通州区2017年初三模拟考试数学试题及答案
江苏南通通州2017九年级中考二模--数学
BC=12.4m,则楼高CD为▲m.
16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:
平均数
中位数
众数
方差
8.5
8.3
8.1
0.15
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是▲.
17.将正六边形ABCDEF放入平面直角坐标系xOy后,若点A,B,E的坐标分别为
A. B.
C. D.
8.若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为
A.2B.4C.6D.8
9.如图,点A为反比例函数y= (x﹥0)图象上一点,点B为反比例函数y= (x﹤0)图象上一点,直线AB过原点O,且OA=2OB,则k的值为
A.2B.4C.-2D.-4
10.如图,在矩形ABCD中,AB=4,BC=6,E为BC的中点.将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则△CDF的面积为
A.3.5×106B.3.5×107C.35×105D.0.35×108
3.下列图形中,是中心对称图形的是
A.B.C.D.
4. 如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是
A.点MB.点NC.点PD.点Q
5.如图是某个几何体的三视图,该几何体是
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1. 计算(-4)+6的结果为
A.-2B.2C.-10D.2
2.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为
2016-2017学年北京市通州区九年级一模数学试题
通州区2017年初三模拟考试数学试卷年4月一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是 A .圆锥 B .四棱锥C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是A .B .C .D .6.如果21=+b a ,那么ab b b a a -+-22的值是 A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是 A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 的位置 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是 ①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分) 11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示 ( 发芽率精确到 0.001 ) :在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D,E ,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取 OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.b a EA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.B21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.42 48 52 69686023.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.F24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E . (1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若cos ∠ABD =21,OA=m ,请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D)活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D)活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D)经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D)经费投入1200.7亿元.2014年全年研究与试验发展(R&D)经费投入1286.6亿元.2015年研究与试验发展(R&D)经费投入1367.5亿元.2016年研究与试验发展(R&D)经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R&D)活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R&D)活动中的经费投入约为_________亿元,你的预估理由是___________________________.26.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.小风根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=7对应的函数值y约为______________.②该函数的一条性质:______________________________________________________.CCB B 27.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ).(1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.28.在等边三角形ABC 中,E 为直线AB 上一点,连接EC .ED 与直线BC 交于点D ,ED =EC . (1)如图1,AB =1,点E 是AB 的中点,求BD 的长;(2)点E 是AB 边上任意一点(不与AB 边的中点和端点重合),依题意,将图2补全,判断AE 与BD 间的数量关系并证明;(3)点E 不在线段AB 上,请在图3中画出符合条件的一个图形.图1 图2 图329.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.初三数学第一次模拟检测参考答案一、选择题(本题共30分,每小题3分)1. B,2. A,3.D,4.B,5. D ,6.A,7.D,8. B,9.A, 10. D二、填空题(本题共18分,每小题3分)11.1≥x ; 12.答案不唯一; 13.98.0左右;14.564左右;15.53;16.SSS.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.解:13145cos 22118-⎪⎭⎫ ⎝⎛+︒--+. =223+………………………………..(5分) 18.解:⎪⎩⎪⎨⎧<++>-x x x x 529)2(213. 5>x ………………………………..(5分)19.①BD AC =………………………………..(2分)②BD DE =………………………………..(4分)③AC DE =………………………………..(5分)20.(1)①2=m ………………………………..(1分)②x y 2=………………………………..(3分)(2)1>n ………………………………..(5分)21.(1)21=m ………………………………..(3分) (2)2121==x x ………………………………..(5分) 22.①小李……………………..(1分)②小张抽样调查所抽取的单位职工数量过少……………………..(3分)③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.……………………..(5分)23.(1)①BF CD CF BD //,//………………………………..(2分)四边形DBFC 是平行四边形………………………………..(3分)(2)①过点C 作CH ⊥BF 于点H ,2=CH2==CE CH ………………………………..(4分) ②22=AC ………………………………..(5分)24.(1)①连接OC ,OC //BD ………………………………..(1分)②∠OCB =∠BDC ………………………………..(2分)③∠OBC =∠DBC ………………………………..(3分)(2)思路通顺………………………………..(5分)25.(1)图正确………………………………..(3分)(2)增加,理由充分………………………………..(5分)26.(1)过点;符合函数概念………………………………..(3分)(2)答案需和图形统一………………………………..(5分)27.解:(1)D (m ,-m +2)……………………..(2分)(2)m =3或m =1……………………..(5分)(3)1≤m ≤3……………………..(7分)28.解:(1)……………………..(1分)……………………..(2分) (2)AE =BD 21=BD ……………………..(3分) 证明思路1:利用等边三角形的性质,证明△BDE 与EC 所在的三角形全等;证明思路2:利用等腰三角形的轴对称性,作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°, 构造平行四边形;……………………..(6分)……(3)图形正确……………………..(7分)29.(1)①4………………………………..(2分) ②x y 32=………………………………..(4分) (2)∠MON =90°………………………………..(6分)(3)5224+≤<OE ………………………………..(8分)C。
