6章橡胶的弹性

合集下载

第六章橡胶弹性

第六章橡胶弹性
平衡时,附加内力和外力相等,单位面积上得附加内力 (外力)称为应力。
6、1、1 应力与应变
(1) 简单拉伸(drawing)
材料受到一对垂直于材料截面、大小相等、方向相反并在 同一直线上得外力作用。
材料在拉伸作用下产生得形变称为拉伸应变,也称相对伸长率(e)。
拉伸应力(张应力) = F / A0 (A0为材料得起始截面积)
6、2 橡胶弹性得热力学方程
橡胶弹性得热力学分析
实验:
天然橡胶试样测定在恒定伸长 l 下外力 f 与温度 T 得关系。
结果:
f-T曲线,当伸长率大于10%,直 线得斜率为正;当伸长率小于10 %,直线得斜率为负——热弹转 变。
原因:橡胶得热膨胀。
f
38%
3.0
22% 2.0
13%
1.0
6%
3%
0.0 0 20
交联橡胶得溶胀包括两部分:
溶剂力图渗入聚合物内部使其体积膨胀; 由于交联聚合物体积膨胀导致网状分子链向三度空间伸展, 使分子网受到应力产生弹性收缩能,力图使分子网收缩。 当膨胀与收缩能相互抵消时,达到了溶胀平衡。
溶胀过程自由能变化包括两部分:
溶剂分子与大分子链混合时得混合自由能DGM,混合过程 熵增,有利于溶胀;
2=3/(2zb2)
z – 链段数目 b – 链段长度
根据Boltzmann 定律,体系得熵值与体系得构象数得关系:
S k ln
由于构象数正比于概率密度, W (x, y, z)
S C k 2 (x 2 y 2 z 2 )
6、3 橡胶弹性得统计理论
1 1 σ1
σ3
z
σ2
λ1
λ2
弹性模量=应力/应变 对于不同得受力方式、也有不同得模量。

第六章橡胶弹性

第六章橡胶弹性
Shear modulus and compliance in shear
简单剪切实验能把高聚物宏观力学性能与它们内部 分子运动相联系,建立高聚物力学行为的分子理论。
(iii)均匀压缩(pressurizing,compress) 材料受到均匀压力压缩时发生的体积形变称压缩
应变(Δ)。
材料经压缩以后,体积由V0缩小为V,则 压缩应变: Δ = (V0 - V)/ V0 = DV / V0
2. 在恒定外力下,橡皮筋加热时是膨胀还是收缩? 为什么?
熵弹性
由于高分子链的特点,橡皮筋将收缩。
橡胶在张力(拉力)的作用下产生形变,主要 是熵变化,即蜷曲的大分子链在张力的作用下 变得伸展,构象数减少。熵减少是不稳定的状 态,当加热时,有利于单键的内旋转,使之因 构象数增加而卷曲,所以在保持外界条件不变 时,升温会发生回缩现象。
➢形变量大(WHY?长链,柔性) 弹性形变量可高达1000%
➢弹性模量小,高弹模量约105N/m2 一般聚合物109N/m2,金属1010-11 N/m2
➢弹性模量随温度升高而增大 晶体材料的弹性模量随温度升高而减小。
➢形变有热效应——快速拉伸放热,形变回复吸热 金属材料与此相反。
晶体材料的弹性模量随着温度的升高而减小。 温度的升高导致原子间距由于热膨胀而增大, 由于原子间距增大,所以模量下降。
Rubber Products
具有橡胶弹性的条件:
柔性长链
使其卷曲分子在外力作用下通过链段 运动改变构象而舒展开来,除去外力 又恢复到卷曲状态
适度交联
可以阻止分子链间质心发生位移的 粘性流动,使其充分显示高弹性
Molecular movements
具有橡胶弹性的条件: 长链 足够柔性 交联

