苏教版七年级奥数题及答案
苏教版七下数学各章节培优竞赛题及答案
苏教版七下数学各章节培优竞赛题一、选择题(每小题6分,共36分)1、如果m 是大于1的偶数,那么m 一定小于它的……………………( )A 、相反数B 、倒数C 、绝对值D 、平方2、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、173、255,344,533,622这四个数中最小的数是………………………( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ).A 、21B 、24C 、33D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是……( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某动物园有老虎和狮子,老虎的数量是狮子的2倍。
每只老虎每天吃肉4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉…… …… ( )A 、 625千克B 、 725千克C 、825千克D 、925千克二、填空题(每小题6分,共36分)7、定义a*b=ab+a+b,若3*x=27,则x 的值是_____8、三个有理数a、b、c之积是负数,其和是正数,当x =cc bb aa ++时,则______29219=+-x x 。
9、当整数m =_________ 时,代数式136-m 的值是整数。
10、A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是______ 。
图1图211、甲从A地到B地,去时步行,返回时坐车,共用x小时,若他往返都座车,则全程只需x3小时,,若他往返都步行,则需____________小时。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
7年级奥数题及答案数学奥数题七年级
7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。
7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。
最后答案为余数为0。
7年级奥数题2:A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
初一奥数竞赛考试题及答案
初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。
答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。
现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。
进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。
设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。
2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。
问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。
喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。
结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。
初一的奥数题及答案
初一的奥数题及答案初一奥数题通常涉及一些基础的数学概念和技巧,比如整数的性质、简单的代数运算、几何图形的面积计算等。
以下是一些适合初一学生的奥数题目及其答案:题目1:小明有5个苹果,他想平均分给3个朋友,每个朋友能分到多少个苹果?答案:小明可以将5个苹果分成3份,但是5不能被3整除,所以他可以将苹果切成3份,每份1个苹果,剩下2个苹果。
这样,每个朋友可以分到1个完整的苹果,小明自己留下2个。
题目2:一个长方形的长是宽的两倍,如果它的周长是24厘米,求长方形的长和宽。
答案:设长方形的宽为x厘米,那么长就是2x厘米。
根据周长的公式,2(长+宽) = 24,即2(2x + x) = 24。
解这个方程,我们得到6x = 24,所以x = 4。
因此,长方形的宽是4厘米,长是2倍于宽,即8厘米。
题目3:一个数的3倍加上5等于这个数的5倍减去15,求这个数。
答案:设这个数为x。
根据题意,我们有3x + 5 = 5x - 15。
移项得到2x = 20,所以x = 10。
题目4:一个圆的面积是28.26平方厘米,求这个圆的半径。
答案:圆的面积公式是A = πr^2。
将面积28.26平方厘米代入公式,得到28.26 = πr^2。
解这个方程,我们得到r^2 = 28.26 / π。
取π的近似值3.14,得到r^2 ≈ 9。
所以,半径r ≈ 3厘米。
题目5:一个等腰三角形的底边长为6厘米,周长为18厘米,求这个等腰三角形的腰长。
答案:设等腰三角形的腰长为x厘米。
因为等腰三角形的两腰相等,所以周长等于底边加上两腰的长度,即6 + 2x = 18。
解这个方程,我们得到2x = 12,所以x = 6。
因此,等腰三角形的腰长为6厘米。
这些题目和答案可以帮助初一学生锻炼数学思维和解题技巧。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+S△CNP+S△DNP.因此只需证明S△AND=S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,②AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,②BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初一奥数竞赛试题及答案
初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
数学初一奥数题及答案
数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
七年级下册奥数题苏教版
七年级下册奥数题苏教版
【题目描述】
小明参加数学竞赛,比赛题目中有一道奥数题需要解答。
题目描述如下:在等边三角形 ABC 中,点 D 是边 AC 上的一个点,且 BD 是角B 的平分线。
若角A=40°,则角CBD 的度数为多少?
