重庆市2019届高三4月调研测试(二诊)数学理试题Word版含答案
高2019届重庆高三二诊理数试题及答案(康德卷)
2019年普通高等学校招生全国统一考试高考模拟调研卷理科数学(二)理科数学测试卷共4页。
满分150分。
考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的. (1) 集合{1012}M =-, , , ,集合{0246}N =, , , ,则=N M I(A ){11}-,(B ){1012}-, , , (C ){0246}, , , (D ){02},(2) 设1i +是方程20()x ax b a b R ++=∈,的一个根,则 (A )11a b ==, (B )22a b ==-, (C )22a b =-=, (D )21a b =-=-, (3) 已知A B , 两组数据如茎叶图所示,它们的平均数相同且2x y =,若将A B , 两组数据合在一起,得到的这组新数据的中位数是 (A )23 (B )24 (C )23.5 (D )24.5(4) 设x 、y 满足约束条件2022030x y x y x -+⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y =-的最大值为(A )1(B )2 (C )10 (D )12 (5) 若向量a b r r , 满足(2)a b a +⊥r r r ,()a b b +⊥r r r ,则a r 与b r的夹角为(A )45︒ (B )60︒ (C )120︒(D )135︒ (6) 在ΔABC 中,sincos 22C C =10AB =,AC =BC = (A )5(B )8(C )11(D )5或11(7) 命题:0p x ∀>;命题2:e 5x x q x R ∃∈=, (e 为自然对数的底数),则下列命题为真命题的是(A )p q ∧ (B )p q ⌝∨(C )p q ⌝∧ (D )p q ∨(8) 给图中的A B C D , , , (A )36 (B )54(C )84 (D )120 (9) 执行如图所示的程序框图,若输入28=A ,6=B ,则输出的结果是 (A )2 (B )4(C )6 (D )28A 组B 组 x 1 4 6 4 2y9(10)已知椭圆22221(0)x y a b a b+=>>的右顶点、上顶点、右焦点分别为A B F , , ,22(1)BF BA a b ⋅=+-u u u r u u u r,则该椭圆的离心率为 (A)2 (B)2(C )12(D)4(11)已知0ab >,22a b ab +=,则21a b a b+++的最小值为 (A )34(B )1(C )54(D )32(12)已知()3sin 2cos f x x x x =++,当1a b +=时,不等式()(0)()(1)f a f f b f +>+恒成立,则实数a 的取值范围是(A )(0)-∞,(B )1(0)2,(C )1(1)2,(D )(1)+∞,第Ⅱ卷本卷包括必考题和选考题两部分。
重庆2019年高考学业质量调研抽测4月二诊理科数学试题卷含答案详析
【详解】设事件 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件 为“学生丙第一个出场”
则
,
则 本题正确选项: 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.
10.已知双曲线 在圆
A. 9 【答案】B 【解析】 【分析】
的一条渐近线方程为
,左焦点为 ,当点 在双曲线右支上,点
20.已知离心率为 的椭圆 :
的右焦点为 ,点 到直线 的距离为 1.
(1)求椭圆 的 方程;
(2)若过点
的直线与椭圆 相交于不同的 两点,设 为椭圆 上一点,且满足
( 为坐标原点),当
时,求实数 的取值范围.
【答案】(1)
(2)
或
【解析】
【分析】
(1)通过点 到直线 的距离、离心率和 的关系,求得标准方程;(2)直线与椭圆方程联立,利
由
,
得:
则 设 外接圆圆心为 ,则
由正弦定理可知, 外接圆半径:
设 到面 距离 为
由 为球 直径可知:
则 球的半径
球 的表面积 本题正确选项: 【点睛】本题考查三棱锥外接球表面积问题的求解,关键是能够利用球心与底面外接圆圆心的连线与底面 垂直的关系构造直角三角形.
12.已知 是函数
(其中常数
值为 0,则函数 的最小值为( )
(2) 当
时,丙可在产品 和产品 中任选一个投资;当
时,丙应选产品 投资.
时,丙应选
(1)“一年后甲、乙两人至少有一人投资获利”的概率
,可求得 ;又
可得 ,由
此可得 的范围;(2)分别求出投资 , 两种产品的数学期望,通过数学期望的大小比较可知应选哪种产
重庆市2019届高三第二次诊断考试模拟数学(理)试卷【含答案及解析】
重庆市2019届高三第二次诊断考试模拟数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知集合,,则集合的子集个数为()A. 2B. 3C. 4D. 82. 已知复数满足(其中为虚数单位),则()A. B. C. D.3. 若,则函数在区间内单调递增的概率是()A. B. C. D.4. 中国古代数学名著《九章算术》中记载:今有大夫、不更、簪袅、上造、公士凡五人,共猜得五鹿,欲以爵次分之,问各得几何?其意是:今有大夫、不更、簪袅、上造、公士凡五人,他们共猎获五只鹿,欲按其爵级高低依次递减相同的量来分配,问各得多少.若五只鹿的鹿肉共500斤,则不更、簪袅、上造这三人共分得鹿肉斤数为A. 200B. 300C.D. 4005. 已知双曲线的实轴长为2,且它的一条渐近线方程为,则双曲线的标准方程可能是()A. B. C. D.6. 已知一几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.7. 点的坐标满足约束条件,由点向圆:作切线,切点为,则线段的最小值为() A. B. C. D.8. 设,则的大小关系是()A. B. C. D.9. 执行如图所示的程序框图,输出的值为()A. 5B. 6C. 7D. 810. 如图所示为函数的部分图象,其中两点之间的距离为5,则函数图象的对称轴为()A. B. C. D.11. 动直线与抛物线:相交于两点,为坐标原点,若,则的最大值为()A. B. 8 C. 16 D. 2412. 不超过实数的最大整数称为的整数部分,记作 .已知,给出下列结论:① 是偶函数;② 是周期函数,且最小值周期为;③ 的单调递减区间为;④ 的值域为 .其中正确的个数为()A. 0B. 1C. 2D. 3二、填空题13. 已知向量,,,且,则等于 ________ .14. 若(其中),则多项式展开式的常数项为 ________ .15. 已知正项等比数列的公比,且满足,,设数列的前项和为,若不等式对一切恒成立,则实数的最大值为 _________ .16. 下图是两个腰长均为的等腰直角三角形拼成的一个四边形,现将四边形沿折成直二面角,则三棱锥的外接球的体积为 __________ .三、解答题17. 已知的三个内角所对的边分别为,且满足.(1)求角的大小;(2)若动点在的外接圆上,且点不在的同一侧,,试求面积的最大值.18. 如图(1),在五边形中,,,,,是以为斜边的等腰直角三角形.现将沿折起,使平面平面,如图(2),记线段的中点为 .(1)求证:平面平面;(2)求平面与平面所成的锐二面角的大小.19. 团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“ ”的概率.20. 已知点是圆心为的圆上的动点,点,为坐标原点,线段的垂直平分线交于点 .(1)求动点的轨迹的方程;(2)过原点作直线交(1)中的轨迹于点,点在轨迹上,且,点满足,试求四边形的面积的取值范围.21. 已知函数(为实数,为自然对数的底数),曲线在处的切线与直线平行.(1)求实数的值,并判断函数在区间内的零点个数;(2)证明:当时, .22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),圆的参数方程为(为参数).(1)若直线与圆的相交弦长不小于,求实数的取值范围;(2)若点的坐标为,动点在圆上,试求线段的中点的轨迹方程.23. 选修4-5:不等式选讲已知函数 .(1)画出函数的图象;(2)若不等式对任意实数恒成立,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
重庆市届高三4月调研测试(二诊)数学理试题Word版含答案
2017年普通高等学校招生全国统一考试4月调研测试卷 理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,0,1,2,3}A =-,2{|30}B x x x =->,则()R AC B =( )A . {1}-B .{0,1,2}C .{1,2,3}D .{0,1,2,3}2.若复数z 满足2(1)1z i i +=-,其中i 为虚数单位,则z 在复平面内所对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知向量(,1)a x =-,(1,3)b =,若a b ⊥,则||a =( )A .2 D . 44.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( ) A .10日 B . 20日 C . 30日 D .40日5.设直线0x y a --=与圆224x y +=相交于,A B 两点,O 为坐标原点,若AOB ∆为等边三角形,则实数a 的值为( )A ... 3± D .9±6.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .30m -<< B .32m -<< C . 34m -<< D .13m -<< 7.执行如图所示的程序框图,若输出的结果为3,则输入的数不可能是( )A .15B .18C . 19D .208.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中11DD =,12AB BC AA ===,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )A .B .C .D .9.已知函数2sin()y x ωϕ=+(0,0)ωϕπ><<的部分图象如图所示,则ϕ=( )A .6π B .4π C . 3π D .2π 10.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点,P Q ,若||2||PQ QF =,60PQF ∠=,则该双曲线的离心率为( )A .1. 2.4+11.已知函数2()(3)x f x x e =-,设关于x 的方程2212()()0()f x mf x m R e --=∈有n 个不同的实数解,则n 的所有可能的值为( )A . 3B . 1或3C . 4或6D .3或4或6121111ABCD A BC D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱侧面积的最大值为( ) A.8 B.4C .D. 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在52(2)a x x+的展开式中4x -的系数为320,则实数a = . 14.甲、乙两组数据的茎叶图如图所示,其中m 为小于10的自然数,已知甲组数据的中位数大于乙组数据的中位数,则甲组数据的平均数也大于乙组数据的平均数的概率为 .15.设函数22log (),12()142,1333x x f x x x x ⎧-≤-⎪⎪=⎨⎪-++>-⎪⎩,若()f x 在区间[,4]m 上的值域为[1,2]-,则实数m 的取值范围为 .16.已知数列{}n a 的前n 项和为n S ,若11a =,2n n a n a =-,211n n a a +=+,则100S = .(用数字作答) 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2sin()2sin ()24C A B π-=-. (1)求sin cos A B 的值; (2)若a b =B .18. 如图,矩形ABCD中,AB =AD =M 为DC 的中点,将DAM ∆沿AM 折到'D AM ∆的位置,'AD BM ⊥.(1)求证:平面'D AM ⊥平面ABCM ;(2)若E 为'D B 的中点,求二面角'E AM D --的余弦值.19. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:22()()()()()n ad bc k a b c d a c b d -=++++,(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X 人,超过10000步的有Y 人,设||X Y ξ=-,求ξ的分布列及数学期望.20. 已知,A B 分别为椭圆C :22142x y +=的左、右顶点,P 为椭圆C 上异于,A B 两点的任意一点,直线,PA PB 的斜率分别记为12,k k .(1)求12,k k ;(2)过坐标原点O 作与直线,PA PB 平行的两条射线分别交椭圆C 于点,M N ,问:MON ∆的面积是否为定值?请说明理由.21. 