2017年北京通州区初三一模数学试卷
018/11/21D.,<0b >0b >0学生版 教师版答案版8/11/2110.A.①③B.①④C.②③D.②④答 案解 析小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理( ).D依图可知:小明测试成绩的平均数比小亮的高,小亮测试成绩比小明的稳定,小明测试成绩的中位数比小良的高,小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.60编辑1EF 16.答 案解 析工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角. 做法如下:如图,是一个任意角,在边,上分别取,移动角尺,使角尺两边相同的刻度分别与点,重合,过角尺顶点的射线便是的平分线. 这样做的依据是: .三边分别相等的三角形全等;全等三角形对应角相等三边分别相等的三角形全等;全等三角形对应角相等.∵,,为公共边,∴≌,∴,∠AOB OA OB OM =ON M N C OC ∠AOB OM =ON CM =CN OC △OMC △ONC (SSS )∠MOC =∠NOCj i ao s h i.i zh ik an g .c om2018/11/222.答 案解 析某单位有职工人,其中青年职工(岁),中年职工(岁),老年职工(岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表、表和表.表:小张抽样调查单位名职工的健康指数年龄健康指数表:小王抽样调查单位名职工的健康指数年龄健康指数表:小李抽样调查单位名职工的健康指数年龄健康指数根据上述材料回答问题:小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.小李的数据能较好地反映出该单位职工健康情况.小张的不足:抽样调查所抽取的单位职工数量过少小王的不足:老年职工只选了人,不能更好的反映出老年职工健康情况.小李按照分层抽样调查,能较好地反映出该单位职工健康情况.小李的数据能较好地反映出该单位职工健康情况.小张的不足:调查户数不足,数据具有偶然性.小王的不足:小王抽样调查所抽取的位单位职工的青年中年老年比例明显和该单位整体情况不附.20020−3535−50501231326425797797221023252632333739424852938990837975806968603102229313639404346515594908885827872766260110交于点.Ej i ao sh i.i zh i ka ng .c om2018/11/2根据绘制的统计图提供的信息,预估年北京市在研究和实验发展2017(2)根据画出的函数图象,写出:对应的函数值约为 .y1/21,与线m , 2−m )交于点,.D ED =ECj i ao s h i.i zh ik a n g.co m2018为圆心,半径为的圆上的正交点,以线段的外部,求线段长度的取值范围.即,∵,∴,即..以为圆心,半径为的圆经过原点.又∵点在正方形外部,临界点为点刚好在正方形边上,此时,故符合题意的线段长度的取值范围.1212∣y 1∣∣x ∠MOE =∠ONF ∠ONF +∠NOF =90∘∠MOE +∠NOF =90∘∠MON =90∘(0 , 2)2OE 4<OE ⩽2+25√(0 , 2)22−2⩽OE ⩽2+25√5√O O OE =4OE 4<OE ⩽2+25√。
江苏省南通市通州区中考数学一模试卷(含解析)(1)
2017年江苏省南通市通州区中考数学一模试卷一、选择题(每题3分,共24分)1.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)2.当二次函数y=x2+4x+9取最小值时,x的值为()A.﹣2 B.1 C.2 D.93.二次函数y=x2+2x+2与坐标轴的交点个数是()A.0个B.1个C.2个D.3个4.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()A.600 m2B.625 m2C.650 m2D.675 m25.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm8.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B. cm C.D.二、填空题(每题4分,共32分)9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.10.抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n时,y的值为.11.将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x轴上,则m= .12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.13.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为.14.如图所示,点A是半圆上一个三等分点,点B是的中点,点P是直径 MN上一动点,若⊙O的直径为2,则AP+BP的最小值是.15.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于.16.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为.三、解答题17.计算:.18.已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(3,0),C(0,﹣3)三点,求这个二次函数的解析式.19.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.20.如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.已知二次函数y=﹣2x2+4x+6.(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.(2)当x在什么范围内时,y随x的增大而增大?(3)当x在什么范围内时,y≤6?23.如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线AB和这个抛物线的解析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?24.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.2017年江苏省南通市通州区中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共24分)1.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.2.当二次函数y=x2+4x+9取最小值时,x的值为()A.﹣2 B.1 C.2 D.9【考点】二次函数的最值.【分析】把二次函数整理成顶点式形式,再根据二次函数的最值问题解答.【解答】解:∵y=x2+4x+9=(x+2)2+5,∴当x=﹣2时,二次函数有最小值.故选A.3.二次函数y=x2+2x+2与坐标轴的交点个数是()A.0个B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】先计算根的判别式的值,然后根据b2﹣4ac决定抛物线与x轴的交点个数进行判断.【解答】解:∵△=22﹣4×1×2=﹣4<0,∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,故选B.4.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()A.600 m2B.625 m2C.650 m2D.675 m2【考点】二次函数的应用.【分析】先求出最大面积的表达式,再运用性质求解.【解答】解:设矩形的一边长为xm,则其邻边为(50﹣x)m,若面积为S,则S=x(50﹣x)=﹣x2+50x=﹣(x﹣25)2+625.∵﹣1<0,∴S有最大值.当x=25时,最大值为625,故选:B.5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.6.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)【考点】圆周角定理;坐标与图形性质;含30度角的直角三角形.【分析】首先设⊙A与x轴另一个的交点为点D,连接CD,由∠COD=90°,根据90°的圆周角所对的弦是直径,即可得CD是⊙A的直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ODC的度数,继而求得点C的坐标.【解答】解:设⊙A与x轴另一个的交点为点D,连接CD,∵∠COD=90°,∴CD是⊙A的直径,即CD=10,∵∠OBC=30°,∴∠ODC=30°,∴OC=CD=5,∴点C的坐标为:(0,5).故选A.7.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm【考点】点与圆的位置关系.【分析】点P应分为位于圆的内部于外部两种情况讨论.