发电厂全面性热力系统

合集下载

发电厂的热力系统

发电厂的热力系统

N600-17.75/540/540型机组发电厂原则性热力系统
引进的超临界K-500-240-4型机组发电厂原则性热力系统
引进的N600-25.4/541/569超临界机组发电厂原则性热力系统
超超临界325MW两次中间再热凝汽机组的发电厂原则性热力系统
国产CC200–12.75/535/535型双抽汽凝汽式机组热电厂原则性热力系统
3
利用外部热源可以节约燃料,如发电机冷却水热源;
4
实际工质回收和废热利用系统,应考虑投资、运行费用和热经济性,通过技术经济性比较来确定
结论:
主汽门和调节汽门的阀杆漏汽
01
再热式机组中压联合汽门的阀杆漏汽
02
高、中、低压缸的前后轴封漏汽和轴封用汽 轴封利用系统中各级轴封蒸汽,工质基本可全部回收
扩容器压力下饱和蒸汽比焓
1
2
3
4
锅炉连续排污利用系统的热经济性分析:
01
无排污利用系统时,排污水热损失:
02
有排污利用系统时,排污水热损失为:
03
可利用的排污热量:
04
凝汽器增加的附加冷源损失:
05
发电厂净获得的热量:
06
1
回收热量大于附加冷源损失,回收废热节约燃料;
2
尽量选取最佳扩容器压力;

汽轮机在通过铭牌出力所保证的进汽量、额定主蒸汽和再热蒸汽工况下,在正常的排汽压力(4.9kpa)下,补水率为0%时,机组能保证达到的出力
汽轮发电机组保证最大连续出力(TMCR)
其他: 汽轮发电机组在调节汽门全开和所有给水加热器全部投运之下,超压5%连续运行的能力,以适应调峰的需要
汽轮机调节汽门全开时通过计算最大进汽量和额定的主蒸汽、再热蒸汽参数工况下,并在正常排汽压力(4.9kpa)和补水率0%条件下计算所能达到的出力

发电厂全面性热力系统

发电厂全面性热力系统
第八节 发电厂全面性热力系统举例
第八章 发电厂全面性热力系统
CLICK HERE TO ADD A TITLE
第一节 发电厂全面性热力系统的概念
演讲人姓名
第一节 发电厂全面性热力系统的概念
发电厂全面性热力系统——发电厂组成的实际热力系统 用规定的符号,表明全厂性的所有热力设备及其汽水管道和附件的总体系统图。 特点:(1)反映电厂各种工况,包括事故、检修时的运行方式。 (2)按设备实际数量(包括运行的和备用的全部主、辅热力设备及其系统)绘制、标明一切必须的连接管道及其附件。 应用:(1)汇总主辅热力设备、各类管道及附件数量规格,供订货用; (2)据此进行主厂房布置和各类管道施工设计。 组成:主蒸汽和再热蒸汽系统(一、二次蒸汽系统)、旁路系统、回热加热(回热抽汽及疏水、空气管路)系统、给水除氧系统(包括减温水系统)、主凝结水系统、补充水系统、供热系统、厂内循环水系统、锅炉启动系统等。
三、一、二次蒸汽系统的混温措施
一次蒸汽(主蒸汽)系统
包括从汽轮机高压缸排汽至锅炉再热器进口联箱的低温(冷)再热管道、阀门,和从再热器出口联箱至汽轮机中压缸进口阀门的高温(热)再热管道、阀门。
二次蒸汽(中间再热式机组的再热蒸汽)系统
第三节 一、二次蒸汽系统
一、一次蒸汽系统
主蒸汽系统的形式
(一)主蒸汽系统的形式
(a) 单母管制系统;(b)切换母管制系统;(c) 单元制系统
二、管道选择
(四)管道类别选择 管子类别应根据管内介质的性质、参数及在各种工况下运行的安全性和经济性进行选择。 (1)无缝钢管适用于各类参数的管道。 (2)低温再热蒸汽管道可采用高质量焊接钢管。 (3)PN 2. 5及以下参数的管道,也可选用电焊钢管。 (4)低压流体输送用焊接钢管(GB3092-82),仅适用于PN1. 6及以下,设计温度不大于200℃的介质。

发电厂热力系统

发电厂热力系统

课题三 回热抽汽及其疏水管道系统
一、回热抽汽管道系统
热力发电厂
国产N200MW机组的回热抽汽管道系统
热力发电厂
液动逆止阀 切换阀
不设置逆 止阀和截
止阀
电动截 止阀
上海改进型N300MW机组的抽汽管道系统
气动逆止阀
电动隔 离阀
热力发电厂
不设逆 止阀
Hale Waihona Puke 二、回热加热抽汽的疏水管道系统
热力发电厂
1、组成:由疏水调节阀、截止阀、疏水冷却器、疏水泵、 真空阀及其管道等组成。
2、降低压损和汽温偏差措施
热力发电厂
(5)采用最少的管制件
在保证运行安全可靠、经济的条件下,尽量减少管制件, 以降低局部阻力损失。如主蒸汽管道上的流量测量孔板改用 喷嘴或文丘里管。主蒸汽管上也可不装关断阀。
课题二 再热式机组的旁路系统
热力发电厂
旁路系统是再热机组启、停、事故情况下的一种调节和保 护系统。
3、在发电厂设计时,可以根据拟定的全面性热力系统图,编 制全厂汽水设备总表,计算管子的直径和壁厚,提出管制件的定 货清单。
课题一 主蒸汽与再热蒸汽系统
热力发电厂
1、范围
锅炉供给汽轮机蒸汽的管道,蒸汽管间的连通母管,通往用 新汽设备的蒸汽支管等称为主蒸汽管道系统。如果是再热式 机组,还有汽轮机高压缸排汽口至再热器入口的再热冷段管 道,再热器出口至汽轮机中压缸入口的再热热段管道。
(4)减少自动主汽门作关闭试验时的压损
当机组带负荷运行时,一个自动主汽门作全关试验,此时通 过正在工作的自动主汽门和管道的流量是正常的两倍,压损不 大于8%,在此流量下从锅炉至自动主汽门管道压损不大于6%, 这样在带负荷运行条件下,作其中一个自动主汽门全关试验, 两侧的总压损在14%左右,仍小于设计为15%额定压力值,自 动主汽门可以重新迅速开启。

