北师版数学八年级下册第一章《三角形的证明》【说课稿】 等腰三角形的判定
北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.
北师大版八年级数学(下) 第一章 三角形的证明 第3节 等腰三角形的判定与反证法
图⑤中,∵AB∥DE,∴∠A=∠D=30°,∵∠BCD=∠A+∠B=60°,
∴∠B=60°﹣∠A=30°,∴∠B=∠A,∴△ABC 是等腰三角形;
能判定△ABC 是等腰三角形的有 4 个,故选:C.
例 2:如图,在△ABC 中,AB=AC,∠BAC=108°,BD=AD=AE,则图中等腰三角形的个数为( )
CBE 是等腰三角形.∴图中的等腰三角形有 8 个.故选:D.
B.6
C.7
D.8
例 3:已知:如图△ABC 中,∠B=50°,∠C=90°,在射线 BA 上找一点 D,使△ACD 为等腰三角
形,则∠ACD 的度数为
.
解:如图,有三种情形:
①当 AC=AD 时,∠ACD=70°. ②当 CD′=AD′时,∠ACD′=40°. ③当 AC=AD″时,∠ACD″=20°, 故答案为 70°或 40°或 20°
C.50°、60°
D.100°、30°
解:A、∵三角形中已知两个内角为30°、60°,∴第三个内角为 180°﹣30°﹣60°=90°,
∴这个三角形是直角三角形,不是等腰三角形,故选项 A 不符合题意;
B、∵三角形中已知两个内角为 40°、70°,∴第三个内角为 180°﹣40°﹣70°=70°,
∴这个三角形由两个内角相等,∴这个三角形是等腰三角形,故选项 B 符合题意;
反证法
在证明时,先假设命题的结论不成立,然后 由此推导出与定义、基本事实、已有定理或已知 条件相矛盾的结果,从而证明命题的结论一定成 立.这种证明方法称为反证法.
用反证法证题的一般步骤:
1. 假设: 先假设命题的结论不成立; 2. 归谬: 从这个假设出发进行推理,得出与定义、基本事实、 已有定理或已知条件相矛盾的结果;
北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案
1.1 等腰三角形主要师生活动一、创设情境,导入新知图中有你熟悉的图形吗?它们有什么共同特点?师生活动:教师播放课件,学生独立思考回答问题.问题 1 在八上的“平行线的证明”这一章中,我们学了哪8 条基本事实?1.两点确定一条直线.2. 两点之间线段最短.3. 同一平面内,过一点有且只有一条直线与已知直线垂直.4. 同位角相等,两直线平行.5. 过直线外一点有且只有一条直线与这条直线平行.6. 两边及其夹角分别相等的两个三角形全等.7. 两角及其夹边分别相等的两个三角形全等.8. 三边分别相等的两个三角形全等.二、探究新知二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题2:你能用基本事实及已经学过的定理证明上面的推论吗?师生活动: 教学时应鼓励学生独立完成. 教师要提醒学生首先依据命题画出几何图形,再结合几何图形用数学符号语言写出“已知”“求证”,最后写出证明过程.已知:如图,∠A =∠D,∠B =∠E,BC = EF.求证:△ABC≌△DEF.证明:∵∠A +∠B +∠C = 180°,∠D +∠E +∠F = 180°(三角形的内角和等于180°),∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).∵∠A =∠D,∠B =∠E (已知),∴∠C =∠F (等量代换).∵BC = EF (已知),∴△ABC≌△DEF (ASA).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.设计意图:学生在七年级下册已经探索并认识了判定三角形全等的“角角边”定理,这里意在让学生根据基本事实证明这一定理.设计意图:七年级下册给出的“全等三角形”的定义是“能够完全重合的两个三角形叫做全等三角形”,“全等三角形的对应边相等、对应角相等”则是由全等三角形的定义推出来的,本章很多证明都会用到它,因此,这里特别提出这一结论,以便后续证明使用.知识点二:等腰三角形的性质及其推论问题3:你还记得我们探索过的等腰三角形的性质吗?定理:等腰三角形的两个底角相等.推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题4:你能利用基本事实或已知的定理证明这些结论吗议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形. 由此,你得到了解题什么的启发?已知:如图,在△ABC中,AB = AC.求证:∠B = ∠C.方法一:作底边上的中线证明:如图,取BC的中点D,连接AD.∵AB = AC,BD = CD,AD = AD∴△ABD≌△ACD (SSS).∴∠B =∠C(全等三角形的对应角相等).师:还有其他的证法吗?方法二:作顶角的平分线证明:作顶角的平分线AD,则∠BAD =∠CAD.∵AB = AC,∠BAD = ∠CAD,AD = AD,∴△BAD≌△CAD (SAS).∴∠B =∠C (全等三角形的对应角相等).师生活动:教学时教师要注意引导学生根据条件正确、规范地写出“已知”“求证”,有意识地培养学生对文字语言、符号语言和图形语言的转换能设计意图:这里让学生回忆以前的折纸过程,目的是引导学生发现证明的思路,学生一般可以由折纸确定辅助线的位置,但对于作辅助线的规范叙述仍需教师帮助.设计意图:教学中,应鼓励学生寻求其他证明方法,实际上,除作底边中线外,还可以通过作顶角平分线的方法证明结论,此时证明的依据是基本事实SAS. 