:D2. 已知过(,2),(,1)A m B m m −−两点的直线的倾斜角是45 ,则,A B 两点间的距离为( )A. 2B.C. D. 【答案】C 【解析】【分析】利用倾斜角求出1m =,然后利用两点间距离公式即可得出答案. 【详解】由题知,12tan 451m m m−−=°=−−, 解得1m =,故(1,2),(1,0)A B −,则,A B 故选:C3. 直线320x my m +−=平分圆C :22220x x y y ++−=,则m =( )A.32B. 1C. -1D. -3【答案】D 【解析】【分析】求出圆心,结合圆心在直线上,代入求值即可.【详解】22220x x y y ++−=变形为()()22112x y ++−=,故圆心为()1,1−,由题意得圆心()1,1−在320x my m +−=上,故320m m −+−=,解得3m =−.故选:D4. 设双曲线()222210,0x y a b a b−=>>的虚轴长为2,焦距为 )A. y =B. 2y x =±C. y x =±D. 12y x =±【答案】C 【解析】【分析】根据题意得到1b =,c =a =.【详解】由题意得22b =,2c =1b =,c =故a故双曲线渐近线方程为b y x x a=±. 故选:C5. 椭圆22192x y +=中以点()21M ,为中点的弦所在直线斜率为( ) A. 49−B.12C.D. −【答案】A 【解析】【分析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率. 【详解】设弦的两端点为()11A x y ,,()22B x y ,,代入椭圆得22112222192192x y x y += += , 两式相减得()()()()12121212092x x x x y y y y −+−++=,即()()()()1212121292x x x x y y y y −+−+=−,即()()1212121229x x y y y y x x +−−=+−, 即12122492y y x x −×−=×−, 即121249y y x x −=−−,∴弦所在的直线的斜率为49−, 故选:A .6. 已知()1,0F c −,()2,0F c 是椭圆()2222:10x yC a b a b+=>>的左、右焦点,若椭圆C 上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率e 的取值范围是( )A.B.C.D.【答案】B 【解析】 【分析】设点P .【详解】设()00,P x y ,则()22002210x ya b a b +=>>,∴2220021x y b a=−, 由212PF PF c ⋅=,∴()()20000,,c x y c x y c −−−⋅−−=, 化为2222x c y c −+=,∴22220212x x b c a+−=, 整理得()2222023a x c a c=−, ∵220x a ≤≤,∴()2222203a c a a c≤−≤,e ≤≤,故选:B7. 过动点(),P a b (0a ≠)作圆C:(223x y +−=的两条切线,切点分别为A ,B ,且60APB ∠=°,则ba的取值范围是( )A.B.C. , −∞+∞D.(),−∞∪+∞【答案】D 【解析】【分析】求出PC =,确定动点(),P a b 的轨迹方程,从而结合ba表示圆(2212x y +−=上的点与坐标原点连线的斜率,利用距离公式列出不等式,即可求得答案. 【详解】由题意知圆C:(223x y +−=因为A ,B 分别为两条切线PA ,PB 的切点,且60APB ∠=°,则30APC BPC ∠=∠=°,所以2PC AC ==,所以动点(),P a b在圆(2212x y +−=上且0a ≠,b a表示圆(2212x y +−=上的点与坐标原点连线的斜率, 设bk a=,则直线y kx =与圆(2212x y +−=有公共点,≤,解得k ≤k ≥,即ba的取值范围是(),−∞∪+∞, 故选:D8. 已知数列{}n a 满足()2123111N 23n a a a n n na n +++++=+∈ ,设数列{}nb 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若()N 1n nT n n λ+<∈+恒成立,则实数λ的取值范围为( ) A. 1,4+∞B. 1,4+∞C. 3,8∞+D. 38 +∞,【答案】D 【解析】【分析】首先利用递推关系式求出数列的通项公式,进一步利用裂项相消法求数列的和,最后利用函数的单调性求出结果.【详解】数列{}n a 满足212311123n a a a a n n n++++=+ ,① 当2n ≥时,()2123111111231n n a a a a n n −++++−−=+− ,②①−②得,12n a n n=,故22n a n =, 则()()2222121211114411n n n n n b a a n n n n +++===− ++, 则()()22222211111111114223411n T n n n=−+−++−=− ++,由于()N 1n nT n n λ+<∈+恒成立,故()2111411nn n λ −< ++, 整理得:()21144441n n n λ+>=+++,因()11441n ++随n 的增加而减小, 所以当1n =时,()11441n ++最大,且38, 即38λ>. 故选:D二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.)为9. 下列说法正确的是( )A. 直线20x y −−=与两坐标轴围成的三角形的面积是2 B. 点()0,2关于直线1y x =+的对称点为()1,1 C. 过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x −−=−− D. 已知点()1,2P,向量()m =,过点P 作以向量m为方向向量的直线为l ,则点()3,1A 到直线l的距离为1【答案】ABD 【解析】【分析】由直线方程,求得在坐标轴上的截距,利用面积公式,可判定A 正确;根据点关于直线的对称的求法,求得对称点的坐标,可判定B 正确;根据直线的两点式方程的条件,可判定C 错误;根据题意,求得直线l 的方程,结合点到直线的距离公式,可判定D 正确.【详解】对于A 中,令0x =,可得=2y −,令0y =,可得2x =,则直线20x y −−=与两坐标轴围成三角形的面积12222S =××=,所以A 正确; 对于B 中,设()0,2关于直线1y x =+对称点坐标为(),m n ,则212122n mn m − =−+ =+ ,解得1,1m n ==,所以B 正确; 对于C 中,直线的两点式使用的前提是1212,x x y y ≠≠,所以C 错误;对于D中,以向量()m =为方向向量的直线l的斜率k =,则过点P 的直线l的方程为)12y x −+,即10x +−−=, 则点()3,1A 到直线l的距离1d −,所以D 正确. 故选:ABD .的10. 已知椭圆221259x y +=上一点P ,椭圆的左、右焦点分别为12,F F ,则( )A. 若点P 的横坐标为2,则1325PF = B. 1PF 的最大值为9C. 若12F PF ∠为直角,则12PF F △的面积为9D. 若12F PF ∠为钝角,则点P的横坐标的取值范围为 【答案】BCD 【解析】【分析】对A ,可直接解出点P 坐标,求两点距离; 对B ,1PF 最大值为a c +对C ,设1PF x =,则210PF x =-,列勾股定理等式,可求面积;对D ,所求点P 在以原点为圆心,4c =为半径的圆内,求出椭圆与该圆的交点横坐标即可判断.【详解】椭圆的长半轴为5a=,半焦距为4=c ,∴()()124,0,4,0F F −对A ,2x =时,代入椭圆方程得,=,1175PF ==,A 错; 对B ,1PF 的最大值为9a c +=,B 对;对C ,12F PF ∠为直角,设1PF x =,则210PF x =-,则有()222210810180x x x x +-=⇒-+=,则12PF F △的面积为()11810922x x −==,C 对; 对D ,以原点为圆心,4c =为半径作圆,则12F F 为圆的直径,则点P 在圆内时,12F PF ∠为钝角,联立2222125916x y x y += +=,消y得x =,故点P的横坐标的取值范围为 ,D 对. 