【解题思路】
(1)通过画图,我们可以知道,三角形ABC是等边三角形。
(2)已知角A=40°,因为三角形ABC是等边三角形,所以角B=60°,角C=80°。
(3)角B的平分线BD把角B平分成两个相等的角度,所以角DBA=角DBC=30°。
(4)根据三角形内角和定理,得到角ABD=100°。
(5)由BD是角B的平分线,可得∠CBD=∠ABD/2=50°。
【解答】
角CBD的度数为50°。
【延伸思考】
这道题不仅考察了同角内角、平行线之间的关系,还考察了等边三角形和角度的知识。
可以通过练习和掌握类似的题目,提高自己的数学能力。
七年级数学奥数题八套(附答案)
七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图所示,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简ab(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
苏教版七年级奥数题及答案
苏教版七年级奥数题及答案2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.6.解方程2|x+1|+|x-3|=6.8.解不等式||x+3|-|x-1||>2.10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的值与最小值.11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB 的平分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?24.求不定方程49x-56y+14z=35的整数解.25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过 1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?31150元.甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到 1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得的效益?34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分别令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段组成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是的选择(即路线最短)显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都能够化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.所以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE平分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CFB.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE平分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,② ∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以 SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即 KF=FL.+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k 个白色方格.所以,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有 (α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时 (α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4,4),即n=203245223.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43,即 5x+6y=43.所以x=5,y=3是的非负整数解.从而房间里有8个人.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是把t的表达式代到x,y的表达式中,得到原方程的全部整数解是25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有8×7×6×5×4×3×2×1=40320种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.(2)逐个考虑结对问题.与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有2×8×7×6×5×4×3×2×1=80640 种不同情况.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个: 34215,34251,34512,34521.所以,总共有 24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即 92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3=12(天).解之得x=16(海里/小时).经检验,x=16海里/小时为所求之原速.30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分别为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设去年每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以 x=1.4(元).若y为去年每支牙膏价格,则y=1.4+1=2.4(元).33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.因为减价后,每天可卖出(400+200x)件,若设每天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y=1800(元).即每件减价1元时,获利,为1800元,此时比原来多卖出200件,所以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.所以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x40%+y10%+z50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最而0≤x≤500,所以新合金中锰的重量范围是:最小250克,400克.。