当点P在圆内时,直径=最小距离+最大距离;当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选C.8.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B. cm C.D.【考点】垂径定理;勾股定理.【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故选:C.二、填空题(每题4分,共32分)9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1 .【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.10.抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n时,y的值为3 .【考点】抛物线与x轴的交点.【分析】根据二次函数对称轴方程x=﹣可以求得m+n,即x的值.然后将x的值代入抛物线方程求得y的值.【解答】解:∵抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),∴该抛物线的对称轴方程为﹣=,即m+n=0,∴x=m+n=0,∴y=0+3=3,即y=3.故答案是:3.11.将二次函数y=x2﹣2x+m的图象向下平移1个单位后,它的顶点恰好落在x轴上,则m= 2 .【考点】二次函数图象与几何变换.【分析】把二次函数解析式整理成顶点式形式,再根据向下平移横坐标不变,纵坐标减写出平移后的解析式,然后根据顶点在x轴上,纵坐标为0列式计算即可得解.【解答】解:y=x2﹣2x+m=(x﹣1)2+m﹣1,∵图象向下平移1个单位,∴平移后的二次函数解析式为y=(x﹣1)2+m﹣2,∵顶点恰好落在x轴上,∴m﹣2=0,解得m=2.故答案为:2.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1 .【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,若CD=6,BE=1,则⊙O的直径为10 .【考点】垂径定理.【分析】首先连接OD,并设OD=x,然后在△ODE中,由勾股定理,求出OD的长,即可求出⊙O的直径为多少.【解答】解:如图,连接OD,设OD=x,,∵AB是⊙O的直径,而且CD⊥AB于E,∴DE=CE=6÷2=3,在Rt△ODE中,x2=(x﹣1)2+32,解得x=5,∵5×2=10,∴⊙O的直径为10.故答案为:10.14.如图所示,点A是半圆上一个三等分点,点B是的中点,点P是直径 MN上一动点,若⊙O的直径为2,则AP+BP的最小值是.【考点】圆心角、弧、弦的关系;轴对称﹣最短路线问题.【分析】作点B关于MN的对称点B′,连接AB′交MN于点P,连接BP,由三角形两边之和大于第三边即可得出此时AP+BP=AB′最小,连接OB′,根据点A是半圆上一个三等分点、点B是的中点,即可得出∠AOB′=90°,再利用勾股定理即可求出AB′的值,此题得解.【解答】解:作点B关于MN的对称点B′,连接AB′交MN于点P,连接BP,此时AP+BP=AB′最小,连接OB′,如图所示.∵点B和点B′关于MN对称,∴PB=PB′.∵点A是半圆上一个三等分点,点B是的中点,∴∠AON=180°÷3=60°,∠B′ON=∠AON÷2=30°,∴∠AOB′=∠AON+∠B′ON=90°.∵OA=OB′=1,∴AB′=.故答案为:.15.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于60°.【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,又由圆周角定理,求得∠A的度数,继而求得答案.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠C=30°,∴∠ABD=90°﹣∠A=60°.故答案为:60°.16.在半径为5cm的圆中,两条平行弦的长度分别为6cm和8cm,则这两条弦之间的距离为1cm或7cm .【考点】垂径定理;勾股定理.【分析】两条平行的弦可能在圆心的同旁或两旁,应分两种情况进行讨论.【解答】解:圆心到两条弦的距离分别为d1==4cm,d2==3cm.故两条弦之间的距离d=d1﹣d2=1cm或d=d1+d2=7cm三、解答题17.计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用绝对值的代数意义化简,第二项利用立方根定义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=﹣2+1﹣3=﹣4.18.已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(3,0),C(0,﹣3)三点,求这个二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】由于已知了抛物线与x的两交点坐标,则可设交点式y=a(x+1)(x﹣3),然后把C 点坐标代入计算出a即可.【解答】解:设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×1×(﹣3)=﹣3,解得a=1,所以这个二次函数的解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3.19.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.【考点】垂径定理.【分析】如图,过点O作OM⊥AB于点M.根据垂径定理得到AM=BM.然后利用等腰三角形“三线合一”的性质推知EM=FM,故AE=BE.【解答】证明:如图,过点O作OM⊥AB于点M,则AM=BM.又∵OE=OF∴EM=FM,∴AE=BF.20.如图,∠C=90°,以AC为半径的圆C与AB相交于点D.若AC=3,CB=4,求BD长.【考点】垂径定理;勾股定理.【分析】根据勾股定理求得AB的长,再点C作CE⊥AB于点E,由垂径定理得出AE,即可得出BD的长.【解答】解:(1)∵在三角形ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,点C作CE⊥AB于点E,则AD=2AE,AC2=AE•AB,即32=AE×5∴AE=1.8,∴AD=2AE=2×1.8=3.6∴BD=AB﹣AD=5﹣3.6=1.4.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.【解答】解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=4.22.已知二次函数y=﹣2x2+4x+6.(1)求出该函数图象的顶点坐标,图象与x轴的交点坐标.(2)当x在什么范围内时,y随x的增大而增大?(3)当x在什么范围内时,y≤6?【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)利用配方法把二次函数y=x2﹣2x﹣3化为顶点式,即可得出其对称轴方程及顶点坐标;根据x、y轴上点的坐标特点分别另y=0求出x的值,令x=0求出y的值即可.(2)根据开口方向和对称轴即可确定其增减性;(3)令y=0求得x的值并结合开口方向确定答案即可.【解答】解:(1)∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴对称轴是x=1,顶点坐标是(1,8);令y=0,则﹣2x2+4x+6=0,解得x1=﹣1,x2=3;∴图象与x轴交点坐标是(﹣1,0)、(3,0).(2)∵对称轴为:x=1,开口向下,∴当x≤1时,y随x的增大而增大;(3)令y=﹣2x2+4x+6=6解得:x=0或x=2∵开口向下∴当x≤0或x≥2时y≤6.23.如图,直线AB分别交y轴、x轴于A、B两点,OA=2,tan∠ABO=,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线AB和这个抛物线的解析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度l有最大值?最大值是多少?【考点】二次函数综合题.【分析】(1)求出OB,把A、B的坐标代入y=﹣x2+bx+c和y=kx+e求出即可;(2)求出D的坐标,再根据面积公式求出即可;(3)求出M、N的坐标,求出MN的值,再化成顶点式,即可求出答案.【解答】解:(1)∵在Rt△AOB中,tan∠ABO=,OA=2,即=,∴0B=4,∴A(0,2),B(4,0),把A、B的坐标代入y=﹣x2+bx+c得:,解得:b=,∴抛物线的解析式为y=﹣x2+x+2,设直线AB的解析式为y=kx+e,把A、B的坐标代入得:,解得:k=﹣,e=2,所以直线AB的解析式是y=﹣x+2;(2)过点D作DE⊥y轴于点E,由(1)抛物线解析式为y=﹣x2+x+2=﹣(x﹣)2+,即D的坐标为(,),则ED=,EO=,AE=EO﹣OA=,S△ABD=S梯形DEOB﹣S△DEA﹣S△AOB=×(+4)×﹣×﹣4×2=;(3)由题可知,M、N横坐标均为t.∵M在直线AB:y=﹣x+2上∴M(t,﹣t+2)∵N在抛物线y=﹣x2+x+2上∴M(t,﹣t2+t+2),∵作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N,∴MN=﹣t2+t+2﹣(﹣+2)=﹣t2+4t=﹣(t﹣2)2+4,其中0<t<4,∴当t=2时,MN最大=4,所以当t=2时,MN的长度l有最大值,最大值是4.24.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【考点】二次函数的应用.【分析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将x=45代入求出即可;(3)当y=10000时,代入求出即可;(4)利用配方法求出二次函数最值即可得出答案.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.。
