桁架内力计算(周)

合集下载

静定桁架的内力计算

静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。

桁架中各杆件的连接处称为节点。

由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。

房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。

图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。

本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。

在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。

满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。

分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。

一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。

由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。

例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。

桁架内力计算

桁架内力计算
二、 截面法 (1)一般先研究整体,求支座约束力; (2)根据待求内力杆件,恰当选择截面(直 截面或曲截面均可); (3)分割桁架,取其一部分进行研究,求杆 件内力; (4)所截杆件的未知力数目一般不大于3。
21
一、节点法 (1)一般先研究整体,求支座约束力; (2)逐个取各节点为研究对象; (3)求杆件内力; (4)所选节点的未知力数目不大于2,由此 开始计算。
练习1
判断结构中的零杆
F F
F
FP
2015-3-5
15
结点法
基本概念 结点法 截面法 联合法 小结
۞

练习2
计算桁架各杆件内力
2F a
4×a
第一步:求支座反力 第二步:判断零杆和单杆,简化问题 第三步:逐次去结点,列平衡方程 第四步:自我检查
16
2015-3-5
结点法
基本概念 结点法 截面法 联合法 小结
目 ≤ 独立方程数(即2个);
小结
基本思路:尽可能简化问题,一般先求支座反力,
然后逐次列结点平衡方程。
2015-3-5 10
结点法
۞
例题1
如图所示为一施工托架计算简图,求图示 荷载作用下各杆轴力(单位:kN)。
基本概念 结点法 截面法 联合法 小结
8 A
1.5m
8
C 6 E8 G F
8
B
截面法
基本概念
۞ 例题2
求图示桁架25、34、35三杆内力(单位:kN)。 10 20
I 4
7 2m 8
结点法
10
3
a
截面法 联合法 小结
1
2
5 I8 m
6
解: 1)求支座反力。2)截面法,取分离体受力 分析,求内力。

工程力学32 静定平面桁架结构的内力计算

工程力学32 静定平面桁架结构的内力计算


12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:

(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。




2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法

以一个结点为隔离体,用汇交力系的平衡方程求解

各杆的内力的方法。

12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架





主桁架




2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:


(1)所有的结点都是无摩擦的理想铰结点;

(2)各杆的轴线都是直线,并通过铰的中心;

(3)荷载和支座反力都作用在结点上。

桁架的内力计算

桁架的内力计算
⑵对无竖腹杆的节点板, 当c
t 10 235 f y
时,
36
节点板的稳定承载力可取为 0.8betf

c t 10 235 f y
时,应进行稳定计算
在任何情况下, c t 不得大于 17.5 235 f y
用上述方法计算桁架节点板强度和稳定的要求
1)节点板边缘与腹杆轴线之间的夹角不小于30° 2)斜腹杆与弦杆夹角应在30°~60° 3)节点板的自由边长度与厚度之比不得大于
2
计算内力系数
3
3.节点刚性影响 节点刚性引起杆件次应力,次应力一般较小, 不予考虑。但荷载很大的重型桁架有时需要计 入次应力的影响。
4.杆件的内力变号 屋架中部某些杆件在全跨荷载时受拉,而在半 跨荷载时可能受压。 半跨荷载:活荷载、雪荷载、积灰荷载、单侧 施工
4
5.节间荷载作用的屋架 将节间荷载分配到相邻的节点上,按只有节点荷载作 用的屋架计算各杆内力。
48
⑴梯形屋架支座节点 节点板 加劲肋 底板 锚栓 加劲肋作用:
提高支座节点的侧向刚 度,使支座底版受力均 匀,减少底版弯矩
49
支座节点力的传递路线为:
屋架杆件 合力R
节点板
底 板
H形焊缝
L形焊缝
加劲肋
50
⑵支座节点的计算: ①底板: 底板面积:
R A An A0 A0 fc
A0 锚栓孔面积
拼接角钢长度为
L 2l1 b
44
内力较大一侧的下弦杆与节点板间的焊缝传 递弦杆内力之差△N,如△N过小则取弦杆较大 内力的15%,内力较小一侧弦杆与节点板间焊 缝参照传力一侧采用。 弦杆与节点板一侧的焊缝强度验算:
肢背焊缝: 0.15K1 N max f fw 2 0.7h f lw 0.15K 2 N max f fw 2 0.7h f lw