第六章 橡胶弹性

第六章 橡胶弹性

第六章橡胶弹性一、概念1、熵弹性2、热塑性弹性体二、选择答案1、你会选( A )聚合物用作液氮罐的软密封。

(液氮沸点为77K)A、硅橡胶,B、顺丁橡胶,C、天然橡胶,D、丁苯橡胶2、橡胶试样快速拉伸,温度升高的原因是(C )。

⑴分子链从蜷曲到伸展,熵减小放热,⑵分子内摩擦放热,⑶拉伸诱导结晶放热。

A、⑴B、⑴⑵C、⑴⑵⑶D、以上皆不对三、填空题1、交联橡胶的状态方程为,只有在形变很小时,交联橡胶的应力-应变关系才符合虎克定律。

2、橡胶高弹性的热力学本质为熵弹性,即橡胶拉伸时,内能几乎不变,而主要引起熵值的变化。

四、回答下列问题1、交联橡胶弹性统计理论的根据是什么?写出由它得出的交联橡胶的状态方程,并说明状态方程的意义。

2、在一具有适当交联度软橡皮试条下端掛一砝码(不是过重),达到平衡形变后,升高温度,会观察到什么现象?为什么?橡胶的模量随温度升高而增高,外力不变,则由状态方程可得出伸长率减少。

故升高温度,会观察到交联度软橡皮试条回缩。

5-4 当迅速拉一块橡胶时,测量温度有些升高,当外力去掉,温度又有所下降,请解释这种现象?解:根据橡胶热力学分析,得出公式为发fDl=-TdQ当拉伸时dl>0 所以dQ<0 是放热反应当外力去掉回缩时dl<0 所以dQ>0 是吸热反应当压缩时,受力与拉力大小相同,方向相反,dl<0,f<0 所以dQ<0 是放热反应这是因为在拉伸前,分子排列是不规整的,熵值是大的,因混乱程度大,经拉伸时分子排列规整,混乱程度减小,分子链从一种构象变成另一种构象,熵值减小,再者,分子间的内摩擦生热,所以是放热,当外力去掉以后,分子链段由约束状态,变成自由状态,也就是由有序态变成无序态,熵值在增加,热运动在增加,但此时,所需的热量,不可能自身供给,只能来自外界,这就是回缩时需要吸热。

5-5 一硫化橡胶,链段分子量为10000,密度为,问于下拉长1倍时的张力为多少?解:根据公式先求出单位体积中链数目T=273+25=298KR=1.38拉伸一倍的情况代入公式五、计算题1、天然橡胶硫化后,网链平均分子量为6000,密度为0.90g/cm3。

高分子物理第六章

高分子物理第六章
2
一、橡胶
Rubber products
3
What is rubber?
Nature rubber-PI Synthesize rubber
CH2 C CH CH3 n CH3
•Polybutadiene •Polyisobutylene •Polychloroprene
4
The definition of rubber
12
第一节
形变类型及描述力学行为的基本物理量
13
6.1.1 基本概念
应变:当材料受到外力作用而所处的条件却使其不能产生惯性位 移,材料的几何形状和尺寸将发生变化,这种变化就称为~~
附加内力:材料发生宏观变形时,其内部分子以及分子内各原子间 的相对位置和距离发生变化,致使原子间或分子间的原有引力平衡 受到破坏,因而将产生一种恢复平衡的力,这种力简称~~
8
(2)高聚物的黏弹性
指高聚物材料不但具有弹性材料的一 般特性,同时还具有粘性流体的一些 特性。弹性和粘性在高聚物材料身上 同时呈现得特别明显。
9
三、橡胶的交联
PB cross-linked
Crosslinking is when individual polymer chains are linked together by covalent bonds to form one giant molecule. 10
dU =TdS-PdV+fdl
fdl =-TdS
dQ=TdS
fdl =-dQ
拉伸 dl>0, dS<0
dQ<0 拉伸放热
回缩 dl<0, dS>0
dQ>0 回缩吸热
42

第六章 橡胶弹性

第六章 橡胶弹性

上式的物理意义:外力作用在橡胶上,使橡胶的内能和熵随着 伸长而变化。或者说,橡胶的张力是由变形时内能和熵发生变 化引起的。
Company Logo
Logo
讨论
U S f T l T ,V l T ,V
T (6-12)
Company Logo