【A4含答案】2017北京市通州初三二模数学试卷
北京市通州区2017年初中毕业考试试卷数 学2017年5月一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学计数法表示应为 A .41007.1⨯ B .3107.10⨯C .51007.1⨯D .510107.0⨯2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是A.aB .bC .cD .d3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为A .B .C .D .4.如图,直线l 1,l 2,l 3交于一点,直线l 4// l 1,若∠1= ∠2=36°,则 ∠3的度数为 A .60°B .90°C .108°D .150°5.右图多边形ABCDE 的内角和是A .360°B .540°C .720°D .900°6.下列图形中,正方体展开后得到的图形不可能...是7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,下图做出了表示平均数的直线和10次射箭成绩的折线图. 1S ,2S 分别表示小明、小华两名运动员这次测试成绩的方差,则有l 2l 3l 1l 41 23EA .21S S <B .21S S >C .21S S =D .21S S ≥8.甲、乙、丙三车从A 城出发匀速..前往B 城.在整个行程中,汽车离开A 城的距离s 与时刻t 的对应关系如下图所示.那么8:00时,距A 城最.远.的汽车是 A .甲车 B .乙车 C .丙车D .甲车和乙车9.如图,直线m ⊥n . 在平面直角坐标系xOy 中,x 轴∥m ,y 轴∥n .如果以O 1为原点,点A 的坐标为(1,1).将点O 1平移22个单位长度到点O 2,点A 的位置不变,如果以O 2A .(3,-1)B .(1,-3)C .(-2,-1)D .(22+1,22+1)10家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断: ①甲种作物受环境影响最小; ②乙种作物平均成活率最高; ③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么 山脚,山腰和山顶分别播种甲,乙,丙三种 作物能使得成活率最高. 其中合理的是: A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分) 11.分解因式=-a a 43_____________.12.若把代数式542--x x 化成k m x +-2)(的形式,其中m ,k 为常数,则k m +=______.13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的 《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形 与中间的小正方形拼成的一个大正方形,如图所示.如果直角 三角形的直角边分别为a ,b (a >b ),斜边为c ,那么小正方形 的面积可以表示为__________________.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为_____________. 15.如图,Rt △ABC ≌Rt △DCB ,两斜边交于点O ,如果AC =3,那么OD 的长为_____________. 16.阅读下面材料:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:︒+--++⎪⎭⎫⎝⎛-30tan 332)3(2102π.18.已知01232=++a a ,求代数式)13)(13()31(2-++-a a a a 的值.19.解方程组:⎩⎨⎧-=+=-.12,4y x y xA BC B20.如图,在四边形ABCD 中,∠A =∠B ,CB =CE . 求证:CE //AD .21.在平面直角坐标系xOy 中,直线12+=x y 与双曲线xky =的一个交点为A (m ,-3). (1)求双曲线的表达式;(2)过动点P (n ,0)(n <0)且垂直于x 轴的直线与直线12+=x y 和双曲线xky =的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.22.如图,在菱形ABCD 中,CE 垂直对角线AC 于点C ,AB 的延长线交CE 于点E .(1)求证:CD =BE ; (2)如果∠E =60°,CE=m ,请写出求菱形ABCD 面积的思路.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发32小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.EABA2012 2013 2014 2015 年份 2012 2013 2014 2015 年份 2012-2015年互联网教育 市场规模统计图 2012-2015年互联网教育市场规模的增长率统计图24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB . (1)求证:AD ⊥PC ;(2)连接BC ,如果∠ABC =60°,BC =2,求线段PC 的长.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012-2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是 亿元(结果精确到1亿元), 并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联 网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估 计7-17岁年龄段有 亿网民通过互 联网进行学习; (3)根据以上材料,写出你的思考或建议(一条即可).26.有这样一个问题:探究函数x x y 2122-=的图象与性质. 小东根据学习函数的经验,对函数x x y 2122-=的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:PA(1)函数x x y 2122-=的自变量x 的取值范围是 ;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(-2,23),结合函数的图象,写出该函数的其它性质(一条即可).(5)根据函数图象估算方程22122=-x x的根为.(精 确到0.1)27.已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.28.在△ABC 中,AB =BC ,∠ABC =90°. 以AB 为斜边作等腰直角三角形ADB . 点P 是直线DB 上一个动点,连接AP ,作PE ⊥AP 交BC 所在的直线于点E .(1)如图1,点P 在BD 的延长线上,PE ⊥EC ,AD =1,直接写出PE 的长; (2)点P 在线段BD 上(不与B ,D 重合),依题意,将图2补全,求证P A =PE ; (3)点P 在DB 的延长线上,依题意,将图3补全,并判断P A =PE 是否仍然成立.图1 图2 图329.我们规定:平面内点A 到图形G 上各个点的距离的最小值称为该点到这个图形的最小距离d ,点A 到图形G 上各个点的距离的最大值称为该点到这个图形的最大距离D ,定义点A 到图形G 的距离跨度为R =D -d .(1)①如图1,在平面直角坐标系xOy 中,图形G 1为以O 为圆心,2为半径的圆,直接写出以下各点到图形G 1的距离跨度:A (1,0)的距离跨度 ;B (21-,23)的距离跨度 ;C (-3,-2)的距离跨度 ;②根据①中的结果,猜想到图形G 1的距离跨度为2的所有的点组成的图形的形状是 . (2)如图2,在平面直角坐标系xOy 中,图形G 2为以D (-1,0)为圆心,2为半径的圆,直线)1(-=x k y 上存在到G 2的距离跨度为2的点,求k 的取值范围。
2017年北京市通州区中考二模数学试题及答案