故选:BCD11. 已知数列{}n a 满足12a =,12,2,n n na n a a n ++ = 为奇数,为偶数,设2n n b a =,记数列{}n a 的前2n 项和为2n S ,数列{}n b 的前n 项和为n T ,则( )A. 520a =B. 32nn b =×C. 12632n n T n +=−−+×D. 2261232n n S n +=−−+×【答案】ACD 【解析】【分析】分析1n a +与n a 的递推关系,根据数列{}n a 的奇数项、偶数项以及分组求和法求得2,n n T S .【详解】依题意,2132435424,28,210,220a a a a a a a a =+====+===,A 选项正确. 112432b a ==≠×,所以B 选项错误.当n 为偶数时,2111222n n n n a a a a ++++==+=+,所以()2222n n a a ++=+,而226a +=,所以1122262,622nn nn a a −−+=×=×−,所以12242662622nn nT a a a n − ++++×++×−()16122263212n n n n +−=−=−−+×−,所以C 选项正确.当n 为奇数时,()211122224n n n n n a a a a a ++++++,所以()2424n n a a ++=+,而146a =,所以11122462,624n n nn a a +−−+=×=×−,所以1213521662624n n a a a a n −−+++++×++×−()16124463212n n n n +−=−=−−+×−,所以()()11224632263261232n n n n S n n n +++=−−+×+−−+×=−−+×,所以D 选项正确.故选:ACD【点睛】求解形如()11n n a pa q p +=+≠的递推关系式求通项公式的问题,可考虑利用配凑法,即配凑为()1n n a p a λλ++=+的形式,再结合等比数列的知识来求得n a .求关于奇数、偶数有关的数列求和问题,可考虑利用分组求和法来进行求解.12. 画法几何的创始人——法国数学家蒙日发现:在椭圆()2222:10x y C a b a b+=>>中,任意两条互相垂直的切线的交点都在同一个圆上,它的圆心是椭圆的中心,半径等于长、短半轴平方和的算术平方根,这个圆就称为椭圆C 的蒙日圆,其圆方程为2222x y a b +=+.已知椭圆C,点A ,B 均在椭圆C 上,直线:40l bx ay +−=,则下列描述正确的为( ) A. 点A 与椭圆C 的蒙日圆上任意一点的距离最小值为bB. 若l 上恰有一点P 满足:过P 作椭圆C 的两条切线互相垂直,则椭圆C 的方程为2213x y +=C. 若l 上任意一点Q 都满足0QA QB ⋅>,则01b <<D. 若1b =,椭圆C 的蒙日圆上存在点M 满足MA MB ⊥,则AOB【答案】BCD 【解析】【分析】根据椭圆上点到原点最大距离为a ,蒙日圆上的点到椭圆上点的距离最小值为半径减去a 可判断A ,利用相切列出方程即可求得椭圆的方程,可判断B ,分析可得点Q 应在蒙日圆外,解不等式从而判断C ,依据题意表示出面积表达式并利用基本不等式即可求出面积最大值,可判断D.【详解】由离心率c e a ==,且222a b c =+可得223a b , 所以蒙日圆方程2224x y b +=; 对于A ,由于原点O 到蒙日圆上任意一点的距离为2b ,原点O到椭圆上任意一点的距离最大值为a ,所以椭圆C 上的点A 与椭圆C的蒙日圆上任意一点的距离最小值为(2b −,即A 错误;对于B ,由蒙日圆定义可知:直线:40l bx ay +−=与蒙日圆2224x y b +=相切, 则圆心到直线l422b b=,解得1b =; 所以椭圆C 的方程为2213x y +=,即B 正确;对于C ,根据蒙日圆定义可知:蒙日圆上的点与椭圆上任意两点之间的夹角范围为π0,2,若若l 上任意一点Q 都满足0QA QB ⋅>,可知点Q 应在蒙日圆外,所以此时直线l 与蒙日圆2224x y b +=422b b >,解得11b −<<, 又0a b >>,所以可得01b <<,即C 正确.对于D ,易知椭圆C 的方程为2213x y +=,即2233x y +=,蒙日圆方程为224x y +=, 不妨设()0,Mx y ,因为其在蒙日圆上,所以22004xy +=,设()()1122,,,A x y B x y ,又MA MB ⊥,所以可知,MA MB 与椭圆相切,此时可得直线MA 的方程为1133x x y y +=,同理直线MB 的方程为2233x x y y +=; 将()00,M x y 代入,MA MB 直线方程中可得101020203333x x y y x x y x +=+= ,所以直线AB 的方程即为0033x x y y +=, 联立00223333x x y y x y +=+=,消去y 整理可得()2222000036990x y x x x y +−+−=; 由韦达定理可得200121222220000699,33x y x x x x x y x y −+==++, 所以()20202122y AB y +=+, 原点O 到直线AB的距离为d,因此AOB 的面积()2020********AOBy S AB d y +=⋅=×=+333222==≤=;,即201y =时等号成立, 因此AOBD 正确; 故选:BCD的【点睛】方法点睛:在求解椭圆中三角形面积最值问题时,经常利用弦长公式和点到直线距离公式表示出三角形面积的表达式,再利用基本不等式或函数单调性即可求得结果.三、填空题(本大题共4小圆,每小题5分,共20分)13. 在等差数列{}n a 中,n S 为前n 项和,7825a a =+,则11S =_________. 【答案】55 【解析】【分析】根据下标和性质求出6a ,再根据等差数列前n 项和公式及下标和性质计算可得.【详解】在等差数列{}n a 中7825a a =+,又7862a a a =+,所以65a =, 所以()111611611112115522a a a S a +×====. 故答案为:5514. 已知点P 为椭圆C :22195x y +=上一点,点1F ,2F 分别为椭圆C 的左、右焦点,若122PF PF =,则12PF F △的内切圆半径为_____【解析】【分析】首先求12,PF PF 的值,再求12PF F △的面积,再利用三角形内切圆的半径表示面积,即可求解.【详解】因为12||||26PF PF a +==,12||2||PF PF =,所以12||4,||2PF PF ==, 212954,||24c F F c −====,则121||||4F F PF ==,等腰12PF F △边2PF 上的高h =,所以12122PF F S =×= ,设22PF F 的内切圆半径为r ,则121211(||||||)1022PF PF F F r r ++×=××=所以r =15. 已知圆M经过((()2,,1,0,A C B −.若点()3,2P ,点Q 是圆M 上的一个动点,则MQ PQ ⋅的最小值为__________.【答案】4−【解析】【分析】先利用待定系数法求出圆的方程,再利用数量积的运算律转化结合数量积的定义求出. 【详解】设圆M 的一般方程为220x y Dx Ey F ++++=,由于圆经过(2,A,(B ,()1,0C −,所以有72072010D F D F D F ++=++=−+=,解得203D E F =− = =− , 所以圆M 的一般方程为22230x y x +−−=,即标准方程为()2214x y −+=. 则圆M 的圆心()1,0M ,半径2==r MQ ,且=MP,因为()2424 ⋅=⋅−=−⋅≥−×=−MQ PQ MQ MQ MP MQ MQ MP ,当且仅当MQ 与MP同向时,等号成立,所以MQ PQ ⋅的最小值为4−.故答案为:4−.16. 