八年级数学压轴题 期末复习试卷试卷(word版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学压轴题期末复习试卷试卷(word版含答案)

一、压轴题

1.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM =BM,连接AD.

(1)如图①,求证:DAM≌BCM;

(2)已知点N是BC的中点,连接AN.

①如图②,求证:ACN≌BCM;

②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.

2.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上

一点,另一直线l2:y2=1

2

x+b过点P.

(1)求点P坐标和b的值;

(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.

①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;

②求出t为多少时,△APQ的面积小于3;

③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.

3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P 在线段 AB 上以

1/

cm s的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为t(s).

(1)若点 Q 的运动速度与点 P 的运动速度相等,当t=1 时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段 PC 和线段 PQ 的位置关系;

(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q 的运动速度为x/

cm s,是否存在实数x,使得△ACP 与△BPQ 全等?若

存在,求出相应的x、t的值;若不存在,请说明理由.

4.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:

(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?

(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;

(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF

5.已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.

(1)如图1,

①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上; ②直接写出∠BDC 的度数(用含α的式子表示)为 ;

(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ; (3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值. 6.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则

DB __________EC .(填>、<或=)

(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.

(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.

(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、

D 、

E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;

线段AM,BD,CD之间的数量关系为__________.

(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,

AB=,∠=∠=︒,将ADE绕点A逆时针旋转,连结BE、CD.当5 BAC DAE

90

△与ADC的面积和的最大值为__________.2

AD=时,在旋转过程中,ABE

7.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,

如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.

(材料理解)(1)在图1中证明小明的发现.

(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).

(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.

8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.

(1)求∠AFE 的度数;

(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;

(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF

的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )

9.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于

点E .

(1)如图1,连接EC ,求证:EBC 是等边三角形;

(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;

(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,

NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.

10.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .

相关文档
最新文档