初一数学奥数试题及答案
初一数学奥数试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A3. 一个数的绝对值是它本身的数是:A. 0B. 正数C. 负数D. 0和正数答案:D4. 两个数的和是正数,那么这两个数:A. 都是正数B. 都是负数C. 一个正数,一个负数D. 以上都有可能答案:D5. 如果一个数的平方是正数,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或负数D. 以上都不对答案:C二、填空题6. 一个数的立方是-8,这个数是______。
答案:-27. 一个数的倒数是它本身,这个数是______。
答案:1或-18. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-59. 如果一个数的平方等于它本身,那么这个数是______或______。
答案:0或110. 一个数的绝对值是它本身,这个数是______或______。
答案:正数或0三、解答题11. 已知一个数的3倍加上5等于20,求这个数。
答案:设这个数为x,则3x + 5 = 20,解得x = 5。
12. 一个数的一半加上4等于10,求这个数。
答案:设这个数为y,则(1/2)y + 4 = 10,解得y = 12。
13. 一个数的平方减去这个数等于8,求这个数。
答案:设这个数为z,则z^2 - z = 8,解得z = 4或-2。
14. 一个数的4倍减去这个数等于35,求这个数。
答案:设这个数为w,则4w - w = 35,解得w = 35/3。
15. 一个数的立方加上这个数等于64,求这个数。
答案:设这个数为m,则m^3 + m = 64,解得m = 4。
七年级下册数学奥数题及答案
七年级下册数学奥数题及答案题目一:数字变化小明在玩一个数字游戏,他有一串数字:1, 2, 3, ..., n。
他每次可以选择任意一个数字,将其加1或减1,但不能使数字变为0。
小明的目标是将这串数字变成:1, 2, 3, ..., n-1, n。
请问他最少需要进行多少次操作?答案:小明需要进行n-1次操作。
因为每次操作可以改变一个数字的值,而要将1变成2,需要1次操作,将2变成3需要1次操作,以此类推,直到将n-1变成n,也需要1次操作。
所以总共需要n-1次操作。
题目二:几何图形在一个平面上有一个正方形,其边长为a。
现在要在正方形内部画一个最大的圆,求这个圆的面积。
答案:在正方形内部画一个最大的圆,圆的直径等于正方形的边长a。
因此,圆的半径r为a/2。
根据圆的面积公式,面积A=πr²,代入r=a/2,得到A=π(a/2)²=πa²/4。
题目三:数列问题一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
求这个数列的第10项。
答案:根据题意,我们可以列出数列的前几项:1, 1, 2, 4, 7, 13, 24, 44, 81, 149第10项即为149。
题目四:逻辑推理有5个盒子,分别标记为A, B, C, D, E。
每个盒子里都装有不同数量的糖果。
现在有以下线索:1. A盒子里的糖果比B盒子少。
2. C盒子里的糖果比D盒子多。
3. E盒子里的糖果是所有盒子中最少的。
4. D盒子里的糖果比A盒子多。
根据这些线索,判断哪个盒子里的糖果最多。
答案:根据线索3,E盒子里的糖果是最少的。
线索4说明D盒子里的糖果比A盒子多,结合线索1,我们可以推断A盒子里的糖果比D盒子少,所以D盒子里的糖果比E盒子多。
线索2说明C盒子里的糖果比D 盒子多,所以C盒子里的糖果是最多的。
题目五:代数问题解方程:x² - 5x + 6 = 0。
答案:这是一个二次方程,我们可以使用因式分解的方法来解它。
完整版)初一奥数题集(带答案)
完整版)初一奥数题集(带答案) 奥数1、求(-1)^2002的值。
答案:12、如果a是有理数,那么a+2000的值不能是多少?答案:03、计算2007-[2006-{2007-(2006-2007)}]的值。
答案:20094、计算(-1)+(-1)-(-1)×(-1)÷(-1)的结果。
答案:-15、计算(-1)^2006+(-1)^2007÷-1^2008的结果。
答案:06、计算-2÷(-2)^2+(-2)的结果。
答案:07、计算3.825×-1.825+0.25×3.825+3.825×0.的结果。
答案:-2.58、计算2002-2001+2000-1999+…+2-1的值。
答案:10019、计算-1÷2.5×(-0.75)^(-1)÷(-1)×(-1)的结果。
答案:0.610、计算-5×+6×的结果。
答案:11、计算2-2+2-3+2-4+…+2-9+2^10的值。
答案:102212、计算(1/3)+(2/4)+(3/6)+…+(n/n+1)的值。
答案:n/(n+1)13、计算1×2×3+2×4×6+7×14×21/2的结果。
答案:10514、求x+1+x-2的最小值及取最小值时x的取值范围。
答案:最小值为-1,x的取值范围为[2,∞)。
已知实数$a,b,c$满足$-1c>a$,求$c-1+a-c-a-b$的值。
解题思路:将$c-1+a-c-a-b$化简,得到$a-2c-b-1$,然后根据题目中的不等式关系,将$a,b,c$表示成$c$的形式,代入化简后的式子中,即可得到答案。
具体步骤如下:由题意得:$c-1c>a$,即$b-a>a-c$,$b-c>c-a$。
将$c-1+a-c-a-b$化简,得到$a-2c-b-1$。
初一奥数题及答案
初一奥数题及答案初一奥数题通常包含一些基础的数学概念和技巧,适合培养学生的逻辑思维和解决问题的能力。
以下是一些适合初一学生的奥数题目及答案:题目1:数字问题小明有5张卡片,每张卡片上分别写有数字1到5。
他随机抽取一张,问抽到数字3的概率是多少?答案:小明有5张卡片,每张卡片被抽到的机会是相等的。
只有一张卡片上写有数字3,所以抽到数字3的概率是1/5。
题目2:几何问题一个正方形的边长为4厘米,求正方形内切圆的面积。
答案:正方形内切圆的直径等于正方形的边长,所以内切圆的半径是4厘米的一半,即2厘米。
圆的面积公式是πr²,所以内切圆的面积是π*(2厘米)² = 4π平方厘米。
题目3:逻辑推理问题有5个盒子,分别标有数字1到5。
每个盒子里都装有一个球,球的颜色分别为红、黄、蓝、绿、紫。
已知:1. 红球不在1号盒。
2. 黄球不在2号盒也不在5号盒。
3. 蓝球在3号盒。
根据以上信息,哪个颜色的球在哪个盒子里?答案:根据条件3,蓝球在3号盒。
由于黄球不在2号盒也不在5号盒,所以黄球只能在1号或4号盒。
由于红球不在1号盒,所以黄球在1号盒,红球在4号盒。
剩下的绿球和紫球分别在2号盒和5号盒,但根据题目条件无法确定具体哪个颜色在哪个盒子。
题目4:数列问题一个数列的前几项是2, 4, 7, 11, ...。
这个数列的第6项是多少?答案:这个数列的每一项都比前一项多2, 3, 4, 5, ... 等依次增加的自然数。
第5项是11,所以第6项是11 + 6 = 17。