桁架的内力计算

桁架的内力计算


平面内 计算长度: 桁架 桁架平面内 平面内计算长度:
l0 x = 0.5l

无论另一杆为拉杆或压杆,两杆互为支承点。 平面外 计算长度: 桁架 桁架平面外 平面外计算长度: 拉杆可作为压杆的平面外支承点, 压杆除非受力较小且不断开,否则不起侧向支点 的作用。 GB50017 规范中交叉腹杆中压杆的平面外 GB50017规范中交叉腹杆中压杆的平面外 计算长度计算公式:
4)相交另一杆受拉,此拉杆在交叉点中断但以 节点板搭接。 3N 0 loy = l 1 − ≥ 0.5l 4N
当此拉杆连续而压杆在交叉点中断但以节点板搭接。 若
N0 ≥ N
或拉杆在桁架平面外的抗弯刚度
3 N 0l 2 N EI y ≥ ( − 1) 2 4π N0
时,
l0 y = 0.5l
式中, l 为节点之间的距离, N 为所计算杆内力,N0 为相交另一杆内力,取绝对值。
2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度 2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。 (a) (b)
Pcr1 =
Pcr 2 = Pcr 3 =
π 2 EI L2 π 2 EI
( 0.5 L ) 2
l0 y = l1 (0.75 + 0.25 N 2 N1
)
l1 = 2 d
考虑受力较小的杆件对受力大的杆件的 “援助”作用。
交叉腹杆中压杆的计算长度 2.3.2.3 2.3.2.3交叉腹杆中压杆的计算长度 2.3.2.3 交叉腹杆中压杆的计算长度 2.3.2.3交叉腹杆中压杆的计算长度

交叉腹杆中交叉点处构造: 1)两杆不断开。 2)一杆不断开,另一杆断开 用节点板拼接。

桁架的内力计算

桁架的内力计算

图1 屋架节点荷载的计算桁架的内力计算当桁架只受节点荷载时,其杆件内力一般按节点荷载作用下的铰接桁架计算。

这样,所有杆件都是轴心受压或轴心受拉杆件,不承受弯矩。

具体计算可用数解法(节点法或截面法)、图解法(主要是节点法)、图解法(主要是节点法)、计算机法(常用有限元位移法)等。

实际桁架节点为焊缝、铆钉或螺栓连接,具有很大的刚性,接近于刚接。

按刚接节点分析桁架时,各杆件将既受力又受弯矩。

但是,通常钢桁架中各杆件截面的高度都较小,仅为其长度的1/15(腹杆)和1/10(弦杆)以下,抗弯刚度较小;因而按刚接桁架算得的杆件弯矩M 常较小,且杆件轴心力N 也与桁架计算结果相差很小。

故一般情况都按铰接桁架计算。

对少数荷载较大的重型桁架,例如铁路桥梁等,当杆件截面高度超过其长度的1/10时,次应力份额逐渐增大,可达10~30%或以上,必要时应作计算。

目前用计算机计算刚接桁架已无困难。

据上所述,檩条或大型屋面板等集中荷载只作用在屋架节点处时,可按铰接桁架承受节点荷载计算杆件内力,例如图1。

这时节点荷载值即为檩条或边肋处的集中荷载值,按式上一小节公式,即:100011122F qA qbd d F qA qb d d d F qA qb == ==++== 来计算。

该图中檐口檩条集中荷载F 0在桁架计算时可归并入F 1内(或端节间按伸臂梁而将F 0(1+d 1/ d )并入F 1,-F 0 d 1/d 并入第二节点F );另外在计算上弦杆的支座截面时,除考虑轴心压力外还考虑偏心弯矩M e =F 0 d 1。

当檩条或屋面板等布置未与屋架节点相配合,屋面板没有边肋而是全宽度支图2 承受节间荷载的屋架 承于屋架上弦(上弦均布荷载)、或其它特殊情况时,桁架将受节间荷载,例如图1。

这时桁架内力计算可按下列近似方法:(1)把所有节间内荷载按该段节间为简支的支座反力关系分配到相邻两个节点上作为节点荷载,据此按铰接桁架计算杆件的轴心力。

第5章桁架内力计算(第11周)(截面法)

