快速成型技术的数据处理
快速成型技术个人实验报告
开放性实验快速成型制造技术实验报告班级:学号:姓名:指导教师:一:快速成型介绍快速原理制造技术,又叫快速成型技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。
但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。
形象地讲,快速成形系统就像是一台"立体打印机"。
RP系统的基本工作原理RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。
当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。
不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。
这种工艺可以形象地叫做"增长法"或"加法"。
每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。
RP技术是在现代CAD/CAM 技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
快速成型与快速模具制造技术及其应用课程作业
1、立体光固化(SLA) 该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速
二、 STL数据文件及处理
快速成型制造设备目前能够 接受诸如STL,SLC,CLI, RPI,LEAF,SIF等多种数 据格式。其中由美国3D Systems公司开发的STL文 件格式可以被大多数快速成
型机所接受,因此被工业界
认为是目前快速成型数据的
准标准,几乎所有类型的快 速成型制造系统都采用STL 数据格式。
五、CT图像数据处理软Mimics
Mimics软件简介
Mimics软件是比利时Materialise公司面向医 学CT或MRI数据模型处理的运行在Windows 操作 系统环境下的高度集成的三维图像处理软件,该软 件能在几分钟内将CT或MRI数据转换成三维CAD或 快速成型所需的模型文件。其主要功能特点如下:
成型方法。
SLA技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫 描,被扫描区域的树脂薄层(约十分之几毫米)产生光聚合反应而固化,形 成零件的一个薄层。工作台下移一个层厚的距离,以便固化好的树脂表面再 敷上一层新的液态树脂,进行下一层的扫描加工,如此反复,直到整个原型 制造完毕。由于光聚合反应是基于光的作用而不是基于热的作用,故在工作 时只需功率
3、选择性激光烧结(SLS)
研究SLS的有DIM公司、EOS公司、北京隆源公司。该法采用C02激光器作 能源,目前使用的造型材料多为各种粉末材料。在工作台上均匀铺上一层很薄 的粉末,激光束在计算机控制下按照零件分层轮廓有选择性地进行烧结,一层 完成后再进行下一层烧结。全部烧结完后去掉多余的粉末,再进行打磨、烘干 等处理便获得零件。目前,成熟的工艺材料为蜡粉及塑料粉,用金属粉或陶瓷 粉进行粘接烧结的工艺还正在实验研究阶段。该技术具有原材料选择广泛、多 余材料易于清理、应用范围广等优点,适用于原型及功能零件的制造。在成形 过程中,激光工作参数以及粉末的特性和烧结气氛是影响烧结成形质量的重要 参数,原理如图4所示。
快速成型技术的工作原理
快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。
快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。
快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。
其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。
CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。
2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。
主要包括增补模型壳体、提高模型强度、修复模型错误等。
这一阶段的处理对制造成型的质量和效率有直接的影响。
3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。
4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。
通过这个过程将模型切成多个水平层面形成多个切片。
每层镶嵌在一起就变成了整个模型。
5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。
这个过程就是快速成型技术的核心技术。
6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。
完成整个产品制造的过程。
总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。
快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。