这两种证明方法都是受折纸的启发(轴对称),通过作辅助线将图形分成两部分,再证明这两部分全等,教师可以引导学生分析这两种证明方法的共性,加深对等腰三角形性质的认识.教学时,可能会有学生通过作底边上的高并利用勾股定理来证明这一定理,对此,教师一方面要保护学生的学习积极性,另一方面也要引导学生认识力,关注证明过程及其表达的合理性.想一想:由△BAD≌△CAD,图中线段AD还具有怎样的性质?为什么?由此你能得到什么论?由△BAD≌△CAD,可得BD = CD,∠ADB =∠ADC,∠BAD =∠CAD.又∵∠ADB +∠ADC = 180°,∴∠ADB =∠ADC = 90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高.师生活动: 让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论.定理:等腰三角形的两个底角相等(等边对等角).几何语言:如图,在△ABC中,∵AB = AC (已知),∴∠B =∠C (等边对等角).推论:等腰三角形顶角的平分线、底边上的中线及底边上的高互相重合(三线合一).练一练1. 已知,如图,△ABC≌△ADE,∠BED = 20°,则∠AED的度数为( )A.60°B.90°C. 80°D. 20°到:我们虽然在以前探索并认识了勾股定理,但尚未用基本事实证明过,所以从逻辑上来说,勾股定理不能作为这里证明的依据.设计意图:这一结论通常简述为“三线合一”, 即如果某线段是一个等腰三角形的“三线”(顶角的平分线、底边上的中线、底边上的高) 之一,那么它必定也是这个等腰三角形的另“两线”.设计意图:综合运用全等三角形和等腰三角形的相关知识解决问题,加深学生印象,考察学生对于知识的掌握情况.三、当堂练习,巩固所学师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.典例精析例1 已知点D、E在△ABC的边BC上,AB=AC.(1) 如图①,若AD=AE,求证:BD=CE;(2) 如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.证明:(1) 如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.三、当堂练习,巩固所学1. 如图,已知AB=AE,∠BAD=∠CAE,要使∠ABC∠∠AED,还需添加一个条件,这个条件可以是________________________.2. (1) 等腰三角形一个底角为75°,它的另外两个角为__________;(2) 等腰三角形一个角为36°,它的另外两个角为设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,提高学生解题技巧.设计意图:考查对全等三角形判定的掌握.设计意图:结论:在等腰三教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.。
北师版八年级下册数学第1章 三角形的证明 【说课稿】 等腰三角形的性质
等腰三角形的性质.一、教材分析1、教学内容:本节课是新北师版八年级数学下册第一章第一节《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。
它是轴对称图形,具有对称性。
本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。
2、在教材中的地位与作用:本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。
3、教学重点与难点:重点:等腰三角形的性质的探索和应用。
难点:等腰三角形的性质的验证。
二、教学目标:知识技能:1、理解掌握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和计算。
数学思考:1、观察等腰三角形的对称性发展形象思维。
2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:1通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。
2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。
三、教法及学法分析1、教法设想——让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。
《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境——建立模型——解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。
2014新北师大版八下数学第一章教案
本资料适用于2014年新北师版(2014年春季使用)八年级下数学。
内容是新北师大版八年级下册第一章《三角形的证明》全章教案,共计11课时,可作为教师上课使用教案。
第一章 三角形的证明 1.等腰三角形(一)教学目标 1.知识目标:理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理;在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理;熟悉证明的基本步骤和书写格式。
