化学中蛋白质和核酸的知识点
生物化学考试重点总结
![生物化学考试重点总结](https://img.taocdn.com/s3/m/97fa655afbd6195f312b3169a45177232f60e403.png)
生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
高一生物蛋白质与核酸的知识点
![高一生物蛋白质与核酸的知识点](https://img.taocdn.com/s3/m/b8cc35bc710abb68a98271fe910ef12d2bf9a95e.png)
高一生物蛋白质与核酸的知识点蛋白质与核酸是生物体内两种重要的生物大分子,它们在生物体内担负着不同的功能和作用。
蛋白质是生物体内最为广泛存在的一类有机化合物,是生命活动的基础,而核酸则是构成生物体遗传信息的基本单位。
下面将详细介绍蛋白质与核酸的相关知识点。
一、蛋白质的概念和结构蛋白质是由氨基酸经肽键连接而成的聚合物,是生物体内最为重要的有机物之一。
蛋白质在生物体内具有多种功能,如构成细胞和器官的结构材料、参与物质运输和储存、催化生化反应、免疫防御等。
蛋白质的结构包括四个层次:一级结构是指蛋白质的氨基酸序列,二级结构是指氨基酸通过氢键形成的α-螺旋和β-折叠,三级结构是指蛋白质链的空间折叠形态,四级结构是指多个蛋白质链之间的相互作用形成的蛋白质复合物。
二、核酸的概念和结构核酸是由核苷酸经糖苷键连接而成的聚合物,是生物体内存储和传递遗传信息的分子。
核酸分为DNA(脱氧核酸)和RNA(核糖核酸)两种。
DNA主要存在于细胞核中,是遗传物质的主要组成部分,能够储存和传递遗传信息。
RNA则参与蛋白质的合成过程,包括mRNA、tRNA和rRNA等。
核酸的结构包括三个部分:碱基、糖和磷酸。
碱基是核酸的核心成分,包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和尿嘧啶(U)五种,它们通过氢键相互配对形成双螺旋结构。
三、蛋白质的合成蛋白质的合成包括转录和翻译两个过程。
在细胞核中,DNA通过转录过程转录成mRNA,mRNA带着遗传信息离开细胞核进入细胞质。
在细胞质中,mRNA通过翻译过程转化成氨基酸序列,进而合成蛋白质。
蛋白质的合成过程是一个高度协调的过程,涉及到多个蛋白质和RNA分子的参与。
四、核酸的复制和转录核酸的复制是指DNA分子在细胞分裂过程中通过复制过程产生两个完全相同的DNA分子。
复制过程是通过DNA聚合酶酶催化下进行的,每个DNA链作为模板合成一个新的DNA链,最终形成两个完全相同的DNA分子。
生物化学知识点
![生物化学知识点](https://img.taocdn.com/s3/m/430510602e60ddccda38376baf1ffc4ffe47e2c9.png)
生物化学知识点生物化学是关于生物体内各种化学反应和物质组成的研究领域。
本文将探讨生物化学的几个重要知识点,包括生物大分子、酶的功能和调控、代谢途径及其调节以及核酸的结构和功能。
一、生物大分子生物大分子是生物体内重要的有机分子,包括蛋白质、核酸、多糖和脂类。
这些分子是组成细胞和生命活动的基本单位。
1. 蛋白质蛋白质是生物体内功能最为多样和复杂的生物大分子之一。
它们由氨基酸组成,通过肽键连接成长链。
蛋白质扮演着酶、结构蛋白、激素和抗体等重要角色。
2. 核酸核酸是生物体内负责储存和传递遗传信息的分子。
DNA和RNA是两种常见的核酸。
DNA以双螺旋结构存储遗传信息,RNA则参与蛋白质的合成过程。
3. 多糖多糖是由单糖分子通过糖苷键连接而成的聚合物。
多糖包括淀粉、糖原和纤维素等,它们在生物体内具有能量储存和结构支持的功能。
4. 脂类脂类是由甘油和脂肪酸组成的生物大分子。
它们在细胞膜的构建、能量储存和信号传导中起到重要作用。
二、酶的功能和调控酶是生物体内调节化学反应速率的生物催化剂。
酶可以加速反应速率、选择性催化和在温和条件下进行反应。
1. 酶的催化机制酶通过降低反应的活化能,使反应更容易发生。
酶与底物结合形成酶底物复合物,进而发生化学反应。
最终生成产物和释放酶。
2. 酶的调控酶的活性可以通过多种机制进行调控。
常见的调控方式包括底物浓度、温度、酸碱度以及激活剂和抑制剂的作用。
三、代谢途径及其调节代谢是生物体内物质和能量的转化过程。
生物体通过代谢途径来满足对营养物质的需求,并产生能量和代谢产物。
1. 糖代谢糖代谢是生物体内获得能量的重要途径。
它包括糖原的分解和糖酵解产生乳酸或乙醇,以及细胞呼吸中糖的氧化生成ATP。
2. 脂肪代谢脂肪代谢是能量储存的主要方式。
脂肪通过脂肪酸的β氧化产生ATP,而合成脂肪酸需要NADPH和ATP的供应。
3. 蛋白质代谢蛋白质代谢包括蛋白质的降解和合成。
降解过程中,蛋白质被降解为氨基酸,供给细胞合成新的蛋白质。
高中化学第四章第3节 蛋白质和核酸知识点