第5章桁架内力计算(第11周)(截面法)

3×8-SDE×2=0 SED=12kN(拉) 再考虑结点D、E的平 衡可求出各链杆的内力。
-6
19 返回
3. 分析受弯杆件
取AC杆为隔离体, 考虑其平衡可求得:
A
12kN
F
8kN C 6kN V=3kN C
HC =12kN
HC=12kN←
5kN
6kN
VC=3kN↑
B
6kN 12 3kN
8kN
A
1kN 6kN 4 0 6
18 返回
例 5-2 分析此组合结构的内力。 解:
HA=0
6
-6

13· 4
51
+12 2
12
VA=5kN

RB=3kN
1. 由整体平衡 条件求出支反力。 2. 求各链杆的内 力:作Ⅰ-Ⅰ截面
HC SDE
VC +12
12
4 13· 6 12
拆开C铰和截断DE 杆,取右部为隔离体。 由∑MC=0 有
2 .截面法据所选方程类型的不同 又分为力矩法、投影法。
返7回
(1)力矩法 以例说明

设支反力已求出。 求EF、ED、CD三杆的 内力。作截面Ⅰ-Ⅰ,取左 部分为隔离体。
由∑ME=0 有 RAd-P1d-P2×0-SCDh=0 R d − P1d − P2 × 0 SCD = A (拉) h RA×2d-P1×2d-P2d+XEFH=0
YEF SEF

XEF
பைடு நூலகம்

SED
SCD a RA d d YED
XED
9
(2)投影法

求DG杆内力 作Ⅱ—Ⅱ截面, 取左部分为隔离体。 由∑Y=0 有

7.2桁架内力的计算

7.2桁架内力的计算

FGC
P 2
P 2
P 2
P 2
C
FGC
G
P
FGD
FGB
E
FAx FAy A
D
GP
FBy
B
例题
例题8
§7 力系的平衡
4.取节点A
Fiy 0 FAE sin 60 FAy 0
3 FAx P, FAy 4 P
FAE
3 P 4
2 P 32
P
FEC FAE 2 C
Fix 0 FAD FAE cos 60 FAx 0
ED=DG=DB=a ,求CD
杆的内力。
例题
例 题 10
§7 力系的平衡
C
解:1.判断零杆
ED杆为零杆。
m
2.以m-m截面切开,取右半部分:
A
E
0
D
GP
B
MiB 0
FCD a P
3a0 2
FCD
3P 2
FGC
FCD
m
GP
பைடு நூலகம்FAD
B
D
例题
例 题 11
§7 力系的平衡
图示桁架各杆长均为1m,P1=10kN , P2=7kN , 求杆 EG的内力。
1.15
kN
(受拉)
例题
例 题 12
P3 P2 P1
3a
§7 力系的平衡
P4
P5
4a ①
桁架结构受力 如图,试求其 中①杆的内力。
例题
例 题 12
P3 P2 P1
m 3a
§7 力系的平衡
P4
解: 1.受力分析:
P5
此桁架S= 27 ,n=15 ,

桁架内力计算

桁架内力计算

第3章静定结构的内力计算
例题3
A C
18kN 3
试求图示桁架1、2、3、4杆内力
B
1 2
3kN 6kN 6kN 6kN 3kN
D
n m
H F
4
G
2×2=4m
解: 1、求支反力 A、B支反力分别为18kN、6kN 2、求内力 截面法求联系杆内力 m-m截面
E
n 2×8=16m m
B
1
6kN
3kN 6kN 6kN 6kN
对称 K形 结点
FNCD FNCE
FNCD FNCE
FN FNx FNy l lx ly
A FP FP
FNCD FNCE 0
D E B FP C FP
反对称 同一 杆件
FNDE FNED
FNDE FNED
FNDE FNED 0
结构力学
第3章静定结构的内力计算
2kN
x
FNA1 A FR Ax FR Ay
FN52
FN41
1
FN12 FN15
FN21
FN23
FNA4
FN4A
4
8 kN
FN46
FN1A FN14
FN25
FN51
FN53
FN63
FN54
5
FN56
FN65
6
FN6B
结构力学
1 4 2
第3章静定结构的内力计算
4 3
3m
6 2
A FR Ax FR Ay
FN21
FN23
FNA4
FN4A
4
8 kN
FN46
FN1A
FNB3