北京市通州区初三数学二模页,五道大题,一、选择题(每题只有一个正确答案,共8个小题,每小题3分,共24分)1.5的相反数是( ) A .51B .51-C.5D .5-2.小美同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜到与之相关的结果的条数约为9 930 000,这个数用科学记数法表示为( )A.9.93×105B.9.93×106C.99.3×105D.0.993×1073.下列的几何体中,俯视图不是圆的是()A. B. C.D.4.下列运算中,正确的是()A.224235a a a+=B.22523a a-=C.32622a a a⨯=D.62433a a a÷=5则该校篮球队12名同学身高的中位数和众数(单位cm)分别是()A.188、188 B.188、192 C.187、188 D.187、1926形内的概率为( ) A .12B .13C .14D .187.已知⊙1O 的半径为1cm ,⊙2O 的半径为3cm ,两圆的圆心距21O O 为4cm ,则两圆的位置关系是( ) A .外离 B .外切 C .相交D .内切8.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-.若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( )A .40B .45C .51D .56二、填空题(每题4分,共4个小题,共16分) 9.若分式xx 13-的值为0,则x 的值等于 . 10.若二次函数322--=x x y 配方后为()k h x y +-=2,则=+k h .11.如图,AB 是⊙O 的直径,AB =10,C 是⊙O 上一点,OD ⊥BC 于点D ,BD =4,则AC第11题图AOBD C12.如图,二次函数(2)(02)y x x x =-≤≤的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,直至得C 14. 若P (27,m )在第14段图象C 14上,则m = .三、解答题:(13、14每小题4分,15-22每小题5分,23、24每小题6分,共12个小题,共60分)13.计算:()022sin 45π+--︒14.解方程:5113--=-x xx15.已知32=-a a ,求)3()1)(1(---+a a a 的值.16.如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .17.如图,一次函数2121+=x y 的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xk y =的图象在第一象限内交于点C ,CD ⊥x轴于点D ,OD =2AO ,求反比例函数yB18.列方程或方程组解应用题:某停车场的收费标准如下:中型汽车的停车费为每辆6元,小型汽车的停车费为每辆4元. 现在停车场有中、小型汽车共50辆,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?19.某区八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计.请你根据不完整的表格,回答下列问题:(1)补全频率分布直方图;(2)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?20.如图,在平行四边形ABCD 中,E 为BC 边上的一点,连接AE 、BD 交于点F ,AE =AB .(1)若∠AEB =2∠ADB ,求证:四边形ABCD 是菱形. (2)若AB =10,BE =2EC ,求EF 的长21.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC .(1)求证:AB =AC ;(2)若AD =4,cos ∠ABF =54,求DE 的长.B22.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;请直接写出PA的长度.23.已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.(1)如图l,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM、ED、MF,MF的延长线交ED于点N,∠MBF=12∠BAF,AF=23AD,请你判断线段FM和FN之间的数量关系,并证明你的判断是正确的.24.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[]b a ,. 对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[]n m ,上的“闭函数”. (1)反比例函数xy 2014=是闭区间[]1,2014上的“闭函数”吗?请判断并说明理由;C BDDB图1图2(2)若一次函数()0≠+=k b kx y 是闭区间[]n m ,上的“闭函数”,求此函数的表达式;(3)若二次函数5754512--=x x y 是闭区间[]b a ,上的“闭函数”,直接写出实数a ,b的值.初三数学毕业考试参考答案一、 选择题(每小题3分,共8个小题,共24分)1.D,2.B,3.D,4.D,5.A ,6.C,7. B,8.C 二、 填空题(每小题4分,共4个小题,共16分)9.31, 10.-3, 11.6,12. 1.三、 解答题:(13、14每小题4分,15-22每小题5分,23、24每小题6分,共 12个小题,共60分)13.解:()︒--+-+45sin 22820π= 1+2222-+ ………………………………..(3分)=221+ ………………………………..(4分)14.解: 5113--=-x x x)1(53--=-x x ………………………………..(1分)84=x2=x ………………………………..(3分)经检验:2=x 是原方程的根∴原方程的根是2=x ………………………………..(4分)15.解:)3()1)(1(---+a a a312+--=a a ………………………………..(2分)=22+-a a ………………………………..(3分)32=-a a ∴原式=22+-a a ………………………………..(4分) =5 ………………………………..(5分)16. 证明: 点E ,F 在BC 上,BE =CF∴BE +EF =CF +EF即BF =CE …………….(1分)AB =DC ,∠B =∠CB∴△ABF≌△DCE(SAS) ………………………………..(4分)∴∠A =∠D ………………………………..(5分)17. 一次函数2121+=x y 的图象与x 轴交于点A ,与y 轴交于点B∴令0=y ,得1-=x ;令0=x ,得21=y∴点A 坐标为)0,1(-,点B 坐标为)21,0(…………………………..(2分) ∴OA =1,OB =21CD ⊥x 轴 ∴CD //OB ∴△AOB ∽△ADC ………………………………..(3分)∴ADAOCD OB = OD =2AO∴31==AD AO CD OB ∴CD =23∴点C 的纵坐标为23点C 在一次函数2121+=x y 的图象上 ∴点C 的坐标为)23,2( ∴反比例函数的表达式xy 3=………………………………..(5分)18.解:设中型汽车有x 辆,小型汽车有y 辆.根据题意得:⎩⎨⎧=+=+2304650y x y x ………………………………..(2分) 解方程组得:15=x ,35=y ………………………………..(4分)答:中、小型汽车各有15辆和35辆 …………………….…..(5分)401019.(1)………………………..(2分)(2)150300020010=⨯(名) 答:这次全区八年级参加竞赛的学生约有150名学生参赛成绩被评为“D ” ………………………………..(5分)20.证明(1):∵在平行四边形ABCD 中,AD ∥BC∴∠ADB =∠DBC ∵AE =AB ∴∠ABE =∠AEB ∵∠AEB =2∠ADB ∴∠ABE =2∠DBC∵∠ABE=∠ABD+∠DBC∴∠ABD=∠ADB∴AD=AB∴四边形ABCD是菱形………………… (2分)∴EF………………………………..(5分) =421.证明(1):连接BD∵AD ⊥AB ∴∠DAB =90º ∴BD 为⊙O 的直径 ∵BF 是⊙O 的切线 ∴∠DBF =90º ∴∠ABF =∠D ∵弧AB =弧AB ∴∠D =∠C ∴∠ABF =∠C ∵∠ABF =∠ABC ∴∠ABC =∠C∴AB =AC ………………………………..(2分)解(2):∵∠ABF =∠D∴cos ∠ABF =cos ∠D =54在Rt △ADB 中,∠BAD =90°, ∵cos ∠D =54BD AD ,AD =4∴BD =5∴AB =2245-=3 ∴∠ABC =∠C =∠ABF 在Rt △ABE 中,∠BAE =90° ∵cos ∠ABE =BEAB∴BE =∴AE =49341522=-⎪⎭⎫ ⎝⎛∴DE =AD ﹣AE =47………………………………..(5分)………………..(2分)(2)1752………………………………..(5分)23.证明:(1)如图1,连接FE 、FC∵点F 在线段EC 的垂直平分线上 ∴FE =FC ∴∠FEC =∠FCE∵△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ) ∴AB =CB ,∠ABD =∠CBD ∵在△ABF 与△CBF 中AB =CBC BDA∠ABD=∠CBDBF=BF∴△ABF≌△CBF(SAS)∴∠BAF=∠FCE,FA=FC∴FE=FA,∠FEC=∠BAF∴∠EAF=∠AEF∵∠FEC +∠BEF=180°∴∠BAF+∠BEF=180°∵∠BAF+∠BEF+∠AFE+∠ABE=360°∴∠AFE+∠ABE=∠AFE+∠ABD+∠CBD =180°又∵∠AFE+∠EAF+∠AEF=180°∴∠EAF+∠AEF=∠ABD+∠CBD∵∠ABD=∠CBD,∠EAF=∠AEF∴∠EAF=∠ABD………………………………..(3分) FN(2)FM=72证明:由(1)可知∠EAF=∠ABD又∵∠AFB =∠GFA∴△AFG ∽△BFA∴∠AGF =∠BAF 又∵∠MBF =12∠BAF .∴∠MBF =12∠AGF又∵∠AGF =∠MBG +∠BMG ∴∠MBG =∠BMG∴BG =MG ∵AB =AD∴∠ADB =∠ABD =∠EAF 又∵∠FGA =∠AGD ∴△AGF ∽△DGAGF AG AFAG GD AD ∴==∵AF =23AD23GF AG AG GD ∴== 设GF =2a AG =3a . ∴GD =92a ∴FD =52a∵∠CBD =∠ABD ∠ABD =∠ADBDB∴∠CBD =∠ADB ∴BE //AD ∴BG EGGD AG =23EG AG BG GD ∴== 设EG =2k ∴BG =MG =3k过点F 作FQ //ED 交AE 于Q ∴54252===a a FD GF QE GQ∴QE GQ 54=∴GQ =49EG =89k , MQ =3k +89k =359k ∵FQ //ED72MF MQ FN QE ∴==∴FM =72FN ………………………………..(6分)24.解:(1)反比例函数xy 2014=在第一象限,y 随x 的增大而减小.∵当1=x 时, 201412014==y 当2014=x 时, 120142014==y ∴当1≤x ≤2017,有1≤y ≤2017,符合闭函数的定义,xy 2014=是闭函数. ………………………………..(1分)(2)分两种情况讨论,k >0或者k <0.①当k >0时,此一次函数y 随x 的增大而增大,根据闭函数定义可得:⎩⎨⎧=+=+n b kn mb km ,解得k =1,b =0,所以此时一次函数表达式为x y =.②当k <0时,此一次函数y 随x 的增大而减小,根据闭函数定义可得:⎩⎨⎧=+=+mb kn nb km ,解得k =-1,b =m +n ,所以此时一次函数表达式为n m x y ++=.………………………………..(5分)(3)⎩⎨⎧=-=12b a ,⎪⎪⎩⎪⎪⎨⎧+=-=21099511b a ………………………………..(6分)注:以上答案均为参考,如有不同解法请酌情给分。