已知曲线2ln ln ()x a x af x x ++=在点(,())e f e 处的切线与直线220x e y +=平行,a R ∈.(1)求a 的值; (2)求证:()x f x ax e>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin 2x t y t αα=-+⎧⎪⎨=+⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22244sin cos ρθθ=+.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为1(1,)2-,直线l 与曲线C 相交于不同的两点,A B ,求||||PA PB 的取值范围.23.选修4-5:不等式选讲已知函数()|||3|f x x a x a =-+-. (1)若()f x 的最小值为2,求a 的值;(2)若对x R ∀∈,[1,1]a ∃∈-,使得不等式2||()0m m f x --<成立,求实数m 的取值范围.试卷答案2017年普通高等学校招生全国统一考试4月调研测试卷 理科数学一、选择题 1~6 DCCCCD7~12 DABCAD第(11)题解析:x x x x f +-='e )3)(1()(,)(x f ∴在)3,(--∞和),1(+∞上单增,)1,3(-上单减又当-∞→x 时0)(→x f ,+∞→x 时+∞→)(x f , 故)(x f 的图象大致为:令t x f =)(,则方程0e 1222=--mt t 必有两根21,t t )(21t t <且221e 12-=t t , 当e 21-=t 时恰有32e 6-=t ,此时1)(t x f =有1个根,2)(t x f =有2个根; 当e 21-<t 时必有32e 60-<<t ,此时1)(t x f =无根,2)(t x f =有3个根; 当0e 21<<-t 时必有32e 6->t ,此时1)(t x f =有2个根,2)(t x f =有1个根;综上,对任意R m ∈,方程均有3个根.第(12)题解析:由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A 点的三个面相切, 且切点分别在线段11,,AD AC AB 上,设线段1AB 上的切点为E ,1AC 面21O BD A =,圆柱上底面的圆心为1O ,半径即为E O 1记为r ,则2262331312=⨯⨯==DF F O ,13112==AC AO , 由F O E O 21//知E O AO AO E O 11112122=⇒=,则圆柱的高为r AO 223231-=-,242(3))()2r rS r r r π+=-=⋅==侧≤二、填空题 (13)2(14)53(15)]1,8[-- (16)1306第(15)题解析:函数)(x f 的图象如图所示,结合图象易得,当]1,8[--∈m 时,]2,1[)(-∈x f.第(16)题解析:1122+=++n a a n n ,则12745032999832=+++=++++ a a a a ,31302932262550136122550100=+=+=-=+=+=-=a a a a a a a ,则1306100=S .三、解答题 (17)解:(Ⅰ)1cos sin 2)sin(1sin 1)2cos(1)sin(=⇒+-=-=--=-B A B A C C B A π,21cos sin =∴B A ; (Ⅱ)332sin sin ==b a B A ,由(Ⅰ)知212sin 33cos sin 332cos sin ===B B B B A ,232sin =∴B , 32π=∴B 或32π,6π=∴B 或3π. (18)解:(Ⅰ)由题知,在矩形ABCD 中,︒=∠=∠45BMC AMD ,︒=∠∴90AMB ,又BM A D ⊥',⊥∴BM 面AM D ',∴面⊥ABCM 面AM D ';(Ⅱ)由(Ⅰ)知,在平面AM D '内过M 作直线MA NM ⊥,则⊥NM 平面ABCM , 故以M 为原点,MN MB MA ,,分别为z y x ,,轴的正方向建立空间直角坐标系,则)0,0,0(M ,)0,0,2(A ,)0,2,0(B ,)1,0,1(D ',于是)21,1,21(E ,)0,0,2(=MA ,)21,1,21(=,设平面EAM 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=++=0212102z y x x 令1=y ,得平面EAM 的一个法向量)2,1,0(-=,显然平面AM D '的一个法向量为)0,1,0(=,故51,cos >=<,即二面角D AM E '--的余弦值为55.(19) 解:(Ⅰ)841.3114018222020)861214(4022<=⨯⨯⨯⨯-⨯⨯=K ,故没有95%以上的把握认为二者有关;(Ⅱ)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为81,超过10000步的概率为41,且当0==Y X 或1==Y X 时,0=ξ,12551129888464P C =⨯+⋅=;当0,1==Y X 或 1,0==Y X 时,1=ξ,6430854185811212=⋅+⋅=C C P ;当0,2==Y X 或2,0==Y X 时,2=ξ,645)81()41(22=+=P ,即ξ的分布列为:85=ξE .(20)解:(Ⅰ)设),(00y x P ,则21242220202020000021-=-=-=-⋅+=y y x y x y x y k k ; (Ⅱ)由题知,直线x k y OM 1:=,直线x k y ON 2:=,设),(),,(2211y x N y x M , 则|)(|21||21||2121211122211221x x k k x k x x k x y x y x S -=⋅-⋅=-=,由212112221442k x xk y y x +=⇒⎩⎨⎧==+, 同理可得2222214k x +=,故有1)(24)2(16214214)(42221222121222122212212+++-+=+⋅+⋅-=k k k k k k k k k k k k S ,又2121-=k k ,故8)(22)1(164222122212=++++=k k k k S ,2=∴S . (21)解:(Ⅰ)22ln (2)ln ()x a x f x x -+-'=,由题22122(e)3e e a f a -+-'==-⇒=; (Ⅱ)2ln 3ln 3()x x f x x++=,2ln (ln 1)()x x f x x -+'=,1()01e f x x '>⇒<<, 故()f x 在1(0,)e和(1,)+∞上递减,在1(,1)e上递增, ①当(0,1)x ∈时,1()()e e ≥f x f =,而33(1)()e e x x x x -'=,故3e xx 在(0,1)上递增, 33e e e x x ∴<<,3()e x x f x ∴>即()3ex f x x >;②当[1,)x ∈+∞时,2ln 3ln 30033≥x x ++++=,令23()e x x g x =,则23(2)()e x x x g x -'=故()g x在[1,2)上递增,(2,)+∞上递减,212()(2)3e ≤g x g ∴=<,223ln 3ln 3ex x x x ∴++>即()3ex f x x >; 综上,对任意0x >,均有()3ex f x x >. (22)解:(Ⅰ)14444cos sin 422222222=+⇒=+⇒=+y x x y θρθρ; (Ⅱ)因为点P 在椭圆C 的内部,故l 与C 恒有两个交点,即R ∈α,将直线l 的参数方程与椭圆C 的直角坐标方程联立,得4)sin 21(4)cos 1(22=+++-ααt t ,整理得 02)cos 2sin 4()sin 31(22=--++t t ααα,则]2,21[sin 312||||2∈+=⋅αPB PA . (23)解:(Ⅰ)|||3||()(3)||2|x a x a x a x a a -+----=≥,当且仅当x 取介于a 和a 3之间的数时,等号成立,故)(x f 的最小值为||2a ,1±=∴a ;(Ⅱ)由(Ⅰ)知)(x f 的最小值为||2a ,故]1,1[-∈∃a ,使||2||2a m m <-成立,即 2||2<-m m ,0)2|)(|1|(|<-+∴m m ,22<<-∴m .。
重庆市(非市直属校)2018-2019学年高三第二次质量调研抽测数学理试题+Word版含解析
2018-2019学年高三学业质量调研抽测(第二次)理科数学试题卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知是虚数单位,则复数的虚部是A. B. C. D.【答案】A【解析】由题得=所以的虚部是-1.故选A.2. 已知集合,则A. B. C. D.【答案】B【解析】由题得={x|}={x|x≥3或x≤-1}.所以={x|-1<x<3},所以=.故选B.3. 已知,,,则,,的大小关系为A. B.C. D.【答案】D【解析】由题得=所以.故选D.4. 一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为A. B. C. D.【答案】A【解析】由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是∴几何体的体积是.故选A.5. 在中,角所对应的边分别是,若,则角等于A. B. C. D.【答案】D【解析】∵,∴(a﹣b)(a+b)=c(c+b),∴a2﹣c2﹣b2=bc,由余弦定理可得cosA=∵A是三角形内角,∴A=故选D.6. 利用我国古代数学名著《九章算法》中的“更相减损术”的思路,设计的程序框图如图所示.执行该程序框图,若输入的值分别为6,9,0,则输出的A. B. C. D.【答案】B【解析】模拟执行程序框图,可得:a=6,b=9,i=0,i=1,不满足a>b,不满足a=b,b=9﹣6=3,i=2,满足a>b,a=6﹣3=3,i=3,满足a=b,输出a的值为3,i的值为3.故选B.7. 已知实数满足如果目标函数的最大值为,则实数A. B. C. D.【答案】B【解析】由题得不等式组对应的可行域如图所示:由目标函数得,当直线经过点A时,直线的纵截距所以2+2-m=0,所以m=4. 故选B.8. 为培养学生分组合作能力,现将某班分成三个小组,甲、乙、丙三人分到不同组.某次数学建模考试中三人成绩情况如下:在组中的那位的成绩与甲不一样,在组中的那位的成绩比丙低,在组中的那位的成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是A. 甲、丙、乙B. 乙、甲、丙C. 乙、丙、甲D. 丙、乙、甲【答案】C【解析】因为在组中的那位的成绩与甲不一样,在组中的那位的成绩比乙低.所以甲、乙都不在B组,所以丙在B组. 假设甲在A组,乙在C组,由题得甲、乙、丙三人按数学建模考试成绩由高到低排序是乙、丙、甲.假设甲在C组,乙在A组,由题得矛盾,所以排序正确的是乙、丙、甲.故选C.9. 已知圆,点,两点关于轴对称.若圆上存在点,使得,则当取得最大值时,点的坐标是A. B. C. D.【答案】C【解析】由题得圆的方程为设由于,所以由于表示圆C上的点到原点距离的平方,所以连接OC,并延长和圆C相交,交点即为M,此时最大,m也最大.故选C.10. 将函数的图象向左平移个单位,再向上平移1个单位,得到图象.若,且,则的最大值为A. B. C. D.【答案】C【解析】将函数的图象向左平移个单位,得到,再向上平移1个单位,得到因为,g(x)的最大值为3,所以=3,因为,所以所以所以的最大值为故选C.点睛:本题的一个关键之处是对且g(x)的最大值为3,推理出这里是解题的关键.11. 已知双曲线的左、右焦点分别为,以为圆心的圆与双曲线在第一象限交于点,直线恰与圆相切于点,与双曲线左支交于点,且,则双曲线的离心率为A. B. C. D.【答案】B【解析】设,在三角形中,在直角三角形中,故选B.点睛:本题的关键是寻找关于离心率的方程,一个方程是中的勾股定理,另外一个是直角三角形中勾股定理,把两个方程结合起来就能得到离心率的方程.12. 已知函数,在其定义域内任取两个不等实数、,不等式恒成立,则实数的取值X围为A. B. C. D.【答案】A【解析】因为不等式恒成立,所以,a>0.由题得所以由于抛物线开口向上,定义域为故选A.点睛:本题关键是对不等式恒成立的转化,注意观察变形可以转化为在上恒成立,后面的问题就迎刃而解了.二、填空题:本题共4个小题,每小题5分,共20分。
2019年重庆市高三第二诊调研诊断试卷Word版