发电厂的全面性热力系统PPT课件

发电厂的全面性热力系统PPT课件
DL/T5366-2006《火力发电厂汽水管道应力计算技术规定》(简称“应力规 定”)
DL/T5054-1996《火力发电厂汽水管道设计技术规定》(简称“管道规定”)
• 蒸汽管道:主蒸汽管道 、再热蒸汽管道、抽汽管道等。 • 水管道:高压给水管道、低压给水管道、凝结水管道、加热器疏水管道、
锅炉排污管道、补充水管道、给水再循环管道等等。
• 缺点:
• 单元之间不能切换。
应用: 有高压凝汽式机组的发电厂; 装有中间再热机组的发电厂; 参数高、要求大口径高级耐热 合金钢的机组,且主蒸汽管道 投资比例较大时。
温度偏差及其对策
最大允许汽温偏差
管道系统应有混温措施 持久性为15℃,瞬时性为42℃。
汽轮机的主蒸汽、再热蒸汽均为双侧进汽,
—— 再热机组的主蒸汽、再热蒸汽系统以单管、双管及混 合管系统居多,少数也有四管及其混合管系统的。
第六章 发电厂全面性热力系统
• 6-1 管道系统 • 6-2 主蒸汽系统 • 6-3 中间再热机组的旁路系统 • 6-4 给水系统 • 6-5 回热全面热力系统及运行 • 6-6 发电厂疏放水系统 • 6-7 发电厂全面性热力系统
6-1 发电厂的管道阀门
重要性:
• 发电厂的主、辅热力设备是通过管道及其附件连接成整体的。 • 管道工作的可靠性,尤其是在高温高压下工作的汽水管道,对电厂运行
的安全性影响很大。 • 随着高参数大容量再热机组的发展,现代大型火电厂管道总长可达数万
米,总重量可达几百吨甚至上千吨。而且昂贵的高级耐热合金钢占有相 当的比例,使管道费用在火电厂投资中的比重加大。 • 管道压损、泄漏和散热等都不同程度地影响电厂运行的热经济性。
发电厂的管道:输送蒸汽、水、燃料油和空气等工质或载热质

原则性热力系统

原则性热力系统

原则性热力系统与全面性热力系统发电厂热力系统图发电厂热力系统图按照应用的目的和编制方法不同,分成原则性热力系统和全面性热力系统。

以规定的符号来表示工质按某种热力循环顺序流经的各种热力设备之间联系的线路图,称为发电厂的原则性热力系统图。

表示工质的能量转换及其热量利用的过程,反映了发电厂能量转换过程的技术完善程度和发电厂热经济性的好坏。

以规定的符号表明全厂主辅热力设备,包括运行的和备用的,以及按照电能生产过程连接这些热力设备的汽水管道和附件整体系统图,称为发电厂的全面性热力系统图。

原则性热力系统作用:用来计算和确定各设备、管道的汽水流量,发电厂的热经济指标。

又称为计算热力系统。

组成:锅炉、汽轮、主蒸汽及再热蒸汽管道和凝汽设备的连接系统、给水回热加热器、除氧器和给水箱系统、补充水系统、锅炉连续排污及热量利用系统、对外供热系统及各种水泵等。

类型和容量相同时,原则性热力系统也可能不尽相同。

不同的连接方式所获得的经济效果也不同编制发电厂原则性热力系统的主要步骤(一)确定发电厂的型式及规划容量根据电网结构及其发展规划,燃料资源及供应状况,供水条件、交通运输、地质地形、地震及占地拆迁,水文气象,废渣处理、施工条件及环境保护要求和资金来源等,通过综合分析比较确定电厂规划容量、分期建设容量及建成期限。