北京市通州区2017初三年级模拟考试
通州区初三年级模拟考试数学试卷一、选择题(本题共32分,每小题4分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上. 1.2的相反数是A. 2B.2-C.21 D.21- 2.十九大开幕当天,网站关于此信息的总浏览量达5.5亿次.将5.5亿用科学记数法表示为A. 8105.5⨯B.81055⨯ C. 755010⨯ D.10100.55⨯3.如图是某几何体的三视图,则这个几何体是A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的外角和是内角和的一半,则这个多边形的边数为A. 5B.6C. 7D. 85.端午节吃粽子是中华民族的传统习俗.妈妈买了2只红豆粽和3只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是 A .25B .12 C .15 D .236. 一个扇形的圆心角为90°,半径为2,则这个扇形的面积是 A .6πB .4πC .2πD .π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动. 为了解学生每天使用零花钱的情况,小明随机调查了10名同学,结果如下表:关于这10名同学每天使用的零花钱,下列说法正确的是 A .平均数是2.5B .中位数是3C .众数是2D .方差是48.如图,在直角坐标系xoy 中,已知()01A ,,)0B,以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间的函数关系的图象为第8题图(1) 第8题图(2)二、填空题(本题共16分,每小题4分) 9.若分式2x x-的值为零,则x =. 10.分解因式:322x x x -+=.11.如图,AB ∥CD ,点E 在AB 上,且DC DE =,70AEC ∠=︒,则D ∠的度数是______.12.定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为kn 2(其中k 是使得kn 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第2013次“F 运算”的结果是 . 三、解答题(本题共30分,每小题5分) 13.计算:(123tan 302--++o.第11题图CDA E B第8题图(1)D CBA Oxy14.解不等式组20512(1)x x x -<⎧⎨+>-⎩,.15. 已知:如图,AB =AC ,点D 、E 分别在AB 、AC 上,且使AE =AD .求证:∠B =∠C .16.化简求值:2221y x yx y x⎛⎫-+ ⎪-⎝⎭g ,其中30x y -=,且0y ≠.17.已知(42)A -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y kx b =+的图象沿y 轴向上平移n 个单位长度,交y 轴于点C ,若12ABC S =V ,求n 的值.ECA D B18. 列方程或列方程组解应用题:根据城市发展规划设计,某市工程队为该城市修建一条长4800米的公路.铺设600米后,为了缩短工期,该工程队增加了人力和设备,实际每天修建公路的长度是原计划的2倍,结果共用9天完成任务.问原计划每天修建公路多少米?四、解答题(本题共20分,每小题5分)19.某中学组织全校1000名学生参加了有关“低碳环保”知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)直接写出频数分布表中a ,b 的值,补全频数分布直方图;(2)学校将对成绩在90分以上(不含90分)的学生进行奖励,请估计全校1000名学生中约有多少名获奖?20.如图,在矩形ABCD 中,AB =3,BC,△DCE 是等边三角形,DE 交AB 于点F,求△BEF 的周长./分A DFEB C21.已知:如图,AB 是⊙O 的直径,AC 是弦.过点A 作∠BAC 的角平分线,交⊙O过点D 作AC 的垂线,交AC 的延长线于点E . (1)求证:直线ED 是⊙O 的切线;(2)连接EO ,交AD 于点F ,若5AC =3AB ,求EOFO的值.22. 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,沿CE 将菱形ABCD 剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S 1、S 2、S 3,周长分别B第22题图记为l 1、l 2、3l ,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤”或“≥”连接): 面积关系是; 周长关系是.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知二次函数()2214y x k x k =-++的图象与x 轴分别交于点()1,0A x 、()2,0B x ,且32-<1x <12-. (1)求k 的取值范围;(2)设二次函数()2214y x k x k =-++的图象与y 轴交于点M ,若OM OB =,求二次函数的表达式;(3)在(2)的条件下,若点N 是x 轴上的一点,以N 、A 、M 为顶点作平行四边形,该平行四边形的第四个顶点F 在二次函数()2214y x k x k =-++的图象上,请直接写出满足上述条件的平行四边形的面积.24.已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB的两侧.(1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数223y x x =--的图象与x 轴交于点A 、B ,与y 轴交于点D ,AB 为半圆直径,半圆圆心为点M ,半圆与y 轴的正半轴交于点C . (1)求经过点C 的“蛋圆”的切线的表达式; (2)求经过点D 的“蛋圆”的切线的表达式;(3)已知点E 是“蛋圆”上一点(不与点A 、点BF ,若点F 也在“蛋圆”上,求点E 的坐标.A C第25题图通州区初三数学模拟考试参考答案及评分标准一、选择题:1.B 2.A 3.C 4.B 5.A 6.D 7.B 8.A 二、填空题:9.2x =; 10. ()21x x -; 11. 40 ; 12. 1,4;三、解答题: 13. 解:原式=1312-++,……………… 4分; =112-+,=32+ . ……………… 5分. 14. ()205121x x x -<⎧⎨+>-⎩, .①②解:解不等式①,得 2x <, ……………… 1分;解不等式②,5122x x +>-, ……………… 2分;5221x x ->--, ……………… 3分;33x >-,1x >-,.................. 4分; ∴这个不等式组的解集是12x -<< . (5)分.15. 证明:在△ABE 和△AC D 中∵ .AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,,……………… 3分;∴△ABE ≌△ACD (SAS ). ……………… 4分;∴B C ∠=∠. ……………… 5分.16. 解:原式=x yx y x y y x y x -∙⎪⎪⎭⎫ ⎝⎛-+--2222222,x yx y x x -∙-=222, ……………… 1分; xy x y x y x x -∙-+=))((2, ……………… 2分; =xx y+. ……………… 3分; 由30x y -=,得3x y =, ……………… 4分; ∴原式=33y y y +=34y y =34. ……………… 5分.17. 解:(1) 把(42)A -,,(24)B -,分别代入y kx b =+和my x=中, ∴42244.2-=k b k b m ⎧⎪-+=⎪+=-⎨⎪⎪⎩,,……………… 1分;解得:128.k b m =-⎧⎪=-⎨⎪=-⎩,,……………… 2分;∴反比例函数的表达式为8y x=-,一次函数的表达式为2y x =--; (2)设一次函数2y x =--的图象与y 轴的交点为D ,则()0D ,-2,……………… 3分;∵12=∆ABC S , ∴12221421=∙∙+-∙∙CD CD ,……………… 4分; ∴4CD =,∴4n =. (5)分.18. 