![高中化学第四章第3节 蛋白质和核酸知识点](https://img.taocdn.com/s3/m/8ac8775171fe910ef02df871.png)
第三节蛋白质和核酸蛋白质是生物体内一类极为重要的功能高分子化合物,是生命活动的主要物质基础。
它不仅是细胞、组织、肌肉、毛发等的重要组成成分,而且具有多种生物学功能。
一、氨基酸1、氨基酸的分子结构氨基酸是羧酸分子烃基上的氢原子被氨基(—NH2)取代后的产物。
氨基酸的命名是以羧基为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α碳原子,离羧基次近碳原子称为β碳原子,依次类推。
2、氨基酸的物理性质常温下状态:无色晶体;熔、沸点:较高;溶解性:能溶于水,难溶于有机溶剂。
3、氨基酸的化学性质(1)甘氨酸与盐酸反应的化学方程式:;(2)甘氨酸与氢氧化钠反应的化学方程式:氨基酸是两性化合物,基中—COOH为酸性基团,—NH2为碱性基团。
(3)成肽反应两个氨基酸分子(可以相同也可以不同)在酸或碱存在下加热,通过一分子的氨基和另一分子的羧基脱去一分子水,缩合形成含有肽键的化合物,称为成肽反应。
二、蛋白质的结构与性质1、蛋白质的结构蛋白质是一类高分子化合物,主要由C、H、O、N、S等元素组成。
蛋白质分子结构的显著特征是:具有独特而稳定的结构。
蛋白质的特殊功能和活性与多肽链的氨基酸种类、数目及排列顺序、特定空间结构相关。
2、蛋白质的性质(1)水解蛋白质在酸、碱或酶的作用下,水解成相对分子质量较小的肽类化合物,最终水解得到各种氨基酸。
(2)盐析少量的盐能促进蛋白质溶解。
当向蛋白质溶液中加入的盐溶液达到一定浓度时,反而使蛋白质的溶解度降低而从溶液中析出,这种作用称为盐析。
盐析是一个可逆过程,不影响蛋白质的活性。
因此可用盐析的方法来分离提纯蛋白质。
(3)变性影响蛋白质变性的因素有:物理因素:加热、加压、搅拌、振荡、紫外线照射、超声波等。
化学因素:强酸、强碱、重金属盐、三氧乙酸、乙醇、丙酮等。
变性是一个不可逆(填“可逆”或“不可逆”)的过程,变性后的蛋白质生理活性也同时失去。
(4颜色反应颜色反应一般是指浓硝酸与含有苯基的蛋白质反应,这属于蛋白质的特征反应。
核酸与蛋白质的合成例题和知识点总结
![核酸与蛋白质的合成例题和知识点总结](https://img.taocdn.com/s3/m/218dfaddd5d8d15abe23482fb4daa58da0111cbd.png)
核酸与蛋白质的合成例题和知识点总结在生物学中,核酸与蛋白质的合成是非常重要的内容。
理解这一过程不仅对于掌握生命的基本运作机制至关重要,在许多实际应用中也具有关键意义。
接下来,我们将通过一些例题来深入探讨这一主题,并对相关知识点进行全面总结。
一、核酸的合成核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 是遗传信息的携带者,通过复制将遗传信息传递给子代细胞;RNA 则在遗传信息的表达中发挥重要作用。
(一)DNA 复制DNA 复制是一个半保留复制的过程,即每个新合成的 DNA 分子都包含一条亲代链和一条新合成的链。
例题 1:一个 DNA 分子中含有腺嘌呤(A)300 个,占碱基总数的20%,问这个 DNA 分子复制 3 次后,共需要鸟嘌呤(G)多少个?解析:首先,根据 A 占 20%,可算出碱基总数为 300÷20% = 1500 个。
因为 A + G = 50%,所以 G 的数量为 1500×30% = 450 个。
DNA 复制 3 次,得到 8 个 DNA 分子,除去原来的 1 个,新合成 7 个,所以共需要 G 450×7 = 3150 个。
知识点总结:1、 DNA 复制的场所主要在细胞核,线粒体和叶绿体中也会发生。
2、复制需要模板(亲代 DNA 的两条链)、原料(四种脱氧核苷酸)、能量(ATP)和酶(解旋酶、DNA 聚合酶等)。
3、复制遵循碱基互补配对原则,即 A 与 T 配对,G 与 C 配对。
(二)RNA 合成(转录)转录是以 DNA 的一条链为模板合成 RNA 的过程。
例题 2:一段 DNA 模板链的碱基序列为 5'ATGCGGCTTA-3',写出其转录生成的 RNA 碱基序列。
解析:根据碱基互补配对原则,转录生成的 RNA 碱基序列为5'UACGCCGAAT-3'。
知识点总结:1、转录的场所主要在细胞核。
2、转录需要模板(DNA 的一条链)、原料(四种核糖核苷酸)、能量(ATP)和酶(RNA 聚合酶)。
蛋白质和核酸化学PPT课件.ppt
![蛋白质和核酸化学PPT课件.ppt](https://img.taocdn.com/s3/m/b30c9ed685868762caaedd3383c4bb4cf7ecb785.png)
▪ 2. 用凯氏微量定氮法测得0.2ml血清中含
氮2.1mg,问100ml血清中含蛋白质多少克?