Logo
常见材料的泊松比 泊松比数值 解 释
0.5 0.0
不可压缩或拉伸中无体积变化
没有横向收缩
0.49~0.499
0.20~0.40

橡胶的典型数值
塑料的典型数值
Company Logo
U l T ,V
直线的截距为:
结果:各直线外推到T=0K时, U 0 几乎都通过坐标的原点 l T ,V
Company Logo
Logo
外力作用引起熵变
说明橡胶拉伸时,内能几乎不变,而主要引起熵的变化。 就是说,在外力作用下,橡胶的分子链由原来的蜷曲状 态变为伸展状态,甚至结晶,熵值由大变小,终态是一 种不稳定的体系,当外力除去后就会自发地回复到初态。 这就说明了为什么橡胶高弹形变是可回复的。
Logo
三、 橡胶的使用温度范围
Tg是橡胶使用温度下限,分解温度Td是使用温度上限。 (一)改善高温耐老化性能,提高耐热性 橡胶主链结构上常含有大量双键,橡胶在高温下,易 发生臭氧龟裂、氧化裂解、交联或其它因素的破坏, 不耐热,很少能在120℃以上长期使用。 1、改变主链结构 (1)使主链上不含或无双键,因双键最易被臭氧破 坏断裂;而双键旁的次甲基上的氢易被氧化,导 致裂解或交联。如乙丙橡胶、丁基橡胶或硅橡胶等 均有较好的耐热性。 (2)主链由非碳原子组成,如由Si-O组成,硅橡胶 可在200 ℃以上长期使用。

6橡胶弹性

6橡胶弹性

能弹性
晶体材料变形时,原处于平衡结点上的原子沿 应力方向伸长,原子间的引力加大,内能增加。载 荷去除后内能自发减小的过程将使变形回复。由于 晶体材料变形时微观有序度基本不变,则熵值基本 不变。
熵弹性的特点(与能弹性相反):
1)应力和应变之间不保持单值、唯一的关系,与加载 路径有关;
2)弹性形变与时间有关,即弹性形变不是瞬时达到的; 3)弹性变形量大,一般在100%~1000%之间; 4)弹性模量较小; 5)绝热伸长时变热(放热),回复时吸热。
泊松比 0.21
0.25~0.33 0.31~0.34 0.32~0.36
0.45 0.5
材料名称 玻璃 石料
聚苯乙烯
低密度聚乙烯
赛璐珞 橡胶类
泊松比 0.25
0.16~0.34 0.33 0.38 0.39
0.49~0.5
泊松比数值
解释
0.5 0.0 0.49~0.499 0.20~0.40
缠结点 缠结点受聚合物分子量和温度的限制!!!!
缠结点??????
1)缠结点如何通过限制分子链的滑移起到临时交联点的作用? 2)缠结点为什么只能在一定的温度范围内限制分子链的滑移? 3)缠结点为什么只能在一定的时间范围内限制分子链的滑移? 4)不同结构的聚合物的橡胶态温度与时间范围有何不同? 5)不同分子量的聚合物的橡胶态范围有何不同? 6)临时橡胶的运动特征和“永久”橡胶有何不同?
Dunlop Tire
Michelin Tire
中文定义
THE DEFINITION OF RUBBER
施加外力时发生大的形变、外力除 去后可以恢复的弹性材料称为橡胶
Rubber is a polymer which exhibits rubber elastic properties, i.e. a material which can be stretched to several times its original length without breaking and

第六章橡胶弹性知识讲解

第六章橡胶弹性知识讲解

dU=TdS+fdl
f
(
U l
) T, V
T
(
S l
)
T,
V
等温等容条件的热力学方程:
f ( U ) T ( S )
l T,V
l T,V
物理意义:
橡胶的张力是由于变形时,内能发生变化 和熵变化而引起的。
f (U ) T (S )
l T, V
l T, V

(
S l
) T, V
变为容易测得的物理量
λ2
Z
λ3
第i个网链第i个网链变形前的构 象熵
Siu C ki2(xi2 yi2 zi2 )
Y
变形后的构象熵
Sid C ki2(12xi2 22yi2 23zi2 )
(xi,yi,zi) (λ1xi,λ2yi,λ3zi)
X
第i个网链变形前后的熵变
Si Sid Siu ki2[(12 -1)xi2 (22 -1)yi2 (32 -1)zi2 ]
3.温度升高,模量增加。 4.形变时有明显的热效应。 5.形变具有时间依赖性(称为力学松弛)。
6.2 橡胶的热力学分析
热力学体系: 橡皮试样 环境: 外力(单轴拉伸) 依据: 热力学第一定律dU=dQ+dW
热力学第二定律dQ=TdS
dU=dQ+dW
dQ=TdS
dW=fdl-pdV
dU=TdS+fdl-pdV, dV≈0 ,
第6章 橡胶弹性
6.1描述力学行为的基本物理量 6.2橡胶弹性的热力学分析 6.3橡胶弹性的统计理论
6.1 材料力学基本物理量 (理解)
应变
材料受到外力作用,它的几何形状发生变化,这 种变化叫应变。 附加内力 材料发生宏观形变时,使原子间或分子间产生附 加内应力来抵抗外力,附加内力与外力大小相等, 方向相反。 应力 单位面积上的附加内力为应力,单位Pa。