涉外工程要考虑供货方或订货方所在国的有关情况。

(二)选择汽轮机凝汽式发电厂选用凝汽式机组,其单位容量应根据系统规划容量、负荷增长速度和电网结构等因素进行选择。

各汽轮机制造厂生产的汽轮机型式、单机容量及其蒸汽参数,是通过综合的技术经济比较或优化确定的。

(三)绘发电厂原则性热力系统图汽轮机型式和单机容量确定后,即可根据汽轮机制造厂提供的该机组本体汽水系统,和选定的锅炉型式来绘制原则性热力系统图。

(四)发电厂原则性热力系统计算进行几个典型工况的原则性热力计算,及其全厂热经济指标计算,详见本章第三、四节。

(五)选择锅炉选择锅炉应符合现行的SD268‐1988《燃煤电站锅炉技术条件》的规定,必须适应燃用煤种的煤质特性及现行规定中的煤质允许变化范围。

第七章 发电厂全面热力系统

第七章 发电厂全面热力系统
汽轮机本体疏水全部经集中的疏水管引至凝 汽器背包式扩容器,扩容冷却后进入凝汽器。
汽轮机本体疏水系统采用集中疏水管接至紧 贴在凝汽器外侧的矩形本体疏水扩容器,扩容 冷却后汽水两侧进入凝汽器。
四、典型机组的汽轮机本体疏水系统 300MW机组汽轮机本体疏水系统
第九节 辅助蒸汽系统
一、辅助蒸汽系统的作用及组成 辅助蒸汽系统的作用是保证机组在各种运
启动疏水 经常疏水 自由疏水或放水。
二、汽轮机本体疏水系统 疏水点的设置 疏水装置及控制 疏水管道的布置
三、本体疏水系统的形式 汽轮机本体疏水按高、中、低压三种参数分
别接入 3 台高、中、低压本体疏水扩容器,疏 水经扩容器扩容后分汽水两侧进入凝汽器。
汽轮机本体疏水按不同压力参数设置多管道 连接于集中疏水管,然后进入凝汽器。
二、典型机组的轴封系统 600MW机组自密封式轴封系统
1000MW机组的轴封系统
第八节 汽轮机本体疏水系统
一、本体疏水系统的作用 为了有效地防止汽轮机进水事故和管道中积
水而引起的水冲击,必须及时把汽缸和蒸汽管 道中存积的凝结水排出,以确保机组安全运行。 同时还可以回收洁净的凝结水,而这对提高机 组的经济性是有利的。
1000MW超超临界机组高压加热器的 疏水与放气系统
1000MW超超临界机组低压加热器的 疏水与放气系统
第七节 汽轮机的轴封系统
一、轴封系统的作用及形式
汽封只能减小漏气(汽)量,而不能阻止 蒸汽漏出汽缸和空气漏入汽缸;为了阻止蒸 汽漏出汽缸和空气漏入汽缸,汽轮机的轴封 必须配置轴封系统,它由轴封供汽系统和轴 封抽汽系统组成。
一、蒸汽供热系统
对外直接供汽方式的原则性热力系统
对外间接供汽方式的原则性热力系统

发电厂热力系统

发电厂热力系统

N300-16.7/538/538型机组的发电厂原则性热力系统
二 电厂锅炉的工作流程
(1)工作流程:首先燃料送入锅炉1中燃烧,放出热 量将给水加热蒸发形成饱和蒸汽,饱和蒸汽进一步加 热后成为具有一定压力和问题的过热蒸汽,过热蒸汽 通过蒸汽通道进入汽轮机2膨胀做功,高速气流推动 汽轮机转自兵带动发电机3的转子一起旋转发电。蒸 汽在汽轮机2中做完功以后排入凝汽器4,并在凝汽器 中被循环水泵11提供的冷却水凝结成为凝结水,凝结 水经过凝结水泵5升压后打入低压加热器6中,利用汽 轮机的抽气将其加热后送入除氧器7中加热并除氧, 除氧后的凝结水连同补给水由给水泵8升压,经高压 加热器9进一步提高温度后送回锅炉。火力发电厂的 生产过程就是不断重复上述的循环过程。 由以上的过程可以看出在火力发电厂的生产过程 中存在着三种形式的能量转换:在锅炉中燃料的化学 能转变成热能,在汽轮机中由热能转变为机械能,最 后在发电机中将机械能转变为电能。锅炉、汽轮机和 发电机称为火力发电厂的三大主机。
(1)发电厂原则性热力系统:以规定的符号表 示工质按某种热力循环顺序流经的各种热力设备 之间联系的线路图。 目的:表明能量转换与利用的基本过程,反映发 电厂能量转换过程的技术完善程度和热经济性 。
N300-16.7/538/5发电厂组成的实际热力系 统 。 目的:研究、影响到投资、施工、运行可靠性和经济性。 组成:主蒸汽和再热蒸汽系统、旁路系统、给水系统、 回热加热(回热抽汽及疏水)系统、除氧系统、 主凝结水系统、补充水系统、锅炉排污系统、 供热系统、厂内循环水系统、锅炉启动系统等。
一 热力系统
发电厂热力系统
热力系统:将热力设备按照热力循环的顺序用管 道和附件连接起来的一个有机整体。 热力系统图:根据发电厂热力循环的特征,将热 力部分的主、辅设备及其管道附件按功能有序连 接成一个整体的线路图。 发电厂热力系统的两种基本型式: (1) 发电厂原则性热力系统 (2) 发电厂全面性热力系统

发电厂热力系统

发电厂热力系统

图8—1 国产 N300—16.25/ 550/550型再热式 机组的原则性热力系 统
图8—2 国产N600—16.57/537/537型再热式机组的原则性热力系统
图8—3 引进的N600—25.4/541/569超临界再热式机组的原则性热力系统
图8—4 引进的N1000—26.15/605/602超超临界压力再热机组的原则性热力系统
(1)表示了锅炉、汽轮机、凝汽器、凝结水泵、 除盐装置、低加、除氧器、给水泵、高加、锅炉 排污装置之间的联系。 (2)表示了汽轮机高、中、低压缸的布置方式和 各汽缸的个数。
二、原则性热力系统
3、原则性热力系统的共同点: (3)表示了主蒸汽、再热蒸汽和各段回热抽 汽参数。 (4)表示了主蒸汽、再热蒸汽的大致流程。 (5)表示了回热抽汽的抽汽口位置和各级加 热器的疏水方式。 (6)表示了锅炉的连续排污方式。
二、原则性热力系统
2、原则性热力系统的表示方法:
• 在原则性热力系统图中,以规定的符号表示出工 质通过时发生状态变化的各种热力设备,如锅炉 设备、汽轮机、凝汽器、给水回热加热器、除氧 器、凝结水泵、给水泵以及疏水泵等。同类型、 同参数的设备在图上一般只画出一个。
二、原则性热力系统
3、原则性热力系统的共同点:
一、热力系统的概念
• 原则性热力系统,表示了发电厂各主要热力设备 之间热工循环实质性的联系和热力系统的基本内 容,主要用于对发电厂工作循环进行热经济性分 析和热经济指标计算。
• 全面性热力系统表示了所有热力设备相互间的具 体联系情况,是设备安装和运行操作时的依据。
二、原则性热力系统
1、原则性热力系统组成: 主蒸汽及再热蒸汽系统、再热机组的旁 路系统、主凝结水系统、除氧给水系统、 回热抽汽系统、疏水系统;补充水系统、 小汽轮机的热力系统、锅炉排污利用系统 等,对于供热机组还包括对外供热系统。