已知双曲线C :()222210,0x y a b a b−=>>的左、右焦点分别为1F ,2F ,过点1F 作倾斜角为30 的直线l 与C 的左、右两支分别交于点P ,Q ,若()2222220F P F Q F P F Q F P F Q+⋅−=,则C 的离心率为______.【解析】【分析】由()2222220F P F Q F P F Q F P F Q+⋅−=,2PF Q ∠的平分线与直线PQ 垂直,结合图像,根据双曲线的定义,找出各边的关系,列出等式,求解.【详解】依题意,由()2222220F P F Q F P F Q F P F Q+⋅−=, 得22220F P F Q QP F P F Q+⋅=,即2PF Q ∠的平分线与直线PQ 垂直, 如图,设2PF Q ∠的平分线2F D 与直线PQ 交于点D ,则22PF D QF D ∠=∠,2290F DP F DQ ∠=∠= ,又22DF DF =, 所以22PDF QDF ≌△△2QF .由题得()1,0F c −,()2,0F c ,设2DF h =,2QF s =,1PF t =,在12Rt DF F △中,1290F DF ∠=,1230DF F ∠=,则h c =,1DF =,由双曲线的性质可得122122QF QF PQ t s a PF PF s t a −=+−=−=−= ,解得4PQ a =,则2PDQD a ==,所以在2Rt QDF△中,s=又12t DF PD a =−=−,2s t a −=)22a a −−=,,整理得222ac =,所以cea==四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 已知数列{}n a 满足:122,4a a ==,数列{}n a n −为等比数列. (1)求数列{}n a 的通项公式;(2)求和:12nn S a a a =++⋅⋅⋅+. 【答案】(1)12n n −+ (2)2112122n n n ++− 【解析】【分析】(1)首先求出11a −,22a −,即可求出等比数列{}n a n −的通项公式,从而求出{}n a 的通项公式;(2)利用分组求和法计算可得. 【小问1详解】因为12a =,24a =,数列{}n a n −为等比数列,所以111a −=,222a −=2=,即{}n a n −是以1为首项,2为公比等比数列, 所以12n n a n −−=,则12n n a n −=+. 【小问2详解】12n n S a a a =++⋅⋅⋅+01211222322n n −=++++++++()()01211232222n n −=+++++++++()2112112121222n n n n n n +−=+=++−−. 18. 已知圆()()22:121M x y ++−=,直线l 过原点()0,0O . (1)若直线l 与圆M 相切,求直线l 的方程;(2)若直线l 与圆M 交于P ,Q 两点,当MPQ 的面积最大时,求直线l 的方程.的【答案】(1)0x =或34y x =− (2)y x =−或7y x =−.【解析】【分析】(1)根据直线l 的斜率是否存在进行分类讨论,结合圆心到直线的距离等于半径来求得直线l 的方程.(2)设出直线l 的方程,由点到直线的距离公式、弦长公式求得三角形PQM 面积的表达式,结合二次函数的性质求得MPQ 的面积最大时直线l 的方程. 【小问1详解】①当直线l 的斜率不存在时,直线l 为0x =,显然符合直线与圆相切, ②当斜率存在时,设直线为y kx =,圆M 的圆心坐标()1,2-,圆心到直线的距离d由题意得:直线l 与圆M1,解得:34k =−,所以直线l 的方程为:34y x =−, 综上所述,直线l 的方程为:0x =或34y x =− 【小问2详解】直线l 的斜率不存在时,直线l 为0x =与圆相切,不符合题意,故直线l 斜率必存在, 设直线l 的方程为:y mx =, 圆心到直线的距离d,弦长PQ ==,所以12PQM S PQ d =⋅⋅=△当212d =时,面积S 最大,12=,整理得2870m m ++=,解得7m =−,或1m =−,所以直线l 的方程:y x =−或7y x =−.19.如图,已知A ,(0,0)B ,(12,0)C,直线:(20l k x y k −−=.(1)证明直线l 经过某一定点,并求此定点坐标; (2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程. 【答案】(1)证明见解析,定点坐标为(2,; (2170y +−=; (3)2100x −=. 【解析】【分析】(1)整理得到(2))0k x y −+−=,从而得到方程组,求出定点坐标; (2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S =得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D 点坐标,得到直线方程;(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到12P P k =由对称性得PK k =写成直线方程. 【小问1详解】直线:(20l k x y k +−−=可化为(2))0k x y −+−=,令200x y −= −=,解得2x y = = l经过的定点坐标为(2,;【小问2详解】因为A ,(0,0)B ,(12,0)C ,所以||||||12ABAC BC ===, 由题意得直线AB方程为y =,故直线l经过的定点M 在直线AB 上,所以||8AM ==,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =××,所以3||||94AD AC ==, 设00(,)D x y ,所以34AD AC = ,即003(6,(6,4x y −−=−,所以0212x =,0y =D ,将D 点坐标代入直线l的方程,解得k =, 所以直线l 170y+−=; 【小问3详解】设P 关于BC 的对称点1(2,P −,关于AC 的对称点2(,)P m n , 直线AC12612x −=−,即)12y x −,直线AC的方程为12)y x −,所以(12122m =−+ =− ,解得14,m n ==2P , 由题意得12,,,P K I P四点共线,12P P k =PK k =, 所以入射光线PK的直线方程为2)y x −−,即2100x +−=.20.已知两定点()()12,2,0F F ,满足条件212PF PF −=的点P 的轨迹是曲线E ,直线1y kx =−与曲线E 交于A ,B (1)求曲线E 的方程; (2)求实数k 的取值范围;(3)若||AB =AB 的方程. 【答案】20. ()2210x y x −=<21. ()1−22.10x y ++= 【解析】【分析】(1)由双曲线的定义得其方程为()2210x y x −=<;(2)由于直线和双曲线相交于左支,且有两个交点,故联立直线的方程和双曲线的方程,消去y 后得到关于x 的一元二次方程的判别式大于零,且韦达定理两根的和小于零,两根的积大于零,由此列不等式组,求解k 的取值范围; (3)由AB =,利用弦长公式,结合韦达定理列出关于k 的方程,解方程即可得结果. 【小问1详解】由双曲线定义可知,曲线E是以()1F,)2F为焦点的双曲线的左支,且c =由2122PF PF a −==,所以1a =,1b ,所以曲线E 的方程为()2210x y x −=<.故曲线E 的方程为:()2210x y x −=<.【小问2详解】设()11,A x y ,()22,B x y ,由题意联立方程组2211x y y kx −= =− ,消去y 得()221220k x kx −+−=, 又因为直线与双曲线左支交于两点,有()()222122122102810201201k k k k x x k x x k −≠ ∆=+−> − +=< −− => −,解得1k <<−. 故k的取值范围为()1−. 【小问3详解】因为2AB x =−====,整理化简得422855250k k −+=,解得257k =或254k =, 因为1k<<−,所以k =AB 10x y ++=. 故直线AB 10x y ++=. 