解法一:解:设原计划每天修建公路x 米,则实际每天修建公路2x 米, …… 1分;根据题意得:600480060092x x-+=, ……………… 3分; ∴27009x=, ∴300x =.经检验:x =300是原方程的解,且符合实际问题的意义. ……………… 4分; 答: 原计划每天修建公路300米. ……………… 5分.解法二:解:设铺设600米用x 天,则增加人力和设备后,用()9x -天完成任务.……………… 1分;根据题意得:600480060029x x-⨯=-, ……………… 3分; 解得:2x =.经检验:2x =是原方程的解,且符合实际问题的意义. ……………… 4分; ∴6003002=, 答:原计划每天修建公路300米. ……………… 5分. 四、解答题19. (1)0.05a =,24b =. ……………… 2分;补全频数分布直方图正确; ……………… 4分;(2)0.371000370⨯=. ……………… 5分. 估计全校1000名学生中约有370名获奖.20.解法一:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o ,3ED EC ==,在Rt △ADF 中,90A ∠=o ,AD =∴tan AFADF AD ∠=,tan 30==o∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分;∴321EF ED DF =-=-=, ……………… 2分;过点E 作EG CB ⊥,交CB 的延长线于点G . ……………… 3分;在Rt △ECG 中,90EGC ∠=o ,3EC =,30ECG ∠=o , ∴1322EG EC ==,cos GCECG EC ∠=,cos 303GC ==o ,∴GC =∴GB GC BC =-==,由勾股定理得,222EB EG GB =+,∴EB = ………………4分;∴△BEF 的周长=3EF FB EB ++=……………… 5分.解法二:∵矩形ABCD ,△DCE 是等边三角形,∴60EDC ECD ∠=∠=o ,3ED EC ==,过点E 作EH CD ⊥交CD 于点H ,交AB 于点G . ……………… 1分; ∴点H 是DC 的中点,点G 是AB 的中点,30FEG ∠=o,GH AD ==,在Rt △EHD 中,90EHD ∠=o ,3ED =,∴sin EH EDH ED∠=,sin 603EH ==o∴EH =∴EG EH GH =-== 在Rt △EGF 中,90EGF ∠=o ,60EFG ∠=o ,∴sin EG EFG EF∠=,sin 60==o , ∴1EF =, ……………… 2分; ∴1122FG EF ==, ∵点G 是AB 的中点,3AB =,∴1322GB AB ==, ∴13222FB FG GB =+=+=, ……………… 3分; 由勾股定理得,222EB EG GB =+,∴EB = ……………… 4分; ∴△BEF 的周长=3EF FB EB ++=……………… 5分. 解法三:∵矩形ABCD ,△DCE 是等边三角形,∴30ADF ECB ∠=∠=o ,3ED EC ==,在Rt △ADF 中,90A ∠=o,AD =∴tan AF ADF AD ∠=,tan 30==o ∴1AF =,∴312FB AB AF =-=-=,2FD =, ……………… 1分; ∴321EF ED DF =-=-=, ……………… 2分; 过点B 作BG CE ⊥,交CE 于点G . ……………… 3分;在Rt △BCG 中,90BGC ∠=o ,BC =,30ECB ∠=o ,∴12BG BC ==,cos GC BCG BC∠=,cos 30==o , ∴32GC =, ∴33322GE EC GC =-=-=, 由勾股定理得,222EB EG GB =+,或BG 是线段EC 的垂直平分线,∴EB =BE =BC , ………… 4分;∴△BEF 的周长=3EF FB EB ++=………………5分.21. (1)证明:连接OD.∵OD OA =,∴OAD ODA ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴ODA CAD ∠=∠, ……………… 1分;∴AE ∥OD ,∵DE AE ⊥,∴ED DO ⊥,∵点D 在⊙O 上,∴ED 是⊙O 的切线; ……………… 2分;(2)解法一:连接CB ,过点O 作OG AC ⊥于点G .…………… 3分;∵AB 是⊙O 的直径,∴90ACB ∠=o ,∵OG AC ⊥,∴OG ∥CB ,∴AG AC AO AB=, ∵5AC =3AB , ∴35AG AO =, ……………… 4分; 设35AG x AO x ==,,∵DE AE ⊥,ED DO ⊥,∴四边形EGOD 是矩形,∴EG OD =,AE ∥OD ,∴5DO x =,5GE x =,8AE x =,∴△AEF ∽△DFO ,∴EF AE FO OD=, ∴85EF FO = , ∴135EO FO =. ……………… 5分.解法二:连接CB ,过点A 作AH DO ⊥交DO 的延长线于点H . ………… 3分; ∵DE AE ⊥,ED DO ⊥,∴四边形AHDE 是矩形,∴EA DH =,AE ∥HD ,AH ∥ED ,∴CAB AOH ∠=∠,∵AB 是⊙O 的直径,∴90ACB ∠=o ,∴ACB AHO ∠=∠,∴△AHO ∽△BCA ,∴OH AC AO AB=, ∵5AC =3AB , ∴35OH AO =, ……………… 4分; 设35OH x AO x ==,,∴5DO x =,8AE DH x ==,∵AE ∥HD ,∴△AEF ∽△DFO ,∴EF AE FO OD=, ∴85EF FO = , ∴135EO FO =. ……………… 5分. 解法三:连接CB ,分别延长AB 、ED 交于点G . ………… 3分; ∵DE AE ⊥,ED DO ⊥,∴AE ∥OD ,90ODG ∠=o ,∴CAB DOG ∠=∠,∵AB 是⊙O 的直径,∴90ACB ∠=o ,∴ACB ODG ∠=∠,∴△GDO ∽△BCA ,∴OD AC OG AB=, ∵5AC =3AB , ∴35OD OG =, ……………… 4分; 设35OD x OG x ==,,∴5AO x =,8AG AO OG x =+=,∵AE ∥OD ,∴△AEG ∽△ODG ,△AEF ∽△DFO ,∴ AG AE OG OD = , EF AE FO OD=,∴85EF FO = , ∴135EO FO =. ……………… 5分. 22.(1)画图正确; 每图各1分,共3分;(2)面积关系是 S 1=S 2=S 3 ; ……………… 4分; 周长关系是 l 1>l 2>3l . ……………… 5分.五、解答题:23.解:(1)令0y =,则()22140x k x k -++= 解方程得:2x k =或2x =,……………… 1分;由题意得:()20A k ,,()20B ,, ∴ 31222-k <<-, ∴3144k -<<-. ……………… 2分; (2)令0x =,则4y k =,∴()04M k ,, ∵OM OB =,∴ 42k -=, ……………… 3分; ∴ 12k =-, ∴22y x x =--. ……………… 4分;或∵OM OB =,()20B ,, ∴()0M ,-2,把点M 的坐标分别代入()2214y x k x k =-++中, ∴42k =-, ……………… 3分; ∴ 12k =-, ∴22y x x =--. ……………… 4分;(3)2,5,5. (每个答案各1分) ……………… 7分. 24.解:(1)过点A 作AG BC ⊥于点G .∵∠ADB=60°,2AD =,∴1DG =,AG =∴ 3GB =,∴ tan AG ABG BG ∠==,∴30ABG ∠=o ,AB = ……………… 1分; ∵ △ABC 是等边三角形,∴ 90DBC ∠=o ,BC =, ……………… 2分;由勾股定理得:CD ===…… 3分;(2)作60EAD ∠=o ,且使AE AD =,连接ED 、EB . ………… 4分; ∴△AED 是等边三角形,∴AE AD =,60EAD ∠=o ,∵ △ABC 是等边三角形,∴AB AC =,60BAC ∠=o ,∴EAD DAB BAC DAB ∠+∠=∠+∠,即EAB DAC ∠=∠,∴△EAB ≌△DAC . ……………… 5分;∴EB =DC .当点E 、D 、B 在同一直线上时,EB 最大,∴246EB =+=, ……………… 6分; ∴ CD 的最大值为6,此时120ADB ∠=o . ……………… 7分. 另解:作60DBF ∠=o ,且使BF BD =,连接DF 、AF .参照上面解法给分.25.解:(1)由题意得:()10A -,,()30B ,,()03-D ,,()10M ,. ∴2AM BM CM ===,∴OC ==,∴(0C∵GC 是⊙M 的切线,∴90GCM ∠=o∴cos OM MC OMC MC MG∠==, ……………… 1分; ∴122MG=, ∴4MG =, ∴()30G -,, ∴直线GC的表达式为y x =+. ……………… 2分; (2)设过点D 的直线表达式为3y kx =-,∴2323,y kx y x x =-⎧⎨=--⎩, ∴()220x k x -+=,或1202x x k ==+, 0)]2([2=+-=∆k ,或12x x =, ……………… 3分;∴2k =-,∴过点D 的“蛋圆”的切线的表达式为23y x =--. ……………… 4分;(3)假设点E 在x 轴上方的“蛋圆”上,设()E m n ,,则点F 的坐标为()m n -,. EF 与x 轴交于点H ,连接EM .∴222HM EH EM +=,∴()2214m n -+=,……① ………… 5分;∵点F 在二次函数223y x x =--的图象上,∴223m m n --=-,……②解由①②组成的方程组得:11m n ⎧=⎪⎨=⎪⎩;11m n ⎧=⎪⎨=⎪⎩0n =舍去) ……………… 6分;由对称性可得:11m n ⎧=+⎪⎨=-⎪⎩;11m n ⎧=⎪⎨=-⎪⎩……………… 7分;∴()11E +,()21E ,()311E +-,()411E -. ………………8分.。