《逆向工程及快速成型技术》课程标准
《逆向工程与快速成型技术》课程标准一、基本信息1.课程地位:逆向工程与快速成型技术是“模具设计与制造专业”的一门专业选修课程,通过本课程学习,学生应掌握逆向工程的基本概念和技术体系,了解学科发展趋势;掌握面向实物样件的数字化、数据处理、模型重建与评价的基本理论与技术;培养学生建立面向机电产品的逆向工程方法论,初步掌握一种支持逆向工程的应用软件工具。
2.课程任务:本课程教学任务是使学生认识逆向工程与正向设计的关系,掌握逆向工程的设计思路;掌握几种快速原型制造工艺,具备面向实物样件的数字化、数据处理、模型重建与评价的基本理论与技术的能力。
3.课程衔接:《数控加工工艺与编程》、《UG设计基础》、《CAD制图》、《三维扫描与逆向建模》等课程。
三、课程目标本课程目的是使学生掌握逆向工程的基本概念和技术体系,了解学科发展趋势;掌握面向实物样件的数字化、数据处理、模型重建与评价的基本理论与技术;培养学生建立面向机械产品的逆向工程方法论,初步掌握一种支持逆向工程的应用软件工具。
四、课程理念1.课程设计原则:围绕专业知识、能力与素质矩阵,根据本课程教学内容,结合后续课程及工程技术岗位的需要,优化课程教学内容,分解课程知识与能力模块,以实施理论与实践双融合教学为理念,借助课堂精讲(或精品课程平台、工厂实际操作视频),完成课程理论知识的教学,以实验设计和生产问题解决形式(课内训练、课外作业)实现动手能力训练。
通过“教、学、做、评一体化”完成该课程教学。
2.课程内容结构:(1)课程项目学习安排:课内以项目讨论学习为主,过课堂教学和应用实践等多个环节,使学生掌握快速成型与快速制模的理论原理、技术方法和工程应用,为今后从事相关领域的科学技术研究,解决工程实际问题奠定坚实的基础。
通过实验,了解逆向工程中原始数据的采集方法和应注意的问题;掌握三维结构光扫描装置的基本操作和相关知识元;掌握Geomagic软件的基本操作。
了解快速成型的原理及其与传统加工工艺的区别;了解不同快速成型方式的优点、缺陷和应用范围。
快速成型技术-第六章
6.1 快速成型技术前期处理精度
1、三维建模的形体表达方法 随着计算机辅助设计技术的飞速发展,出现了许多三维建模的形体表达方 法,目前常见的有以下几种: (1) B-Rep法(Boundary Representation,边界表达法), B-Rep法是根据顶 点、边和面所构成的表面来精确地描述三维实体模型的,其优点是能快速 地绘制出立体或线框模型;缺点是由于其数据是以表格的形式出现的,因 此空间的占用量较大,描述不一定是唯一的,所得到的实体有时不很精确, 有可能会出现错误的孔洞和颠倒现象。 (2) CSG法(Constructive Solid Geometry,构造实体几何法),CSG法又称 为 BBG (Building-Block Geometry,积木块几何法),这种方法采用的是布 尔运算法则,将一些较简单的如立方体、圆柱体等体元进行组合,得到复 杂形状的三维实体模型。其最大优点是数据结构简单,无冗余的几何信息, 实体模型也较真实有效,且可以随时修改;缺点是该实体算法很有限,构成 图形的计算量较大而且费时。
(Solid Modeling)和表面造型(Surface Modeling)功能,后者对构造复杂的自由曲面有 着重要的作用。常用三维建模软件种类及特点已在第五章详细论述,目前用得最多 的是Pro/E软件,由于此软件具有强大的实体造型和表面造型功能,可以构造任意复 杂的模·型,因此被广泛使用。
(1) Pro/E软件。Pro/E是美国参数技术公司(Parametric Technology Corporation, PTC)研发的一个非常成功的建模软件。Pro/E软件彻底改变了机械CAD, CAM等传 统观念,采用参数化、数字化特征进行产品的三维建模,目前它已成为当今世界机械 领域的新标准。利用Pro/E软件进行产品的建模设计,能将设计至生产全过程进行有 机地集成,让所有用户都同时参与进行同一产品的设计与制造工作。
快速成型技术与试题答案(供参考)
快速成型技术与试题答案(供参考)试卷3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适⽤于新产品开发和单间零件⽣产等4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关5.也被称为:3D打印,增材制造;6.选择性激光烧结成型⼯艺(SLS)可成型的材料包括塑料,陶瓷,⾦属等;7.选择性激光烧结成型⼯艺(SLS)⼯艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等;8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(⾃由成型),后处理;9.快速成型技术的特点主要包括原型的复制性、互换性⾼,加⼯周期短,成本低,⾼度技术集成等;10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提⾼其⽣产率和制作⼤件能⼒,优化设备结构,开发新的成形能源,快速成形⽅法和⼯艺的改进和创新,提⾼⽹络化服务的研究⼒度,实现远程控制等;11.光固化快速成型⼯艺中,其中前处理施加⽀撑⼯艺需要添加⽀撑结构,⽀撑结构的主要作⽤是防⽌翘曲变形,作为⽀撑保证形状;⼆、术语解释1.STL数据模型是由3D SYSTEMS 公司于1988 年制定的⼀个,是⼀种为技术服务的三维图形⽂件格式。