1000MW机组全面性热力系统

1000MW机组全面性热力系统
②启动时监视炉膛出口温度, 防止再热器管束超温;
③汽轮机故障时,宜停机停炉
无旁路 引进日本、意大利300MW机组
①再热器采用耐高温的奥氏体钢; ②滑参数启动,并控制启动过程中的燃烧使烟温不超过
450℃;
旁路系统的减温水
高压旁路的减温水来 自给水泵出口
低压旁路的减温水来 自凝结水泵出口
凝汽器喉部三级减温(减至60℃左右) 水来自凝结水泵出口
1000MW机组的全面性热力系统
内容提要
全面性热力系统的基本概念 电厂汽水管道基本知识 主要热力系统 次要热力系统
原则性和全面性热力系统的拟定是电厂设计重要工作 电厂设计程序:初步可研,可研,初步设计,施工设 计 电厂设计内容:系统拟定,技术经济比较和分析,设 备选型,管道计算
全面性热力系统的原则:所有部件,所有工况,经济 性,安全性,灵活性,安装,检修,运行,扩建 全面性热力系统的细分:主蒸汽系统,旁路系统,给 水系统,凝结水系统,真空系统,除氧系统,抽汽系 统,疏水系统……
按制造方法 无缝钢管
有缝钢管
管道的材料
各种管道的适应范围
无缝钢管,材料:10号、20号优质碳素钢和合 金钢,适用的压力和温度范围较广。
高压管道:主蒸汽管道、中间再热蒸汽管道和 给水管道。
重要的低压管道和腐蚀性介质、易发生火灾介 质的管道:主凝结水、低压给水、燃油管、酸 碱管等。
直缝管,材料:Q235-A.F、16Mn。适用于压力 PN16,温度不超过300℃的低压管道中,如循 环水管、补给水、锅炉的烟、风道、工业水管 道。通常管径大于300mm的管道上。
管道的流速
流速
内径 管道 阻
造价 力
矛盾!
不能太高或太低
阀门及附件

600mw火电机组全面性热力系统简介

600mw火电机组全面性热力系统简介

600MW火电机组全面性热力系统简介一、全面性热力系统概述热力系统:根据发电厂热力循环的特征,以安全和经济为原则,将汽轮机本体与锅炉本体由管道、阀门及其辅助设备连接起来的汽水系统。

按照应用目的和编制方法不同,分为原则性热力系统和全面性热力系统。

热力系统图:用特定的符号、线条等将热力系统绘制成的图形。

根据作用不同分为:原则性热力系统和全面性热力系统原则性热力系统:表明热力循环中工质能量转化及热量利用的过程,反映了火力发电厂热功转换过程中的技术完善程度和热经济性。

由于原则性热力系统只表示工质流过时状态参数发生变化的各种热力设备,一般同类型、同参数的设备只表示一个,仅表明设备之间的主要联系,备用设备、管道及附件一般不表示。

原则性热力系统的作用:用来计算和确定各设备、管道的汽水流量,发电厂的热经济指标。

原则性热力系统的组成:锅炉、汽轮机、主蒸汽及再热蒸汽管道和凝汽设备的连接系统;给水回热加热系统;除氧器和给水箱系统;补充水系统;连续排污及热量利用系统;轴封漏汽的回收利用系统。

发电厂全面性热力系统是全厂性的所有热力设备及其汽水管道的总系统,能明确地反映电厂的各种工况及事故、检修时的运行方式。

它是按设备的实际数量来绘制,并标明一切必须的连接管路及其附件。

发电厂全面性热力系统由下列各局部系统组成:主蒸汽和再热蒸汽系统、汽轮机旁路系统、回热抽汽系统。

除氧给水系统、主凝结水系统、加热器疏放水系统、辅助蒸汽系统、凝汽器抽真空系统、冷却水系统等二、全面性热力系统的组成1、主蒸汽与再热蒸汽系统采用单元制主蒸汽系统,主蒸汽管道上布置电动关断门、自动主汽门、调速汽门2、再热机组旁路系统旁路机旁路的类型高压旁路(Ⅰ级)新汽→冷再热蒸汽管道低压旁路(Ⅱ级)再过热后蒸汽→冷凝器大旁路(Ⅲ级)新汽→冷凝器旁路系统的作用(1) 保护再热器(2)协调启动参数和流量,缩短启动时间,延长汽轮机寿命(3)回收工质和热量、降低噪声。

