一元二次方程优秀公开课课件(比赛课)ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
教学目标:
• 一元二次方程概念 • 解一元二次方程的方法 • 一元二次方程应用题
一元二次方程概念
• 一元二次方程概念及一元二次方程一 般式及有关概念.
一元二次方程概念
• 只含有一个未知数(一元),并且未知 数的最高次数是2(二次)的整式方程, 叫做一元二次方程.
一元二次方程特点
• (1)都只含一个未知数x; • (2)它们的最高次数都是2次的; • (3)•都有等号,是方程.
本节课要掌握:
(1)一元二次方程的概念; 2 0(a 0) (2)一元二次方程的一般形式 ax bx c •和 二次项、二次项系数,一次项、一次项 系数,常数项的概念及其它们的运用.
第二课时
• 1.一元二次方程根的概念; • 2.根据题意判定一个数是否是一元二次 方程的根及其利用它们解决一些具体题 目.
b b2 4ac x 2a
根公式,得出方程的根
注意:
• ①当时 b 4ac 0 ,方程无解; • ②公式法是解一元二次方程的万能方法; • ③利用 的值,可以不解方程 2 就能判断方程根的情况; b 4ac
2
一元二次方程的根的判别式
• 一元二次方程 ax2 bx c 0(a 0) 的根的判 别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
b b2 4ac x 2a

b2 4ac 0 )
• • • •
一般步骤: 2 ①将方程化为一般形式 ax bx c 0(a 0) ②确定方程的各系数a,b,c,计算 b 2 4ac 的值; ③当b2 4ac 0 ,将a,b,c以及 b2 4ac 的值代入求
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=•1化成一元 二次方程的一般形式,并写出其中的二次项、二 次项系数;一次项、一次项系数;常数项. • 分析:通过完全平方公式和平方差公式把(x+1)2+ (x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形 式. • 解:去括号,得: • x2+2x+1+x2-4=1 • 移项,合并得:2x2+2x-4=0 • 其中:二次项2x2,二次项系数2;一次项2x,一 次项系数2;常数项-4.

b
例题:
• 将方程左边配成完全平方式,得到的方 程是( ) • A、( x 3) 2 3 B、( x 3) 2 6 • 2 2 • C、( x 3) 3 D、 ( x 3) 12
因式分解法
• 一般步骤如下: • ①将方程右边得各项移到方程左边,使方 程右边为0; • ②将方程左边分解为两个一次因式相乘的形式; • ③令每个因式分别为零,得到两个一元一次方程; • ④解这两个一元一次方程,他们的解就是原方程的解。 • 例题:解方程 2
一元二次方程的一般形式.
• 任何一个关于x的一元二次方程,•经过整理,• 都能化成如下形式 ax2 bx c 0(a 0) 这种 形式叫做一元二次方程的一般形式. • 一个一元二次方程经过整理化成 ax2 bx c 0( 后, a 0) 其中ax2是二次项,a是二次项系数;bx是一 次项,b是一次项系数;c是常数项.
2
例题:
• 将方程 x 4 x 1 0 配方后,原方 程变形为( ) 2 2 • A. B.( x 4) 3 ( x 2) 3
2
2 ( x 2 ) 3 • C.
( x 2) 5 D.
2公式法Βιβλιοθήκη • 一元二次方程 ax2 bx c 0(a 0) 的求根公式:
一元二次方程的根.
• 为了与以前所学的一元一次方程等只有 一个解的区别,我们称:一元二次方程 的解叫做一元二次方程的根.
直接开平方法
2 ( x a ) b(b 0) 可以用直接开 • 形如的方程
平方法解,两边直接开平方得 x a 或者 x a b , x a b • 注意:若b<0,方程无解
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次 项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等. • 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3x 11x 4 0
配方法
• 用配方法解一元二次方程 ax bx c 0(a 0) 的一般步骤 • ①二次项系数化为1:方程两边都除以二次项 系数; • ②移项:使方程左边为二次项与一次项,右边 为常数项; • ③配方:方程两边都加上一次项系数一般的平 方,把方程化为 ( x m)2 n(n 0) 的形式; • ④用直接开平方法解变形后的方程。 • 注意:当 n 0 时,方程无解
应用拓展
求证:关于x的方程(m2-8m+17)x2+2mx+1=0, 不论m取何值,该方程都是一元二次方程.
• 分析:要证明不论m取何值,该方程都是一元 二次方程,只要证明m2-8m+17•≠0即可. • 证明:m2-8m+17=(m-4)2+1 • ∵(m-4)2≥0 • ∴(m-4)2+1>0,即(m-4)2+1≠0 • ∴不论m取何值,该方程都是一元二次方 程.
韦达定理(根与系数关系)
• (1)我们将一元二次方程化成一般式ax2+bx+c=0之 后,设它的两个根是和,则和与方程的系数a,b,c 之间有如下关系: • +=; =可以由公式法解一元二次方程的两个根证明。 • *实根与虚根。 • (2)如果方程x2+px+q=0的两个根是x1,x2,那么 x1+x2=-P, x1x2=q • (3)以x1,x2为根的一元二次方程(二次项系数为1) 是 x2-(x1+x2)x+x1x2=0.
相关文档
最新文档