STL ⽂件由多个三⾓形⾯⽚的定义组成,每个三⾓形⾯⽚的定义包括三⾓形各个定点的三维坐标及三⾓形⾯⽚的法⽮量。
stl ⽂件是在计算机图形应⽤中,⽤于表⽰三⾓形⽹格的⼀种⽂件格式。
它的⽂件格式⾮常简单,应⽤很⼴泛。
STL是最多系统所应⽤的标准⽂件。
STL是⽤三⾓⽹格来表现3D CAD模型。
STL只能⽤来表⽰封闭的⾯或者体,stl⽂件有两种:⼀种是ASCII明码格式,另⼀种是⼆进制格式。
2.快速成型精度包括哪⼏部分原型的精度⼀般包括形状精度,尺⼨精度和表⾯精度,即光固化成型件在形状、尺⼨和表⾯相互位置三个⽅⾯与设计要求的符合程度。
形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺⼨误差是指成型件与CAD模型相⽐,在x、y、z三个⽅向上尺⼨相差值;表⾯精度主要包括由叠层累加产⽣的台阶误差及表⾯粗糙度等。
简述3d打印快速成型的工艺过程
简述3d打印快速成型的工艺过程3D打印,也称为快速成型技术,是一种通过逐层堆积材料来制造物体的先进制造技术。
它可以直接将数字模型转化为实体物体,具有高效、灵活、精确的特点。
本文将详细介绍3D打印的工艺过程。
1. 数字建模3D打印的第一步是数字建模,即使用计算机辅助设计(CAD)软件创建三维模型。
这个过程可以通过绘制、扫描或使用三维扫描仪来完成。
在数字建模过程中,设计师可以根据需求对模型进行调整和优化,以确保最终打印出的物体具有所需的形状和尺寸。
2. 切片处理一旦完成了数字建模,下一步是将模型切片。
切片是指将三维模型切割成一系列薄片,每个薄片的厚度通常为几毫米。
切片可以使用特定的切片软件完成。
在切片过程中,还可以选择打印参数,如层高、填充密度等。
3. 打印准备完成切片后,需要将切片转换为适合3D打印机使用的文件格式。
最常用的文件格式是.STL(Standard Tessellation Language)格式。
这个过程可以使用切片软件完成,将切片转化为3D打印机可以识别的指令。
4. 打印过程在打印准备完成后,将转换后的文件导入到3D打印机中,并设置打印参数。
3D打印机会根据文件中的指令逐层堆积材料来制造物体。
常用的打印技术包括熔融沉积建模(FDM)和光固化。
在FDM打印中,热塑性材料通过喷嘴加热熔化,并通过移动喷嘴在每一层上方堆积。
而在光固化打印中,液态光敏材料通过紫外线固化成为固体。
5. 后处理完成打印后,物体可能需要一些后处理步骤。
这取决于所使用的打印技术和材料。
例如,在FDM打印中,打印出的物体可能需要去除支撑结构,并进行表面处理,如打磨、喷漆等。
而在光固化打印中,打印出的物体可能需要进行清洗和固化。
通过以上步骤,3D打印技术可以实现快速成型,将设计师的创意转化为实体物体。
它在各个领域都有广泛的应用,如汽车制造、医疗、航空航天等。
3D打印的工艺过程简单明了,但在实际应用中仍然需要不断改进和优化,以满足不同行业的需求。
第7章 快速成型技术中的数据处理
第一节 CAD三维模型的构建方法
1.2 反求工程
新产品开发过程中的另一条重要路线就是样件的反求。反求工程技 术(Reverse Engineering,RE)又称逆向工程技术,是20世纪80年代末期 发展起来的一项先进制造技术,是以产品及设备的实物、软件(图纸、程
序及技术文件等)或影像(图片、照片等)等作为研究对象,反求出初始的
第二节 STL数据文件及处理
2. STL的二进制文件格式
二进制文件采用IEEE类型整数 和浮动型小数。文件用84字节的头文 件和50字节的后述文件来描述一个三 角形。 注意到每个面目录都是50个字节, 如果是所生成的 STL 文件是由 10000 个小三角形构成的,再加上84字节的 头文件,该二进制STL文件的大小便 是84+50×10000 =500084 B≈0.5MB。 若同样的精度下,采用 ASCII 形式输 出该 STL 文件,则此时的 STL 文件的 大小约为6×0.5MB=3.0MB。
第二节 STL数据文件及处理
2.1 STL文件的格式
STL文件的主要优势在于表达简单清
晰,文件中只包含相互衔接的三角形片面
节点坐标及其外法矢。STL数据格式的实 质是用许多细小的空间三角形面来逼近还
原CAD实体模型,这类似于实体数据模型
的表面有限元网格划分,如图7-5所示。 STL模型的数据是通过给出三角形法向量 的三个分量及三角形的三个顶点坐标来实 现的。STL文件记载了组成STL实体模型 的所有三角形面,它有二进制(BINARY) 和文本文件(ASCII)两种形式。
第七章 快速成型技术中的数据处理
1
2 3 4 5
CAD三维模型的构建方法
STL数据文件及处理 三维模型的切片处理 STL数据编辑与处理软件Magics RP CT图像数据处理软Mimics
快速成型技术及其应用
快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。
在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。
本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。