高分子物理课件6橡胶弹性

高分子物理课件6橡胶弹性

B P
B PV0 V
6 橡胶弹性
对于各向同性的材料,通过弹性力学的数学 推导可得出上述三种模量之间的关系
E 2G(1 ) 3B(1 2 )
泊松比 :
定义为拉伸实验中 材料横向应变与纵 向应变的比值之负
m / m0
l / l0
T
数。反映材料性质
的重要参数。
6 橡胶弹性
泊松比数值
橡胶拉伸形变时外力的作用主要只引起体系构象熵的变化 而内能几乎不变──熵弹性
橡胶弹性热力学的本质:熵弹性
6 橡胶弹性
橡胶弹性热力学的本质:熵弹性
拉伸橡胶时外力所做的功 主要转为高分子链构象熵的减小
体系为热力学不稳定状态 去除外力体系回复到初始状态
6 橡胶弹性
熵弹性本质的热效应分析
热 dU=0
dV=0
6 橡胶弹性
重点及要求:
橡胶状态方程及一般修正;一般了解“幻影网络” 理论和唯象理论;熟习橡胶和热塑性弹性体结构 与性能关系
教学目的:橡胶是高分子材料的最大种类之一,
研究其力学行为与分子结构和分子运动之间关系 具有重要的理论和实际意义 。通过本讲的学习, 可以全面理解和掌握橡胶弹性产生的理论原因及 在实际中的应用。
6 橡胶弹性
Similar to which type of materials?
橡胶弹性与 弹性相似,都是 弹性,弹性 模量随温度升高而 。
气体 液体 固体
6 橡胶弹性
橡胶弹性的统计理论和唯象理论
本讲内容: ➢橡胶弹性的统计理论 ➢橡胶状态方程 ➢橡胶状态方程的一般修正 ➢“幻象网络”理论 ➢唯象理论 ➢影响因素 ➢热塑性弹性体
平衡时,附加内力和外力相等,单位面积上的附加内力 (外力)称为应力。

06 1 第六章 力学性能 高弹性 TPE 11918

06 1 第六章 力学性能 高弹性 TPE 11918

第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。

表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。

高聚物的力学行为:依赖于时间、温度。

必须同时考虑应力、应变、时间和温度来描述。

研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。

6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。

塑料,γ = 0.2~0.4。

对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。

第六章 橡胶弹性

第六章  橡胶弹性

高聚物高弹性的分子机制
弹性形变模量 E 小、形变ε很大、可逆
* 高弹形变——链段运动——构象发生变化
拉伸——分子链构象从卷曲 很大的形变 。 * 卷曲(热力学稳定) 伸展 E小、 ε大 外力只需克服很小的构象改变能即能产生
伸展(热力学不稳定)
形变可逆
高聚物高弹性的分子机制
温度提高——高弹模量增大
8.2.2 平衡态高弹形变的统计理论
《1》孤立柔性高分子链的构象熵 考虑一维情况
高分子链末端距在 X 轴上投影的分布
《1》孤立柔性高分子链的构象熵
分子链一端在 X 轴的原点, 另一端在 L 时的几率分布函数 W 为:
ne等效自由结合链链段数
le链段长
《1》孤立柔性高分子链的构象熵
几率分布函数 W ∝ 分子链微观状态数Ω 根据Boltzmnn定律: 分子链的构象熵 S = K lnΩ= C - Kβ2l2 K为Boltzmnn常数 构象熵的变化:
dP=0时, ( G )T .P f
l
恒形变恒压下:
dP=0时, (
G为状态函数,改变求导顺序不影响结果
所以恒温恒容下:
G ) L. P S T
S f G G ( )T .V ( ) L.P ( )T .P ( )l .V l T l T T .V T l l .V
3
式中,
3 2nele2
2
ne—等效链段数;
Le—等效链段长度;
1) 网链的构象数正比于几率密度W(x,y,z);
2) 根据Boltzmann定律,该网链的构象熵为:
S = KlnΩ Ω—— 微观状态数(构象数)
则:一个孤立柔性链(网链)的构象熵