的【点睛】关键点睛:(2)(3)中根据直线与曲线联立后利用韦达定理,再结合弦长公式从而求解. 21. 设数列{}n a 的前n 项和为n S ,且122n n n S a +=−,数列{}n b 满足2log 1nn a b n =+,其中*N n ∈. (1)证明2n n a为等差数列,求数列{}n a 的通项公式;(2)求数列21n a n+的前n 项和为n T ;(3)求使不等式1321111111n m b b b −+⋅+⋅⋅⋅⋅⋅+≥n 都成立的最大实数m 的值.【答案】(1)证明见解析;(1)2nn a n =+⋅ (2)188(4)4339n n T n =+⋅− (3【解析】【分析】(1)根据数列递推式可得122nn n a a −−=,整理变形结合等差数列定义即可证明结论,并求得数列的通项公式;(2)利用错位相减法即可求得答案; (3)将原不等式化为()111111321n+++≥ −调性,将不等式恒成立问题转化为函数最值问题,即可求得答案. 【小问1详解】当1n =时,11124a S a ==−,则14a =, 当2n ≥时,11,22nn n n n n a S S a a −−∴=−−=,即11122n n n n a a −−−=,即2n n a 是以122a =为首项,公差为1的等差数列, 故(1,22)1n n n n a n a n =++⋅∴= 【小问2详解】由(1)可得2(1)41n n a n n =+⋅+, 故22434(1)4n n T n =×+×+++⋅ ,故231424344(1)4n n n T n n +=×+×++⋅++⋅ ,则231324444(1)4n n n T n +−=×++++−+⋅14(14)884(1)4(4)41433n n n n n +−=+−+⋅=−+⋅−, 故188(4)4339n n T n =+⋅−; 【小问3详解】22log log 21n n n a b n n ===+,则1321111111n m b b b − +⋅+⋅⋅⋅⋅⋅+≥即()111111321n+++≥ −即11321n m −≤对任意正整数n 都成立,令()11111?·1321n f n +++−=则()111111?·11321211n n f n ++++−++故()()11f n f n +=>, 即(),N f n n +∈随着n 的增大而增大,故()()1f n f ≥m ≤, 即实数m【点睛】关键点睛:第三问根据数列不等式恒成立问题求解参数的最值问题时,要利用分离参数法推得111111321n m +++−≤ 对任意正整数n 都成立,之后的关键就在于构造函数,并判断该函数的单调性,从而利用最值求得答案.22. 已知椭圆C 的中心在坐标原点,两焦点12,F F 在x 轴上,离心率为12,点P 在C 上,且12PF F △的周长为6.(1)求椭圆C 的标准方程;(2)过点()4,0M 的动直线l 与C 相交于A ,B 两点,点B 关于x 轴的对称点为D ,直线AD 与x 轴的交点为E ,求ABE 的面积的最大值. 【答案】(1)22143x y += (2【解析】【分析】(1)根据题意得到22212226c a a c a b c = +==+,再解方程组即可. (2)首先设出直线l 的方程,联立直线与椭圆方程,根据韦达定理、点,B D 关于x 轴对称、,,A E D 三点共线得到()1,0E ,从而得到ABES = ,再利用换元法求解最值即可. 【小问1详解】由题知:2221222261c a a a c b a b c c == +=⇒ =+=, 所以椭圆22:143x y C += 【小问2详解】如图所示:设直线():40l x ty t =+≠,()()1122,,,A x y B x y . ()222243424360143x ty t y ty x y =+ ⇒+++= += . ()()2224434360t t ∆−+×>,解得24t >.1222434t y y t −+=+,1223634y y t =+. 因为点,B D 关于x 轴对称,所以()22,D x y −. 设()0,0E x ,因为,,A E D 三点共线,所以AE DE k k =. 即121020y y x x x x −=−−,即()()120210y x x y x x −=−−. 解得()()()12211212122101212124424y ty y ty ty y y y y x y x x y y y y y y ++++++===+++ 2364124t t×=−+=. 所以点()1,0E 为定点,3EM =.1212ABE AME BME S S S EM y y =−=⋅−=令0m =>,则()22181818163163443ABE m m S m m m m===≤++++△ 当且仅当163m m =,即m =时取等号. 所以ABE。
四川省成都市第七中学2023-2024学年高二上学期12月月考数学试题
四川省成都市第七中学2023-2024学年高二上学期12月月考
数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.23B.22
6.如图是某个闭合电路的一部分,每个元件的可靠性是
通的概率为()
二、多选题
A .1EF AD ⊥C .EF 与1BD 异面
11.已知抛物线2
:2C y px =2x =-上一点,过点P 作抛物线
三、填空题
四、解答题
(1)求这部分学生成绩的中位数、平均数(同组数据用该组区间的中点值作代表)(2)为了更好的了解学生对太空知识的掌握情况,学校决定在成绩高的第层抽样的方法抽取5名学生,进行第二轮面试,市太空知识竞赛,求90分(包括9020.如图所示,在四棱锥P ABCD -中,1
12
BC CD AD ==
=、PA PD =,E 、(1)证明:平面PAD ⊥平面ABCD ;
(2)若PC 与AB 所成角为45 ,求二面角21.已知抛物线C :28y x =,点(M B 两点.
(1)若P 为抛物线C 上的一个动点,当线段的顶点处,求a 的取值范围;
(2)当a 为定值时,在x 轴上是否存在异于点
(1)求r的取值范围;
(2)过点P作圆C的两条切线,切点为PB与椭圆E的另一个交点为
ST的最大值,并计算出此时圆。
广东省高二上学期12月月考数学试题(解析版)
高二上学期12月月考数学试题一、单选题1的倾斜角为( ) 0y +=A .B .C .D .3π6π56π23π【答案】D【分析】得,所以0y +=y =tan k α==,结合直线的倾斜角的范围即可求得.α【详解】设该直线的倾斜角为α,则,解得. tan α=[)0,απ∈23πα=故选:D.2.已知圆C :,则( ) 2286100x y x y +---=A .圆C 的圆心坐标为 B .圆C 的圆心坐标为 ()4,3--()3,4C .圆CD .圆C 的半径为35【答案】C【分析】将圆的一般方程化为圆的标准方程,得到圆心和半径,得到答案. 【详解】因为圆C :的标准方程为. 2286100x y x y +---=()()224335x y -+-=所以其圆心坐标为ABD 错误,C 正确. ()4,3故选:C3.甲、乙两人约定进行乒乓球比赛,采取三局两胜制(在三局比赛中,优先取得两局胜利的一方获胜,无平局),乙每局比赛获胜的概率都为,则最后甲获胜的概率是( )13A .B .C .D .1027162720272627【答案】C【分析】分前两局甲均赢,和前两局甲赢一场,输一场,第三局赢,分别求出概率相加得到答案. 【详解】因为乒乓球比赛的规则是三局两胜制(无平局),甲每局比赛获胜的概率都为,23若前两局甲均赢,则结束比赛,甲获得胜利,此时概率为,224339⨯=前两局甲赢一场,输一场,第三局甲赢,此时甲获得胜利,则概率为,212122833333327⨯⨯+⨯⨯=所以最后甲获胜的概率. 482092727P =+=故选:C4.已知圆C :和直线l :,若圆C 上存在A ,B 2222420x y kx y k +-++-=()25130kx k y +--=两点关于直线l 对称,则k =( ) A .-2 B .C .2D .或21212【答案】B【分析】根据圆C 上存在A ,B 两点关于直线l 对称,得到直线l 经过圆C 的圆心求解. 