(4)防止锅炉超压,兼有锅炉安全阀的作用。

发电厂热力系统

发电厂热力系统

2、再热蒸汽系统
第二节 再热机组的旁路系统
• 汽轮机的旁路系统是指蒸汽绕过汽轮机,经过与 汽轮机并联的减温减压装置,到参数较低的蒸汽 管道或凝汽器中的连接系统。如图4—8所示,主 蒸汽绕过汽轮机高压缸,经减温减压后进入再热 冷段蒸汽管道的系统称为高压旁路或1级旁路。 再热后的蒸汽绕过汽轮机中、低压缸,而通过减 温减压后直接排入凝汽器的系统称为低压旁路或 11级旁路。主蒸汽绕过汽轮机经减温减压后直接 进入凝汽器的系统则称为整机旁路或一级大旁路。 任何再热机组的旁路系统均是上述三种形式中一 种、两种或三种形式的组合。
3、双管——单管——双管式主蒸汽系统
• 特点:
• 1)由于中间采用单管,有利于消除进入汽 轮机主蒸汽的两侧温度偏差和压力偏差。
• 2)单管的长度至少为管径的20倍,管径按 最大蒸汽流量设计。
• 3)主蒸汽管道上主汽阀前不再装设任何截 止阀,既减少了主蒸汽管道上的压强损失, 又减少了运行维护费用。
汽机系统原理介绍
张慎富
主要内容
1、主蒸汽与再热蒸汽系统 2、再热机组旁路系统 3、回热抽汽系统 4、抽真空系统 5、主凝结水系统 6、除氧给水系统 7、汽轮机的轴封蒸汽系统 8、汽轮机本体疏水系统 9、汽机辅助蒸汽系统 10、工业水冷却系统 11、发电机冷却系统 12、发电厂供水系统 13、发电厂热力系统的投、停运 14、小汽轮机热力系统
(4)防止锅炉超压,兼有锅炉安全阀的作用 。
在机组负荷突降或甩负荷时,利用旁路系统排放蒸汽,
可减少锅炉安全阀的动作次数。
(5)电网故障或机组甩负荷时,锅炉能维持 热备用状态或带厂用电运行。
对于大容量机组,当发电机负荷减少、解列 或只担负厂用电负荷,以及汽轮机甩负荷时,旁 路系统能在几秒钟内完全打开,使锅炉逐渐调整 负荷,并保持在最低稳燃负荷下运行,而不必停 炉,在故障消除后可快速恢复发电,从而减少停 机时间和锅炉的启、停次数,大大缩短了单元机 组的重新启动时间,有利于系统稳定。

热力发电厂 全书重点

热力发电厂 全书重点

课号: 24基本课题:复习总结目的要求:总结《热力发电厂》这门课程的主要内容。

思路:按章节以基本概念、基本原理、基本内容为主线进行总结。

发电厂的经济性基本概念:1、热量法2、作功能力法3、各种损失4、热经济性指标、意义5、回热作功比6、作功不足基本内容:1、提高经济性的途径;2、回热、再热、蒸汽初终参数对经济性的影响。

给水回热加热系统1、回热加热器的类型、特点、抽汽压损、端差2、排挤抽汽原理3、回热系统疏水连接方式及经济性比较:疏水泵、疏水逐级自流、疏水冷却器、蒸汽冷却器给水除氧系统1、除氧任务、热除氧原理2、除氧器的类型、特点3、除氧器运行方式及其特点、存在的问题热电厂的经济性及供热系统基本概念:热电联产、热化发电比、热电厂燃料利用系数、热化发电率、汽网、水网发电厂原则性热力系统1、典型机组原则性热力系统图2、热力计算发电厂全面性热力系统1、主蒸汽管道:定义、附件的作用2、旁路系统:定义、作用、类型3、给水管道:定义、附件的作用4、锅炉排污系统5、补充水系统6、公用汽水系统一、名词解释:1.火电厂发电标准煤耗率、供电标准煤耗率2.q q03.ηi4.回热做功比5.表面式回热加热器端差6.凝汽器最佳真空7.除氧器自生沸腾8.发电厂原则性热力系统、全面性热力系统9.热电厂、热电联产、热化系数、热化发电率10.旁路系统11.主蒸汽管道系统的单元制、切换母管制系统、母管制系统二、简答题1.简述评价发电厂热经济性的热量法与做功能力法的特点。

2.提高热力发电厂初参数对热经济性的影响?3.用热量法分析化学补充水引入除氧器或引入凝汽器的热经济性。

4.提高热力发电厂热经济性的基本途径有哪些?5.简述火力发电厂典型不可逆过程的做功能力损失。

6.简述除氧器的除氧原理。

7.简述疏水冷却器、蒸汽冷却器的作用。

8.什么是旁路系统,有什么作用?α<才是经济的?9.说明热化系数及热化系数最优值的含意,为什么说热化系数值1tp三、绘图题:绘制国产CC200-12.75/535/535型双抽汽凝汽式机组在设计工况下的原则性热力系统图。

热力发电厂第5章:发电厂的热力系统讲解

热力发电厂第5章:发电厂的热力系统讲解
可利用的排污热量:
Qbl Qbl Qbl
凝汽器增加的附加冷源损失:
hd
Qc Dc (hc hc )
发电厂净获得的热量:
Qn Qbl Qc
0
Qbl (1
hc hc hd hw.d

h0 h0
hd hc
N300-16.7/538/538型机组的发电厂原则性热力系统
(1)发电厂原则性热力系统
——以规定的符号表示工质按某种热力循环顺序流经的 各种热力设备及连接关系的线路图
概念:原理性系统,表明能量转换与利用的基本过程,反映发 电厂工质基本流程、能量转换过程的技术完善程度和热 经济性
特点:简捷、清晰,相同或备用设备不画出,只画与经济性有 关的阀门
应用:汇总主辅热力设备、管道及附件,施工设计,运行,检 修,影响到投资、施工、运行可靠性和经济性
组成:主蒸汽和再热蒸汽系统、旁路系统、给水系统、 回热加热(回热抽汽及疏水)系统、除氧系统、 主凝结水系统、补充水系统、锅炉排污系统、 供热系统、厂内循环水系统、锅炉启动系统等
5.1.2 发电厂类型和容量确定
(1)汽包锅炉连续排污利用系统
——控制汽包内炉水水质在允许范围内
工作原理:
• 高压的排污水通过连续排污扩容器扩容蒸发,产生 品质较好的扩容蒸汽,回收部分工质和热量;
• 扩容器内尚未蒸发的、含盐浓度更高的排污水,通 过表面式排污水冷却器再回)两级扩容系统
锅炉连续排污利用系统
第5章 发电厂的热力系统
§5.1 热力系统及主设备选择原则
5.1.1 热力系统
热力系统——热力工艺系统,热力设备按照热力循环的顺序 用管道和附件连接起来的一个有机整体
热力系统图——用规定的符号表示热力系统中热力设备及它 们之间的连接关系