通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。
二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。
其基本原理可以概括为“离散-堆积”。
将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。
根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。
材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。
光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。
在紫外光照射下,液态树脂逐层固化,形成实体。
该技术精度较高,适用于制造复杂结构和高精度的模型。
选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。
在激光的作用下,粉末逐层烧结,形成实体。
该技术可以制造金属和陶瓷等高强度材料的零件。
2.1第二章_快速成型制造工艺--I
ξ2 快速成型制造工艺
支撑结构的作用和类型:
作用:支撑作用和减少翘曲变形。
类型:斜支撑
主要用于支撑悬臂结构部分,在 成型过程中为悬臂提供支承,同 时也约束悬臂的翘曲变形。
直支撑
主要用于支承腿部结构
ξ2 快速成型制造工艺
• 有时为了减少支撑量,以节省材料及方便后处理,也 经常采用倾斜摆放。确定摆放方位以及后续的施加支 撑和切片处理等都是在分层软件系统上实现。 • 对于上述的小扳手,由于其尺寸较小,为了保证 轴部外径尺寸以及轴部内孔尺寸的精度,选择直立摆
放,如图2-2c所示。同时考虑到尽可能减小支撑的批
次,大端朝下摆放。
生聚合反应,选择时有局限性。
需要二次固化
经快速成型系统光固化后的原型树脂并未完 全被激光固化。
较脆,易断裂性能尚不如常用的工业塑料
ξ2 快速成型制造工艺
二、 光固化快速原型的工艺过程
光固化快速原型的制作一般可以分为前处理、原型制作和
后处理三个阶段。
(一)前处理
前处理阶段主要是对原型的CAD模型进行数据转换、摆放方位确定、 施加支撑和切片分层,实际上就是为原型的制作准备数据。下面以某一小 扳手的制作来介绍光固化原型制作的前处理过程。
成型方向选择
表面处理 表面处理
*****
切片处理
快速成型制作过程
ξ2 快速成型制造工艺
快速成型制造系统
快 速 成 型 产 品 造 型
产 品 原 型
ξ2 快速成型制造工艺
快速成型制造技术从广义上讲可以分成两类:材料叠加和材料去除。下 图给出了当前众多快速成型工艺根据材料和构建技术不同进行的分类。
ξ2 快速成型制造工艺
ξ2 快速成型制造工艺
快速成型技术
新型快速成型技术快速成型技术, 又称实体自由成型技术或桌面制造技术, 是20 世纪80 年代初在美国出现, 90 年代在全球得到迅速发展的一门综合性、交叉性前沿技术, 是先进制造技术的重要组成部分, 也是制造技术的一次飞跃, 具有很高的加工柔性和很快的市场响应速度, 为制造技术的发展创造了一个新的机遇。
在科学技术快速发展的今天, 社会需求不断向产品多样化、智能化、低成本、更新速度快等方向发展, 企业间的竞争日趋激烈, 从而引发制造业经营策略的巨大变革, 由原来的规模效益和价格竞争转到市场响应上来, 而快速成型技术正好可以满足这一要求.它主要有以下几个特点:1.自由成型速度快: 主要是因为不需要辅助夹具, 在计算机和设备上直接完成。
2.设计制造一化设计和制作可以同时进行, 使设计与制造一体化。
3.自由成型制造: 由于设计者设计的自由性,使制作更加的自由。
4.高度柔性化: 主要是由于计算机技术的应用, 使其更加便于柔性加工。
5.产品的成本高: 主要是由于所用的原料成本高。
快速成型技术的飞速发展,也使时间观念得到加强。
快速成型技术使产品更加多样化, 复杂化, 生产周期大大的缩短, 为产品投入市场争得了时间。
快速成型技术原理:随着CAD 建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。
目前已有十余种, 如光固法( SLA) 、层叠法( LOM) 、激光选区烧结法( SLS) 、熔融沉积法( FDM) 、掩模固化法( SGC) 、三维印刷法( TDP) 、喷粒法( BPM) 等, 已商品化的快速成型系统主要有以下4 种:1. 光固化立体造型2. 层片叠加制造3. 选择性激光烧结4. 熔融沉积造型快速成型技术的发展现状:快速成型技术的核心竞争力是其制造成本低和市场响应速度快, 而生产厂家基于利润和速度的考虑而逐步采用快速成型技术, 从而促使快速成型技术得以迅速发展和推广应用, 尤其在欧、美、日已普遍应用, 遍及汽车、摩托车、航空、军事与医用等众多领域。
FDM快速成型技术及其应用
感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。
快速成型制造技术
立体光固化成型法原理图
二、RP 工艺方法简介
1.光固化法
Stereo Lithography Apparatus——SLA