【详解】解:因为圆C 上存在A ,B 两点关于直线l 对称, 所以直线l 经过圆C 的圆心,圆C 的标准方程为,圆心,()()221x k y -++243k k =-+(),1C k -所以,解得,222520430k k k k ⎧-+=⎨-+>⎩12213k k k k ⎧==⎪⎨⎪⎩或或所以. 12k =故选:B5.已知圆:和圆:,则圆与圆1C 2224230x y x ay a +-+++=2C 22224410x y x ay a ++-+-=1C 2C 的公切线的条数为( ) A .1 B .2 C .3 D .4【答案】D【分析】求出两圆的圆心和半径,根据圆心距大于半径之和,得到两圆外切,故公切线条数为4. 【详解】两圆的标准方程分别为和, ()()2221x y a -++=()()22122x y a ++-=圆心分别为,,半径分别为,()12,C a -()21,2C a -11r=2r =圆心距,故, 123C C ==≥1212C C r r >+所以圆与圆外离,所以圆与圆有4条公切线. 1C 2C 1C 2C 故选:D6.如图所示,M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且,,设,,,则下列等式成立的是( )3AP PN =23ON OM = OA a = OB b = OC c =A .B .111444OP a b c =++ 1133AN a b c =++C .D .311444AP a b c =-+- 1122OM b c =- 【答案】A【分析】根据空间向量的线性运算法则逐项进行计算即可判断.【详解】因,所以选项错误; ()2211133233AN AO ON AO OM AO OB OC b c a =+=+=+⨯+=+-B 因()()3333231144443422AP AN AO ON a OM a b c ==+=-+⨯=-+⨯+ .所以选项错误;311444a b c =-++C 因为,所以选项错误. ()111222OM OB OC b c =+=+ D 因为,所以选项正确;311111444444OP OA AP a a b c a b c ⎛⎫=+=+-++=++ ⎪⎝⎭A 故选:.A 7.已知点是平行四边形所在平面外的一点,,,P ABCD ()1,1,0AB =- ()1,0,2AD =()1,1,1AP =- ,为线段的中点,为线段的中点,则( ) E AC F PD A .直线与直线.是平面的法向量 BP CD AD PAB C . D .//EF PB AC BD ⊥ 【答案】C【分析】选项A 利用空间向量夹角公式计算即可,B 选项利用法向量性质判断即可,选项C 画出利用三角形的中位线判断即可,选项D ,利用向量垂直的条件判断即可.【详解】因为,,()0,2,1BP AP AB =-=-()1,1,0CD BA ==- 所以,cos ,BP CD BP CD BP CD ⋅<>===故A 错误;因为平面PAB ,且,所以不是平面PAB 的法向量,AB ⊂10AD AB ⋅=≠ AD故B 错误;连接,如图所示:BD因为为线段的中点,为线段的中点, E AC F PD 又为平行四边形的对角线, BD ABCD 所以为线段的中点 E BD 所以是的中位线,EF PBD △所以,即, //EF PB //EF PB故C 正确;因为,, ()2,1,2AC AB AD =+=-()0,1,2BD AD AB =-= 所,1430AC BD ⋅=-+=≠故不成立, AC BD ⊥故D 错误. 故选:C.8.如图,已知,,从点射出的光线经直线AB 反射后再射到直线OB 上,最()5,0A ()0,5B ()1,0P 后经直线OB 反射后又回到点P ,则光线所经过的路程长为( )A .B .C .D .【答案】A【分析】求出关于的对称点和它关于y 轴的对称点,则就是所求的路程长. P AB 1P 2P 12PP【详解】易知直线AB 的方程为,设点关于直线AB 的对称点为,5y x =-+()1,0P ()1,P a b 则解得即.1,115,22b a b a ⎧=⎪⎪-⎨+⎪=-+⎪⎩5,4,a b =⎧⎨=⎩()15,4P 又点关于y 轴的对称点为,()1,0P ()21,0P -=故选:.A二、多选题9.连续两次抛掷一枚质地均匀的骰子,观察这两次骰子出现的点数.记事件A 为“第一次骰子出现的点数为3”,事件B 为“第二次骰子出现的点数为5”,事件C 为“两次点数之和为8”,事件D 为“两次点数之和为7”,则( ) A .A 与B 相互独立 B .A 与D 相互独立 C .B 与C 为互斥事件 D .C 与D 为互斥事件【答案】ABD【分析】先求出, 再利用公式判断选项AB ,利用概念判断选项CD 得解. (),(),(),()P A P B P C P D 【详解】连续两次抛掷一枚质地均匀的骰子的结果用有序数对表示,其中第一次在前,第二次在后,不同结果如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5).共36个. ,(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)依题意,,11(),()66P A P B ==事件C 包括,共5个,,事件D 包括(2,6),(3,5),(4,4),(5,3),(6,2)5()36P C =,共6个,. (1,6),(2,5),(3,4),(4,3),(5,2),(6,1)61()366P D ==对于选项A ,事件只有结果,A 与B 相互独立,所以选项A 正AB 1(3,5),()()()36P AB P A P B ==⋅确;对于选项B ,事件只有结果,A 与D 相互独立,所以选项B 正AD 1(3,4),()()()36P AD P A P D ==⋅确;对于选项C ,当第一次的点数是3点,第二次是5点时,两个事件同时发生了,所以事件不B C ,是互斥事件,所以选项C 不正确;对于选项D ,事件是不可能事件,即C 与D 是互斥事件,所以选项D 正确. C D ,故选:ABD10.已知方程表示椭圆,下列说法正确的是( )221124x y m m +=--A .m 的取值范围为 B .若该椭圆的焦点在y 轴上,则 ()4,12()8,12m ∈C .若,则该椭圆的焦距为4 D .若,则该椭圆经过点6m =10m =(【答案】BC【分析】根据椭圆的标准方程和几何性质依次判断选项即可.【详解】A :因为方程表示椭圆,221124x y m m +=--所以,解得,且,故A 错误;12040124m m m m ->⎧⎪->⎨⎪-≠-⎩412m <<8m ≠B :因为椭圆的焦点在y 轴上,221124x y m m +=--所以,解得,故B 正确;4120m m ->->812m <<C :若,则椭圆方程为,6m =22162x y +=所以,从而,故C 正确;222624c a b =-=-=24c =D :若,则椭圆方程为,10m =22126x y +=点的坐标不满足方程,即该椭圆不经过点,故D 错误. ((故选:BC.11.已知O 为坐标原点,圆M :,则( ) ()()222cos 2sin 4x y θθ-+-=A .圆M 与圆内切2216x y +=B .直线与圆M 相离sin cos 0x y αα-=C .圆M 上到直线的距离等于1的点最多有三个0x y +=D上任意一点P 作圆M 的切线,切点分别为A ,B ,则四边形PAMB面积100y +-=的最小值为【答案】AD【分析】根据圆与圆的位置关系即可判断A ;根据点到直线的距离公式和三角函数的有界性即可判断B ;根据点到直线的距离公式计算即可判断C ;根据点到直线的距离公式求出,利用三角的MP 恒等变换化简计算即可判断D.【详解】A :圆M 的圆心,半径, ()2cos ,2sin M θθ12r =而圆的圆心,,2216x y +=()0,0O 24r =所以,,所以圆M 与圆内切,A 正确; 2OM ==21r r -2216x y +=B :圆心M 到直线,故圆sin cos 0x y αα-=()2sin 2αθ-≤和直线相切或相交,B错误;C :因为圆心到直线的距离()2cos ,2sin M θθ0x y +=, π14d θ⎛⎫+- ⎪⎝⎭因为,圆M 的半径为2,[]0,3d ∈所以圆M上到直线的距离等于1的点最多有四个,故C 错误; 0x y +=D :四边形PAMB 的面积2S MA PA PA =⋅==当MP 时,有最小值,100y +-=MP ,πsin 52sin 53θθθ⎛⎫+-=+-⎪⎝⎭因为,所以,[]3,7MP ∈min 3MP =则四边形PAMB 面积的最小值D 正确. min S ==故选:AD.12.