二、蛋白质的基本单位—氨基酸
▪ 氨基酸是蛋白质的基本组成单位。 ▪ 20标准氨基酸 ▪ 氨基(-NH2)和羧基(-COOH)
COOH H2N—Cα—H
R
不带电形式
COO+H3N—Cα—H
2.空间结构与功能的关系
▪ 蛋白质的空间
结构一旦改变 就会影响蛋白 质的生物活性。
▪ (如右图)牛
核糖核酸酶的 空间结构与功 能。
•牛脑海绵状病,简称BSE。1985年4月,医学家 们在英国发现了一种新病,专家们对这一世界 始发病例进行组织病理学检查,并于1986年11 月将该病定名为BSE,首次在英国报刊上报道。 •食用被疯牛病污染了的牛肉、牛脊髓的人,有 可能染上致命的克罗伊茨费尔德—雅各布氏症 (简称克-雅氏症),其典型临床症状为出现 痴呆或神经错乱,视觉模糊,平衡障碍,肌肉 收缩等。病人最终因精神错乱而死亡。 医学 界对克-雅氏症的发病机理还没有定论,也未 找到有效的治疗方法。
(1)
(2)
(二)
一级结构是空间结构的基础。结构与功能密切相关,蛋白质的一级 结构一旦确立,其空间结构以及生理功能也基本确立。
四、蛋白质的空间结构
▪ 多肽链需通过各种方式卷曲成特定的空间
结构。蛋白质肽链通过折叠、盘曲,使分 子内部原子形成一定的空间排布及相互关 系,称为蛋白质的构象,即空间结构。
(2)分子病
——蛋白质分子一级结构的氨基酸排列顺序与 正常有所不同的遗传病。
镰状细胞贫血(sick-cell anemia) 从患者红细胞中鉴定出特异的镰刀型或月牙型细胞。
最新人教版高中化学选修五第四章生命中的基础 有机化学物质 第三节 蛋白质和核酸
![最新人教版高中化学选修五第四章生命中的基础 有机化学物质 第三节 蛋白质和核酸](https://img.taocdn.com/s3/m/0b614357ac02de80d4d8d15abe23482fb4da0263.png)
第三节蛋白质和核酸学习目标核心素养1.了解氨基酸的组成和结构,知道氨基酸的两性。
2.了解氨基酸的组成、结构特点和主要化学性质,知道氨基酸和蛋白质的关系。
3.了解蛋白质的组成、结构和性质(盐析、变性、水解、颜色反应等)。
了解氨基酸、蛋白质与人体健康的关系。
4.认识蛋白质、酶、核酸等物质与人体健康的关系。
1.从微观官能团的角度理解氨基酸、蛋白质性质和核酸的性质,形成结构决定性质的观念,能从宏观和微观相结合的视角分析和解决实际问题。
(宏观辨识与微观探析)2.从蛋白质的性质出发,具有较强的问题意识,设计实验方案,并能对实验进行评价和优化。
(科学探究与创新意识)3.认识蛋白质和核酸在生命科学发展中的重要应用,感受化学对社会发展的重大贡献。
(科学态度与社会责任)一、氨基酸的结构与性质1.概念和结构:(1)概念:羧酸分子中烃基上的氢原子被氨基取代的化合物。
(2)结构:α-氨基酸的结构简式为,官能团为氨基(—NH2)和羧基(—COOH)。
(3)常见的氨基酸。
俗名结构简式系统命名甘氨酸α-氨基乙酸丙氨酸α-氨基丙酸谷氨酸2-氨基-1,5-戊二酸苯丙氨酸α-氨基苯丙酸2.氨基酸的性质:(1)物理性质。
颜色状态熔点溶解性水强酸或强碱乙醇、乙醚无色晶体较高大多数能溶能溶难溶(2)化学性质。
①两性。
氨基酸分子中既含有羧基,又含有氨基,是两性化合物,因而能与酸、碱反应生成盐。
a.α 氨基酸与盐酸的反应:。
b.α 氨基酸与氢氧化钠的反应:。
②成肽反应。
两个氨基酸分子(可以相同,也可以不同),在酸或碱的存在下加热,通过一分子的氨基和另一分子的羧基间脱去一分子水,缩合成含有肽键()的化合物的反应,称为成肽反应。
例如,氨基酸二肽或多肽蛋白质。
【微思考】既能与酸反应,又能与碱反应的物质有哪些?提示:氨基酸、Al、Al2O3、Al(OH)3、弱酸的酸式盐(如NaHCO3)、弱酸的铵盐[如(NH4)2CO3]。
【教材二次开发】教材介绍了氨基酸的成肽反应,成肽反应的反应机理是什么?有哪些成肽方式?提示:酸脱羟基、氨脱氢。
蛋白质和核酸的化学结构和功能
![蛋白质和核酸的化学结构和功能](https://img.taocdn.com/s3/m/3bf8a2537f21af45b307e87101f69e314332faaa.png)
蛋白质和核酸的化学结构和功能蛋白质和核酸是细胞中两类重要的生物大分子,它们在生命起源和演化中发挥着重要的作用。
蛋白质和核酸的化学结构和功能是生命科学的重要研究领域,在本文中,我们将探讨蛋白质和核酸的化学结构和功能。
一、蛋白质的化学结构与功能1.1 蛋白质的化学结构蛋白质是由氨基酸通过肽键链接而成的线性多肽,其中每个氨基酸分子有自己的化学结构,包括α-氨基酸、β-氨基酸等等。
常见的α-氨基酸有20种,在不同的蛋白质中按照不同的顺序排列,可以形成不同的蛋白质。
蛋白质的化学结构可以分为四个层次:一级、二级、三级、四级结构。
一级结构即氨基酸序列,二级结构是氢键作用下的螺旋状或β-折叠状分子链,三级结构是由氢键、离子键、氢结合、疏水作用等多种非共价力相互作用所维持的三维结构,而四级结构是由两个或多个具有独立生物活性的多肽链相互作用而形成的复合物。
1.2 蛋白质的功能蛋白质是细胞和生命体系的基础组成部分,在生命体系中扮演着非常重要的角色。
蛋白质的功能多种多样,可以通过控制基因表达、构建细胞骨架、调节代谢和能量代谢等多种机制发挥作用。
蛋白质作为酶可以在细胞代谢、免疫反应和信号传导中发挥重要作用,如谷氨酸脱氢酶、葡萄糖氧化酶等酶就是在控制代谢反应中发挥主导作用的蛋白质。
蛋白质还可以作为携带物质得到利用,如血红蛋白携带氧分子,白蛋白携带脂溶性物质等。
此外还可以构建细胞骨架、参与免疫反应等。
二、核酸的化学结构与功能2.1 核酸的化学结构核酸是由核苷酸单元组成,是基因信息的储存、复制、转录和翻译的重要分子。
核苷酸由五碳糖、硫酸基和核苷酸碱基组成。