高分子物理6 橡胶弹性

高分子物理6 橡胶弹性

dV≈0
由 H=U+pV
H U l T ,P l T ,P
dH=dU+pdV
≈dU
(8)
再按照热力学定义
G H TS U PV TS
dG dU PdV VdPTdS SdT
将 dU TdS PdV fdl
dG fdl VdP SdT
所以
G f l T ,P
G S T l,P
上式的物理意义:外力作用在橡胶上,一方面使橡胶的
焓随伸长变化而变化,另一方面则引起橡胶的熵随伸长变
化而变化
这里需要说明一点,大多数参考书 张开/ 复旦大学 何
曼君 / 华东理工大学等书上都是:
f U T S
l T ,P
l T , p
上述两式实际上是一回事,因为橡胶在拉伸时,υ=0.5,
模量。 ②在不太大的外力作用下,橡胶可产生
很大的形变,可高达1000%以上,去除 外力后几乎能完全回复,给人以柔软而 富有弹性的感觉
③ 形变时有明显的热效应,绝热拉伸时 高聚物放热使温度升高,回缩时温度降 低(吸热)拉伸过程从高聚物中吸收热 量,使高聚物温度降低。
此外,拉伸的橡胶试样具有负的膨胀系 数,即拉伸的橡胶试样在受热时缩短 (定拉伸比)。
温度升高,分子链内各种运动单元
的热运动愈趋激烈,回缩力就愈大,因 此橡胶类物质的弹性模量随温度升高而 增高。
2)橡胶弹性与大分子结构的关系
① 链柔性:好 橡胶高分子链柔顺性好,内旋转容易。 如:硅橡胶(硅氧键) -Si-O- 顺丁橡胶(孤立双键)-C-C=C-C-
② 分子间作用力:小
如果聚合物分子链上极性基团过多,极 性过强,大分子间存在强烈的范德华力 或氢键,降低弹性。橡胶一般都是分子 间作用力较小或不含极性基团的化合物, 如天然橡胶、顺丁橡胶等。

7第六章橡胶弹性

7第六章橡胶弹性

(3)物理量的相互关系
对于各向同性材料
对于弹性体,理想不可压缩物体变 形时,体积为零,υ=0.5
6.2 橡胶与橡胶弹性的概念
橡胶 ASTM标准:20~70 C下,1min可拉伸2倍的试样,当 ASTM标准: 20~ 1min可拉伸 外力除去后1min内至少回缩到原长的1.5倍以下者,或 1min内至少回缩到原长的 1.5倍以下者,或 6 7 者在使用条件下,具有10 ~10 Pa的杨氏模量者 Pa的杨氏模量者 橡胶弹性(高弹性) 橡胶弹性是指以天然橡胶为代表的一类高分子材料表 现出的大幅度可逆形变的性质 橡胶、塑料、生物高分子在Tg~Tf间都可表现出一定的高弹性 高分子材料力学性能的最大特点:高弹性和粘弹性
(2)三种不同模式下的应力和应变
A. 拉伸应变
Ⅰ拉 伸
拉伸作用力产生的应变,叫做“拉伸应变”,用单位长 度的伸长来表示 小伸长时:用材料的起始尺寸作为标准,应变关系式 如下,叫做“工程应变”、“习用应变”
大形变时:其关系式为δ= ㏑(l/l0),叫做“真应变”。
B. 拉伸应力:
材料受到的外力是垂直于截面积的、大小相等 而方向相反的、作用于同一直线的两个力,这 种外力叫做“拉伸力”,所对应的应力叫做“拉 伸应力”。 小形变时:又叫“习用应力”或“工程应力”,截面积用 起始截面积表示,关系式为;
弹性模量小的原因长链有卷曲到伸展长链有卷曲到伸展链柔性好分子间吸引力小受力时分子链就易变形橡胶在伸长时会放热回缩时会吸热橡胶发生形变需要时间时间依赖性这是因为链橡胶发生形变需要时间时间依赖性这是因为链段的运动需要克服分子间的内摩擦力达到平衡位置段的运动需要克服分子间的内摩擦力达到平衡位置需要一定的时间需要一定的时间橡胶具有热弹效应橡胶具有热弹效应具有明显的松弛特征具有明显的松弛特征6565高弹性的高分子结构特征高弹性的高分子结构特征1分子链的柔性分子链的柔性橡胶类聚合物都是内旋转比较容易位垒低的柔性高分橡胶类聚合物都是内旋转比较容易位垒低的柔性高分子橡胶类聚合物的内聚能密度一般在子橡胶类聚合物的内聚能密度一般在290kjcm3290kjcm3比塑料比塑料和纤维类聚合物的内聚能密度低得多和纤维类聚合物的内聚能密度低得多2分子间的相互作用分子间的相互作用分子间作用力较小的非极性聚合物分子间作用力较小的非极性聚合物材料之所以呈现高弹性是由于链段运动能比较迅速的适应所受外力而改变分子链的构象