结构力学 静定桁架的内力计算

结构力学 静定桁架的内力计算
2b
F Ay= 2 F P
(b)
参照图(b)计算如下:
见图(b),未知杆力在隔离体上的一 般表示。
MD 0
F NG 1 h C(F P bF 2 P2 b2 F P2 b )
由几何关系得:h 2 b 代入上式,
5
FNGC 5FP
MG 0
FNE Db 2(2FPF 2P)b3FP
图(d):
在反对称荷载下,桁架应具有反对称 的内力分布,即在桁架的对称轴两侧 的对称位置上的杆件,应有大小相等、 性质相反的轴力。
考查结点E:见图(f) EJ为零杆,继而JA、 JB为零杆。
(f )
§6.3 桁架内力计算的截面法
➢截面法:用一个假想的截面,将桁架 截成两部分,取其任一部分为隔离体 ,建立该隔离体的平衡方程,求解杆 轴力的方法。
利用该结点的对称性,且由水平方 向的投影方程得:
FNa
2 2 FP
(a)
§6.4 组合结构的内力分析
❖既有梁式杆又有桁架杆的结构称作 组合结构。见图6-4-1所示。
图6-4-1
组合结构内力计算的一般途径是: 先计算桁架杆,再计算梁式杆。
例6-4-1
计算图(a)所示组合结构,求出二力 杆中的轴力,并作梁式杆的弯矩图。
D
F NDC
F NGE
G
A
K
F NKH
FP FP
(c)
由图(c)所示截面左侧隔离体求出截面
截断的三根杆的轴力后,即可依次按
结点法求出所有杆的轴力。
❖ 方法1:
见图(d) ,由结点H的结点单杆 EH上的轴力,再由结点E(当 杆EH轴力已知时,杆a既是结 点E上的结点单杆)可求出杆a 的轴力。

简单桁架内力的计算方法

简单桁架内力的计算方法

25您的位置:在线学习—>在线教程—>教学内容上一页返回目录下一页3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。

这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。

实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。

但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。

因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。

(2)各杆的轴线都是直线并通过铰的中心。

(3)荷载和支座反力都作用在铰结点上。

通常把符合上述假定条件的桁架称为理想桁架。

3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。

因此,桁架中的所有杆件均为二力杆。

在杆的截面上只有轴力。

3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。

(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。

(图3-14b)(3)复杂桁架:不属于前两类的桁架。

(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。

截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。

联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。

工程力学第5节 平面静定桁架的内力计算

工程力学第5节 平面静定桁架的内力计算

F1 sin 30 G 0
n
Fiy 0
i1
F1 cos 30 F2 0
得 F1 40 kN(拉) F2 34.6 kN(压)
节点 B:
n
Fix 0
i1 n
Fiy 0
i1
F2 F6 0

F3 G 0
F6 34.6 kN(压) F3 20 kN(拉)
i1 n
Fiy 0
i1
FS1 sin 60 FS4 sin 60 0 FS1 cos 60 FS4 cos 60 FS3 0
解得
FS4 FS1 2F(压) 校核计算结果
将各杆内力计算结果列表如下
杆号
1
2
3
内 力 2F 1.73F 2F
半部分为研究对象进行受力分析,列平衡方程:
n
M E (Fi ) 0
FS1 1sin 60 FAy 1 0
i1
n
M D (Fi ) 0
i1 n
Fiy 0
i1
F1

1 2

FS3
1
sin
60


FAy

2 3

0
FAy FS2 sin 60 F1 0
• 因为只有三个独立平衡方程,因此作假想截面时, 一般每次最多只能截断三根杆件。
注意
• 由于平面汇交力系只能列出两个独立平衡方程,所 以应用节点法必须从只含两个未知力大小的节点开 始计算。
例2-15 平面桁架的受力及尺寸如图所示, 试求桁 架各杆的内力。
解 1)先求支座反力:以整体桁架为研究对象进行