在DNA中,五碳糖为脱氧核糖,硫酸基为磷酸,碱基包括腺嘌呤、胞嘧啶、鸟嘌呤、脱氧胸腺嘧啶四种;在RNA中,五碳糖为核糖,硫酸基为磷酸,碱基包括腺嘌呤、尿嘧啶、鸟嘌呤、胸腺嘧啶。
核酸分为DNA和RNA两种,它们的分子结构有所不同。
DNA是双螺旋结构,由两个互补的链通过氢键相互配对而形成的,其中腺嘌呤与胸腺嘧啶通过两条氢键相连,鸟嘌呤与胞嘧啶则通过三条氢键相连。
核酸与蛋白质的合成例题和知识点总结
![核酸与蛋白质的合成例题和知识点总结](https://img.taocdn.com/s3/m/6b8c4db7e109581b6bd97f19227916888586b978.png)
核酸与蛋白质的合成例题和知识点总结在生物学的世界里,核酸和蛋白质的合成是至关重要的过程,它们对于生命活动的正常进行起着不可或缺的作用。
接下来,让我们通过一些例题来深入理解这两个重要的生物大分子的合成,并对相关知识点进行总结。
一、核酸的合成核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA 是遗传信息的携带者,通过复制过程将遗传信息传递给子代细胞;RNA 则在基因表达中发挥重要作用,包括信使 RNA(mRNA)、转运 RNA (tRNA)和核糖体 RNA(rRNA)。
例题 1:一个 DNA 分子中,腺嘌呤(A)占碱基总数的 20%,则鸟嘌呤(G)所占的比例为()A 20%B 30%C 40%D 50%解析:在 DNA 分子中,A 与 T 互补配对,G 与 C 互补配对,所以A = T,G = C。
已知 A 占 20%,则 T 也占 20%,那么 G + C = 1 20% 20% = 60%,所以 G 占 30%,答案选 B。
知识点 1:DNA 分子的结构DNA 是由两条反向平行的脱氧核苷酸链盘旋成双螺旋结构。
外侧是由脱氧核糖和磷酸交替连接构成的基本骨架,内侧是碱基对,通过氢键连接。
碱基互补配对原则为 A 与 T 配对,G 与 C 配对。
知识点 2:DNA 的复制DNA 复制是以亲代 DNA 为模板合成子代 DNA 的过程。
复制的特点是半保留复制,即新合成的每个 DNA 分子中,都保留了原来 DNA 分子中的一条链。
复制需要解旋酶解开双链,DNA 聚合酶催化合成新的子链。
二、RNA 的合成RNA 的合成过程称为转录,是以 DNA 的一条链为模板合成 RNA 的过程。
例题 2:在真核细胞中,某基因转录产生的 mRNA 中尿嘧啶(U)占 28%,腺嘌呤(A)占 18%,则这个基因中胸腺嘧啶(T)所占的比例为()A 18%B 28%C 46%D 不能确定解析:mRNA 中的碱基比例与 DNA 模板链中的碱基比例互补,但DNA 是双链结构,A + T 所占比例在两条链上不一定相同,所以仅根据 mRNA 中的碱基比例不能确定 DNA 中胸腺嘧啶(T)的比例,答案选 D。
核酸与蛋白质的知识点总结
![核酸与蛋白质的知识点总结](https://img.taocdn.com/s3/m/ed9cb5de6aec0975f46527d3240c844768eaa07b.png)
核酸与蛋白质的知识点总结1.核酸的结构和功能核酸是由核苷酸(包括脱氧核苷酸和核苷酸)组成的生物大分子,主要由磷酸基、五碳糖和氮碱基组成。
核酸主要有两种类型:DNA(脱氧核糖核酸)和RNA(核糖核酸)。
DNA是细胞内的遗传物质,负责储存遗传信息和传递信息。
RNA参与了蛋白质的合成和调控等生理生化过程。
核酸的功能主要有以下几个方面:(1) 储存遗传信息:DNA是生物体内重要的遗传物质,它储存了生物体遗传信息的基因序列,对生物体的遗传特征起着决定性的作用。
(2) DNA复制:在细胞分裂过程中,需要通过DNA复制来保证子细胞遗传信息的完整传递。
(3) 转录和翻译:在蛋白质合成过程中,RNA通过转录将DNA上的信息转录成RNA,再通过翻译将RNA上的信息转译成蛋白质,从而参与了蛋白质的合成。
(4) 调控基因表达:核酸参与了生物体内基因的表达和调控,对于生物体的发育、生长、代谢等过程起着重要的作用。
2.蛋白质的结构和功能蛋白质是生物体内重要的大分子,是生物体内最具功能性的分子之一,起着重要的生理生化作用。
蛋白质是由氨基酸通过肽键连接而成的,根据氨基酸的序列和空间结构的不同,蛋白质具有多种类型,如结构蛋白、酶、激素、抗体等。
蛋白质的功能主要有以下几个方面:(1) 结构功能:蛋白质是细胞内的重要结构物质,如胞内骨架蛋白、肌纤维蛋白等,起着细胞支持和形态维持的作用。
(2) 酶催化作用:大部分酶都是蛋白质,通过酶的催化作用参与了细胞内的代谢过程,加速了生物化学反应的进行。
(3) 信号传导:许多激素、受体和信号转导蛋白都是蛋白质,它们参与了细胞信号传导的过程,调控了细胞内的生理过程。
(4) 运输功能:血红蛋白是一种运输氧气的蛋白质,它通过结合氧气和释放氧气参与了氧气的输送。
(5) 免疫功能:抗体是一种免疫球蛋白,它能够识别和结合外源抗原,起着免疫防御作用。
3.核酸与蛋白质的相互关系核酸和蛋白质是细胞内重要的生物分子,它们之间存在着相互关系。
生物化学 蛋白质、核酸代谢小结与习题
![生物化学 蛋白质、核酸代谢小结与习题](https://img.taocdn.com/s3/m/af24d146af1ffc4ffe47ac4f.png)
蛋白质与核酸代谢一、知识要点蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。
在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。
(一)蛋白质和氨基酸的酶促降解在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。
氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。