热力发电厂习题答案全面要点

热力发电厂习题答案全面要点

热力发电厂习题答案全面要点(共9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一 名词解释热电厂的燃料利用系数:电、热两种产品的总能量与输入能量之比。

热化发电率:质量不等价的热电联产的热化发电量与热化供热量的比值。

发电热耗率:每发一度电所消耗的能(热)量。

端差:加热器汽侧压力下的饱和温度与出口水温之间的差值。

最佳真空:在汽轮机排汽量和循环水入口水温一定的条件下,增大循环水量使汽轮机输出功率增加c P ∆,同时输送循环水的循环水泵的耗功随之增加Ppu ∆,当输出净功率为最大时,即max max )(pu c P P P ∆-∆=∆,所对应的真空即凝汽器的最佳真空。

二 简答题1、混合式加热器的优点有哪些?答:混合式加热器的优点是:(1)传热效果好,能充分利用加热蒸汽的热量;(2)结构简单,造价低;(3)便于汇集不同温度和压力的疏水。

2、高压加热器的过热蒸汽冷却段的任务是什么?答:利用蒸汽的过热度,通过强制对流而使蒸汽在只降低过热度的情况下,放出过热热量加热给水,以减少传热端差,提高热经济性。

3、表面式加热器的疏水冷却段的任务是什么?答:利用刚进入加热器的低温给水来冷却加热器内的疏水,疏水温度的降低后进入下级加热器。

这样可使本级抽汽量增加,压力较低一级抽汽量减少,提高机组的经济性。

5、除氧器滑压运行的优点与存在的问题?答:滑压运行的优点是:避免除氧器用汽的节流损失,使汽机抽汽点分配合理,热经济性高,系统简单投资省。

缺点是:当汽机负荷突然增加时,使给水溶氧量增加;当汽机负荷减少时,尤其是汽机负荷下降很大时,给水泵入口发生汽蚀,引起给水泵工作失常。

6、提高蒸汽初参数、降低蒸汽终参数均可提高机组的热经济性,其受哪些主要条件限制? 答:提高蒸汽初温主要受金属材料的制约。

金属材料的强度极限,主要取决于其金相结构和承受的工作温度。

随着温度的升高,金属材料的强度极限、屈服点以及蠕变极限都要随之降低,高温下金属还要氧化,甚至金相结构也要变化,导致热力设备零部件强度大为降低,乃至毁坏。

《热力发电厂》热力发电厂全面性热力系统

《热力发电厂》热力发电厂全面性热力系统

(6) 前置泵与主给水泵的连接 两种:同轴串联连接;不同轴连接。
加联胺
M M M
M
TP
TP
FP
M
至再热器减温水
M
至高压加热器
FP
M
M
M
至高压加热器
M
M
M
M
M
M
M M
M
M
M
M
M
M
M
M
M
M
M
M
再热器减温
给水操作台
(7) 给水泵的驱动方式确定
➢ 比较的原则:
– 两种驱动方式下的主汽轮机初参 数、再热蒸汽参数及终参数相同;
锅炉再热器出口联箱到汽轮机中压联合汽阀的管 道和分支管道称为再热热段蒸汽系统。
3 单元制主蒸汽-再热蒸汽系统的种类
双管式
单管—双管式
双管—单管—双管式
M
M D
D M M
(a)
双管式主蒸汽系统
主蒸汽和热(段b再) 热汽为单 管-双管系统、冷段再热汽 为双管-单管D -双管系统
4.3 中间再热机组的旁路系统 1 旁路系统概念
4.3 中间再热机组的旁路系统
2 旁路系统的类型
高压旁路(Ⅰ级旁路) 将新蒸汽绕过汽轮机高压缸经过减温减压装置进
入再热冷段管道 低压旁路(Ⅱ级旁路)
将再热后的蒸汽绕过汽轮机中、低压缸经过减温 减压装置进入凝汽器 大旁路 ( Ⅲ级旁路)
将新蒸汽绕过整个汽轮机,直接排入凝汽器
4.3 中间再热机组的旁路系统
✓ 对中间再热机组,给水泵入口的总流量,还应加上供再热 蒸汽调温用的从泵的中间级抽出的流量,以及漏出和注入 给水泵轴封的流量差。前置给水泵出口的总流量,应为给 水泵入口的总流量及从前置泵与给水泵之间的抽出流量之 和。