SLA工艺的优点是精度较高,一 般尺寸精度可控制在0.01mm;表面质 量好;原材料利用率接近100%;能制造 形状特别复杂、精细的零件;设备市场 占有率很高。缺点是需要设计支撑;可 以选择的材料种类有限;制件容易发生 翘曲变形;材料价格较昂贵。 该工艺适合比较复杂的中小型零 件的制作。
三维印刷法原理图
典型快速成型工艺比较
光固化成型 SLA 分层实体制造 LOM 选择性激光烧结 SLS 熔融沉积成型 FDM 三维打印技术 3DP
优点
(1)成型速度快,自 动化程度高, 尺寸精度高; (2)可成形任意复杂 形状; (3)材料的利用率接 近100%; (4)成型件强度高。
(1)无需后固化处理; (1)制造工艺简单,柔 (2)无需支撑结构; 性度高; (3)原材料价格便宜 (2)材料选择范围广; ,成本低。 (3)材料价格便宜,成 本低; (4)材料利用率高,成 型速度快。
3.快速原形技术的特点 (6)精度不如传统加工 数据模型分层处理时不可避免的一些数据丢失 外加分层制造必然产生台阶误差,堆积成形的相 变和凝固过程产生的内应力也会引起翘曲变形, 这从根本上决定了RP造型的精度极限。
二、RP 工艺方法简介
二、RP 工艺方法简介
1.光固化法
Stereo Lithography Apparatus——SLA
激光头 热压辊 涂覆纸
工件
4.分层实体制造
Laminated Object Manufacturing——LOM
LOM工艺优点是无需 设计和构建支撑;只需切割 轮廓,无需填充扫描;制件 的内应力和翘曲变形小;制 造成本低。 缺点是材料利用率低, 种类有限;表面质量差;内部 废料不易去除,后处理难 度大。 该工艺适合于制作大 中型、形状简单的实体类 原型件,特别适用于直接 制作砂型铸造模。
快速成型技术考核试卷
3.请阐述在快速成型技术中,如何选择合适的材料以及这一选择对最终产品质量的影响。
4.结合实际案例,说明快速成型技术如何在医疗行业中实现个性化定制。
标准答案
一、单项选择题
1. A 2. D 3. C 4. C 5. D
6. D 7. D 8. C 9. D 10. C
C.尺寸精度限制
D.强度不足
11.以下哪些软件可以用于3D打印件的切片处理?()
A. CURA
B. Simplify3D
C. Photoshop
D. 3ds Max
12.以下哪些行业受益于快速成型技术?()
A.航空航天
B.汽车制造
C.教育行业
D.家具设计
13.以下哪些材料适用于DLP(数字光处理)技术?()
16. ABC 17. ABC 18. ABC 19. ABC 20. AB
三、填空题
1. Rapid Prototyping
2. Stereo Lithography Apparatus
3.层片
4.喷头
5. Selective Laser Sintering
6. Polylactic Acid
7.数字光处理器
快速成型技术考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.快速成型技术的英文缩写是?()
A. RP B. 3D打印C. CAD D. CAM
1. 3D打印技术可以用于直接制造复杂的机械零件。()
快速成型技术
2)三维模型的近似处理。 由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理, 以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前 已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平 面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描 述,三角形的大小可以根据精度要求进行选择。STL文件有二进制码和 ASCll码两种输出形式,二进制码输出形式所占的空间比ASCII码输出 形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。 典型的CAD软件都带有转换和输出STL格式文件的功能。
2)快速性。通过对一个CAD模型的修改或重组就可获 得一个新零件的设计和加工信息。从几个小时到几十个 小时就可制造出零件,具有快速制造的突出特点。
3)高度柔性。无需任何专用夹具或工具即可完成复杂的 制造过程,快速制造工模具、原型或零件。
4)快速成型技术实现了机械工程学科多年来追求的两 大先进目标.即材料的提取(气、液固相)过程与制造 过程一体化和设计(CAD)与制造(CAM)一体化。
型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工 作台上一层一层地堆积材料,然后将各层相粘结,最终得到 原型产品。
5)成型零件的后处理 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在 高温炉中进行后烧结,进一步提高其强度。
3、特点
1)可以制造任意复杂的三维几何实体。由于采用离散/堆 积成型的原理.它将一个十分复杂的三维制造过程简化为二 维过程的叠加,可实现对任意复杂形状零件的加工。越是复 杂的零件越能显示出RP技术的优越性此外,RP技术特别适 合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造 的零件。