(二)氨基酸的生物合成转氨基作用是氨基酸合成的主要方式。
转氨酶以磷酸吡哆醛为辅酶,谷氨酸是主要的氨基供体,氨基酸的碳架主要来自糖代谢的中间物。
不同的氨基酸生物合成途径各不相同,但它们都有一个共同的特征,就是所有氨基酸都不是以CO2 和NH3 为起始原料从头合成的,而是起始于三羧酸循环、糖酵解途径和磷酸戊糖途径的中间物。
不同生物合成氨基酸的能力不同,植物和大部分微生物能合成全部20 种氨基酸,而人和其它哺乳动物及昆虫等只能合成部分氨基酸,机体不能合成的氨基酸称为必须氨基酸,人有八种必需氨基酸,它们是:Lys、Trp、Phe、Val、Thr、Leu、Ile 和Met。
三)核酸的酶促降解核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。
戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。
其它哺乳动物可将尿酸进一步氧化生成尿囊酸。
植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。
嘧啶的降解过程比较复杂。
胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA 循环进行分解和转化。
化学生物知识点总结
![化学生物知识点总结](https://img.taocdn.com/s3/m/0f776b6f492fb4daa58da0116c175f0e7cd1192b.png)
化学生物知识点总结1. 生物分子:生物体内包含多种生物分子,如蛋白质、核酸、碳水化合物和脂类。
这些分子在生物体内扮演重要角色,并通过碳、氢、氧、氮等元素的组合形成。
2. 蛋白质结构与功能:蛋白质是由氨基酸组成的大分子,具有多种功能,如酶的催化作用、细胞结构的维持和信号转导等。
蛋白质的功能与其空间结构密切相关,不同的结构决定了不同的功能。
3. 核酸和遗传信息:核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),是生物体内保存和传递遗传信息的重要分子。
DNA携带着遗传信息,而RNA在蛋白质合成中起着重要作用。
4. 碳水化合物的代谢:碳水化合物是生物体内最主要的能量来源,并在细胞呼吸中发挥重要作用。
葡萄糖是最常见的碳水化合物,也是细胞内的重要能量分子。
5. 脂类的功能:脂类在细胞膜的构成、能量储存和作为信号分子中起着重要作用。
三酰甘油是一种常见的脂类,是细胞内的能量储存形式。
6. 酶的催化作用:酶是生物体中的催化剂,能够加速化学反应而自身不消耗。
酶的活性受到多种因素的调控,如温度、pH值和抑制剂等。
7. 细胞膜的结构与功能:细胞膜是细胞的保护屏障,由脂质、蛋白质和碳水化合物组成。
它在物质的运输、信号转导和细胞黏附中扮演重要角色。
8. 细胞呼吸与光合作用:细胞呼吸是生物体内能量的来源,通过氧化葡萄糖来产生三磷酸腺苷(ATP)。
光合作用则是植物细胞中利用太阳能将二氧化碳和水转化成葡萄糖和氧气的过程。
9. 遗传信息的传递与表达:遗传信息通过DNA复制、转录和翻译来传递和表达。
这些过程是生物体内基因表达和蛋白质合成的关键步骤。
10. 激素的作用:激素在生物体内调控生长、代谢和发育等生理过程中起着重要作用,如胰岛素调节血糖水平、雄激素控制性腺素的生长等。
以上为化学生物学中一些重要的知识点,涉及到分子结构、生物能量代谢、遗传信息传递和生物体内的调控机制等方面。
希望这些内容能够帮助您更好地理解化学生物学知识。
第一章 蛋白质与核酸化学
![第一章 蛋白质与核酸化学](https://img.taocdn.com/s3/m/b09d0b20dd36a32d73758121.png)
符号
R 基化学结构
H 3C H 3C H 3C H 3C CH CH CH CH CH
等电点
6.02 5.97
Ala Val Leu Ile Phe Trp Met Pro
非 极 性 氨 基 酸
(8 种)
3
CH
3 2
2
5.98 6.02
3
CH CH
2
CH
5.48
2
CH N H 3C H 2C H 2C S CH CH CH N H
简单的小分子-氨基酸聚合而成的,氨基酸是组成蛋 白质的基本结构单位。天然蛋白质中存在的氨基酸有 20种,均由相应的遗传密码编码(编码氨基酸)。从 细菌到人类,所有物种中一切蛋白质都是由这20种氨 基酸构成的。
下图是氨基酸的结构通式: 下图是氨基酸的结构通式:
所有的氨基酸的共同特点是分 子中同时具有1个羧基(-COOH) 和1个氨基(-NH2),同一分子上 既有酸性羧基,又有碱性氨基。故 为两性化合物。不同氨基酸之间的 差异在于侧链的R基团结构不同。
+
+
9.74
精氨氨 ( arginine )
Arg
10.76
天天氨氨 ( aspartic acid ) 谷氨氨 ( glutamic acid )
Asp Glu
- OOC CH 2 - OOC CH CH 2 2
2.97 3.22
(三)氨基酸的主要理化性质 1、氨基酸的紫外吸收特性
Tyr、Phe、Trp的R基含有共轭双键, 在220-300nm近紫外区有吸收。
溶液扩散慢、粘度大、不能透过半透膜
胶体性质的用途: 胶体性质的用途:
分离纯化蛋白质:透析法:利用其不能透过半 透膜
化学蛋白质和核酸知识点
![化学蛋白质和核酸知识点](https://img.taocdn.com/s3/m/b0f337d3a0c7aa00b52acfc789eb172ded6399f8.png)
化学蛋白质和核酸知识点蛋白质是组成人体一切细胞、组织的重要成分。
核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。
接下来店铺为你整理了化学蛋白质和核酸知识点,一起来看看吧。
