数值计算方法期末考试题精选版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算方法期末考试
题
Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
一、单项选择题(每小题3分,共15分)
1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4
2. 已知求积公式
()()2
1
121
1()(2)636f x dx f Af f ≈
++⎰
,则A =( )
A . 16
B .13
C .12
D .2
3
3. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )
A .()00l x =0,()110l x =
B .
()
00l x =0,()111
l x =
C .
()
00l x =1,
()111
l x = D .
()00l x =1,
()111
l x =
4. 设求方程
()0
f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性
B .平方
C .线性
D .三次
5. 用列主元消元法解线性方程组1231231
220223332
x x x x x x x x ++=⎧⎪
++=⎨⎪--=⎩作第一次消元后得到的第3个方程( ).
A .232
x x -+= B .
232 1.5 3.5x x -+=
C .
2323
x x -+= D .
230.5 1.5
x x -=-
单项选择题答案
二、填空题(每小题3分,共15分)
1. 设T
X )4,3,2(-=, 则=1||||X ,2||||X = .
2. 一阶均差
()01,f x x =
3. 已知3n =时,科茨系数()()()
33301213,88C C C ===,那么
()
33C = 4. 因为方程
()420
x f x x =-+=在区间
[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题
()211y y y
x y ⎧'=+⎪⎨
⎪=⎩
的计算公式 .
填空题答案
1. 9和29
2.
()()
0101
f x f x x x --
3. 18
4.
()()120
f f <
5. ()12
00.11.1,0,1,2
10.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪
=⎪
⎩
三、计算题(每题15分,共60分)
1. 已知函数
21
1y x =
+的一组数据:
求分段线性插值函数,并计算()
1.5f 的近似值.
计算题1.答案
1. 解
[]
0,1x ∈,
()10
10.510.50110x x L x x --=
⨯+⨯=--- []
1,2x ∈,
()21
0.50.20.30.81221x x L x x --=
⨯+⨯=-+--
所以分段线性插值函数为
2. 已知线性方程组123123123
1027.2
1028.35 4.2
x x x x x x x x x --=⎧⎪
-+-=⎨⎪--+=⎩
(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式; (2) 对于初始值
()()
0,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算
()1
X (保留小数点后五位数字).
计算题2.答案
1.解 原方程组同解变形为 1232133
120.10.20.72
0.10.20.830.20.20.84
x x x x x x x x x =++⎧⎪
=-+⎨⎪=++⎩ 雅可比迭代公式为
()()()()()()
()()()1123121313120.10.20.72
0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式
()()()()()()
()()()11231121
31113120.10.20.72
0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 用雅可比迭代公式得()()10.72000,0.83000,0.84000X = 用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =
3. 用牛顿法求方程3310x x --=在
[]1,2之间的近似根 (1)请指出为什么初值应取2 (2)请用牛顿法求出近似根,精确到.
计算题3.答案
4. 写出梯形公式和辛卜生公式,并用来分别计算积分1
01dx x +⎰.
计算题4.答案