2019年重庆高三二诊英语试卷(满分150分;考试时间120分钟)第I卷(共100分)第一部分:听力(共两节,满分30分)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AEverything I Never Told You: A novel by Celeste NgIn StockList Price: $ 26.95Price: $ 16.167You Save: $ 10.78 (40%)Synopsis(梗概):“Lydia is dead. But they don't know this yet... ” So begins the , story of this novel, about a Chinese American family living in 1970s small-town Ohio. Lydia is the favorite child of Marilyn and James Lee; their middle- daughter, a girl who inherited her mother's bright blue eye and her father's jet-black hair. Her parents are determined that Lydia will fulfill the dreams they were unable to pursue----in Marilyn's case that her daughter should become a doctor rather than a homemaker, in James's case that Lydia should be popular at school, a girl with a busy social life and the center of every party.When Lydia's body is found in the local lake, the balancing act that has been keeping the Lee family together falls into chaos, forcing them to confront the long-kept secrets that have been slowly pulling them apart. James, consumed by guilt, sets out on a reckless path that may destroy his marriage. Marilyn, is determined to find a responsible party, no matter what the cost is. Lydia'solder brother, Nathan, is certain that the neighborhood bad boy Jack is somehow involved. But it's the youngest of the family--- Hannab who observes far more than anyone realizes and who may be the only one who knows the truth about what happened.A profoundly moving story of family, history, and the meaning of home, Everything I Never Told You is both a good page-turner and a sensitive family portrait, exploring the divisions between cultures and the conflicts within a family, and uncovering the ways in which mothers and daughters, fathers and sons, and husbands and wives struggle, all their lives, to understand one another.21. What type of writing is this passage?A An exhibition guide.B An announcementC A book review.D An advertisement22.How many people in the Lee family are mentioned according to the passage?A Four.B Five.C Six.D Seven.23. Which of the following is TRUE according to the passage?A James wants his daughter to be a homemaker.B In Hannah's eyes, Jack is actually the real killer.C Lydia takes on the high expectations of the family.D The family always live in harmony with each other.BAsk 9-year-old Annie what the worst thing was that ever happened in her house last year, and she won’t tell you t hat it was her parents divorcing, although they did. No, what Annie remembers most are the horrible fights leading up to the announcement about the divorce which was, as it turned out, and despite her parents anxiety about telling her, “not that big of a deal.” “I already knew they were not getting along well,” Annie says, “Every night after I went to bed, l would hear my parents fighting.” It made me really unhappy. When they finally decided to get a divorce, all of that stopped.Annie's experience is more common than you might think, and there is a great deal of evidence to suggest that “staying together for the sake of the children” is not all it's cracked up to be, and may do more harm than good. According to psychologist Lynn Martingdale, hearing their parents argue is often more stressful for children than separation and divorce, and if you think thatyour children don’t know that there's trouble in family, then you're kidding yourself The home life of children whose parents have an unhappy marriage is often far from ideal, and what's worse, parents will compound the problem by taking their unhappiness out on the children.The Center for Moving Forward conducted a study in 2014 in which they followed 25families whose parents had been in marriage counseling. After tracking these families for 5 years, they found that the children of the parents who had eventually gotten divorced were not worse off than the children of those who had remained together, and in some cases had fared better. The study took into consideration, social and the children's general sense of well-being.24 Why was Annie really unhappy according to paragraph 1?A. Her parents fought every night. B Her parents finally got divorced.C Her parents decided to abandon her.D Her parents got along badly with her.25.Which statement may psychologist Lynn Martingdale agree with?A Separation and divorce will hurt the children most.B Keeping an unhappy marriage hurts children more.C Children can't understand their parents' marriage well.D Children can’t feel the unhappiness from their parents.26.What's the function of the last paragraph in the passage?A To give an example of divorce.B To support Annie's correct answer.C To further clear the author's view point.D To highlight the importance of the study.27. What is the best title for the passage?A Divorce Is Good for ChildrenB Divorce Is Not the Worst ThingC Fighting Is Often StressfulD Staying Together Is for Children OnlyCWhen one man offered to take a woman stranger's baby so that she could rest on a recent flight, many people on the plane watched it.“It was so touching,” one passenger, Andrea Byrd said. She shot a photo of the man carrying the baby up and down the aisle(通道)and posted it on Facebook, where it's since gone viral.“I was in tears,” Byrd wrote in the post, which has been shared almost 100,000 times. “Not because he was white and she was black... but because it showed me today that there are, still good people out there in a world full of evil.”The Southwest Airlines flight was heading from Minne- apolis to Atlanta on September 5.The mom, Monica Nelson, who is pregnant, said she had been nervous about traveling alone with her 20- month-old son Luke. When he grew annoyed and wouldn't rest, the man seated next to them surprised her by offering to help, she said. He walked up and down the aisle holding the boy, soothing him to sleep.“It was such a relief because I was a little worried traveling with him without my husband there to help out,” said Nelson, a teacher who lives in Atlanta. “I'm still very grateful- he was so kind.”She said the man's name is Rcid, and she learned that he also has a son named Luke.Byrd said she was particularly touched by the scene because she has two children of her own and could put herself in the mom's shoes. Now their story has touched thousands of people across the world, reminding people how powerful a simple act of kindness can be.