3)三维模型的切片处理。 根据被加工模型的特征选择合适的加工方向,在成型高度 方向上用一系列一定间隔的平面切割近似后的模型,以便 提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常 用0.1mm。间隔越小,成型精度越高,但成型时间也越长, 效率就越低,反之则精度低,但效率高。
快速成型技术总结
快速成型技术总结快速成型总结报告一、快速成型技术的发展及原理快速成形技术(RapidPrototyping,简称RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术.是由CAD模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、CAD 模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在Z向将其按一定厚度进行离散(习惯称为分层),把原来的三维CAD模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。
快速成型技术的原理:快速成型技术(RP)的成型原理是基于离散-叠加原理而实现快速加工原型或零件.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用.而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.二、快速成型技术的分类快速成型技术 - 分类快速成型技术根据成型方法可分为两类:基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。
下面对其中比较成熟的工艺作简单的介绍。
SLA技术是基于液态光敏树脂的光聚合原理工作的。
这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
1、SLA(光固化成型)SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。
成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。
当一层扫描完成后.未被照射的地方仍是液态树脂。
然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
快速成型技术的主要工艺
快速成型技术的主要工艺一、概述快速成型技术是指通过计算机辅助设计、制造及快速成型设备,将三维数字模型直接转化为实体模型的制造技术。
其主要工艺包括:CAD 建模、STL文件生成、切片处理、快速成型设备加工等。
二、CAD建模CAD(计算机辅助设计)建模是快速成型技术的第一步。
它通过计算机软件进行三维物体的建模,生成三维数字模型。
CAD建模需要注意以下几点:1. 精度要求高:由于快速成型技术制造的实体模型必须与数字模型完全一致,因此CAD建模时需要精确到小数点后几位。
2. 模型结构简单:复杂的结构会增加后续工艺中的难度和时间成本。
3. 设计合理性:需要考虑到实际应用场景中可能遇到的问题,例如支撑结构、壁厚等。
三、STL文件生成STL(Standard Triangle Language)文件是将CAD建模生成的三维数字模型转化为可供切片处理和快速成型设备加工的格式。
STL文件生成需要注意以下几点:1. 模型完整性:STL文件必须包含完整的物体表面信息,否则会影响后续切片和加工。
2. 模型精度:STL文件生成时需要设置合适的精度,以保证数字模型与实体模型的一致性。
3. 文件大小:STL文件大小直接影响切片处理和快速成型设备加工的效率,因此需要控制在合理范围内。
四、切片处理切片处理是将STL文件按照一定厚度进行分层,并将每一层转化为快速成型设备可以识别的加工指令。
切片处理需要注意以下几点:1. 切片厚度:不同的快速成型设备对切片厚度有不同要求,需要根据设备要求进行设置。
2. 支撑结构:由于快速成型设备在制造过程中需要支撑结构来保证模型稳定性,因此在切片处理时需要设置支撑结构。
3. 加工顺序:不同部位的加工顺序会影响到实体模型的质量和加工效率,因此需要根据实际情况进行设置。
五、快速成型设备加工快速成型设备加工是将经过CAD建模、STL文件生成和切片处理后的数字模型转化为实体模型。
快速成型设备包括SLA、SLS、FDM、3DP等多种类型,其加工过程大致相同,需要注意以下几点:1. 材料选择:不同的快速成型设备需要使用不同材料进行加工,需要根据设备要求进行选择。
快速成型技术的数据处理
4.3.3 二维层片数据格式
1.SLC格式
SLC格式是Materialise公司为获取快速成型三维模型分层 切片后的数据而制定的一种存储格式。是CAD模型的2.5维 的轮廓描述,它由Z方向上的一系列逐步上升的横截面组成, 这些横截面由内、外边界的轮廓线围合成实体。
5. STL文件的优势
(1)文件生成简单。几乎所有的CAD软件皆具有输出STL文件的功能, 同时还可以控制输出的精度。 (2)适用对象广泛。几乎所有三维模型都可以通过表面三角网格化生 成STL文件。 (3)分层算法简单。STL文件数据结构简单,分层算法也相对简单得多。 (4)模型易于分割。当零件很大,难以在成型机上一次成型时,就需 要将零件模型分割成多个较小的部分,进行分别制造,而分割STL模型 相对简单得多。 (5)接口通用性好。能被几乎所有的快速成型设备所接受,已成为行 业公认的快速成型数据接口标准。