2.能力目标:经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;鼓励学生在交流探索中发现证明方法的多样性,提高逻辑思维水平;3.情感与价值目标:启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系;培养学生合作交流的能力,以及独立思考的良好学习习惯. 教学重点 探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法; 教学难点 明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。
教学过程1、 创设情境,引入新课提请学生回忆并整理已经学过的8条基本事实中的5条: 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; 2.两条平行线被第三条直线所截,同位角相等; 3.两边夹角对应相等的两个三角形全等(SAS );4.两角及其夹边对应相等的两个三角形全等(ASA );5.三边对应相等的两个三角形全等(SSS );在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS ),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。
由于有了前面的铺垫,学生一般都能得到该推论的证明思路,但由于有了一个暑假的遗忘,可能部分学生的表述未必严谨、规范,教学中注意提请学生分析条件和结论,画出简图,写出已知和求证,并规范地写出证明过程。
八年级数学北师版 第1章 三角形的证明1.1 等腰三角形1.1.3 等腰三角形的判定【说课稿】
等腰三角形的判定教材分析1. 教材地位分析本节课选自北师版八年级下册第一章《三角形的证明》第一节第一小节第三课时:等腰三角形的判定。
它是在上一节掌握了等腰三角形的性质的基础后进行的。
它既是上节知识的深化和应用,又是下节学习等边三角形和线段的垂直平分线的定理的预备知识。
从知识结构看,它是把三角形中角的相等关系转化为边的相等关系的重要依据,为以后的几何学习提供了重要的证明和计算依据 .许多中考题中常常用等腰三角形结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目,所以要求学生能掌握并灵活应用。
2.学情分析初二的学生在这个阶段,通过前面全等三角形的学习,其逻辑思维从经验型逐步向理论型发展,观察和想象力也迅速发展,他们也有了很强的求知欲,探索欲,学完性质,他们可能就会猜想到判定.目前学生们已初步形成合作交流、勇于探索、敢于置疑的学风.教学目标根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征,我制定了这节课的三维目标.知识目标:掌握等腰三角形的判定定理;会用等腰三角形的判定进行简单的推理判断及应用。
能力训练要求:培养学生对命题抽象概括能力,加强发散思维训练。
培养大胆分析,敢于求异,勇于探索的精神和能力,形成良好的思维品质。
情感与价值观要求:通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力。
教学重点、难点教学重点:等腰三角形的判定方法及应用。
教学难点:1、性质与判定的综合应用。
2、文字叙述题的证明也是本节的难点之一。
3、将实际问题抽象成数学问题,并用数学知识解决。
说明:本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。
等腰三角形的性质定理和判定定理是互逆定理,学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.文字叙述题也是难点之一。
等腰三角形(3)课件2022-2023学年北师大版八年级数学下册
6.【例3】用反证法证明:等腰三角形两底角必为锐角.
证明:①假设等腰三角形的底角∠B,∠C都是直角, 则∠B+∠C=180°,则∠A+∠B+∠C=180°+∠A>180°, 这与三角形内角和等于180°矛盾. ②假设等腰三角形的底角∠B,∠C都是钝角, 则∠B+∠C>180°,则∠A+∠B+∠C>180°, 这与三角形内角和等于180°矛盾. 综上所述,假设①②错误, 所以∠B,∠C只能为锐角. 故等腰三角形两底角必为锐角.
对点训练
1.(北师8下P8、人教8上P77)如图,在△ABC中,∠B=∠C,求 证:AB=AC. (提示:添加辅助线,构造全等三角形)
证法一:如图1,作∠BAC的平分线,交BC于点D.
∵AD平分∠BAC,∴∠BAD=∠CAD.
∵∠B=∠C,AD=AD,
∴△ABD≌△ACD(AAS).∴AB=AC.
解:(1)∵∠ABC=∠ACB, ∴AB=AC. ∴△ABC是等腰三角形. ∵BE=BD=BC, ∴△BCD,△BED是等腰三角形. ∴图中所有的等腰三角形有:△ABC,△BCD,△BED.
(2)∵∠AED=114°,∴∠BED=180°-∠AED=66°. ∵BD=BE,∴∠BDE=∠BED=66°. ∴∠ABD=180°-66°×2=48°. 设∠ACB=x°,∴∠ABC=∠ACB=x°. ∴∠A=180°-2x°. ∵BC=BD,∴∠BDC=∠ACB=x°. 又∵∠BDC为△ABD的外角, ∴∠BDC=∠A+∠ABD. ∴x=180-2x+48,解得x=76.∴∠ACB=76°.
等腰 三角形.
9.如图,在△ABC中,AD平分∠BAC交BC于点D,EF∥AD,交 AC于点E,交BA的延长线于点F,求证:△AEF是等腰三角形.