“It's good to know the world is not all bad,” Nelson said, “There are some really great people out there.”28. How did the man help the woman in the flight?A He helped the baby to feel relaxed.B He gave his own seat to the woman.C He carried the baby up and down in the air.D He posted a photo of the woman on Facebook.29. What was the result after Andrea Byrd posted the photo online?A The man suddenly became successful.B So many people were touched by the story.C Monica Nelson decided not to take a flight again.D The young mom and the man became good friends.30.What does the underlined word soothing mean in paragraph 5?A To please somebody to make him sleep for long.B To ease somebody to make him feel comfortable.C To force somebody to be quiet and silent soon.D To sing songs to make him feel happy slowly.31.Which statement about the man is TRUE?A His son's name is Luke.B He is kind to Andrea Byrd.C He prefers to post photos online.D He loves helping pregnant women.DNowadays, we can read almost all “truths” on social media sites. But are they really reliable? Sites such as the micro messaging service Twitter, the social networking site Facebook and the photo-sharing app Instagram might “misrepresent the real world,” according to a study by computer scientists from McGill University and Carnegie Mellon University.The scientists warn that gathering information about public views and trends from these sites is unwise. There are still large parts of the population who do not take part in social media activities. Also, there's a risk that many social media users are under- represented. Instagram, for example, appeals to younger adults in urban areas while Pinterest is used mainly by females aged 25 to 34. And only 5 percent of Twitter users are over 65 years old, according Io the study.However, this is not the only issue, according to the scientific team. The design of a website can influence how people behave online, creating what the researchers call “Internet bias.” For example, micro-blogging sites such as Weibo promote “popular” stories. It saves time for some, but it also limits readers' choice of what they see. In the end, many people open those stories and make them more “popular.” But it's not because they choose those stories. Rather, it is because the content is right in front of them.Besides, it's possible that not everyone on your social networks is real. There might actually be a few fake accounts among them. Fake “bots” pretend to be human and are often included when measuring or predicting human behaviors online.The findings might be more important than you would think, since many social media studies “are used to inform and justify decisions and investments among the public and in industry and government,” said Derek Ruths, assistant Professor at McGill's School of Computer Science.If the team is rig ht, you might have to think carefully the next time you say, “It's true, you know; I read it on Weibo.”30.Why does the author mention Twitter, Facebook and Instagram?A Because they are the best social media sites today.B Because they are not in favor of the current study.C Because the public are sharing truths on these sites.D Because information on these sites may not be reliable.33. How is the passage developed?A By giving examples.B By making comparisons.C By dividing into groups.D By analyzing cause and effect.34. Which word can best describe the author's attitude toward information on social media sites?A Ambiguous.B Favorable.C Disagreeable.D Cautious35. What's the author's main purpose in writing the passage?A To analyze why information gathered from social media sites may not be trustworthy.B To remind readers of things they should watch out for when using social media.C To point out the advantages and disadvantages of social media.D To recommend popular social networking sites for readers.第二节(共5小题, 每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,选项中有两项为多余选项。
重庆市2019届高三数学学业质量调研抽测4月二诊试题理(含解析)
重庆市2019届高三数学学业质量调研抽测4月二诊试题理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,复数满足,则()A. B. C. 1 D.【答案】C【解析】【分析】根据已知求解出,再计算出模长.【详解】则本题正确选项:【点睛】本题考查复数模长的求解,关键是利用复数的运算求得,属于基础题.2.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】分别求解出两个集合,根据交集定义求得结果.【详解】则本题正确选项:【点睛】本题考查集合运算中的交集运算,关键在于能够利用指数函数单调性和对数函数的定义域求解出两个集合,属于基础题.3.设,,,则的大小关系为()A. B.C. D.【答案】D【解析】【分析】根据指数函数单调性可得,再利用作为临界值可得,,从而得到三者之间的关系.【详解】可知:本题正确选项:【点睛】本题考查指对数混合的大小比较问题,关键是能够利用函数的单调性进行判断,属于基础题.4.设等比数列的前项和为,已知,且与的等差中项为20,则()A. 127B. 64C. 63D. 32【答案】C【解析】【分析】先求出等比数列的首项和公比,然后计算即可.【详解】解:因为,所以因为与的等差中项为,,所以,即,所以故选:C.【点睛】本题考查了等比数列基本量的计算,属于基础题.5.已知为两条不同的直线,为两个不同的平面,则下列命题中正确的是()A. 若,,则B. 若,,且,则C. 若,,且,,则D. 若直线与平面所成角相等,则【答案】B【解析】【分析】结合空间中平行于垂直的判定与性质定理,逐个选项分析排除即可.【详解】解:选项A中可能,A错误;选项C中没有说是相交直线,C错误;选项D 中若相交,且都与平面平行,则直线与平面所成角相等,但不平行,D错误. 故选:B.【点睛】本题考查了空间中点线面的位置关系,属于基础题.6.函数的图像大致为()A. B.C. D.【答案】C【解析】【分析】根据奇偶性可排除和两个选项,再根据时,的符号,可排除选项,从而得到正确结果.【详解】定义域为为定义在上的奇函数,可排除和又,当时,,可排除本题正确选项:【点睛】本题考查函数图像的判断,解决此类问题的主要方法是利用奇偶性、特殊值、单调性来进行排除,通过排除法得到正确结果.7.运行如图所示的程序框图,则输出的值为()A. 9B. 10C. 11D. 12【答案】C【解析】【分析】将的变化规律整理为数列的形式,求解出数列的通项,根据求解出输出时的取值. 【详解】将每次不同的取值看做一个数列则,,,…,则,则当时,;当时,即时,,输出结果本题正确选项:【点睛】本题考查利用循环结构的程序框图计算输出结果,由于循环次数较多,可以根据变化规律,利用数列的知识来进行求解.8.设函数的一条对称轴为直线,将曲线向右平移个单位后得到曲线,则在下列区间中,函数为增函数的是()A. B. C. D.【答案】B【解析】【分析】将化简为,根据对称轴可求得;通过平移得到;依次代入各个选项,判断其单调性,从而得到结果.【详解】将代入可得:又,可得:当时,,不单调,可知错误;当时,,单调递增,可知正确;当时,,单调递减,可知错误;当时,,不单调,可知错误.本题正确选项:【点睛】本题考查的单调性问题,主要采用整体对应的方式来进行判断.关键是能够通过辅助角公式、对称轴方程、三角函数平移等知识准确求解出的解析式.9.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A. B. C. D.【答案】A【解析】【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果.【详解】设事件为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件为“学生丙第一个出场”则,则本题正确选项:【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.10.