5
2. STL文件的格式
STL文件有文本(ASCII)和二进制(BINARY)两种格式。 (1)文本(ASCII)格式
该格式使用四个数据项表示一个三角形面片信息单元facet,即三角形三个 顶点坐标,以及三角形面片指向实体外部的法向量坐标。改格式的特点是易于 人工识别及修改,但因该格式的文件占用空间太大,目前仅用来调试程序。 ASCII格式的语法如下:
• 误差越小,所需的三角形面片数量越多,形成的三维实体就 越趋近于理想实体的形状。但精度的提高会使STL文件变大, 同时分层处理的时间将显著增加,有时截面的轮廓会产生许 多小直线段,不利于轮廓的扫描运动,导致表面不光滑且成 型效率降低。
• 所以,从CAD软件输出STL文件时,选取的精度指标和控制参 数应根据CAD模型的复杂程度以及快速成型精度要求的高低进 行综合考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 数据处理流程
快速成型数据处理是以三维CAD模型或其他数据模型为 基础,使用分层处理软件将模型离散成截面数据,然后输 送到快速成型系统的过程,其基本流程:
快速成型技术的一般数据处理流 程为:将通过CAD系统或逆向工程获 得的三维模型以快速成型分层软件 能接受的数据格式保存,然后使用 分层软件对模型进行:STL文件的处 理、工艺处理、分层处理等操作, 生成模型的各层面扫描信息,最后 以快速成型设备能接受的数据格式 输出到相应的快速成型机设备中。
2
4.2 待处理数据来源
1.三维模型直接构建
对于直接构建的三维模型,最常用的数据处理方法就是将构建的 CAD实体模型先转换为三角网格模型(STL文件),然后再进行分层, 从而获得加工路径。当前主流的快速成型系统是基于STL文件进行加 工,因此商用CAD软件一般都自带输出STL文件的功能模块。
2. 逆向工程建模
15
6. STL文件的局限
(1)近似性。STL模型只是三维CAD模型的一个近似描述,并不能十分精确 地还原模型的曲面。 (2)信息缺乏。STL文件只能无序的列出构成模型表面的所有三角形面片的 几何信息,其中并不包含面片之间的拓扑邻接信息,而这些信息的缺乏常会 导致信息处理与分层的低效。同时,将三维CAD模型转换为STL模型之后,还 会丢失公差、零件颜色和材料等的信息。 (3)数据的冗余。STL文件含有大量的冗余数据,因为每个三角形面片的顶 点都分属于不同的三角形,所以同一个顶点会在STL文件中重复存储多次。 (4)精度损失。在STL文件中,顶点坐标都是单精度浮点型,而在三维CAD 模型中,顶点坐标一般都是双精度浮点型,会造成一定程度的数据误差。 (5)错误和缺陷。STL文件还易出现很多错误和缺陷,例如重叠面、孔洞、 法向量和交叉面等;
STL格式的文件是对三维CAD模型进行表面三角形网格化而得 到的:
普通三维模型
STL三维面片模型 5
1. STL文件的构成
STL是一种用许多小三角形平面来近似表示源CAD模型曲面的数据模型, 此种文件格式将CAD模型表面离散化为若干个三角形面片,不同精度时有不 同的三角形网格划分方式。
STL文件是多个三角形面片的集合,数据结构非常简单,而且与CAD系 统无关。STL文件中的每个三角形面片都是由三角形的顶点坐标和三角形面 片的外法线矢量来表示。
DXF(Drawing eXchange File,绘图交换文件)是Autodesk公 司制定的一种图形交换文件格式,AutoCAD一直使用DXF格式文 件来进行不同应用程序之间的图形数据交换。DXF文件可读性好、 易于被其他程序处理,但是,DXF格式文件数据量大,结构较复 杂,在描述复杂的产品信息时很容易出现信息丢失问题。
• 误差越小,所需的三角形面片数量越多,形成的三维实体就 越趋近于理想实体的形状。但精度的提高会使STL文件变大, 同时分层处理的时间将显著增加,有时截面的轮廓会产生许 多小直线段,不利于轮廓的扫描运动,导致表面不光滑且成 型效率降低。
• 所以,从CAD软件输出STL文件时,选取的精度指标和控制参 数应根据CAD模型的复杂程度以及快速成型精度要求的高低进 行综合考虑。
19
4.3.3 二维层片数据格式
1.SLC格式
SLC格式是Materialise公司为获取快速成型三维模型分层 切片后的数据而制定的一种存储格式。是CAD模型的2.5维 的轮廓描述,它由Z方向上的一系列逐步上升的横截面组成, 这些横截面由内、外边界的轮廓线围合成实体。
STEP格式可以完整描述所交换的产品数据,其信息量完 全可以满足从CAD软件到快速成型系统的数据转换需要,但 是,STEP格式也包含了许多快速成型系统并不需要的冗余信 息,要基于STEP格式实现快速成型的数据转换,还需在算法、 文件内容的提取等方面进行大量研究工作。
17
4.3.2 CAD三维数据格式
solid name_of_object (整个STL文件的首行,给出了文件路径及文件名)
facet normal x y z (facet normal是三角面片指向实体外部的法矢量坐标)
outer loop (outer loop说明随后的3行数据分别是三角面片的3个顶点坐标)