北师大版八年级数学下册 等腰三角形(基础)知识讲解 含答案解析
等腰三角形(基础)知识讲解责编:杜少波【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC 为底边, ∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C 为圆心,以b 为半径画弧,两弧相交于点A;(3)BD=CD,AD 为底边上的中线.(4)∠ADB=∠ADC=90°,AD 为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝180A角(或直角).∠A=180°-2∠B,∠B=∠C=.2(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质 2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
新北师大版八年级数学下册《一章三角形的证明1.等腰三角形等腰三角形的判定与反证法》教案_7
()
( A )35° ( B) 20° (C)35 °或 20°( D)无法确定
4.等腰三角形的顶角等于一个底角的 3 倍,则顶角的度数为
,底角的
度数为
5.等腰三角形三个内角与顶角的外角之和等于 260°,则它的底角度数为
6.等腰△ ABC 中, AB=AC , BC=6cm,则△ ABC 的周长的取值范围是
三等分,则图中等腰三角形的个数(
)
( A )3 (B) 4 ( C)5 (D) 6
2.如图,在△ ABC 中, AB=AC ,BD=BC , AD=DE=EB ,则∠ A 等于( )
( A )30° ( B) 36° (C)45 °(D) 54°
3.等腰三角形的一个内角为 70°,它的一腰上的高与底边所夹的角的度数是
7.已知如图,在△ ABC 中,∠ B=90°,AB =BC, BD =CE,M 是 AC 的中点,
求证:△ DEM 是等腰三角形
六、能力提升: 1.如图,等腰三角形 ABC 中,AB =AC ,∠A =90°,BD 平分∠ ABC ,DE⊥BC 且 BC=10,求△ DCE 的周长。
2.已知△ ABC 中, AB=AC ,D、M 分别为 AC 、BC 的中点, E 为 BC 延长线上 一点,且 CE=12 BC,求证:(1)∠ DMC= ∠ DCM ;(2)DB=DE
布置作业: 【评价反思】
自 学习态度 A
B
C
D
我 学习效果 A
B
C
D
评 合作情况 A
B
C
D
价 尚需改进
反
思
等腰 三角形的
相等。反过来,有两个角相等的三 角形
是
。
定理:
北师大2024八年级数学下册 1.1 第3课时 等腰三角形的判定与反证法 教案
1.1 等腰三角形主要师生活动一、创设情境,导入新知如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B =∠C. 如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?师生活动:让学生自主探究,举手回答问题(学生积极踊跃发言,问答提出的问题.)复习回答:问题1:等腰三角形有哪些性质定理及推论?二、探究新知二、小组合作,探究概念和性质知识点一:等腰三角形的判定前面已经证明了等腰三角形的两底角相等.反过来,有两个角相等的三角形是等腰三角形吗?回顾导入:建立数学模型:如图,在△ABC中,∠B =∠C,那么它们所对的边AB和AC有什么数量关系?方法思考:∠作高AD可以吗?∠作角平分线AD呢?∠作中线AD呢?师追问:你能验证你的结论吗?证明:过A作AD平分∠BAC交BC于点D.在∠ABD与∠ACD中,∠∠ABD∠∠ACD (AAS).∠ AB = AC.学生可能会由前面定理的证明获得启发,如作BC的中线,或作CA的平分线,或作BC上的高线,教师应让学生思考判断哪些方法可行,这三种方法中只有后两种方法可以判定所构造的两个三角形全等.这是培养学生推理能力的好机会,也是学生体会从基本事实和已知定理出发进行推理的设计意图:中这里应引导学生养成“反过来”思考问题的意识,即思考一个命题的逆命题的真假,因为这也是获得数学结论的一条重要途径,同时,这样设置问题也为学生下一节学习互逆命题做个铺垫,设计意图:由浅入深,引导学生将实际问题转化为数学问题,培养数形结合思想.设计意图:学生通过观察、思考、证明、归纳等腰三角形的判定方法,培养学生的证明能力,体会解决等腰三角形问题的常用辅助线是作等腰三角形底边上的高线、顶角的角.公理化思想的机会,教师应注意引导,教学中应鼓励学生按要求将证明过程书写出来.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”).应用格式:在∠ABC中,∠∠B =∠C,∠ AB = AC (等角对等边).辨一辨:如图,下列推理正确吗?∵∵1 = ∵2 ,∵ BD = DC(等角对等边).∵∵1 =∵2 ,∵ DC = BC(等角对等边).错,因为都不是在同一个三角形中.典例精析例1 已知:如图,AB = DC,BD = CA,BD与CA相交于点E.求证:∠AED是等腰三角形.证明:∠ AB = DC,BD = CA,AD = DA,∠∠ABD∠∠DCA (SSS).∠∠ADB =∠DAC (全等三角形的对应角相等).∠ AE = DE (等角对等边).∠∠AED是等腰三角形.知识点二:反证法设计意图:给学生独立思考时间,再讨论交流,教师要适当引导,进一步规范学生推理过程的书写.想一想:小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗? 如果成立,你能证明它吗?在∠ABC中,如果∠B ≠∠C,那么AB ≠ AC.师生活动:学生先思考,然后小组讨论,发现用正常的证明思路不好解决问题,教师此时提出反证法并出示小明的解题过程.小明是这样想的:如图,在∠ABC中,已知∠B≠∠C,此时,AB与AC要么相等,要么不相等.假设AB= AC,那么根据“等角对等边”定理可得∠B =∠C,但已知条件是∠B ≠∠C.“∠B =∠C ”与“∠B≠∠C ”相矛盾,因此AB ≠ AC.你能理解他的推理过程吗?师生活动:师生一同认识反证法的概念,并总结反证法的证明步骤.反证法概念:在证明时,先假设命题的结论不成立,然后由此推导出与已知条件或基本事实或已证明过的定理相矛盾,从而证明命题的结论一定成立,这种证明方法称为反证法.用反证法证题的一般步骤:1. 假设:先假设命题的结论不成立;2. 归谬:从这个假设出发,应用正确的推论方法,得出与定义、公理、已证定理或已知条件相矛盾的结果;3. 结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确.例2 用反证法证明:一个三角形中不能有两个角三、当堂练习,巩固所学是直角.已知:∠ABC.求证:∠A,∠B,∠C中不能有两个角是直角.【分析】按反证法证明命题的步骤,首先要假定结论“∠A,∠B,∠C中不能有两个角是直角”不成立,即它的反面“∠A,∠B,∠C中有两个角是直角”成立,然后,从这个假定出发推下去,找出矛盾.证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°,则∠A+∠B+∠C=90°+90°+∠C>180°.这与三角形的内角和定理矛盾,故假设不成立.所以一个三角形中不能有两个角是直角.三、当堂练习,巩固所学1. 已知:如图,∠A = 36°,∠DBC = 36°,∠C = 72°,∠∠1 = °,∠2 = °;∠ 图中有个等腰三角形;∠ 若AD = 4 cm,则BC = cm;∠ 若过点D作DE∠BC,交AB于点E,则图中有个等腰三角形.2. 已知:等腰三角形ABC的底角平分线BD,CE相交于点O.求证:∠OBC为等腰三角形.3.求证:在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交.设计意图:通过例2,让学生初步感受反证法的证明思路与书写的过程,体会反证法的证明与作用.设计意图:通过设置课堂检测,及时获知学生对所学知识的掌握情况,在问题的选择上以基础为主,灵活运用所学知识解决问题,巩固新知.已知:直线l1,l2,l3在同一平面内,且l1∠ l2,l3与l1相交于点P.求证:l3与l2相交.证明:假设______________,那么________.因为已知_________,所以过直线l2外一点P,有两条直线和l2平行,这与“__________________________________________” 矛盾.所以___________,即求证的命题正确.等腰三角形的判定与反证法。