已知双曲线的一条渐近线方程为,左焦点为,当点在双曲线右支上,点在圆上运动时,则的最小值为()A. 9B. 7C. 6D. 5【答案】B【解析】【分析】根据渐近线方程求出双曲线方程,根据定义可将问题转化为求解的最小值,由位置关系可知当与圆心共线时取最小值.【详解】由渐近线方程可知设双曲线右焦点为由双曲线定义可知:则则只需求的最小值即可得到的最小值设圆的圆心为,半径则本题正确选项:【点睛】本题考查双曲线中的最值问题,关键是能够利用双曲线的定义将问题进行转化,再根据圆外点到圆上点的距离的最值的求解方法得到所求最值.11.已知三棱锥各顶点均在球上,为球的直径,若,,三棱锥的体积为4,则球的表面积为()A. B. C. D.【答案】B【解析】【分析】求解出面积后,利用三棱锥的体积,构造方程,求解出点到底面的距离,从而可知的长度;利用正弦定理得到,勾股定理得到球的半径,从而求得球的表面积. 【详解】原题如下图所示:由,得:则设外接圆圆心为,则由正弦定理可知,外接圆半径:设到面距离由为球直径可知:则球的半径球的表面积本题正确选项:【点睛】本题考查三棱锥外接球表面积问题的求解,关键是能够利用球心与底面外接圆圆心的连线与底面垂直的关系构造直角三角形.12.已知是函数(其中常数)图像上的两个动点,点,若的最小值为0,则函数的最小值为()A. B. C. D.【答案】D【解析】【分析】通过函数解析式可判断出关于对称,可知取最小值时,与相切且;利用导数求解切线斜率,求解出,从而可得函数最小值.【详解】当时,,则由此可知,关于对称又最小值为,即,此时则此时函数图象如下图所示:此时与相切于当时,设,则又,可得则本题正确选项:【点睛】本题考查函数最值的求解问题,关键是能够通过解析式判断出函数的对称性,从而借助导数的几何意义求得参数的值,进而得到函数最值.二、填空题(将答案填在答题纸上)13.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:,,,,,根据收集到的数据可知,由最小二乘法求得回归直线方程为,则______.【答案】375【解析】【分析】求解出,利用求解出,进而求得结果.【详解】由题意:则:本题正确结果:【点睛】本题考查回归直线方程问题,关键是明确回归直线必过,利用此点可求解得到结果.14.若实数满足不等式组,则的最大值为_____.【答案】16【解析】【分析】先由简单线性规划问题求出的最大值,然后得出的最大值.【详解】解:由不等式组画出可行域如图中阴影部分然后画出目标函数如图中过原点虚线,平移目标函数在点A处取得最大值解得点所以最大为4所以的最大值为16故答案为:16.【点睛】本题考查了简单线性规划问题,指数复合型函数的最值,属于基础题.15.已知点是抛物线上不同的两点,且两点到抛物线的焦点的距离之和为6,线段的中点为,则焦点到直线的距离为______.【答案】【解析】【分析】通过抛物线焦半径公式和点差法可求得抛物线和直线的方程,再利用点到直线距离求得结果. 【详解】设,由抛物线定义可知:,则又为中点,则抛物线方程为则:,两式作差得:则直线的方程为:,即点到直线的距离本题正确结果:【点睛】本题考查抛物线的几何性质,关键是在处理弦的中点的问题时,要熟练应用点差法来建立中点和斜率之间的关系.16.已知数列,对任意,总有成立,设,则数列的前项的和为______.【答案】【解析】【分析】利用求得,从而可得,则每两项作和,通过裂项相消的方式求得结果.【详解】当且时,由……①得:……②①②得:当时,综上所述:则:则的前项和为:本题正确结果:【点睛】本题考查数列裂项相消法求和,关键是能够通过的前项和求得数列的通项公式,从而得到的通项公式,根据的形式确定每两项作和可得裂项相消法的形式.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.在中,角的对边分别为,已知,.(1)求的面积;(2)若,求的值. 【答案】(1)4(2) 【解析】【分析】(1)利用正弦定理求得的正余弦的值;利用向量数量积求得,从而可求面积;(2)利用余弦定理求得的正余弦值,利用两角和差公式求得结果.【详解】(1)由正弦定理得:,的面积为(2),,即【点睛】本题考查正余弦定理解三角形、三角形面积公式的应用、两角和差公式的应用问题,关键是能够熟练应用正余弦定理处理边角关系式.18.有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):产品:获利亏损产品:获利亏损注:(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.【答案】(1) (2) 当时,丙可在产品和产品中任选一个投资;当时,丙应选产品投资;当时,丙应选产品投资.【解析】【分析】(1)“一年后甲、乙两人至少有一人投资获利”的概率,可求得;又可得,由此可得的范围;(2)分别求出投资,两种产品的数学期望,通过数学期望的大小比较可知应选哪种产品.【详解】(1)记事件为“甲选择产品投资且获利”,记事件为“乙选择产品投资且获利”,记事件为“一年后甲、乙两人至少有一人投资获利”则,,,又,且,(2)假设丙选择产品投资,且记为获利金额(单位:万元),则的分布列为假设丙选择产品投资,且记为获利金额(单位:万元),则的分布列为当时,,丙可在产品和产品中任选一个投资;当时,,丙应选产品投资;当时,,丙应选产品投资.【点睛】本题考查概率统计中的独立事件的概率、数学期望的应用问题.在以期望值作决策依据进行选择时,关键是分别求解出数学期望,依据大小关系来确定结果.19.如图,在四棱锥中,底面是菱形,为的中点,已知,,.(1)证明:平面平面;(2)求二面角的平面角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)分别证得,,从而证得平面,进而证得面面垂直;(2)建立空间直角坐标系,分别求得平面和平面的法向量,利用法向量夹角求得结果.【详解】(1)证明:连接,取的中点为,连接在菱形中,,为正三角形在中,,,由勾股定理知为等腰直角三角形,即平面 又平面平面平面(2)解:如图,以为原点,以所在直线为轴建立空间直角坐标系则,,,,,,设平面的法向量为,则,且即,令,则,设平面的法向量为,则,即,令,则,则二面角的平面角的正弦值为【点睛】本题考查立体几何中面面垂直的证明、空间向量法求解二面角的问题,关键是能够建立起空间直角坐标系,通过法向量夹角的余弦值求得二面角平面角的正弦值,属于常规题型.20.已知离心率为的椭圆:的右焦点为,点到直线的距离为1.(1)求椭圆的方程;(2)若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.【答案】(1) (2) 或【解析】【分析】(1)通过点到直线的距离、离心率和的关系,求得标准方程;(2)直线与椭圆方程联立,利用可得;再利用,根据弦长公式可求得,得到;利用表示出点坐标,代入椭圆可得,从而可求得的范围.【详解】(1)由题意得:,即又,,即,椭圆的方程为(2)由题意可知直线的斜率存在,设,,,由得:由,得:(*),,结合(*)得:从而,点在椭圆上整理得:即或【点睛】本题考查椭圆标准方程求解、椭圆中参数取值范围的求解问题,关键是能够利用直线与椭圆相交于不同两点且弦长得到的取值范围;再通过向量的坐标运算,可得到关于与的关系,进而可求得结果.21.已知函数,.(1)若函数与的图像上存在关于原点对称的点,求实数的取值范围;(2)设,已知在上存在两个极值点,且,求证:(其中为自然对数的底数).【答案】(1) (2)见证明【解析】【分析】(1)将问题转化为在有解,即在上有解,通过求解的最小值得到;(2)通过极值点为可求得,通过构造函数的方式可得:;通过求证可证得,进而可证得结论.【详解】(1)函数与的图像上存在关于原点对称的点即的图像与函数的图像有交点即在有解,即在上有解设,,则当时,为减函数;当时,为增函数,即(2),在上存在两个极值点,且且,即设,则要证,即证只需证明,即证明设,则则在上单调递增,即【点睛】本题考查利用导数来解决函数中的交点问题、恒成立问题,解决问题的关键是能将交点问题转变为能成立问题、不等式的证明问题转化为恒成立的问题,从而通过构造函数的方式,找到合适的函数模型来通过最值解决问题.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线相交于两点,设点,已知,求实数的值. 【答案】(1)直线: ,曲线:(2)【解析】【分析】(1)在直线的参数方程中消去参数t得直线的一般方程,在曲线的极坐标方程为中先两边同乘,得曲线的直角坐标方程;(2)将直线的参数方程直接代入曲线的直角坐标方程中,得到韦达定理,由,,列方程求出答案. 【详解】解:(1)因为直线的参数方程为消去t化简得直线的普通方程:由得,因为,所以,所以曲线的直角坐标方程为(2)将代入得即,则,,∴,∴∴∵,∴,满足∴【点睛】本题考查了直线的参数方程,曲线极坐标方程与直角坐标方程得转化,直线与圆的位置关系,属于中档题.23.选修4-5:不等式选讲 已知函数,. (1)当时,求不等式的解集;(2)若,且当时,不等式有解,求实数的取值范围.【答案】(1)(2)【解析】 试题分析:(1)将不等式零点分段可得不等式的解集为.(2)将不等式转化为,可得实数的取值范围是.试题解析:解:(1)当时,, ∴等价于或或,解得或或,即.∴不等式的解集为.(2)∵,∴, 不等式,∴,∴实数的取值范围是.点睛:绝对值不等式的解法法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
2019学年重庆市高二4月月考理科数学试卷【含答案及解析】
2019学年重庆市高二4月月考理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 把4封不同的信投进5个不同的邮箱中,则总共投法的种数为()A.20___________ B.___________ C._________ D.2. (原创)已知随机变量服从二项分布,若,则()A._________ B._________ C._________ D.3. (原创)把五个字母进行排列,要求必须在中间,且必须相邻,则满足条件的不同排法数为()A.24___________ B.12_________ C.8_________ D.44. (原创)为大力提倡“厉行节俭,反对浪费”,重庆一中通过随机询问100名性别不同的学生是否做到“光盘”行动,得到如下列联表及附表p5. ly:Calibri; font-size:10.5pt"> 做不到“光盘”行动做到“光盘”行动男 45 10 女 30 15 0.10 0.05 0.025 2.706 3.841 5.024 经计算:,参考附表,得到的正确结论是()A.有的把握认为“该学生能否做到光盘行到与性别有关”B.有的把握认为“该学生能否做到光盘行到与性别无关”C.有的把握认为“该学生能否做到光盘行到与性别有关”D.有的把握认为“该学生能否做到光盘行到与性别无关”6. (原创)某区实验幼儿园对儿童记忆能力与识图能力进行统计分析,得到如下数据:p7. ly:宋体; font-size:10.5pt">记忆能力 4 6 8 10 识图能力 3 5 6 8 由表中数据,求得线性回归方程为,当江小豆同学的记忆能力为12时,预测他的识图能力为()A.9___________ B.9.5_________ C. 10_________ D.11.58. 一个几何体的三视图如图所示(单位:),则该几何体的体积为()A._________ B._________ C._________ D.9. 在中,若,那么一定是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.形状不确定10. 袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6” ,事件“三次抽到的号码都是2” ,则()A.___________ B._________ C._________ D.11. (原创)一直二项式按照的方式展开,则展开式中的值为()A.90_________ B.180_________ C.360_________ D.40512. (原创)若数列满足规律:则称数列为波浪数列,将1,2,3,4,5这五个数排列成一个无重复数字的波浪数列,则排法种数共有()A.12_________ B.14_________ C.16_________ D.1813. 已知定义在上的函数满足,且,,若有穷数列的前项和等于,则等于()A.4_________ B. 5 C.6_________ D.714. 已知是双曲线的左焦点,为右顶点,上下虚轴端点为,若交于,且,则此双曲线的离心率为() A._________ B._________ C._________ D.二、填空题15. 的二项展开式的常数项为______________________________ .16. 设随机变量服从正态分布,若,则的值是______________________________ .17. (原创)曲线与直线所围成的封闭图形的面积为______________________________ .18. (原创)如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从到的最短线路有____________________________ 条.三、解答题19. (原创)清明节放假期间,已知甲同学去磁器口古镇游玩的概率为,乙同学去磁器口古镇游玩的概率为,丙同学去磁器口古镇游玩的概率为,且甲,乙,丙三人的行动互相之间没有影响.(1)求甲,乙,丙三人在清明节放假期间同时去磁器口古镇游玩的概率;(2)求甲,乙,丙三人在清明节放假期间仅有一人去磁器口古镇游玩的概率.20. 在中,分别是角的对边,已知 . (1)求的值;(2)若的面积,且,求和的值.21. 某师范大学志愿者支教团体有6名男同学,4名女同学.在这10名同学中, 3名同学来自数学系,其余7名同学来自物理、化学等其他互不相同的七个系,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学来自互不相同的系的概率;(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.22. 如图,在长方体中,,点在棱上移动.(1)证明:;(2)等于何值时,二面角的大小为 .23. 已知椭圆的左焦点为,离心率为,点在椭圆上,直线的斜率为,直线被圆截得的线段的长为 .(1)求椭圆的方程;(2)设动点在椭圆上,若直线的斜率大于,求直线(为原点)的斜率的取值范围.24. 已知函数,其中 .(1)讨论的单调性;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若关于的方程(为实数)有两个正实根,求证:.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019年重庆市高三第二诊调研诊断试卷Word版