火力发电厂热力系统介绍

火力发电厂热力系统介绍

流程示意图
电站主厂房的断面图
主厂房图:
全面性热力系统----真正设计图 全面性热力系统----真正设计图
• 表达所有工艺流程; • 包括所有零部件、设备和连接; • 附带设备表、零部件明细表和规范参数。
四大管道----热力系统中的主要管道 四大管道----热力系统中的主要管道
• 主蒸汽管道; • 再热蒸汽管道(高温再热蒸汽管道简称热段、低温再热蒸汽 管道简称冷段); • 给水管道(低压给水管道、高压给水管道)。
热力系统介绍
热力系统是火力发电厂工艺连接的 原则和依据,它表示了工作介质的 流程和去向。所有管道的设计、安 装、运行都是根据它来进行的。
原则性热力系统
• • • • 主要设备(锅炉、汽轮机、水泵、加热器等); 介质流向(从锅炉到汽轮机作功,再热后继续作功;凝结、加热、脱氧、加热再进入锅炉); 关键部件(阀门、调节部件、节流部件、测量部件、检验部件、连接分流变径部件等); 附加系统(安全阀系统;启动系统;疏水、放气、放水系统)。
结束语
上述仅仅是,蜻蜓点水介绍,每个环 节都要做大量工作才能完成。况且,所介 绍的内容很难包容全部,仅供参考。 谢谢大家!
管道的布置形式
• • • • 组成:直管、零部件、支吊架。 与热力系统相吻合。 其载荷布置有所依附。 走向和尺寸符合零部件及体系的要求。
管道工作的内容
管道设计及初步应力分析; 管道附件的采购; 冷紧和坡切计算、偏装控制பைடு நூலகம் 库存管子和附件组合、优化(依据运输限制、现场穿管 要求、库存管材尺寸、必要时进行编号等); • 设计配管加工图(包括:焊接祥图、阀门表、管件表、接口表 等); • 分段加工、配管(自控接点、表管;疏水放水放气点接座、 支吊架卡块等); • 支吊架匹配及拉杆计算。 • • • •

60万机组全面热力系统-图文

60万机组全面热力系统-图文

60万机组全面热力系统-图文前言电力是实现工业、农业、交通运输和国防现代化的主要动力,是国民经济发展的基础,也是提高和改善人民物质文化生活的重要条件。

当前世界上主要有三类发电厂:火力发电厂、水力发电厂和核能发电厂。

其中火力发电厂是目前世界大多数国家包括我国电能生产的主力。

本次设计的对象为盘南(响水)电厂4某600MW新建工程的全面性热力系统。

设计中对盘南(响水)电厂的锅炉汽水系统、主蒸汽系统及再热蒸汽系统、主凝结水系统、除氧器系统、主给水系统、回热抽汽系统和加热器疏水系统、抽空气系统、循环冷却水系统、排污利用系统和辅助蒸汽系统及补充水系统的范围、任务以及各系统中主要设备进行了简单说明。

限于编写人水平,设计中缺点和错误在所难免,恳请批评指正。

第一部分主机概况火力发电厂(以燃煤发电厂为例)主要生产过程是:储存在储煤场或储煤罐中的原煤由输煤设备从储煤场送到锅炉的原煤斗中,再由给煤机送到磨煤机中磨成煤粉。

煤粉送至分离器进行分离,合格的煤粉送到煤粉仓储存(仓储式锅炉)。

煤粉仓的煤粉由给粉机送到锅炉本体的喷燃器,由喷燃器喷到炉膛内燃烧(直吹式锅炉将煤粉分离后直接送入炉膛)。

燃烧的煤粉放出大量的热能将炉膛四周水冷壁管内的水加热成汽水混合物。

混合物被锅炉汽包内的汽水分离器进行分离,分离出的水经下降管送到水冷壁管继续加热,分离出的蒸汽送到过热器,加热成符合规定温度和压力的过热蒸汽,经管道送到汽轮机做功。