化学蛋白质和核酸知识点(一)氨基酸的结构与性质羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的生成物称为氨基酸;分子结构中同时存在羧基(-COOH)和氨基(-NH2)两个官能团,既具有氨基又具有羧基的性质。
说明:1、氨基酸的命名有习惯命名和系统命名法两种。
习惯命名法如常见的氨基酸的命名,如:甘氨酸、丙氨酸、苯丙氨酸、谷氨酸等;而系统命名法则是以酸为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α-碳原子,次近的碳原子称为β-碳原子,依次类推。
如:甘氨酸又名α-氨基乙酸,丙氨酸又名α-氨基丙酸,苯丙氨酸又名α-氨基β-苯基丙酸,谷氨酸又名α-氨基戊二酸等。
2、某些氨基酸可与某种硝基化合物互为同分异构体,如:甘氨酸与硝基乙烷等。
3、氨基酸结构中同时存在羧基(-COOH)和氨基(-NH2),氨基具有碱性,而羧基具有酸性,因此氨基酸既具有酸性又具有碱性,是一种两性化合物,在与酸或碱作用下均可生成盐。
氨基酸在强碱性溶液中显酸性,以阴离子的形式存在,而在强酸性溶液中则以阳离子形式存在,在溶液的pH合适时,则以两性的形式存在。
如:4、氨基酸结构中存在羧基(-COOH)在一定条件下可与醇作用生成酯。
5、氨基酸结构中羧基(-COOH)和氨基(-NH2)可以脱去水分子,经缩合而成的产物称为肽,其中-CO-NH-结构称为肽键,二个分子氨基酸脱水形成二肽;三个分子氨基酸脱水形成三肽;而多个分子氨基酸脱水则生成多肽。
如:发生脱水反应时,酸脱羟基氨基脱氢多个分子氨基酸脱水生成多肽时,可由同一种氨基酸脱水,也可由不同种氨基酸脱水生成多肽。
6、α-氨基酸的制取:蛋白质水解可得到多肽,多肽水解可得到α-氨基酸。
各种天然蛋白质水解的最终产物都是α-氨基酸。
生物化学知识点总结
![生物化学知识点总结](https://img.taocdn.com/s3/m/543dbe49df80d4d8d15abe23482fb4daa58d1de9.png)
生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
生命的化学基础——核酸和蛋白质的相互作用
![生命的化学基础——核酸和蛋白质的相互作用](https://img.taocdn.com/s3/m/cf60f1f02dc58bd63186bceb19e8b8f67c1cef6e.png)
生命的化学基础——核酸和蛋白质的相互作用在生命的起源和演化过程中,核酸和蛋白质是两个至关重要的生物大分子。
核酸是生命的遗传物质,负责传递和保存生物体内各种遗传信息;蛋白质则是生命的基本工具,负责生物体内的各项生物学过程和机能。
它们之间的相互作用,便决定了生命本身的运作和表现。
核酸的结构和功能核酸是由核苷酸连接而成的大分子,是生物体内储存遗传信息的基本分子。
核苷酸由糖、碱基和磷酸三部分组成,不同的碱基决定了核苷酸不同的信息载体。
核酸的主要类型有DNA(脱氧核糖核酸)和RNA(核糖核酸)两种,其中DNA是固有的遗传信息,而RNA则负责DNA的转录和翻译过程,将基因信息调控至蛋白质合成过程中。
核酸的信息特异性、精密的复制和传递,是生命活动不可或缺的基础。
它们在细胞分裂和有性繁殖过程中,以独特的方式进行遗传物质传递和变异,从而在物种演化和适应过程中发挥了重要的作用。
蛋白质的结构和功能蛋白质是由氨基酸连接而成的巨大分子,是生物体内各种工具酶、激素、抗体的基础,也是细胞内外的结构成分。
根据氨基酸的不同组合和排列方式,会形成不同的蛋白质结构和性质。
蛋白质在生命活动中的作用非常多样,包括催化、传输、调节、结构维持等等。
在蛋白质结构和功能的表达中,核酸则扮演了重要的导演角色。
在生物体内,核酸以基因形式储存蛋白质的信息,并通过转录和翻译过程,将这些信息转化为可读的蛋白质序列。
同时,在各种细胞生命活动中,蛋白质则作为各种生物学过程的重要实现物质,执行着各种不同的机能。
核酸和蛋白质的相互作用核酸和蛋白质之间的相互作用,是生命活动中至关重要的一个环节。
在生物体内,大部分核酸和蛋白质都相互作用着,形成了复杂的生物学网络。
这些相互作用的形式包括:核酸和蛋白质的组装、切换、传递、调控等等。
例如,在许多调控生物学过程的关键步骤中,核酸和蛋白质之间的相互作用是缺一不可的。
这些过程中,核酸等分子能够借助碱基序列的特异性,与蛋白质表面区域上的特定氨基酸残基发生结合作用,从而实现过程的调节和实现。
知识讲解_蛋白质和核酸_基础
![知识讲解_蛋白质和核酸_基础](https://img.taocdn.com/s3/m/b8239e456bd97f192279e98c.png)
蛋白质和核酸编稿:宋杰审稿:于冬梅【学习目标】1、了解氨基酸、蛋白质与人体健康的关系,认识人工合成多肽、蛋白质、核酸的意义;2、掌握氨基酸和蛋白质的结构特点及其重要的化学性质。
【要点梳理】要点一、氨基酸的结构和性质蛋白质是生命活动的主要物质基础,氨基酸是组成蛋白质的基本结构单位,而核酸对蛋白质的生物合成又起着决定作用。
因此,研究氨基酸、蛋白质、核酸等基本的生命物质的结构,有助于揭开生命现象的本质。
【高清课堂:蛋白质和核酸#蛋白质和核酸】1.氨基酸的组成和结构。
(1)氨基酸是羧酸分子中烃基上的氢原子被氨基取代后的生成物。
氨基酸分子中含有氨基和羧基,属于取代羧酸。
(2)组成蛋白质的氨基酸几乎都是α-氨基酸。
α-氨基酸的结构简式可表示为:常见的α-氨基酸有许多种。
如:2.氨基酸的物理性质。
天然氨基酸均为无色晶体,主要以内盐形式存在,熔点较高,在200℃~300℃时熔化分解。
它们能溶于强酸或强碱溶液中,除少数外一般都能溶于水,而难溶于乙醇、乙醚。
提示:(1)内盐是指氨基酸分子中的羟基和氨基作用。
使氨基酸成为带正电荷和负电荷的两性离子(如)。