2019年重庆市高三第二诊调研诊断试卷Word版2019年重庆高三年级二诊试题英语试卷(满分150分;考试时间120分钟)第I卷(共100分)第一部分:听力(共两节,满分30分)第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AEverything I Never Told You: A novel by Celeste NgIn StockList Price: $ 26.95Price: $ 16.167You Save: $ 10.78 (40%)Synopsis(梗概):“Lydia is dead. But they don't know this yet... ” So begins the , story of this novel, about a Chinese American family living in 1970s small-town Ohio. Lydia is the favorite child of Marilyn and James Lee; their middle-daughter, a girl who inherited her mother's bright blue eye and her father's jet-black hair. Her parents are determined that Lydia will fulfill the dreams they were unable to pursue----in Marilyn's case that her daughter should become a doctor rather than a homemaker, in James's case that Lydia should be popular at school, a girl with a busy social life and the center of every party.When Lydia's body is found in the local lake, the balancing act that has been keeping the Lee family together falls into chaos,forcing them to confront the long-kept secrets that have been slowly pulling them apart. James, consumed by guilt, sets out on a reckless path that may destroy his marriage. Marilyn, is determined to find a responsible party, no matter what the cost is. Lydia's older brother, Nathan, is certain that the neighborhood bad boy Jack is somehow involved. But it's the youngest of the family--- Hannab who observes far more than anyone realizes and who may be the only one who knows the truth about what happened.A profoundly moving story of family, history, and the meaning of home, Everything I Never Told You isboth a good page-turner and a sensitive family portrait, exploring the divisions between cultures and the conflicts within a family, and uncovering the ways in which mothers and daughters, fathers and sons, and husbands and wives struggle, all their lives, to understand one another.21. What type of writing is this passage?A An exhibition guide.B An announcementC A book review.D An advertisement22.How many people in the Lee family are mentioned according to the passage?A Four.B Five.C Six.D Seven.23. Which of the following is TRUE according to the passage?A James wants his daughter to be a homemaker.B In Hannah's eyes, Jack is actually the real killer.C Lydia takes on the high expectations of the family.D The family always live in harmony with each other.BAsk 9-year-old Annie what the worst thing was that ever happened in her house last year, and she won’t tell you that it was her parents divorcing, although they did. No, what Annie remembers most are the horrible fights leading up to the announcement about the divorce which was, as it turned out, and despite her parents anxiety about telling her, “not that big of a deal.” “I already knew they were not getting along well,” Annie says, “Every night after I went to bed, l would hear my parents fi ghting.” It made me really unhappy. When they finally decided to get a divorce, all of that stopped.Annie's experience is more common than you might think, and there is a great deal of evidence to suggest that “staying together for the sake of the childre n” is not all it's cracked up to be, and may do more harm than good. According to psychologist Lynn Martingdale, hearing their parents argue is often more stressful for children than separation and divorce, and if you think that your children don’t know th at there's trouble in family, then you're kidding yourself The home life of children whose parents have an unhappy marriage is often far from ideal, and what's worse, parents will compound the problem by taking their unhappiness out on the children.The Center for Moving Forward conducted a study in 2014 in which they followed 25families whose parents had been in marriage counseling. After tracking these families for 5 years, they found that the children of the parents who had eventually gotten divorced were not worse off than the children of those who had remained together, and in some cases had fared better.The study took into consideration, social and the children's general sense of well-being.24 Why was Annie really unhappy according to paragraph 1?A. Her parents fought every night. B Her parents finally got divorced.C Her parents decided to abandon her.D Her parents got along badly with her.25.Which statement may psychologist Lynn Martingdale agree with?A Separation and divorce will hurt the children most.B Keeping an unhappy marriage hurts children more.C Children can't understand their parents' marriage well.D Child ren can’t feel the unhappiness from their parents.26.What's the function of the last paragraph in the passage?A To give an example of divorce.B To support Annie's correct answer.C To further clear the author's view point.D To highlight the importance of the study.27. What is the best title for the passage?A Divorce Is Good for ChildrenB Divorce Is Not the Worst ThingC Fighting Is Often StressfulD Staying Together Is for Children OnlyCWhen one man offered to take a woman stranger's baby so that she could rest on a recent flight, many people on the plane watched it.“It was so touching,” one passenger, Andrea Byrd said. She shot a photo of the man carrying the baby up and down the aisle (通道)and posted it on Facebook, where it's since gone viral.