北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义
第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。
广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9
第3课时等腰三角形的判定1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.4.培养学生的逆向思维能力.重点掌握等腰三角形的判定定理,并会运用其进行简单的证明.难点理解和掌握反证法的证明方法.一、复习导入问题1:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2:我们是如何证明上述定理的?问题3:我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究新知1.等腰三角形的判定定理师:你能证明“有两个角相等的三角形是等腰三角形”吗?并与同伴交流.处理方式:学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证法一:过点A作BC的垂线,垂足为D.∵AD⊥BC ,∴∠BDA=∠CDA= 90°.在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD ,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作∠BAC的角平分线,交BC于点D.∵AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS) .∴AB=AC(全等三角形的对应边相等).(教师引导学生类比“等边对等角”的证明方法正确地添加辅助线,规范地写出推理过程,鼓励学生一题多解.)师指出:作△ABC的边BC的中线,虽然把△ABC分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的.引导学生归纳等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形.简述为:等角对等边.2.反证法课件出示:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?处理方法:学生积极动脑思考,小组交流讨论.师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(课件出示)如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.这与已知条件∠B≠∠C相矛盾,因此AB≠AC.师:你能理解他的推理过程吗?师出示“反证法”的定义:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.三、举例分析例1 已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA ,∴△ABD≌△DCA.∴∠ADB=∠DAC(全等三角形的对应角相等).∴AE=DE(等角对等边).∴△AED是等腰三角形.例2 (课件出示教材第9页例3)处理方法:学生独立完成,教师点评.四、练习巩固1.如果三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形2.如图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个,第2题图) ,第3题图) 3.如图,已知△ABC中,CD平分∠ACB交AB于点D,又DE∥BC,交AC于点E,若DE =4 cm,AE=5 cm,则AC等于( )A.5 cm B.4 cm C.9 cm D.1 cm五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第9~10页习题1.3第1~4题.本节课的主要内容是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明.这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一.第4章一次函数一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么= .30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()。
八年级数学下册 第一章《三角形的证明》1.1《等腰三角形》教案2 (新版)北师大版
《等腰三角形》第1课时教学目标1.知识与技能:经历观察实验、猜想证明,掌握等腰三角形的性质,会运用性质进行证明和计算.2.过程与方法:(1)历观察等腰三角形的对称性,发展形象思维.(2)经历观察实验、猜想证明,发展合情推理能力和演绎推理能力.3.情感态度与价值观:经历同学间的合作与交流,体会在解决问题过程中与他人合作的益处.教学重难点1.教学重点:等腰三角形性质的发现、证明及应用.2.教学难点:等腰三角形三线合一的发现、证明及应用.教学过程一.提出问题,创设情境1.①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?2.满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.二.导入新课1.同学们通过自己的思考来做一个等腰三角形.ACA B I作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连结AB 、BC 、CA ,则可得到一个等腰三角形.思考:(1).等腰三角形是轴对称图形吗?请找出它的对称轴.(2).等腰三角形的两底角有什么关系?(3).顶角的平分线所在的直线是等腰三角形的对称轴吗?(4).底边上中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?2.等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.(它的两个底角有什么关系?)3.等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.(这个结论由学生共同探究得出的)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰△的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).