第六章橡胶弹性课后习题

第六章橡胶弹性课后习题

第六章橡胶弹性一、思考题1.与金属材料相比,高聚物的力学性能有哪些特点?2.与金属的普弹性相比,高聚物的高弹性有哪些特点?为什么称高弹性为熵弹性?3.影响橡胶高弹性的几个主要因素是什么?4.何谓交联橡胶单轴拉伸状态方程?该方程在什么情况下与实际橡胶相差最大?何谓橡胶的拉伸弹性模量、剪切模量?二、选择题1.关于交联橡胶以下那条不正确。

( ) ○1具有熵弹性○2快速拉伸时吸热○3形变很小时符合Hooke定律2.高聚物处于橡胶态时其弹性模量( ) ○1随着形变增大而增大○2随着形变增大而减小○3随形变变化很小3 高聚物弹性的热力学本质是;○1能弹性○2熵弹性○3对外界做功引起三、简答题1.当温度升高时,高聚物的高弹模量下降。

解释该现象。

2.不受外力作用时橡皮筋受热伸长,而在恒定外力作用下却受热收缩,试用高弹性热力学理论解释。

四、计算题1.某硫化橡胶的密度为1.03g/cm3,网链平均相对分子质量为5000g/mol,试求在27℃下将该橡胶拉长至原长的1.8倍时应力等于多少?若考虑该橡胶交联之前数均相对分子质量为2.0×105时,则修正后应力为多少?2.某种硫化橡胶的密度为964kg/m3,其试件在27℃下拉长一倍时的拉应力为7.25×105N/m2。

试求:(1) 1m3中的网链数目;(2)初始的拉伸模量与剪切模量;(3)网链的平均相对分子质量M。

c3.有一根长4cm、截面积为0.05cm2的交联橡胶,25℃时被拉伸到8cm,已知该橡胶的密度为1.0g/cm3,未交联时其数均相对分子质量为5×106,交联后网链平均相对分子质量为1×104。

试用橡胶弹性理论(经过自由末端校正)计算拉伸该橡胶所用的力及该橡胶的弹性模量。

高分子物理-第六章 橡胶弹性

高分子物理-第六章 橡胶弹性
Mc
(1
2M c Mn
)
③ 物理缠结和体积变化修正
❖ 物理缠结的贡献
G
( RT Mc
() 1 - M c ) Mn
β2 经验参数
❖ 交联橡胶在形变时是要发生体积变化的需要进 行修正。
N1k T (
V V0
1
2
)
④ 仿射变形的修正
❖ 交联网的变形不是仿射变形,特别是在较高的应 变下。
❖ 一般交联点的波动要使模量减小 ❖ 作为一种简单的改正,在式中引入一个小于1的
单位体积的网链数 N0?
设网链的分子量为 Mc
试样密度为ρ
单位体积的网链数:
交联橡胶的状态方程一
R 气体常数
阿佛加德罗常数
K 波尔兹曼常数
N0KT (
1
2 )
NKT
Mc
(
1
2 )
RT
Mc
(
1
2 )
RT
Mc
(
1
2 )
交联橡胶的状态方程二
将拉伸比λ 换算成ε
l
l0
l
l0

l
l0
l0
1 1
C2则可作为对统计理论偏差的一种量度。
2(C 1
C 2()
1)
2
/(
1)
2
2(C 1
C2 )
截距为2 C1 , 斜率为2 C2。
统计理论
N0KT (
1
2 )
应是一水平线
实验证明,当拉伸比 在1~2之间, Mooney方程更好地描述了橡胶弹 性模量的伸长比依赖性。
1/
Rivlin 理论、Ogden理论等。
3. 仿射形变,形变前后交联点固定在平均位置上, 形变时按与宏观形变相同的比例移动