vertex x y z (3个顶点沿指向实体外部的法矢量方向逆时针排列)
正确
错误
10
2)共顶点规则
相邻的两个三角形面片只能共享两个顶点,即面片的顶点 不能落在相邻的任何一个三角形面片的边上。
正确
错误
11
3)取值规则 STL文件的所有顶点坐标都必须是正的,即STL模型必须落
在第一象限。虽然目前几乎所有的CAD/CAM软件都已允许在任 意的空间位置生成STL文件,但使用AutoCAD时还需要遵守这个 规则。 4)充满规则
5. STL文件的优势
(1)文件生成简单。几乎所有的CAD软件皆具有输出STL文件的功能, 同时还可以控制输出的精度。 (2)适用对象广泛。几乎所有三维模型都可以通过表面三角网格化生 成STL文件。 (3)分层算法简单。STL文件数据结构简单,分层算法也相对简单得多。 (4)模型易于分割。当零件很大,难以在成型机上一次成型时,就需 要将零件模型分割成多个较小的部分,进行分别制造,而分割STL模型 相对简单得多。 (5)接口通用性好。能被几乎所有的快速成型设备所接受,已成为行 业公认的快速成型数据接口标准。
4
小三角形平面的数目
facet 1
4
float normal x
4
float normal y
4
float normal z (以上3个4字节的浮点数表示角面片法矢量)
4
float vertex1 x
4
float vertex1 y
4
float vertex1 z (以上3个4字节浮点数表示顶点1的坐标)
8
STL文件格式比较简单,只能描述物体的几何信息,而不能描 述颜色材质等信息。
三维模型进行表面三角形网格化之后会呈现多面体状,因此 需要合理设置输出STL格式时的参数值,以改善成型的质量,一 般而言,从CAD软件输出STL文件时,建议将弦高(chord height)、误差(deviation)、角度公差(angle tolerance)等参 数的值设置为0.01或是0.02。
STL模型的所有表面都必须布满三角形面片,不得有任何遗 漏,即不能有裂纹或孔。
12
4、STL文件的精度
自由曲面的三角形面片逼近
• STL文件是三维实体模型经过三角网络化处理之后得到的数据 文件,它将实体表面离散化成大量的三角形面片,依靠这些 三角形面片来逼近理想的三维实体模型。逼近的精度通常由 曲面到三角形平面的距离误差或是曲面到三角形边的弦高差 控制。
4
float vertex2 x
4
float vertex2 y
4
float vertex2 z (以上3个4字节浮点数表示顶点2的坐标)
4
float vertex3 x
4
float vertex3 y
4
float vertex3 z (以上3个4字节浮点数表示顶点3的坐标)
2
未用(构成50个字节, 用来描述三角面片的属性信息)
9
3.STL文件的规范
为保证三角形面片所表示的模型实体的唯一性 ,STL文件 必须遵循一定的规范,否则这个STL文件就是错误的,具体规 范如下:
1)取向原则 STL 文件中的每个三角形面片都是由三条边组成的,且具 有方向性:三条边按逆时针顺序由右手定则可以确定面的法 向量,且该法向量应指向所描述实体表面的外侧 ,相邻的三 角形的取向不应出现矛盾。
16
4.3.2 CAD三维数据格式
与三维面片模型格式相比,CAD三维数据格式可以精确的 描述CAD模型。目前,常用CAD三维数据格式主要有三种,分 别为STEP标准接口、实体模型格式IGES和表面模型格式DXF。
1. STEP标准接口
STEP(Standard for The Exchange of Product,产品数据交换 标准)是一种产品模型数据交换标准格式,该标准已经成为国 际公认的CAD数据文件交换全球统一标准。
7
(2)二进制(BINARY)格式
BINARY格式用固定的字节数记录三角面片的几何信息,文件起始的84个字节 是头文件,用于记录文件名;后面逐个记录每个三角面片的几何信息,每个三角 形面片占用固定的50字节。
BINARY格式的语法如下所示:
# of bytes description
80
有关文件、作者姓名和注释信息
是对已有的实物数字化,即使用逆向工程测量设备采集实物表面 信息,形成物体表面的点云数据,并且在这些数据的基础上,构建实 物的三维模型。
对于逆向工程建模的数据处理方法主要有两种:一种是对数据点 进行三角化,生成STL文件,然后进行分层处理;另一种是对数据点 进行直接分层处理。
3
4.3 数据接口格式
快速成型系统本身并不具备三维建模功能,为得到物体的三维 数据,快速成型系统一般都会借助于商用CAD软件,但是,不同的 CAD软件用来描述几何模型的数据格式并不相同,快速成型系统无 法一一适应,导致数据交换和信息共享出现障碍。因此,必须要有 一种中间数据格式,作为CAD软件与快速成型系统之间的标准接口, 该格式应该既能被快速成型系统接受和处理,也能由市面上的大多 数CAD软件生成。
vertex x y z
vertex x y z
endloop
endfacet(在一个STL文件中,每一个facet由以上7行数据组成)
facet normal x y z
outer loop
vertex x y z
vertex x y z
vertex x y z
endloop
endfacet