“I was in tears,” Byrd wrote in the post, which has been shared almost 100,000 times. “Not because he was white and she was black... but because it showed me today that there are, still good people out there in a world full of evil.”The Southwest Airlines flight was heading from Minne- apolis to Atlanta on September 5.The mom, Monica Nelson, who is pregnant, said she had been nervous about traveling alone with her 20- month-old son Luke. When he grew annoyed and wouldn't rest, the man seated next to them surprised her by offering to help, she said. He walked up and down the aisle holding the boy, soothing him to sleep.“It was suc h a relief because I was a little worried traveling with him without my husband there to help out,”said Nelson, a teacher who lives in Atlanta. “I'm still very grateful- he was so kind.”She said the man's name is Rcid, and she learned that he also has a son named Luke.Byrd said she was particularly touched by the scene because she has two children of her own and could put herself in the mom's shoes. Now their story has touched thousands of people across the world, reminding people how powerful a simple act of kindness can be.“It's good to know the world is not all bad,” Nelson said, “There are some really great people out there.”28. How did the man help the woman in the flight?A He helped the baby to feel relaxed.B He gave his own seat to the woman.C He carried the baby up and down in the air.D He posted a photo of the woman on Facebook.29. What was the result after Andrea Byrd posted the photo online?A The man suddenly became successful.B So many people were touched by the story.C Monica Nelson decided not to take a flight again.D The young mom and the man became good friends.30.What does the underlined word soothing mean in paragraph 5?A To please somebody to make him sleep for long.B To ease somebody to make him feel comfortable.C To force somebody to be quiet and silent soon.D To sing songs to make him feel happy slowly.31.Which statement about the man is TRUE?A His son's name is Luke.B He is kind to Andrea Byrd.C He prefers to post photos online.D He loves helping pregnant women.DNowadays, we can read almost all “truths” on social media sites. But are they really reliable? Sites such as the micro messaging service Twitter, the social networking site Facebook and the photo-sharing app Instagram might “misrepresent the real world,” a ccording to a study by computer scientists from McGill University and Carnegie Mellon University.The scientists warn that gathering information about public views and trends from these sites is unwise. There are still large parts of the population who do not take part in social media activities. Also, there's a risk that many social media users are under- represented. Instagram, for example, appeals to younger adults in urban areas。
2019届重庆市南开中学高三4月测试数学(理)试题(解析版)
2019届重庆市南开中学高三4月测试数学(理)试题一、单选题1.设复数满足,则在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】先对复数进行化简,进而可得到它在复平面内对应点的坐标,从而可得到答案。
【详解】由题意,,故在复平面内对应点为,在第一象限,故选A.【点睛】本题考查了复数的四则运算,及复数的几何意义,属于基础题。
2.若集合,则=()A.B.C.D.【答案】C【解析】求出集合,然后与集合取交集即可。
【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题。
3.已知双曲线的一条渐近线方程为,且经过点,则双曲线的方程是()A.B.C.D.【答案】C【解析】由双曲线的渐近线为,可得到,又点在双曲线上,可得到,联立可求出双曲线的方程。
【详解】双曲线的渐近线为,则,又点在双曲线上,则,解得,故双曲线方程为,故答案为C.【点睛】本题考查了双曲线的渐近线,考查了双曲线的方程的求法,考查了计算能力,属于基础题。
4.在中,,则=()A.B.C.D.【答案】B【解析】在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案。
【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题。
5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:则下列判断中不正确...的是()A.该公司2018年度冰箱类电器营销亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【答案】B【解析】结合表中数据,对选项逐个分析即可得到答案。
【详解】因为冰箱类电器净利润占比为负的,所以选项A正确;因为营业收入-成本=净利润,该公司2018年度小家电类电器营业收入占比和净利润占比相同,而分母不同,所以该公司2018年度小家电类电器营业收入和净利润不可能相同,故选项B错误;由于小家电类和其它类的净利润占比很低,冰箱类的净利润是负值,而空调类净利润占比达到,故该公司2018年度净利润主要由空调类电器销售提供,即选项C正确;因为该公司2018年度空调类电器销售净利润不变,而剔除冰箱类电器销售数据后,总利润变大,故2018年度空调类电器销售净利润占比将会降低,即选项D正确。
高三理科数学二诊试题及答案
2019届高三理科数学二诊试题及答案2019届高三理科数学二诊试题及答案一、选择题:本大题10个小题,每小题5分,共50分.1.已知集合,则等于( )A. B. C. D.2.命题所有能被2整除的整数都是偶数的否定是( )A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数3.(周练变式)设函数,则满足的x的取值范围是( )A. ,2]B.[0,2]C.[1,+ )D.[0,+ )4.若函数,则下列结论正确的是( )A. ,在上是增函数B. ,在上是减函数C. ,是偶函数D. ,是奇函数5. 设0A.充分不必要条件B.必要不充分条件C. 充分必要条件D.既不充分也不必要条件6. 设函数若,,则关于x的方程的解的个数为( )A.1B.2C.3D.47. 已知幂函数f(x)的图象经过点(18,24),P(x1,y1),Q(x2,y2)(x1A ② ; ③④ .A.①③B.①②C.②④D.②③8.(周练变式)函数的图像可能是( )9. 函数的图像如图所示,在区间上可找到个不同的数使得则的取值范围是( )A. B. C. D.10. 定义在R上的函数,如果存在函数(k,b为常数),使得对一切实数x都成立,则称为函数的一个承托函数.现有如下命题:①对给定的函数,其承托函数可能不存在,也可能有无数个.②函数为函数的一个承托函数.③定义域和值域都是R的函数不存在承托函数.其中正确命题的序号是:( )A.①B.②C.①③D.②③二、填空题:本大题5个小题,每小题5分,共25分.11.已知函数,则零点的个数是__________.12.已知函数R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成的区域(如图阴影部分)的面积为,则=_____________.13. 已知定义在R上的函数的图象关于点对称,且满足,又,,则_______________.14. 已知函数的自变量取值区间为A,若其值域也为A,则称区间A 为的保值区间.若的保值区间是,则的值为_______________.15. 设S为复数集C的非空子集.若对任意,都有,则称S为封闭集。
重庆市2019届高三4月模拟考试数学(理)试卷 Word版含答案
数学试题 理注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。
2. 作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3. 考试结束后,将答题卡交回。
第Ⅰ卷一.选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足(1)1z i i -=+(i 是虚数单位),则||z =A .0B .12C .1D .322. 已知集合{}1A x y x==-,{}2230B x x x x Z =--<∈,,则()R C A B I = A .{}1 B .{}2 C .{}21, D .{}321,, 3. 若4log 3=a ,4.06.0=b ,2log 21=c ,则实数c b a ,,的大小关系为A. c b a >> B .b c a >> C .a c b >> D .c a b >>4. 下列说法正确的是A. 设m 是实数,若方程12122=-+-my m x 表示双曲线,则2>m .B.“q p ∧为真命题”是“q p ∨为真命题”的充分不必要条件.C. 命题“R x ∈∃,使得0322<++x x ”的否定是:“R x ∈∀,0322>++x x ”. D. 命题“若0x 为()x f y =的极值点,则()00'=x f ”的逆命题是真命题. 5. 执行右边的程序框图,若输出的S 的值为63,则判断框中可以填入的关于i 的判断条件是A .5≤iB .6≤iC .7≤iD .8≤i6. 在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论。