第章内力和内力图(桁架内力计算)_图文

第章内力和内力图(桁架内力计算)_图文

例题 6-7 右图所示为一受满布均布荷载的简
支梁,试作剪力图和弯矩图。 解:此梁的支座约束力根 据对称性可知:
FA=FB=ql/2 梁的剪力方程和弯矩 方程分别为
FS(x)=ql/2-qx (0<x<l)
M(x)=qlx/2-qx2/2 (0≤x ≤ l)
例题 6-8 图示为一受集中荷载
梁。试作其剪力图和弯矩图。 解:根据整体平衡,求 得支座约束力
注意: (1) 载荷改变后,“零杆”可以变为非零杆。因此,为
了保证结构的几何形状在任何载荷作用下都不会 改变,零杆不能从桁架中除去。 (2) 实际上,零杆的内力也不是零,只是较小而已。 在桁架计算中先已作了若干假设,在此情况下, 零杆的内力才是零。 (3) 首先判断出零杆,对简化桁架计算是有益的。
杆件所受外力经简化后,主要是作用在垂直 于杆轴线平面内的力偶,其作用使杆发生扭转。
如上图所示,杆件在横向平面内的外力偶作 用下发生扭转变形。其侧面上原有的直线 ab 变为 螺旋线 ab′, 诸横截面绕杆的轴线相对转动,例如 B截面相对于A截面转过一角度∠bO'b′。
为了分析横截面上的内力,取m -m截面。
解:取轴x 与梁的轴线重 合,坐标原点取在梁的左 端。以坐标 x 表示横截面 的位置。只要求得x 处横 截面上的剪力和弯矩,即 可画出其内力图。
例题 6-6
根据左段分离体的平衡 条件便可列出剪力方程和弯 矩方程。有
FS(x)= - qx (0≤x<l)
M (x)= - q x2/2 (0≤x<l)
例题 6-4
分别作截面1-1、 2-2、3-3,如右 图所示。 考虑1-1截面 1-1截面:
得 MA + T1 = 0 T1=MA= -2 kN·m

简单桁架内力的计算方法

简单桁架内力的计算方法

25您的位置:在线学习—>在线教程—>教学内容上一页返回目录下一页3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。

这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。

实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。

但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。

因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。

(2)各杆的轴线都是直线并通过铰的中心。

(3)荷载和支座反力都作用在铰结点上。

通常把符合上述假定条件的桁架称为理想桁架。

3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。

因此,桁架中的所有杆件均为二力杆。

在杆的截面上只有轴力。

3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。

(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。

(图3-14b))3-14c复杂桁架:不属于前两类的桁架。

(图)3(.3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。

截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。

联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。

桁架的内力计算

桁架的内力计算

好运动者健,好思考者智,好助人
11
者乐,好读书者博,好旅游者悦,
2.3.2.2 变内力压杆的计算长度
平面内计算长度:
l0x d
平面外计算长度:
l0y l1(0.75 0.25 N2 N1)
l1 2d
考虑受力较小的杆件对受力大的杆件的“援助”作用。
好运动者健,好思考者智,好助人
12
者乐,好读书者博,好旅游者悦,
简化计算:
M0为将上弦节间视为简支梁所得跨中弯矩。
好运动者健,好思考者智,好助人
6
者乐,好读书者博,好旅游者悦,
2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。
P 2EI cr1
(a)
L2
P 2EI
(b) cr2
( 0.5 L ) 2
(c)
P 2EI cr3 ( L ) 2
刚度要求:
[]
容许长细比,查规范(GB50017)。
好运动者健,好思考者智,好助人
18
者乐,好读书者博,好旅游者悦,
2.3.3杆件截面型式
杆件截面选取的原则:
承载能力高,抗弯强度大, 便于连接,用料经济通常 选用角钢和T型钢
截面伸展 壁厚较薄 外表平整
等强设计: 压杆对截面主轴具有相等或接近的稳定性。
3)与所分析杆直接刚性相连的杆件作用大, 较远的杆件作用小。
好运动者健,好思考者智,好助人
8
者乐,好读书者博,好旅游者悦,
➢ 2. 杆件计算长度:
桁架平面内计算长度 l0x
弦杆
支座斜杆 支座竖杆
l0x l (节件长度)
中间腹杆 l0x 0.8l