三.随堂练习四.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.第2课时教学目标经历探索等腰三角形成为等边三角形的条件及其推理证明过程.教学重难点教学重点:等边三角形判定定理的发现与证明.教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理.教学过程一、复习知识要点1.有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.2.三角形按边分类:三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形 3.等腰三角形是轴对称图形,其性质是:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.二.新课学习1.提出问题,创设情境(1)把等腰三角形的性质用到等边三角形,能得到什么结论?(2)一个三角形满足什么条件就是等边三角形?(3)你认为有一个角等于60°的等腰三角形是等边三角形吗?•你能证明你的结论吗?把你的证明思路与同伴交流.2.导入新课(1)探索等腰三角形成等边三角形的条件.如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.你能给大家陈述一下理由吗?有一个角是60°的等腰三角形是等边三角形.(2)你在与同伴的交流过程中,发现了什么或受到了何种启示?今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?[生]三个角都相等的三角形是等边三角形.[师]下面就请同学们来证明这个结论.已知:如图,在△ABC 中,∠A =∠B =∠C .求证:△ABC 是等边三角形.证明:∵∠A =∠B ,∴BC =AC (等角对等边).又∵∠A =∠C ,∴BC =AC (等角对等边).∴AB =BC =AC ,即△ABC 是等边三角形.等腰三角形的性质和判定方法就可以得到:等边三角形的三个内角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.三.随堂练习四.课时小结这节课,我们自主探索、思考了等腰三角形成为等边三角形的条件,•并对这个结论的证明有意识地渗透分类讨论的思想方法.这节课我们学的定理非常重要,在我们今后的学习中起着非常重要的作用.第3课时教学目标探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.教学重难点教学重点:A B1.等腰三角形的判定定理及其应用.2.探索等腰三角形的判定定理.教学难点:等腰三角形的判定定理及其应用.教学过程一.提出问题,创设情境1.等腰三角形有些什么性质呢?2.满足了什么样的条件就能说一个三角形是等腰三角形呢?二.导入新课1.思考:如图,位于在海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A =∠B .如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?2.在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?例.已知:在△ABC 中,∠B =∠C (如图).求证:AB =AC .证明:作∠BAC 的平分线AD .在△BAD 和△CAD 中 12,,,B C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAD (AAS )∴AB =AC . 3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).4.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB =AC .21D CA21EDA B证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等),∠2=∠C (两直线平行,内错角相等).又∵∠1=∠2,∴∠B =∠C ,∴AB =AC (等角对等边).练习:已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB =AD .DCA B证明:∵AD ∥BC ,∴∠ADB =∠DBC (两直线平行,内错角相等).又∵BD 平分∠ABC , ∴∠ABD =∠DBC ,∴∠ABD =∠ADB , ∴AB =AD (等角对等边).三.随堂练习四.课时小结本节课我们主要探究了等腰三角形判定定理,•在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.第4课时教学目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.教学重难点教学重点:含30°角的直角三角形性质定理发现与证明.教学难点:含30°角的直角三角形性质定理发现与证明及应用.教学过程一.提出问题,创设情境1.用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.2.由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?二.导入新课1.用含30°角的直角三角尺摆出了如下两个三角形.(1)DC A B(2)D CAB其中,图(1)是等边三角形,因为△ABD ≌△ACD ,所以AB =AC ,又因为Rt △ABD 中,∠BA D =60°,所以∠ABD =60°,有一个角是60°的等腰三角形是等边三角形.图(1)中,已经知道它是等边三角形,所以AB =BC =AC .•而∠ADB =90°,即AD ⊥BC .根据等腰三角形“三线合一”的性质,可得BD =DC =12BC .所以BD =12AB ,即在Rt △ABD 中,∠BA D =30°,它所对的边BD 是斜边AB 的一半.定理:在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的一半.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC =30°.求证:BC =12AB . ADC AB 分析:从三角尺的摆拼过程中得到启发,延长BC 至D ,使CD =BC ,连接AD .练习:下图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,A B =7.4m ,∠A =30°,立柱BD 、DE 要多长?DC A E B分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A =30°,所以DE =12AD ,BC =12AB ,又由D 是AB 的中点,所以DE =14AB . 三.随堂练习四.课时小结这节课,我们在上节课的基础上推理证明了含30°的直角三角形的边的关系.这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用.。
北师大版八年级数学下册课件:等腰三角形(1)
6.【例3】(人教8上P76改编)如图,在△ABC中,AB=AC,点D 在线段BC上,AD=BD. (1)求证:∠BAD=∠C; (2)若CA=CD,求△ABC三个内角的度数.
(1)证明:∵AB=AC,∴∠B=∠C. ∵AD=BD,∴∠B=∠BAD. ∴∠BAD=∠C.