题目5:组合问题有8个不同的球,需要放入3个不同的盒子中,每个盒子至少有一个球。
问有多少种不同的放法?答案:这是一个组合问题,可以通过组合数学中的插板法来解决。
首先给每个盒子分配一个球,剩下5个球需要分配。
我们可以在5个球之间插入2个板子来分割成3组,每组至少有一个球。
这样,问题就变成了在4个位置(5个球和2个板子之间的空隙)中选择2个位置放置板子的组合数,即C(4,2) = 4! / (2! * (4-2)!) = 6种不同的放法。
苏科版七上初一数学竞赛系列训练题含答案
F初一数学竞赛系列训练(12)一、选择题1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条A .6B . 7C .8D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )(A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对 6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°第 5 题第 6 题第7题二、填空题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ; 8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点9.平面上3条直线最多可分平面为 个部分。
10.如图,已知AB ∥CD ∥EF ,PS GH 于P ,∠FRG=110°,则∠PSQ = 。
11.已知A 、B 是直线L 外的两点,则线段AB 的垂直平分线与直线的交点个数是 。
12.平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。
三、解答题13.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B 14.已知:如图,AB ∥CD ,求证:∠B+∠D+∠F=∠E+∠G第13题 第14题15.如图,已知CB ⊥AB ,CE 平分∠BCD ,DE 平分∠CDA ,∠EDC+∠ECD =90°, 求证:DA ⊥AB16.平面上两个圆三条直线,最多有多少不同的交点?17.平面上5个圆两两相交,最多有多少个不同的交点?最多将平面分成多少块区域?18.一直线上5点与直线外3点,每两点确定一条直线,最多确定多少条不同直线? 19.平面上有8条直线两两相交,试证明在所有的交角中至少有一个角小于23°。
初一奥数代数和几何练习题苏教版
初一奥数代数和几何练习题苏教版一、填空题(共10道题,每题3分,共30分)1、14 的算术平方根是 ( )(A) 12 ( B) -- 12 (C) ± 12 (D) 1162、下列说法中准确的是 ( )(A)带根号的数都是无理数 ( B)无限小数都是无理数(C)无理数是无限不循环小数 (D)无理数是开方开不尽的数3、下列结论准确的是 ( )(A) 64的立方根是±4 ( B) - 18 没有立方根(C)立方根等于本身的数是0 (D) =4、AB∥CD,∠A=70°,则∠1的度数是( )(A) 70° (B) 100° (C ) 110° (D) 130°5、下列说法准确的是 ( )(A)在同一平面内,a、b、c是直线,且a∥b,b∥c,则a∥c(B)在同一平面内,a、b、c是直线,且a∥b,b⊥c,则a∥c(C)在同一平面内,a、b、c是直线,且a∥b,b∥c,则a⊥c(D)在同一平面内,a、b、c是直线,且a∥b,b∥c,则a⊥c6、AD∥BC, ∠C=30°,∠ADB :∠BDC=1:2,则∠ADB的度数是( )(A) 45° (B) 30° (C) 50° (D) 36°7、下列运动属于平移的是 ( )(A)急刹车时汽车在地面上的滑动 (B)冷水加热中,小气泡上升为大气泡(C )随风飘动的风筝在空中的运动 (D)随手抛出的彩球的运动8、在平面内有3条直线,如果最多有m个交点,最少有n个点,那么m+n=( ) (A) 0 (B) 1 (C ) 3 (D) 69、AB∥CD ,直线EF交AB于点E,CD于点F,EG平分∠BEF,交CD于点G,∠EFG =50°,则∠EGF等于( )(A) 55 ° (B ) 65 ° (C ) 75°(D) 70°二、填空题(共10道题,每题3分,共30分)11、BC⊥AE, 垂足为C,过C作CD∥AB,若∠ECD=48°,则∠B= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版七年级奥数题及答案
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
6.解方程2|x+1|+|x-3|=6.
8.解不等式||x+3|-|x-1||>2.
10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB 的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,
∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,
∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙
单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度
每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海
里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间
超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31150元.甲商品降价10%,乙商品提价20%,调价后甲乙两种商品
的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去
的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的
钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,
牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可
售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问
每件应减价多少元才可获得的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分
钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6
千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重
量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;。