(2)氨基酸具有一般盐的物理性质。
3.氨基酸的主要化学性质。
(1)氨基酸的两性。
氨基酸是两性化合物,能与酸、碱反应生成盐。
氨基酸分子既含有氨基又含有羧基,通常以两性离子形式存在,溶液的pH不同,可发生不同的解离。
不同的氨基酸在水中的溶解度最小时的pH(即等电点)不同,可以通过控制溶液的pH分离氨基酸。
(2)氨基酸的成肽反应。
在酸或碱存在的条件下加热,一个氨基酸分子的氨基与另一个氨基酸分子的羧基间脱去一分子水,缩合形成含有肽键()的化合物,称为成肽反应。
例如:由两个氨基酸分子间脱水形成的含有肽键的化合物叫二肽。
由三个氨基酸分子间脱水形成的含有肽键的化合物叫三肽,以此类推,三肽以上均可称为多肽。
相对分子质量在10000以上并具有一定空间结构的多肽,称为蛋白质。
4.α-氨基酸的鉴别。
基础生化学习要点-蛋白质 核酸
![基础生化学习要点-蛋白质 核酸](https://img.taocdn.com/s3/m/e9c00e659b6648d7c1c74614.png)
基本知识点:生物化学是研究生物的化学组成和生命过程中的化学变化的科学,即探究生命的化学本质。
第二章 蛋白质化学第一节蛋白质的元素组成蛋白质除含C、H、O、N及S外,有些蛋白质还含有P、Fe、Zn、Mo、Cu等。
各种蛋白质的平均含氮量为16%,这是蛋白质元素组成的重要特点,也是定氮法测定蛋白质含量的计算基础。
第二节蛋白质的基本组成单位——氨基酸一、蛋白质中的常见氨基酸蛋白质由L-α-氨基酸组成,组成蛋白质的氨基酸结构通式是。
各种氨基酸结构的不同表现在侧链基团或称R基团。
组成蛋白质的氨基酸主要有20种,称为常见氨基酸。
二、氨基酸的分类根据氨基酸R基团的极性分为三大类:(1)R基团为非极性或疏水的氨基酸;(2)R基团为极性但不带电荷氨基酸;(3)R基团为带电荷的氨基酸(中性pH时)。
其中第(3)类中又分为带正电荷和带负电荷的两种。
三、蛋白质的稀有氨基酸蛋白质中的稀有氨基酸没有对应的遗传密码子,是在肽链合成后,经过加工修饰而来。
因此,蛋白质稀有氨基酸的结构仍然是L-α-氨基酸。
四、非蛋白质氨基酸非蛋白质氨基酸是生物体内各种组织和细胞中存在的、不参与蛋白质组成的氨基酸。
这些氨基酸大多是L-α-氨基酸,但有些非蛋白质氨基酸是D型氨基酸、以及β-、γ-、或δ-氨基酸。
五、氨基酸的酸碱性质氨基酸分子含有氨基和羧基,在溶液中呈解离状态。
氨基酸是两性电解质,同一种氨基酸在不同pH条件下可以带正电荷、负电荷或净电荷为零。
如果某种氨基酸在溶液中所带净电荷为零――即整个分子呈电中性,此时溶液的pH值称为该氨基酸的等电点,以pI表示。
不同的氨基酸具有不同的等电点。
六、氨基酸的立体化学除去甘氨酸外,蛋白质的其余19种常见氨基酸中的α-碳原子是一个不对称碳原子,即手性碳原子。
七、氨基酸的吸收光谱蛋白质的20种常见氨基酸,在可见光区域都没有光吸收,在远紫外区都有光吸收。
但在近紫外区域,只有酪氨酸、苯丙氨酸和色氨酸有光吸收。
由于蛋白质含有这几种芳香族氨基酸,因此也具有紫外吸收能力,其最大光吸收在280nm波长处。
蛋白质和核酸在化学组成上的异同
![蛋白质和核酸在化学组成上的异同](https://img.taocdn.com/s3/m/7236856aabea998fcc22bcd126fff705cd175c63.png)
蛋白质和核酸在化学组成上的异同蛋白质和核酸是生命体内重要的生物大分子,它们在化学组成上有着一些共同之处,但也存在一些显著的差异。
本文将从化学组成的角度探讨蛋白质和核酸的异同。
一、蛋白质的化学组成蛋白质是由氨基酸组成的大分子。
氨基酸是一种含有氨基(-NH2)和羧基(-COOH)的有机化合物。
常见的氨基酸有20种,它们在侧链(R基团)的结构上存在差异,从而赋予蛋白质不同的性质和功能。
二、核酸的化学组成核酸是由核苷酸组成的生物大分子。
核苷酸是由磷酸、五碳糖和氮碱基组成的。
常见的核苷酸有腺苷酸、鸟苷酸、胸苷酸和尿苷酸等。
其中,核苷酸的五碳糖是脱氧核糖(DNA)或核糖(RNA),氮碱基包括腺嘌呤、胸腺嘧啶、鸟嘌呤和尿嘧啶等。
三、蛋白质和核酸的共同之处1. 化学元素组成:蛋白质和核酸都由碳、氢、氧和氮等元素组成,其中蛋白质中还含有硫元素。
2. 功能:蛋白质和核酸都在生物体内扮演着重要的功能角色。
蛋白质参与构建细胞结构、催化生物化学反应、传递信号等;核酸则负责存储遗传信息、传递遗传信息和参与蛋白质合成等。
四、蛋白质和核酸的差异1. 化学组成:蛋白质的基本单位是氨基酸,而核酸的基本单位是核苷酸。
蛋白质中的氨基酸通过肽键连接形成多肽链,而核酸中的核苷酸通过磷酸二酯键连接形成聚合物。
2. 氨基酸和核苷酸的结构:氨基酸的结构包括氨基、羧基和侧链,而核苷酸的结构包括磷酸、五碳糖和氮碱基。
氨基酸的侧链结构多样,决定了蛋白质的特性和功能;而核苷酸的氮碱基决定了核酸的特性和功能。
3. 功能:蛋白质主要参与细胞结构和功能的建立,如构建细胞膜、骨骼、肌肉等,还能催化生物化学反应、传递信号等。
而核酸主要负责存储和传递遗传信息,参与蛋白质的合成。
4. 物理性质:蛋白质通常为无色或白色固体,可溶于水和一些有机溶剂,具有各种生物活性。
核酸一般为白色固体,可溶于水,具有较高的熔点。
总结起来,蛋白质和核酸在化学组成上有所不同。
蛋白质的基本单位是氨基酸,而核酸的基本单位是核苷酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学中蛋白质和核酸的知识点
蛋白质是生命的物质基础,没有蛋白质就没有生命。
因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。
核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。
下面由店铺给你带来关于xxxxx,希望对你有帮助!