(2)解:∵CA=CD,∴∠CAD=∠CDA, 由(1)得∠B=∠C=∠BAD, 设∠B=x,则∠CDA=∠B+∠BAD=2x, ∴∠CAD=∠CDA=2x, ∠BAC=∠CAD+∠BAD=3x,
∴在△ABC中,有∠B+∠C+∠BAC=x+x+3x=180°, 解得x=36°, ∴在△ABC中,∠BAC=108°,∠B=∠C=36°.
★9.(创新题)如图,在△ABC中,AB=AC. (1)如果∠BAD=30°,AD是BC上的高,AD=AE, 则∠EDC= 15° ; (2)如果∠BAD=40°,AD是BC上的高,AD=AE, 则∠EDC= 20° ; (3)通过以上两题,你发现在AD=AE的条件下, ∠BAD与∠EDC之间有什么关系?并给予证明.
5.【例2】如图,在△ABC中,AB=AC,AD是BC边上的中 线,BE⊥AC于点E.求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是BC边上的中 线,BE⊥AC, ∴AD⊥BC,∠BAD=∠CAD. ∴∠CBE+∠C=∠CAD+∠C=90°. ∴∠CBE=∠CAD. ∴∠CBE=∠BAD.
8.(核心教材母题:北师8下P5、)如图,已知AB=AC,AD=AE. 求证:BD=CE.
证明:如图,过A点作AF⊥BC于点F. ∵AB=AC,∴BF=CF. 又∵AD=AE,∴DF=EF. ∴BF-DF=CF-EF, ∴BD=CE.
答案图
核心教材母题:教材是新中考命题的依据,近年来广东省中考 数学卷中都有较多题的素材来源于北师大版和人教版教材. 本书将两个版本重合的教材母题进行汇总,作为课堂例习题 呈现.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课选自北师版八年级下册第一章《三角形的证明》第一节第一小节第三课时:等腰三角形的判定。
它是在上一节掌握了等腰三角形的性质的基础后进行的。
它既是上节知识的深化和应用,又是下节学习等边三角形和线段的垂直平分线的定理的预备知识。
从知识结构看,它是把三角形中角的相等关系转化为边的相等关系的重要依据,为以后的几何学习提供了重要的证明和计算依据 .
许多中考题中常常用等腰三角形结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目,所以要求学生能掌握并灵活应用。
2. 学情分析
初二的学生在这个阶段,通过前面全等三角形的学习,其逻辑思维从经验型逐步向理论型发展,观察和想象力也迅速发展,他们也有了很强的求知欲,探索欲,学完性质,他们可能就会猜想到判定.目前学生们已初步形成合作交流、勇于探索、敢于置疑的学风.
教学目标
根据新课程标准的基本理念,结合八年级数学教材结构和学生的认知结构心理特征,我制定了这节课的三维目标.
知识目标:掌握等腰三角形的判定定理;会用等腰三角形的判定进行简单的推理判断及应用。
能力训练要求:培养学生对命题抽象概括能力,加强发散思维训练。
培养大胆分析,敢于求异,勇于探索的精神和能力,形成良好的思维品
质。
情感与价值观要求:通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定
理的理解.从而培养学生利用已有知识解决实际问题的能力。
教学重点、难点
教学重点:等腰三角形的判定方法及应用。
教学难点:1、性质与判定的综合应用。
2、文字叙述题的证明也是本节的难点之一。
3、将实际问题抽象成数学问题,并用数学知识解决。
说明:本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。
教学设计理念
为了突破重难点,学生能够达到预期的目标,我再从教法和学法上谈谈.
着重体现在三点:”引””探””变”
1、教法:教师着眼于“引”,采用引导探究式的教学方法,引导学生解决问
题,发现数学问题中蕴含的理论与知识。
新课标强调,我们的课程不仅是文本课程,更是体验课程。
它不仅是知识的载体,还是教师和学生共同探究新知识的过程。
所以我更倾向于使教学成为一种对话,一种交流和沟通。
我更是努力创造和谐的课堂氛围,使课堂成为教师和学生合作共建的一个平台。
2、学法:学生着眼于“探”,探究问题,合作学习,广泛交流,归纳出知识,并
学会运用。
3.练法: 练习中注重"变",在练习中进行了一题多解,多题一解,一题多变等
练习,促进学生的发散思维,使学生在解答问题的过程中寻找解类次的思路和方法,使学生的思维向多层次、多方向发散。
培养学生大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。
教学过程分析
为了完成本节课的教学目标,我把教学过程分成了五个环节:设疑导入,感受新知;合理猜想,推理论证;定理应用,巩固基础;变式训练,提升能力;归纳小结,知识升华。
1、设疑导入,感受新知