过热蒸汽在汽轮机内做功推动汽轮机旋转,汽轮机带动发电机发电,发电机发出的三相交流电通过发电机端部的引线经变压器什压后引出送到电网。

在汽轮机内做完功的过热蒸汽被凝汽器冷却成凝结水,凝结水经凝结泵送到低压加热器加热,然后送到除氧器除氧,再经给水泵送到高压加热器加热后,送到锅炉继续进行热力循环。

再热式机组采用中间再热过程,即把在汽轮机高压缸做功之后的蒸汽,送到锅炉的再热器重新加热,使汽温提高到一定(或初蒸汽)温度后,送到汽轮机中压缸继续做功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、常见的旁路系统形式 1.三级旁路系统 2.两级旁路串联系统 3.两级旁路并联系统 4.单级(整机)旁路系统 5.三用阀两级旁路系统 具有启动阀、锅炉安全(溢流)阀和减温减压阀三种功能
图8—13 常见的旁路系统型式
(a)三级旁路系统;(b)两级旁路串联系统;(c)两级旁路并联系统; (d)单级整机旁路系统;(e)装有三用阀的两级旁路串联系统
1.高、中压主汽门和高压缸排汽逆止门 2. 主蒸汽和再热蒸汽(一、二次汽)的混温措施 3. 一、二次汽系统的压损及其管径优化
三、主蒸汽、再热蒸汽系统的全面性热力系统及其运行
图8-8 国产200MW机组的主蒸汽、再热蒸汽系ห้องสมุดไป่ตู้的全面性热力系统
(一)用新汽支管的引出
(二)汽轮机本体的疏水系统
(三)防止汽轮机进水
1. 附件 2.阀门类型及型号 3.阀门的选择与使用
第三节 主蒸汽系统
一、主蒸汽系统的型式及其应用 (一)主蒸汽系统的型式
(二)主蒸汽系统型式的比较和应用
1.可靠性 单母管制最差 2.灵活性 切换母管制最好 3.经济性 单元母管制 4.方便性 单元母管制
二、主蒸汽、再热蒸汽(一、二次汽)系统的温度偏差、 压损及其管径的优化
5.公称通径DN
在允许的介质流速下,管道的通流能力取决于管道内径的大 小.公称直径只是名义上的计算内径,不是实际内径,同一管材, 随公称压力的提高,其壁厚加大,而实际内径却相应减小
二、管径和壁厚的计算 1.管径计算
Di=594.7 /(Gυ/ω)1/2rnm(8-2
2.管子壁厚的计算
三、管道附件与阀门
(2)汽动给水泵的热经济性
(3)小汽轮机的热力系统 连接方式分三类:
①背压式小汽轮机 ,汽源引自冷再热蒸汽 ; ②仍为背压式小汽轮机,汽源引自中压缸抽汽 ; ③凝汽式小汽轮机是应用最广泛的,其排汽可直接到主凝汽器; (4)小汽轮机的备用汽源。
(a)内切换系统; (b)外切换系统
4.给水泵单位容量及台数的选择 保证给水系统和整台机组的安全运行具有十分重要的意义
第一节 发电厂全面性热力系统的概念
发电厂全面性热力系统图是全厂性的所有热力设备及其汽水管 道的总系统图,能明确地反映电厂的各种工况及事故、检修时的 运行方式。它是按设备的实际数量来绘制,并标明一切必须的连 接管路及其附件。
发电厂全面性热力系统由下列各局部系统组成: 主蒸汽和再热蒸汽系统、旁路系统、回热加热系统。除氧给
(一)给水系统的启动 (二)凝结水系统的启动
第七节 全厂公用汽水系统
一、公用辅助蒸汽系统
表8-11 300MW机组辅助系统用汽情况
二、主厂房内的冷却水系统 l.发电机的冷却系统 2.汽轮机车间内的循环水系统
3.旁路系统的控制与保护 4.旁路系统的执行机构的配置
电动、液动、气动或电一液联合操纵
四、直流锅炉的旁路系统
启动分离器 相当于中压汽包
主要作用: 保护再热器 回收工质和热量 适应机组滑参数启动的需要
五、旁路系统的运行 1.旁路系统的全面性热力系统
2.冲转参数
3.单元式机组冷态启动典型参考曲线
水系统、主凝结水系统、补充水系统、供热系统、厂内循环水系 统和锅炉启动系统等。
第二节 管道与阀门的基本知识
一、管道规范 二.蒸汽管道的设计压力
1. 主蒸汽管道和再热蒸汽管道设计压力 2.主给水管道设计压力 3.管道设计温度 4.公称压力PN
10号、20号钢在0~200℃温度等级的允许工作压力值即 公称压力;
第八章 发电厂全面性热力系统
内容提要
(1)发电厂全面性热力系统的概念, (2)管道设计参数、公称压力、公称直径、内外直径等概念和
阀门的基本知识 (3)介绍常用的主蒸汽系统、再热蒸汽系统、给水管道系统的
型式及其应用,旁路系统的型式、作用及其设计和运行中的 一些问题。 (4)给水泵拖动方式的比较,小汽轮机的型式及其连接方式。 (5)重点介绍回热系统全面性热力系统及其运行, (6)简介全厂公用汽水系统。最后举例介绍国内外大型火电、 核电机组的发电厂全面性热力系统。
三、给水系统的全面性热力系统及其运行 1.给水系统的全面性热力系统
2.给水系统的运行
第六节 回热系统全面性热力系统 一、某国产机组回热系统的特点及其正常运行
抽汽系统
图8-27 引进型N300-16.7/538/538机组回热系统的全面性热力系统 (c)低压加热器组、主凝结水系统
二、低负荷、事故工况 三、启动、停运
(四)防高压缸过热 (五)一、二次汽管道上的阀门及附件 (六)主蒸汽系统流程图 (七)主蒸汽系统的运行
第四节 旁 路 系 统
一、旁路系统的类型及其作用
1.旁路系统的类型 高压旁路 新汽→冷再热蒸汽管道
低压旁路 再过热后蒸汽→冷凝器 大旁路 新汽→冷凝器
2.旁路系统的作用 (1) 保护再热器 (2)协调启动参数和流量,缩短启动时间,延长汽轮机寿命 (3)回收工质和热量、降低噪声。 (4)防止锅炉超压,兼有锅炉安全阀的作用 。 (5)电网故障或机组甩负荷时,锅炉能维持热备用状态或 带厂用电运行。
定速给水泵:节流损失大 变速给水泵的主要优点为:
(1)节约厂用电 (2)简化锅炉给水操作台。 (3)易实现给水全程调节。 (4)能适应机组滑压运行和调峰需要。 (5)提高机组的安全可靠性。
2.前置泵的配置
3.给水泵的拖动方式 汽动泵与电动泵相比,其主要优点是 : 安全可靠;节省投资 ;运行经济 ;增加供电 ;便于调节 ; 容量不受限制。
4.低压旁路的压力控制
5.引进再热式汽轮机组有关旁路系统的先进技术 (1)高压缸排汽通风管 (2)锅炉旁路系统 (3)锅炉5%启动疏水旁路。
第五节 给水系统及给水泵的配置
一、给水系统的类型及应用
(1) 单母管制系统 (2) 切换母管制系统 (3) 单元制系统
二、给水泵 1.定速给水泵和变速给水泵
6.德国SIEMENS两级串联旁路系统
三、旁路系统的设计
1.旁路系统的容量
2.机组启动模式与旁路系统功能
机组启动模式 (1)高压缸启动 (高中全进汽)
(2)中压缸启动 (中压缸进汽)
旁路系统功能 (1)一是仅有启动功能 (2)兼有溢流功能(即兼带安全功能)和启动功能
由于机组启动模式、旁路功能的不同,对旁路系统容量的要 求是不同。
相关文档
最新文档