桁架内力的计算3.4静定平面桁架

桁架内力的计算3.4静定平面桁架

桁架内力的计算3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。

这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。

实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。

但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。

因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。

(2)各杆的轴线都是直线并通过铰的中心。

(3)荷载和支座反力都作用在铰结点上。

通常把符合上述假定条件的桁架称为理想桁架。

3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。

因此,桁架中的所有杆件均为二力杆。

在杆的截面上只有轴力。

3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。

(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。

(图3-14b)(3)复杂桁架:不属于前两类的桁架。

(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。

截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。

联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。

解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。

平面简单桁架的内力计算

平面简单桁架的内力计算
(a)无载二根
非共线杆
F2
F1
F3=0
F1 F
F2=0
(b)无载三根杆, (c)有载二根非
二根共线杆
共线杆
两杆形成的节点,如果没有外力或约束力作用于该节点,则两 杆为零力杆;三杆形成的节点,其中有两杆共线如,果没有 外力或约束力作用 于该节点,则第三杆为零力杆。
节点法与截面法的联合应用
节点法:因为桁架中各杆都是二力杆,所以每个节点都受 到平面汇交力系的作用,为计算各杆内力,可以逐个地取 各节点为研究对象,根据平面汇交力系的平衡条件,计算 桁架内各个杆件内力的方法。
)所有杆件的内力先设为拉力,计算结果为负,说明该杆为
压力;(3)用节点法时,节点上的未知力一般不能多于两个
,用截面法时,节点上的总未知力一般不能多于三个,否则
不能全部解出。(4)若只要求桁架中某几个杆件的内力时,
可以采用截面法或节点法结合截面法,可较快地求得某些杆
的内力。
41
本章小结
一、力线平移定理是力系简化的理论基础 力 力+力偶
Q q
2l
l
3
3
3、梯形荷载
可以看作一个三角形荷载和一 个均布荷载的叠加
q1
q2
l
49
50
51
组合梁AC和CE用铰链C相连,A端为固定端,E端为活动 铰链支座。受力如图所示。已知: l =8 m,F=5 kN,均布载 荷集度q=2.5 kN/m,力偶矩的大小M= 5 kN•m,试求固端A, 铰链C和支座E的约束力。
1.对称性
结构对称,载荷对称,则内力必对称; 结构对称,载荷反对称,则内力必反对称;
求内力时,可利用下列情况简化计算:
2.零杆的判别