从实际生活中一些建筑设计入手,让学生观察这些设计中会出现等腰三角形,抛出问题,”如何来判定一个三角形是等腰三角形?”引发学生的讨论,首先肯定了”有两条边相等的三角形是(定义法)等腰三角形”.引导学生回忆等腰三角形的性质”等边对等角”,提出问题,有此性质的三角形是等腰三角形吗? 得到猜想:有两个角相等的三角形是等腰三角形。
学生经常在这里容易出现语言叙述不严谨的错误,说成“如果一个三角形有两个底角相等,那么这个三角形是等腰三角形。
”应该给予及时的纠正。
这样从学生熟悉的知识入手,让学生感知生活中处处有数学,同时也渗透了从特殊到一般的思想。
2、合理猜想,推理论证
复习题 练习 因为“SSA ”不能完成三角形全等的判定。
这个环节我会让小组合作交流完成, 并鼓励学生用多种方法来完成证明。
这种一题多证的方法其实就是变式训练的 一种,培养了学生的创新能力,分类思想。
同时这个环节还培养了学生的合作 意识和类比的思想。
及时总结:判定是等腰三角形的方法有两种:定义法和等腰三角形的判定定理。
3、初步应用,巩固基础
练习一:一次数学实践活动的内容是测量河宽,如图,即测量A ,B 之间的 距离。
同学们想出了 很多方法,其中小明的方法是:
从点A 出发,沿着与直线AB 成60度角的
AC 方向前进至C ,在C 处测得∠C=30度。
量出AC 的长,就是河的宽度(即A,B 之
间的距离)。
这个方法对吗?请说明理由。
练习二:如图为一个残缺的等腰三角形铁片
(只剩下∠B 和一边BC ),你能否想法将它
恢复原状吗? 说明 :根据新课程标准,要增强学生的数学 应用意识,让学生体会数学的应用价值;所以我设计了这样两道实际应用的问题,也更为了提高学生的学习兴趣与积极性,培养勇于探索的探索精神。
第二题本题属于方法策略型开放探索性题目,有多种解题思路,以问题解决过程为中心,采取设疑 、探疑、解疑的开放式教学模式。
这两道题比较基础,所以在这里我会给层次稍差点的学生表现的机会,并充分肯定他们的努力,不打击,培养这一部分学生的自信,激发他们的学习热情。
4、 变式应用,能力提升 原题:如图1,等腰三角形ABC 中,BD 、CD 分别是∠ABC 和∠ACB 的角平分线,交点是点D ,过点D 作EF ∥BC ,则图中有几个等腰三角形?说明理由。
变式一:如图2:三角形ABC 中,BD 、CD 分别是∠ABC 和∠ACB 的角平分线,交点是点D ,过点D 作EF ∥BC ,则图中有几个等腰三角形?说明理由。
变式二:如图3:△ABC 中,BD 平分∠ABC ,CD 平分∠ACB ,过A 作EF ∥BC B C
A D 60° 30°
小学数学 测试题
变式一 由等腰三角形变换为一般三角形,结论是否成立. 变式二,变换平行线的位置,结论是否还成立.
变式三 变换题的背景,看看学生能否真正理解题的本质,真正的达到 举一反三.
此题属于多题一解的题型,变换题目的形式而题的实质没有变化,从不 同的角度,不同方面揭示了题的实质,这种变式的训练根据变化引发了学生
积极思考,寻找解题的方法,锻炼了学生的思维的灵活性。
在这里通过学生学习,可以总结出一个小结论:“若有角平分线与平行线,等腰三角形必呈现”。
记住这个结论对解决含有这个基本图形的较复杂的题有很大帮助的。
课堂反馈 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三
角形是等腰三角形。
已知:∠CAE 是△ABC 的外角,
∠1=∠2,AD ∥BC 。
求证:AB=AC 。
这是一道文字证明题,虽然课本中已经给写出了已经和求 证,我还是会让学生亲自动手试着写一写和课本中对照出自己的不足和差距。
变式一:已知:在△ABC 中,AB=AC ,∠CAE 是△ABC 的外角,AD ∥BC 。
求证:∠1=∠2。
变式二:已知:在△ABC 中,AB=AC ,∠CAE 是△ABC 的外角,∠1=∠2。
求证:AD ∥BC 。
此题我会引导和鼓励学生进行变式,“如果我们把题目中的某个条件和结
论互换,结论还成立吗?可以得到几种情况?”这样在原题的基础是可以进行两次变化。
这几道题从不同的角度进行了多向思维,把知识点有机联系起来,发展了学生的多向思维能力。
还加强了性质定理和判定定理的区别应用。
B C 1
A B
C
D F
E A D 2
2021
我把本题作为课堂反馈的一道题,独立完成后,让小组先互评,之后各个小组选代表分别说出自己出现的情况。
5、归纳小结 知识升华 总结归纳是一节课所学知识的升华,是对所学知识有一个完整而深刻系统的认识,所个这个环节是必做的。
我会让学生畅谈体会,收获和不足,让学生养成及时反思的习惯。
同时,引导学生对知识方面、方法技巧方面的归纳,以形成知识网络. 布置作业
我设计了两种不同类型的作业,必做作业让学生巩固基础所用,选做作业是
对有余力的学生提供更大的思维发展空间。
板书设计。