《橡胶弹性理论》PPT课件_OK

《橡胶弹性理论》PPT课件_OK
19
• NR,加1~5% S 弹性体 • NR,加10~30% S 硬质橡胶
20
• 4.结晶度:愈少较好
• PE、PP结晶成塑料。
EPR无规共聚破坏结晶形成橡胶。
• 5.分子量
• 从热机械曲线可知,显示高弹态温度范围是在Tg~ Tf之间,而Tg~ Tf的温度范围随分子量的增加而逐 步加宽。因此需要一定的分子量。
线性增加。且具有不可逆性 (irreversibility)。
• 而高分子材料在外力作用下,和其
他材料相比,有着显著的粘弹性特
征。例如:当外力作用在交联橡胶
上时,普弹形变瞬时发生,高弹形
变缓慢发展,外力除去后,经过弹
性恢复还保留着随时间增加而逐渐
恢复的滞后形变。上述高弹形变及
滞后形变实际上包含着可逆的弹性
15
• 4.橡胶的弹性模量随温度的升高而增高,而一般固 体材料的模量是随温度的升高而下降(定拉伸比)。
• 橡胶在拉伸时,体积几乎不变 υ=0.5 • 先用分子热运动的观点,定性说明橡胶弹性特征。 • 具有橡胶弹性的高聚物,室温下已处于玻璃化温度
以上,加之分子链柔顺性好,自发处于卷曲状态, 在外力作用下,大分子线团容易伸展开来。
T
G l T
ቤተ መጻሕፍቲ ባይዱ
S l
T
=-
f T
l
(7)可重新表示为
f
H l
T
,P
+
T
f T
l,P
(9) (10) (11)代入(10)
(12) (13)
(14)
(15)
(16)
26
S l
T
=-
f T
l
f
H l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F A0
Shear modulus and compliance in shear 剪切模量和剪切柔量
G
J
•固体
简单剪切实验能把高聚物宏观力学性能与它们内部 分子运动相联系,建立高聚物力学行为的分子理论。
适用
•液体
•粘弹体
Compression 压 缩
压缩应变 Compression strain
V V0
压缩模量 Modulus of compression
P B
PV0 B V
The relationship between Young’s modulus E, shear modulus G and compression modulus B
E 2G(1 ) 3B(1 2 )
内能变化 熵变化
According to Gibbs function ——吉布斯函数
Josiah Willard Gibbs (1839~1903)
G=H-TS
H、T、S分别为系统的焓Enthalpy、 热力学温度Temperature和熵Entropy
焓是一种热力学体系,对任何系统来说,焓的定义为:
假设过程可逆 热力学第二定律
dQ=TdS
dU =TdS-PdV+fdl
橡胶在等温拉伸中体积不变, 即dV=0
U S T f 对l求偏导 l T , P l T , P
等温等 压拉伸
dU =TdS+fdl
U S f T l T , P l T , P
形变后 2 2 2 2 2 2 2 S i ,d C k i (1 xi 2 yi 3 z i ) 构象熵 The change of entropy
S S i ,d S i ,u
构象熵的变化 2 2 2 2 2 2 2 S i k i [(1 1) xi (2 1) yi (3 1) z i ]
等轴 非等轴
压缩 Compression
The concept of Strain and Stress
当材料受到外力作用而所处的条件却使其 不能产生惯性位移,材料的几何形状和尺 寸将发生变化,这种变化就称为应变。
平衡时,附加内力和外力相等,单位面积 上的附加内力(外力)称为应力。
Basic concept 受一对大小相等,方向相反, 作用在一条直线上的力
3
4
3 / 2
e
2 ( x2 y2 z 2 )
( x, y, z ) W ( xk , yk , zk )
k 1
The entropy
S k ln
k is Boltzmann's constant
2 2 2 2
S C k ( x y z )
C - constant
Rubber products
高弹性的本质
橡胶弹性是由熵变引起的, 在外力作用下,橡胶分子链由卷 曲状态变为伸展状态,熵减小, 当外力移去后,由于热运动,分 子链自发地趋向熵增大的状态, 分子链由伸展再回复卷曲状态, 因而形变可逆。
气体弹性弹性的本质也是熵弹性。
高弹性特点
形变量大 WHY? (长链,柔性) 形变可恢复 WHY? (动力:熵增;结构:交链) 弹性模量小且随温度升高而增大 形变有热效应
U S f T l T , P l T , P
U f f T l T , P T P ,l
——橡胶的热力学方程
f-T Curve
结果:各直线外推到T=0时, 几乎都通过坐标的原点
U 0 l T , P
Engineering strain l l 0 1 l0 工程应变
- 伸长率 elongation ratio
True strain 真应变
dl l ln l0 l l0
l
Tensile modulus 拉伸模量 or Young’s modulus 杨氏 模量
E, G, B and