如图,已知正方体的棱长为2,P 为空间中一点,,1111ABCD A B C D -1AP xAA y AB z AD =++则( )A .当,时,异面直线BP 与 12x z ==0y =1C D B .当,时,三棱锥的体积为 1x y ==[]0,1z ∈1A PBC -43C .当,,时,有且仅有一个点P ,使得平面 12x =1y =[]0,1z ∈1A C ⊥1AB P D .当,时,异面直线BP 和所成角的取值范围是0y =[]0,1x z =∈1C D ππ,42⎡⎤⎢⎥⎣⎦【答案】ABD【分析】根据向量关系式确定动点位置或轨迹,然后逐项进行判断即可求解.【详解】对于,连接,.由下图可知,P 为的中点,取的中点O .连接PO ,BO ,A 11B D 1AD 1AD 11B D则,所以∠BPO 或其补角即异面直线BP 与所成的角,易得,,1//PO C D 1C D BP =PO =正确; BO =cos BPO ∠=A对于,由条件可知(),P 点的轨速为线段,因为,所以B 1BP zBC BB =+ []0,1z ∈11B C 11B C BC ∥P 到平面的面积为,所以三棱锥的体积为1A BC 1A BC A 122⨯=1P A BC -定值,故选项正确; 43B 对于,如下图,由条件可知(),所以点P 在线段EF 上(E ,F 分别为C 112BP zBC BB =+ []0,1z ∈,的中点).因为平面,所以平面即平面,点P 则平面与直1BB 1CC 1A C ⊥11AB D 1AB P 11AB D 11AB D线EF 的交点,此交点在FE 的延长线上,故选项错误;C对于,由条件可知(),可知点P 的轨速为线段,如下图,建立空D ()1AP x AA AD =+ []0,1x ∈1AD 间直角坐标系,得,,设,,则,所()12,0,2C D =- ()2,0,2B ()0,,2P a a -[]0,2a ∈()2,,BP a a =--以,当,即时,cos <1,>BP C D ==[]20,2a t -=∈2a =0=t ,此时直线BP 和所成的角是;当,即时,1cos ,0BP C D <>= 1C D 2π2a ≠(]0,2t ∈, 1cos ,BP C D <>=令,11,2m t ⎡⎫=∈+∞⎪⎢⎣⎭1cos ,BP C D <>=所以,即时,, 112m t ==0a =1cos ,BP C D <> 直线BP 和所成角的最小值为,故选项正确.1C D π4D故选:.ABD三、填空题13.若直线与直线平行,则a =______________. ()2110x a y ---=()4230x a y -+-=【答案】4【分析】根据直线与直线平行时的条件计算即可.1110A x B y C ++=2220A x B y C ++=【详解】因为直线与直线平行, ()2110x a y ---=()4230x a y -+-=所以,解得, ()()2241a a -+=--4a =经检验,当时,两直线不重合, 4a =所以. 4a =故答案为:4.14.已知椭圆的左、右焦点分别为,,过的直线交椭圆于A ,B 两点,若221369x y +=1F 2F 1F ,则______________.2214AF BF +=AB =【答案】10【分析】根据椭圆的定义可得,结合题意即可求解. 22||4AF BF AB a ++=【详解】因为,,, 6a =122AF AF a +=122BF BF a +=两式相加得. 22||424AF BF AB a ++==又,所以. 2AF +214BF =10AB =故答案为:10.15.某校进行定点投篮训练,甲、乙、丙三个同学在固定的位置投篮,投中的概率分别,,1223p ,已知每个人投篮互不影响,若这三个同学各投篮一次,至少有一人投中的概率为,则p =78______________. 【答案】## 140.25【分析】由已知结合对立事件的概率关系及相互独立事件的概率公式即可求解.【详解】由题意可知,解得.()1271111238p ⎛⎫⎛⎫----= ⎪⎪⎝⎭⎝⎭14p =故答案为:.1416.已知圆,M 是直线l :上的动点,过点M 作圆O 的两条切线,切点22:2O x y +=40x y -+=分别为A ,B ,则的最小值为______.MA MB ⋅【答案】3【分析】画出图形,设,利用数量积公式将转化为求的最小值,从2AMB θ∠=MA MB ⋅2||cos 2MA θ而分析图形可知当时, 这时最小,即 最小. OM l ⊥2||cos 2MA θMA MB ⋅【详解】设, 则 ,2AMB θ∠=2||||cos 2||cos 2MA MB MA MB MA ⋅== θθ可知当 时, 最小且 最大, 最小, 这时 最小.OM l ⊥||MA 2θcos 2θMA MB ⋅设点 到直线 的距离为 , 则 O l d d =因为圆 的半径为 , 所以当 时, , 可得 , O OM l ⊥1sin 2θ=21cos 2,||2MA = θ226d =-=所以 的最小值为3.MA MB ⋅ 故答案为:3 .四、解答题17.已知△ABC 的顶点,,BC 边上的高所在直线的方程为.()5,0A -()2,2B -550++=x y (1)求直线BC 的方程;(2)若 ,求直线AC 的方程.在①点C 在直线上;②BC 边上的中线所在直线的方程为这两个条件中任选一0x y -=120x y +-=个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)5120x y --=(2)选①:;选②:38150x y -+=1811900x y -+=【分析】(1)由BC 边上的高所在直线的方程求出直线的斜率,再由点斜式求方程即可; BC (2)若选①联立直线方程求出点坐标,再求出斜率,点斜式得直线方程;若选②先求出C AC 中点坐标,再由中点坐标公式求出点坐标,利用点斜式求方程即可.BC C 【详解】(1)因为BC 边上的高所在直线的方程为,550++=x y 所以直线BC 的斜率.5k =直线BC 的方程为,即.()252y x +=-5120x y --=(2)若选①.由, 05120x y x y -=⎧⎨--=⎩解得,即, 33x y =⎧⎨=⎩()3,3C 所以,直线AC 的方程为, 38AC k =()3058y x -=+即.38150x y -+=若选②.由,解得,即线段BC 的中点坐标为. 1205120x y x y +-=⎧⎨--=⎩48x y =⎧⎨=⎩()4,8设点,则, ()11,C x y 11242282x y +⎧=⎪⎪⎨-+⎪=⎪⎩解得,即, 11618x y =⎧⎨=⎩()6,18C 所以,直线AC 的方程为, 1811AC k =()180511y x -=+即.1811900x y -+=18.已知圆心为的圆经过点和,且圆心在直线上.C ()1,1A ()2,2B -C :50l x y ++=(1)求圆的方程;C (2)若过点的直线被圆截得的弦长为的方程.()1,1D --m C m 【答案】(1);()()223225x y +++=(2)直线的方程为或.m =1x -3470x y ++=【分析】(1)由圆的性质可得:的垂直平分线方程与直线联立方程组求得圆心为AB :50l x y ++=,用两点之间距离公式求得,即可求出圆的标准方差. ()3,2--5=(2)由圆的半径,弦长,利用垂径定理和勾股定理求出弦心距,再利用圆心2d ==到直线的距离为求出直线方程即可,需注意斜率不存在的情况. 2【详解】(1)因为,,所以线段的中点坐标为, ()1,1A ()2,2B -AB 31,22⎛⎫- ⎪⎝⎭直线的斜率,因此线段的垂直平分线方程是:,即AB 21321AB k --==--AB 113232y x ⎛⎫+=- ⎪⎝⎭.330x y --=圆心的坐标是方程组的解.