甲说:“我做错了!” 乙对甲说:“你做对了!”丙说:“我也做错了!”老师 (第5题) 看了他们三人的答案后说:“你们三人中有且只有一人做对 了,有且只有一人说对了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2019届高三4月调研测试(二诊)数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,0,1,2,3}A =-,2{|30}B x x x =->,则()R AC B =( )A . {1}-B .{0,1,2}C .{1,2,3}D .{0,1,2,3}2.若复数z 满足2(1)1z i i +=-,其中i 为虚数单位,则z 在复平面内所对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知向量(,1)a x =-,(1,3)b =,若a b ⊥,则||a =( )A B .2 D . 44.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( )A .10日B . 20日C . 30日D .40日5.设直线0x y a --=与圆224x y +=相交于,A B 两点,O 为坐标原点,若AOB ∆为等边三角形,则实数a 的值为( )A ... 3± D .9±6.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .30m -<< B .32m -<< C . 34m -<< D .13m -<< 7.执行如图所示的程序框图,若输出的结果为3,则输入的数不可能是( )A .15B .18C . 19D .208.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中11DD =,12AB BC AA ===,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )A .B .C .D .9.已知函数2sin()y x ωϕ=+(0,0)ωϕπ><<的部分图象如图所示,则ϕ=( )A .6π B .4π C . 3π D .2π 10.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点,P Q ,若||2||PQ QF =,60PQF ∠=,则该双曲线的离心率为( ) A 3.13. 23 D .423+11.已知函数2()(3)xf x x e =-,设关于x 的方程2212()()0()f x mf x m R e --=∈有n 个不同的实数解,则n 的所有可能的值为( )A . 3B . 1或3C . 4或6D .3或4或612.已知棱长为3的正方体1111ABCD A B C D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱侧面积的最大值为( ) A .928π B .924π C . 23π D .32π 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在52(2)a x x+的展开式中4x -的系数为320,则实数a = . 14.甲、乙两组数据的茎叶图如图所示,其中m 为小于10的自然数,已知甲组数据的中位数大于乙组数据的中位数,则甲组数据的平均数也大于乙组数据的平均数的概率为 .15.设函数22log (),12()142,1333x x f x x x x ⎧-≤-⎪⎪=⎨⎪-++>-⎪⎩,若()f x 在区间[,4]m 上的值域为[1,2]-,则实数m 的取值范围为 .16.已知数列{}n a 的前n 项和为n S ,若11a =,2n n a n a =-,211n n a a +=+,则100S = .(用数字作答)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知2sin()2sin ()24C A B π-=-. (1)求sin cos A B 的值; (2)若33a b =,求B . 18. 如图,矩形ABCD 中,22AB =2AD =M 为DC 的中点,将DAM ∆沿AM 折到'D AM∆的位置,'AD BM ⊥.(1)求证:平面'D AM ⊥平面ABCM ;(2)若E 为'D B 的中点,求二面角'E AM D --的余弦值.19. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:22()()()()()n ad bc k a b c d a c b d -=++++,20()P K k ≥0.10 0.05 0.025 0.0100k2.706 3.841 5.024 6.635(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有X 人,超过10000步的有Y 人,设||X Y ξ=-,求ξ的分布列及数学期望.20. 已知,A B 分别为椭圆C :22142x y +=的左、右顶点,P 为椭圆C 上异于,A B 两点的任意一点,直线,PA PB 的斜率分别记为12,k k .(1)求12,k k ;(2)过坐标原点O 作与直线,PA PB 平行的两条射线分别交椭圆C 于点,M N ,问:MON ∆的面积是否为定值?请说明理由.21. 已知曲线2ln ln ()x a x a f x x++=在点(,())e f e 处的切线与直线220x e y +=平行,a R ∈.(1)求a 的值; (2)求证:()x f x ax e>. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin 2x t y t αα=-+⎧⎪⎨=+⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22244sin cos ρθθ=+.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为1(1,)2-,直线l 与曲线C 相交于不同的两点,A B ,求||||PA PB 的取值范围. 23.选修4-5:不等式选讲已知函数()|||3|f x x a x a =-+-. (1)若()f x 的最小值为2,求a 的值;(2)若对x R ∀∈,[1,1]a ∃∈-,使得不等式2||()0m m f x --<成立,求实数m 的取值范围.重庆市2019届高三4月调研测试(二诊)数学理试题答案1~6 DCCCCD7~12 DABCAD第(11)题解析:xx x x f +-='e )3)(1()(,)(x f ∴在)3,(--∞和),1(+∞上单增,)1,3(-上单减又当-∞→x 时0)(→x f ,+∞→x 时+∞→)(x f , 故)(x f 的图象大致为: 令t x f =)(,则方程0e 1222=--mt t 必有两根21,t t )(21t t <且221e 12-=t t , 当e 21-=t 时恰有32e 6-=t ,此时1)(t x f =有1个根,2)(t x f =有2个根; 当e 21-<t 时必有32e 60-<<t ,此时1)(t x f =无根,2)(t x f =有3个根; 当0e 21<<-t 时必有32e 6->t ,此时1)(t x f =有2个根,2)(t x f =有1个根; 综上,对任意R m ∈,方程均有3个根.第(12)题解析:由题知,只需考虑圆柱的底面与正方体的表面相切的情况, 由图形的对称性可知,圆柱的上底面必与过A 点的三个面相切, 且切点分别在线段11,,AD AC AB 上,设线段1AB 上的切点为E ,1AC 面21O BD A =,圆柱上底面的圆心为1O ,半径即为E O 1记为r ,则2262331312=⨯⨯==DF F O ,13112==AC AO ,由F O E O 21//知E O AO AO E O 11112122=⇒=,则圆柱的高为r AO 223231-=-,232329242(322)42()42()428r rS r r r r ππππ+-=-=-⋅==侧≤.二、填空题 (13)2(14)53(15)]1,8[-- (16)1306第(15)题解析:函数)(x f 的图象如图所示,结合图象易得,当]1,8[--∈m 时,]2,1[)(-∈x f .第(16)题解析:1122+=++n a a n n ,则12745032999832=+++=++++ a a a a ,31302932262550136122550100=+=+=-=+=+=-=a a a a a a a ,则1306100=S .三、解答题 (17)解:(Ⅰ)1cos sin 2)sin(1sin 1)2cos(1)sin(=⇒+-=-=--=-B A B A C C B A π,21cos sin =∴B A ;(Ⅱ)332sin sin ==b a B A ,由(Ⅰ)知212sin 33cos sin 332cos sin ===B B B B A ,232sin =∴B , 32π=∴B 或32π,6π=∴B 或3π.(18)解:(Ⅰ)由题知,在矩形ABCD 中,︒=∠=∠45BMC AMD ,︒=∠∴90AMB ,又BM A D ⊥',⊥∴BM 面AM D ',∴面⊥ABCM 面AM D ';(Ⅱ)由(Ⅰ)知,在平面AM D '内过M 作直线MA NM ⊥,则⊥NM 平面ABCM , 故以M 为原点,MN MB MA ,,分别为z y x ,,轴的正方向建立空间直角坐标系,则)0,0,0(M ,)0,0,2(A ,)0,2,0(B ,)1,0,1(D ',于是)21,1,21(E ,)0,0,2(=MA ,)21,1,21(=ME ,设平面EAM 的法向量为),,(z y x m =,则⎪⎩⎪⎨⎧=++=0212102z y x x 令1=y ,得平面EAM 的一个法向量)2,1,0(-=m ,显然平面AM D '的一个法向量为)0,1,0(=n ,故51,cos >=<n m ,即二面角D AM E '--的余弦值为55.(19)解:(Ⅰ)841.3114018222020)861214(4022<=⨯⨯⨯⨯-⨯⨯=K ,故没有95%以上的把握认为二者有关;(Ⅱ)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为81,超过10000步的概率为41,且当0==Y X 或1==Y X 时,0=ξ,12551129888464P C =⨯+⋅=;当0,1==Y X 或1,0==Y X 时,1=ξ,6430854185811212=⋅+⋅=C C P ;当0,2==Y X 或2,0==Y X 时,2=ξ, 645)81()41(22=+=P ,即ξ的分布列为:85=ξE .(20)解:(Ⅰ)设),(00y x P ,则21242220202020000021-=-=-=-⋅+=y y x y x y x y k k ; (Ⅱ)由题知,直线x k y OM 1:=,直线x k y ON 2:=,设),(),,(2211y x N y x M ,则|)(|21||21||2121211122211221x x k k x k x x k x y x y x S -=⋅-⋅=-=,由212112221442k x x k y y x +=⇒⎩⎨⎧==+, 同理可得2222214k x +=,故有1)(24)2(16214214)(42221222121222122212212+++-+=+⋅+⋅-=k k k k k k k k k k k k S ,又2121-=k k ,故8)(22)1(164222122212=++++=k k k k S ,2=∴S . (21)解:(Ⅰ)22ln (2)ln ()x a x f x x -+-'=,由题22122(e)3e e a f a -+-'==-⇒=; 积极型 懈怠型 总计 男 14 6 20 女 8 12 20 总计221840(Ⅱ)2ln 3ln 3()x x f x x ++=,2ln (ln 1)()x x f x x -+'=,1()01ef x x '>⇒<<, 故()f x 在1(0,)e 和(1,)+∞上递减,在1(,1)e上递增, ①当(0,1)x ∈时,1()()e e ≥f x f =,而33(1)()e e x x x x -'=,故3e xx 在(0,1)上递增, 33e e e x x ∴<<,3()e xx f x ∴>即()3ex f x x >; ②当[1,)x ∈+∞时,2ln 3ln 30033≥x x ++++=,令23()ex x g x =,则23(2)()e xx x g x -'=故()g x 在[1,2)上递增,(2,)+∞上递减,212()(2)3e ≤g x g ∴=<,223ln 3ln 3e x x x x ∴++>即()3ex f x x >;综上,对任意0x >,均有()3ex f x x >. (22)解:(Ⅰ)14444cos sin 422222222=+⇒=+⇒=+y x x y θρθρ; (Ⅱ)因为点P 在椭圆C 的内部,故l 与C 恒有两个交点,即R ∈α,将直线l 的参数方程与椭圆C 的直角坐标方程联立,得4)sin 21(4)cos 1(22=+++-ααt t ,整理得02)cos 2sin 4()sin 31(22=--++t t ααα,则]2,21[sin 312||||2∈+=⋅αPB PA . (23)解:(Ⅰ)|||3||()(3)||2|x a x a x a x a a -+----=≥,当且仅当x 取介于a 和a 3之间的数时,等号成立,故)(x f 的最小值为||2a ,1±=∴a ;(Ⅱ)由(Ⅰ)知)(x f 的最小值为||2a ,故]1,1[-∈∃a ,使||2||2a m m <-成立,即 2||2<-m m ,0)2|)(|1|(|<-+∴m m ,22<<-∴m .。