桁架作用力计算

桁架作用力计算

计算桁架受力的三种方法
1、虚位移法
接触所求杆的约束,用约束反力代替,系统仍处于平衡状态,但有一个自由度。

假设系统沿此自由度的方向有一微小的运动,可得出各主动力作用点及所加约束力的一组虚位移,根据虚位移原理可列出一个方程,解出约束反力的大小。

2、节点法
桁架处于平衡状态,它的各个节点也一定是平衡的。

可以通过研究各个节点的平衡求出相应杆的内力。

由于支座约束只有三个,可先对整个桁架应用平衡方程,解出支座的约束反力,然后对只有两个未知力的节点列出两个独立的平衡方程,可解出相应的未知力。

继续找出只有两个未知力的节点并列出方程,从而可解出所有杆的内力。

3、截面法
适当选取某一截面,假想把桁架截成两部分,取其中任一部分(至少包括两个节点)作为研究对象,根据刚化原理,这一部分可运用刚体平衡条件。

实际求解时也先以整体为研究对象求出支座约束反力。

截面选为与三根杆(不交于同一点)相交的面,这样对研究对象只有三个未知力,能列三个独立方程可以求解。

三种方法的比较
虚位移法只适用于虚位移较易求出的情况,但只要虚位移求出来,只需列一个方程,求解过程十分简便。

一般求单根杆的内力且虚位移很明显时可用虚位移法。

节点法用于求解桁架全部杆件的内力是有效的,但用于求解指定杆件的内力,一般比较烦琐。

截面法适用于于求指定杆的内力,但要用它求全部杆件的内力,工作量要比节点法大得多。

因此应该根据情况选择计算方法。

有时,在一个题目中将两种或三种方法联合应用能收到更明显的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
§1 概述
1. 桁架:由直杆组成,但所有结点均为铰结点.
2. 受力特点:当只受作用于结点的集中荷载时, 各杆只产生轴力。
桁架各杆截面应力均匀分布,能充分利用材料 的强度 ,减轻自重。
3. 应用:适用于较大跨度的承重结构和高耸结构,如屋架、桥梁 4 输电线路塔、起重机架等。
4. 桁架的各部分名称
例2
图示桁架 中虚线所 示杆件的
11
轴力皆为0。
§4 小结
(1)结点法适用于简单桁架,从最后装上的结点开始计算 (2)每次所取结点的未知力不能多于两个;
(3)计算前先判断零杆; (4)对称桁架在对称荷载下,对称杆件的轴力大小相等,拉压相 同;在反对称荷载下,对称杆件的轴力大小相等,拉压相反. (5)对称桁架在对称荷载下,对称轴上的K形结点若无荷载,则 该结点上的两根斜杆为零杆。 (6)对称桁架在反对称荷载下,与对称轴重合或垂直相交的杆件 为零杆。
SGE
4m
Y、 =15kN 由∑ Y=0 可得 GE 然后依次取结点 F E 、D、(拉) C计算。 4 YGE XGE=15 =20kN(拉) 由比例关系求得 SFE=+15kN 分析桁架的几何组成:此桁架为简单桁 3 S , 到结点B时,只有一个未知力 XGE E BA 5 SED=+60kN 架,由基本三角形 ABC 按二元体规则依 G SGE=15× =25kN(+20kN 及 拉) SFC=-20kN 3 最后到结点A时,轴力均已求出, SGF XEC=-40kN 次装入新结点构成。由最后装入的结点 F 20kN +15kN 再由∑ X=0 可得 S =-X =-20kN( 压) Y =-30kN EC GF GE 故以此二结点的平衡条件进行校核。 G开始计算。(或由 A结点开始) 9
6
8
5. 结点法计算举例
(1)首先由桁 HB=120kN D B +60 架的整体平衡条 件求出支反力。 HA=120kN 60 A (2)截取各结点 -120 C 解算杆件内力。 V =45kN
45
A
+60 40 30
E 20
F -20
15kN 4m

-20
15kN 4m
G
15kN
取结点G隔离体
12
《结构力学》
第五章 静定平面桁架
工程力学研究所
土木与交通工程学院
1
第五章 静定平面桁架
§5-1 §5-2 §5-3 §5-4 §5-5 §5-6 平面桁架的计算简图 结点法 截面法 截面法和结点法的联合运用 各式桁架比较 组合结构的计算
2
本次课的知识点
§1 概述
§2 结点法
§3 零杆判断 §4 小结
S X Y L Lx

X
L
Ly
Lx
S
在S、 X、Y三者中,任知其一 便可求出其余两个,无需使用 7 三角函数。
4. 截取结点一般步骤:截取结点时要尽量避免联 立方程组,先计算简单后 算复杂。
对于简单桁架,分析时与组成相反的顺序依次截取结点, 即从最后装上的结点开始计算。
1 3 5
2
4
(3)根据竖向荷载是否引起水平反力分
无推力(梁式)桁架:图a、b、c;有推力(拱式)桁架:图d。
6
§2 结点法
1.求桁架内力的基本方法: 结点法和截面法。
2.结点法:取一个结点为隔离体,计算桁架杆件的内力。 3.预备知识: 在计算中,经常需要把斜杆的内力S分 解为水平分力X和竖向分力Y。
S
Y
则由比例关系可知
上弦杆 腹杆
竖杆 斜杆
节间长度d
下弦杆
跨度 L
平面桁架的计算简图引入如下假定: (1)各结点都是无摩擦的理想较。 (2)各杆轴都是直线,并在同一平面内且通过铰中心。
5
5. 桁架的分类
(1)根据桁架的外形分
平行弦桁架
折弦桁架
三角形桁架
(2)根据几何组成方式分
简单桁架:由一个基本铰结三角形开始,通过增加二元体而组成的桁架 ,如图a、b、c; 联合桁架:图d、e;复杂桁架:图f。
15kN
15kN
+15kN
§3 零杆的判断
1.在特定荷载作用下,桁架中内力为零的杆件称为零杆 2.利用节点法不难得到几种特殊结点(前提条件:结点无荷载) (1)L 形结点 (2)T 形结点 (3)X 形结点
(4)K 形结点
10
3.零杆判断举例 例1
0 0 0 0 0 0 0 0 0 0 0 0
0
相关文档
最新文档