解此方程组得:, C 33050x y x y --=⎧⎨++=⎩32x y =-⎧⎨=-⎩所以圆心的坐标是.C ()3,2--圆的半径长, C 5r =所以圆心为的圆的标准方程是.C ()()223225x y +++=(2)因为,所以在圆内. ()()22131225-++-+<()1,1D --又因为直线被圆截得的弦长为m C所以圆心到直线的距离C m 2d ==①当直线的斜率不存在时,,m :1m x =-到的距离为,符合题意.()3,2--=1x -3(1)2---=②当直线的斜率存在时,设,即.m ():11m y k x +=+10kx y k -+-=,22⇒22(12)4(1)k k -=+解得,直线为:,即: 34k =-m 31(1)4y x +=-+3470x y ++=综上:直线的方程为或.m =1x -3470x y ++=【点睛】本题第一问考查了圆的标准方程,主要利用弦的垂直平分线过圆心来求圆的标准方差.第二问主要考查圆的弦长及垂径定理,直线斜率不存在的情况容易丢掉,熟练掌握公式及定理是解决本题的关键.属于中档题.19.某两个班的100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是.[80,90),[90,100),[100,110),[110,120),[120,130](1)求语文成绩在内的学生人数.[]120,130(2)如果将频率视为概率,根据频率分布直方图,估计语文成绩不低于112分的概率.(3)若语文成绩在内的学生中有2名女生,其余为男生.现从语文成绩在内的学生中[)80,90[)80,90随机抽取2人背诵课文,求抽到的是1名男生和1名女生的概率.【答案】(1)5(2)0.21 (3). 35【分析】(1)利用频率分布直方图中,频率和为求出,即可求出语文成绩在内的学生1a []120,130人数;(2)直接利用频率分布直方图求概率;(3)利用古典概型的概率公式直接求解.【详解】(1)由频率分布直方图,知,解得,()20.020.030.04101a +++⨯=0.005a =语文成绩在内的学生人数为.[]120,1300.005101005⨯⨯=(2)由频率分布直方图,知语文成绩不低于112分的概率. 1201120.02100.005100.2110-⨯⨯+⨯=(3)由频率分布直方图,知语文成绩在内的学生有人,其中女生2名,[)80,900.005101005⨯⨯=男生3名,分别记2名女生为A ,B ,3名男生为a ,b ,c .样本空间为,其中抽到1名男生和1名女生的情况有{,,,,,,,,,}AB Aa Ab Ac Ba Bb Bc ab ac bc ,,,,,,Aa Ab Ac Ba Bb Bc 所以抽到的是1名男生和1名女生的概率为. 63105=20.如图1,在△ABC 中,D 为AC 的中点,,△ABD 沿BD 折2BC =CD cos C =起,得到如图2所示的三棱锥P -BCD ,且平面PBD ⊥平面BDC .(1)证明:面PBD ;BC ⊥(2)求二面角C -PD -B 的余弦值.【答案】(1)证明见解析【分析】(1)根据余弦定理可得,利用勾股定理的逆定理可得,结合面面垂直的性1BD =BC BD ⊥质即可证明;(2)建立如图所示的空间直角坐标系,根据余弦定理求出AB ,进而求得点P 的坐标,得平面PCD 的法向量,利用空间向量的数量积的定义即可即可求解.【详解】(1)在△BCD 中,, 2BC =CD cos C =由余弦定理知,即, 2225221BD =+-⨯=1BD =所以,即.222BD BC CD +=BC BD ⊥因为平面PBD ⊥平面BDC ,平面平面,BCD PBD BD =所以BC ⊥平面PB D.(2)以B 为坐标原点,BC 所在直线为x 轴,BD 所在直线为y 轴,过点B 且垂直于平面BCD 的直线为z 轴,建立如图所示的空间直角坐标系,则,,. ()0,0,0B ()2,0,0C ()0,1,0D在△ABC 中,由余弦定理知, (222222AB =+-⨯⨯解得AB =所以,, cos ABD ∠=4ABD π∠=可求得,()0,2,2P 从而,. ()0,1,2DP = ()2,1,0DC =- 设平面PCD 的法向量为,(),,n x y z =由,得,令,可得. 00DP n DC n ⎧⋅=⎪⎨⋅=⎪⎩2020y z x y +=⎧⎨-=⎩2y =()1,2,1n =- 因为BC ⊥平面PBD ,所以可取平面PBD 的一个法向量为,()1,0,0m = 所以,cos ,m n 〈〉== 即二面角C -PD -B21.已知圆.224:+=C x y (1)若圆与直线相切,求的值; C 320:-+-=l x my m m (2)已知点,过点作圆C 的切线,切点为,再过作圆的切线,()10M ,P Q P ()()221112:'-+-=C x y 切点为,若,求的最小值.R =PQ PR MP 【答案】(1)或 0m=125m =(2)【分析】(1)利用圆的圆心到与直线等于半径可得答案;C l (2)设点,求出,,利用,可得点所在直线方程, (),P x y PQ PR =PQ PR P 的最小值即为点到所求直线的距离可得答案.MP P 【详解】(1)圆的圆心为半径为, 224:+=C x y ()00C ,2因为圆与直线相切,C 320:-+-=l x my m ,解得或; 20m =125m =(2)圆的圆心为半径为, 224:+=C x y ()00C ,2的圆心为半径为()()221112:'-+-=C xy ()11,'C 设点(),P xy=,PR ==因为,所以,=PQ PR =整理得,30x y ++=因为到直线,所以直线与圆相离, ()00C ,30x y ++=1>30x y ++=C因为到直线与圆相离, ()11,'C 30x y ++=>30x y ++=C '即点在直线上,P 30x y ++=的最小值即为点到直线MP P 30x y ++=22.已知四棱锥S -ABCD 中,底面ABCD 为矩形,SA ⊥平面ABCD ,,点E 在33AD AB ===棱BC 上.(1)若E 为BC 的中点,求直线SE 与平面SCD 所成角的正弦值;(2)是否存在一点E ,使得点A 到平面SDE ?若存在,求出的值;若不存在,说BE EC 明理由.【答案】(1)310(2)存在,2【分析】(1)建立如图空间直角坐标系,利用空间向量法求出平面SCD 的法向量,结合空间向量数量积的定义即可求解;(2)设点E 的坐标,利用空间向量法求出平面SDE 的法向量,结合向量法即可求出点A 到平面SDE 的距离,列出等式,解之即可.【详解】(1)由平面,平面得,又,SA ⊥ABCD ,AB AD ⊂ABCD ,SA AB SA AD ⊥⊥AD AB ⊥以A 为原点,,,的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系. AB AD AS因为,,,,, ()0,0,0A (S ()1,3,0C ()0,3,0D 31,,02E ⎛⎫ ⎪⎝⎭所以,,. 31,,2SE ⎛= ⎝ ()1,0,0CD =-(0,3,SD = 设平面SCD 的法向量为, (),,n x y z = 则,则,令,得. 00CD n SD n ⎧⋅=⎪⎨⋅=⎪⎩030x y -=⎧⎪⎨=⎪⎩1y=(n = 设直线SE 与平面SCD 所成的角为θ,则, 332sin cos ,51022SE n SE n SE n θ⋅====⨯ 所以直线SE 与面SCD 所成角的正弦值为. 310(2)设,平面SDE 的法向量为, ()()1,,003E λλ≤≤()111,,m x y z = 则,则, 00SD m SEm ⎧⋅=⎪⎨⋅=⎪⎩ 11111300y x yλ⎧=⎪⎨+=⎪⎩令. 1z =(3m λ=- 又, (AS = 当点A 到平面SDE,AS m m⋅==解得, 2λ=所以存在点,使得点A 到平面SDE ()1,2,0E 此时. 2BE EC =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
眉山中学2018届高二上期12月月考数学试题卷
理工农医类
本试卷共4页,满分150分,考试时间120分钟.