E 2G(1 )
E 3B(1 2 )
Only two independent variables
6.2 Thermodynamical analysis of rubber elasticity 橡胶的热力学分析
tensile l 0– Original length dl – extended length

f T (
,拉伸时分子链由混乱变为规则取向,甚至结晶,所以dS<0,根 据热力学第二定律,dG=TdS,dG<0,这就是为什么橡胶拉伸时放热的原 因。 重点及要求:
s )T .V l
6.3 Statistical Theories of Rubber Elasticity 橡胶弹性的统 计理论
仿射形变 Affine deformation
网络中的各交联点被固定在平衡位置上,当橡 胶形变时,这些交联点将以相同的比率变形。
主伸长比率 1 2 3
形变前, (xi,yi,zi) 形变后,(1xi, 2yi, 3zi)
形变前 2 2 2 2 S i ,u C k i ( xi yi z i ) 构象熵
(后两点可以通过热力学分析找到答案)
6.1 形变类型
物理的观点
基 本 的 形 变
简单剪切
形状改变而 体积不变
本体压缩(或 本体膨胀)
体积改变而 形状不变
Easy to handle
单轴拉伸
拉伸 Tensile 剪切 Shear
Uniaxial elongation
双轴拉伸
biaxial elongation
H=U+PV
U为系统的内能;P为系统的压力,V为系统的体积
G=U+PV-TS
Making derivation 求导数
dG=dU+PdV+VdP-TdS-SdT
dU =TdS-PdV+fdl
dG=VdP-SdT+fdl
恒温恒压, i.e. T, P不变,
dT=dP=0
G f l T , P
Similar to which type of materials?
橡胶弹性与 弹性相似,都是熵弹 性,弹性模量随温度升高而增加。
气体 液体 固体
外力作用引起熵变
f S f T T T P ,l l T ,V
•橡胶弹性是熵弹性
•回弹动力是熵增
热 量 变 化
dU=0 dV=0 dU =TdS-PdV+fdl
fdl =-TdS
dQ=TdS
fdl =-dQ
dQ<0 拉伸放热 回缩 dl<0, dS>0 dQ>0 回缩吸热
拉伸 dl>0, dS<0
思考题:
1、说明交联橡胶平衡态高弹形变热力学分析 的依据和所得结果的物理意义。 2、不受外力作用,橡皮筋受热伸长,在恒定 外力作用下,受热收缩试用高弹性热力学理 论解释
• 答:根据热力学第一和第二定律有
f ( u s )T .V T ( )T .V f u f s l l
• 物理意义为:外力作用在橡胶上,一方面引起内能的变化,一方面引起 熵的变化。 • 验证实验时,将橡胶试样等温拉伸到一定长度,在定长的情况下测定不 同温度下的张力,以f 对T作图,得到一条直线,直线的截距为fu。结论: • 一般fu ≈0,说明橡胶拉伸时内能几乎不变,而主要是熵的变化。这种只 有熵才有贡献的弹性称为熵弹性
•拉伸过程中体积不变
•只考虑熵的变化,忽略内能变化 •两交联点间的链为Gaussian链 •形变为仿射形变
Arthur S. Lodge
假 •每个交联点由四个有效链组成 设
交联点由四个有效链组成
对孤立柔性高分子链,若将其一端 固定在坐标的原点(0,0,0),那么其另 一端出现在坐标(x,y,x)处小体积 dxdydz内的几率为:
Engineering stress 工程应力
F A0
True stress 真应力
F ' A
Strain 应 Strain - the amount变 deformation a sample of
undergoes when one puts it under stress. Strain can be elongation, bending, compression, or any other type of deformation.
Possion ratio
泊松比
m / m0 T l / l 0
泊松比数值
0.5 0.0 0.49~0.499 0.20~0.40
Possion ratios for different polymers
解释
不可压缩或拉伸中无 体积变化 没有横向收缩 橡胶的典型数值 塑料的典型数值
第六章 橡胶弹性
本章的教学内容、要求和目的
Rubber products
教学内容:
(1)橡胶弹性的特点;(2)橡胶状态方程。 重点及要求:
掌握橡胶弹性的特点、本质及在受力状态下的应力、应 变、温度和分子结构之间相互关系。 教学目的:通过本章的学习,可以全面理解和掌握 橡胶弹性产生的原因、条件及特点,建立和使用橡 胶状态方程,指导橡胶的使用和加工。
G S T P ,l
G f l T , P
S f Therefore l T , P T P ,l
Substitute (16) into (7’)
相关文档
最新文档