化学中蛋白质和核酸的知识点一
氨基酸的结构与性质
羧酸分子中烃基上的氢原子被氨基(-NH2)取代后的生成物称为氨基酸;分子结构中同时存在羧基(-COOH)和氨基(-NH2)两个官能团,既具有氨基又具有羧基的性质。
说明:
1、氨基酸的命名有习惯命名和系统命名法两种。
习惯命名法如常见的氨基酸的命名,如:甘氨酸、丙氨酸、苯丙氨酸、谷氨酸等;而系统命名法则是以酸为母体,氨基为取代基,碳原子的编号通常把离羧基最近的碳原子称为α-碳原子,次近的碳原子称为β-碳原子,依次类推。
如:甘氨酸又名α-氨基乙酸,丙氨酸又名α-氨基丙酸,苯丙氨酸又名α-氨基β-苯基丙酸,谷氨酸又名α-氨基戊二酸等。
2、某些氨基酸可与某种硝基化合物互为同分异构体,如:甘氨酸与硝基乙烷等。
3、氨基酸结构中同时存在羧基(-COOH)和氨基(-NH2),氨基具有碱性,而羧基具有酸性,因此氨基酸既具有酸性又具有碱性,是一种两性化合物,在与酸或碱作用下均可生成盐。
氨基酸在强碱性溶液中显酸性,以阴离子的形式存在,而在强酸性溶液中则以阳离子形式存在,在溶液的pH合适时,则以两性的形式存在。
如:
4、氨基酸结构中存在羧基(-COOH)在一定条件下可与醇作用生成酯。
5、氨基酸结构中羧基(-COOH)和氨基(-NH2)可以脱去水分子,经缩合而成的产物称为肽,其中-CO-NH-结构称为肽键,二个分子氨基酸脱水形成二肽;三个分子氨基酸脱水形成三肽;而多个分子氨基酸脱
水则生成多肽。
如:
发生脱水反应时,酸脱羟基氨基脱氢
多个分子氨基酸脱水生成多肽时,可由同一种氨基酸脱水,也可由不同种氨基酸脱水生成多肽。
6、α-氨基酸的制取:蛋白质水解可得到多肽,多肽水解可得到α-氨基酸。
各种天然蛋白质水解的最终产物都是α-氨基酸。
化学中蛋白质和核酸的知识点二
蛋白质的结构与性质:
蛋白质的组成中含有C、H、O、N、S等元素,是由不同的氨基酸经脱水反应缩合而成的有机高分子化合物;蛋白质分子中含有未被缩合的羧基(-COOH)和氨基(-NH2),同样具有羧基(-COOH)和氨基(-NH2)的性质;蛋白质溶液颗粒直径的大小达到胶体直径的大小,其溶液属于胶体;酶是一种具有催化活性的蛋白质。
说明:
1、蛋白质的结构:在天然状态下,任何一种蛋白质都具有独特而稳定的结构;而蛋白质分子中各种氨基酸的连接方式和排列顺序称为蛋白质的一级结构。
2、蛋白质分子中含有未被缩合的羧基(-COOH)和氨基(-NH2),具有两性,可与酸或碱作用生成盐。
3、在酸、碱或酶的催化作用下,蛋白质可发生水解反应,最终生成氨基酸。
水解时肽键断裂分别生成羧基和氨基。
如:
各种天然蛋白质水解的最终产物都是α-氨基酸
4、盐析:向蛋白质溶液中加入某些浓的轻金属无机盐溶液(如食盐、硫酸铵、硫酸钠)等,可使蛋白质在水中的溶解度降低,从溶液中析出,这个过程称为盐析,盐析是个可逆的过程,向析出的沉淀中再加入水,沉淀又会溶解,此时,没有破坏蛋白质本身的性质,是一个物理变化过程,可用来分离提纯蛋白质。
5、变性:受热、酸碱、重金属盐、某些有机物(乙醇、甲醛等)、紫外线等作用时蛋白质可发生变性,失去其生理活性;变性是不可逆过程,是化学变化过程。
6、某些苯环的蛋白质遇浓硝酸变性,产生黄色物质,利用这一性质可鉴别蛋白质,这就是蛋白质的颜色反应。
7、灼烧蛋白质会产生烧焦羽毛的气味,利用这一性质可鉴别蛋白质。
8、酶也是蛋白质,是一种具有催化活性的蛋白质,有强的催化作用,酶的催化作用有如下几个特点:①条件温和,不需加热;②专一性;
③高效性
化学中蛋白质和核酸的知识点三
核酸的结构和生理功能
核酸是具有重要生理功能的一类生物大分子,分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)两种。
核酸分子由核苷酸聚合而成。
核苷酸是一个含杂环的碱基与一个核糖或脱氧核糖结合形成核苷,核苷再通过核糖或脱氧核糖中的羟基与磷酸形成磷酸酯。
核酸彻底水解后可得到核糖或脱氧核糖。
核酸对人体的生理功能的重要性在于它携带着遗传信息。
DNA是遗传物质,生物的信息从DNA传到作为“信使”的RNA,最终指导蛋白质的合成。