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1、直线012=-+y x 在y 轴上的截距为( )
A 、1-
B 、
21 C 、21- D 、1 2、.双曲线2x 2-y 2=8的实轴长是( )
A 、2
B 、2 2
C 、4
D 、42 3、焦点在x 轴上的椭圆221mx y +=的离心率为2
1,则m =( ) A 、2 B 、34 C 、43 D 、 14
4、圆02:221=-+x y x C 与圆4)3(:222=-+y x C 的公切线的条数( )
A 、3
B 、2
C 、1
D 、0
5、已知焦点在x 轴上的双曲线渐近线方程为x y 3
2±=,则此双曲线的离心率等于( ) A 、35 B 、213 C 、2
3 D 、313 6、直线)2(:-=x k y l 与双曲线:C 222=-y x 的左右两支各有一个交点,则k 的取值范围
为( )
A 、1-≤k 或1≥k
B 、 11≤≤-k
C 、22<
<-k D 、11<<-k
7、已知y x ,满足⎪⎩
⎪⎨⎧≤--≥-+≥-0120102y x y x y x ,则11+-x y 的取值范围是( ) A 、]41,25[-- B 、]2,2
5[- C 、)2,21[- D 、),2
1[+∞- 8、已知)2,0(),0,2(B A -,N M ,是圆022=++kx y x 上两个不同的点,N M ,关于直线01=--y x 对称,P 是圆022=++kx y x 上的动点,则ABP ∆面积的最大值是( )
A 、23-
B 、4
C 、23+
D 、6
9、已知方程22ax by ab +=和0ax by c ++=,其中,0,,0ab a b c ≠≠>,它们所表示的曲线可能是下列图象中的( )
10、已知12F 、F 分别是双曲线()22
2210,0x y a b a b
-=>>的左、右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若2ABF ∆为锐角三角形,则双曲线的离心率的范围是( ) A 、(
1,12+ B 、()12,++∞ C 、(12,12- D 、)2,21
11、中心在原点,焦点坐标为)0,2(±的椭圆被直线1+=x y 截得的弦中点横坐标为3
2-,则椭圆方程为( ) A 、14622=+y x B 、14
82
2=+y x C 、12422=+x y D 、12
42
2=+y x 12、已知O 为坐标原点,双曲线C :)0,0(122
22>>=-b a b
y a x 的左焦点为)0)(0,(>-c c F ,以OF 为直径的圆交双曲线C 的渐近线于O B A ,,三点,且0)(=⋅+,若关于x 的方程02=-+c bx ax 的两个实数根分别为1x 和2x ,则以2|,||,|21x x 为边长的三角形的形状是( )
A 、钝角三角形
B 、锐角三角形
C 、直角三角形
D 、等腰直角三角形
二.填空题. (共计4题,每题5分,共20分)
13、已知)0,3(),0,3(21F F -动点M 满足10||||21=+MF MF ,则动点M 的轨迹方程__
14、设P 是双曲线)0(192
22>=-a y a
x 左支上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若31=PF ,则2PF =_______
15、设不等式⎪⎩
⎪⎨⎧+-≤≥≥k kx y y x 200,(其中0>k )在平面直角坐标系中所表示的区域为Ω,其面
积为S ,若4)3()4(:2
2=-+-y x C 与区域Ω有公共点时,求S 的最小值为______ 16、从双曲线315
3222
2=+=-y x F y x 引圆的左焦点的切线FP 交双曲线右支于点P ,T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO|—|MT|等于_________
三、解答题(本题共计6小题,共70分)
17、(本题满分10分)
(1)曲线:C 1142
2=---k
y k x 表示焦点在x 轴上的椭圆,则k 的范围; (2)求以)0,2(),0,2(21F F -为焦点,且过点)2,6(M 的椭圆标准方程.
18、(本题满分12分) 双曲线的两条渐近线的方程为x y 2±=,且经过点()
32,3-
⑴求双曲线的方程;
⑵双曲线的左右焦点分别为21,F F ,P 为双曲线上一点,21PF F ∠为︒60,求21F PF S ∆.
19、(本题满分12分)
已知圆C 经过两个点)3,2(-A 和),5,2(--B 且圆心在直线032=--y x 上.
(1)求此圆C 的方程;
(2)直线02:=+++m my x l (m 为常数)与圆C 相交于N M ,,求||MN 的最小值.
20、(本题满分12分) 已知椭圆:C 12222=+b
y a x )0(>>b a 的离心率为53,且短轴长为8 (1)求椭圆C 的标准方程;
(2)设1F 、2F 分别为椭圆C 的左、右焦点,过2F 的直线l 与椭圆C 交于不同两点N M ,,
若MN F 1∆的内切圆周长为π,),(11y x A 、),(22y x B ,求||21y y -的值.
21、(本题满分12分)
如图,PAB ∆的顶点A 、B 为定点,P 为动点,其内切圆1
O 与AB 、PA 、PB 分别相切于点C 、E 、F ,且
32=AB ,2||||||=-BC AC .
(1) 求||||||PB PA -的值;
(2)建立适当的平面直角坐标系,求动点P 的轨迹W 的方程;
(3)设l 是既不与AB 平行也不与AB 垂直的直线,线段AB 的中点O 到直线l 的距离为
2,直线l 与曲线W 相交于不同的两点G 、H ,点M 满足OH OG OM +=2,证明:||||2GH OM =.
22、(本题满分12分)
已知椭圆:C 12222=+b
y a x )0(>>b a 的离心率为22,若圆222a y x =+被02=--y x 截得的弦长为2.
(1)求椭圆C 的标准方程;
(2)已知A 、B 为动直线0),1(≠-=k x k y 与椭圆C 的两个交点,问:在x 轴上是否存在定点M ,使得MB MA ⋅为定值?若存在,试求出点M 的坐标和定值;若不存在,请说明理由.
备选:
16、在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为__________. 14、1F 、2F 是双曲线224x y -=的两焦点,Q 是双曲线上任意一点,从1F 引12FQF ∠平分线的垂线,垂足为P ,则点P 的轨迹方程是 。
14.直线1y x =+被椭圆22
24x y +=所截的弦的中点坐标是__________. 17、(本题满分10分)双曲线与椭圆115
402
2=+x y 有共同的焦点,点()4,3P 在双曲线的渐近线上,求双曲线的标准方程和离心率.
19、(本题满分12分)已知椭圆22
221(0)x y a b a b
+=>>,一个顶点(0,2)A -,且其右焦点到
直线0x y -+=的距离为
2
. ⑴求椭圆的方程;
⑵若弦AB 的中点为(2,1)M ,求直线AB 的方程.
20、(本题满分13分)
动圆M 与圆1C :2)2(22=++y x 外切,且与圆:2C 2)2(22=+-y x 内切.
(1)求动圆圆心M 的轨迹C 方程;
(2)若A 、B 是轨迹C 上不同的两点,O 为坐标原点,求⋅的最小值。
11、116
252
2=+y x 的左、右焦点分别为21,F F ,弦AB 过1F ,若2ABF ∆的内切圆周长为π,),(11y x A 、),(22y x B 则2ABF S ∆=( )
A 、
35 B 、310 C 、320 D 、3
5。