1.通州初三数学一模
通州区2017年初三模拟考试数学试卷一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是 A .圆锥 B .四棱锥 C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是A .B .C .D .6.如果21=+b a ,那么ab b b a a -+-22的值是 A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是 A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是 ①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分) 11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验.实验结果如下表所示 ( 发芽率精确到 0.001 ) :在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D ,E,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取 OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.b a EA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.B和表3.42 48 52 69686023.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.F24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若cos ∠ABD =21,OA=m , 请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R &D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R &D )活动中的经费投入约为_________亿元,你的预估理由是___________________________.26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =7对应的函数值y 约为______________.②该函数的一条性质:______________________________________________________. 27.在平面直角坐标系xOy 中,抛物线2222+-+-=m mmx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.CCB CB28.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC. (1)如图1,AB=1,点E是AB的中点,求BD的长;(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE与BD间的数量关系并证明;(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.图1 图2 图329.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.。
2017年北京市通州区九年级一模数学试卷
通州区2017年初三模拟考试数学试卷一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是 A .圆锥 B .四棱锥 C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是A .B .C .D .6.如果21=+b a ,那么ab b b a a -+-22的值是 A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是 A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是 ①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分) 11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验.实验结果如下表所示 ( 发芽率精确到 0.001 ) :在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D ,E,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取 OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.b a EA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.B和表3.42 48 52 69686023.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.F24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若cos ∠ABD =21,OA=m , 请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R &D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R &D )活动中的经费投入约为_________亿元,你的预估理由是___________________________.26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =7对应的函数值y 约为______________.②该函数的一条性质:______________________________________________________. 27.在平面直角坐标系xOy 中,抛物线2222+-+-=m mmx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.CCB CB28.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC. (1)如图1,AB=1,点E是AB的中点,求BD的长;(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE与BD间的数量关系并证明;(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.图1 图2 图329.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.。
南通市通州区2017届中考二模数学试题含答案
南通市通州区 2017 届中考二模数学试题含答案2017 届初三年级第二次模拟调研测试数学试题注意事项考生在答题前请认真阅读本注意事项:1.本试卷共 6 页,满分为150 分,考试时间为120 分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必然自己的姓名、考试证号用0.5 毫米黑色字迹的签字笔填写在试卷及答题卡上指定的地址.3.答案必定按要求填涂、书写在答题卡上,在试卷、稿本纸上答题一律无效.一、选择题(本大题共10 小题,每题 3 分,共 30 分.在每题给出的四个选项中,恰有一项为哪一项吻合题目要求的,请将正确选项的字母代号填涂在答题卡相应地址上).......1.计算(-4)+6的结果为A .- 2B . 2C.- 10 D . 22.我国最大的领海是南海,总面积有 3 500 000 平方公里,将数 3 500 000 用科学记数法表示应为A .× 106B.× 107C. 35× 105D.× 1083.以下列图形中,是中心对称图形的是A .B .C. D .21·cn·jy·com4.如图,数轴上有四个点M, P, N,Q,若点 M, N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是M P N QA .点 M B.点 N C.点 P D .点 Q5.如图是某个几何体的三视图,该几何体是A .三棱柱主视图左视图B .三棱锥C.圆锥俯视图(第 5 题)D .圆柱6.已知方程3x2- 4x- 4=0 的两个实数根分别为x1, x2.则 x1+ x2的值为244A . 4B . 3C . 3D .- 37. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其他学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2 倍,求骑车学生的速度 . 设骑车学生的速度为 x km/h ,则所列方程正确的选项是 A .101020B.1010 20x2 x2xx10 10 110 10 1C.x2 x3D.x32 x8. 若圆锥的母线长是12,侧面张开图的圆心角是 120 °,则它的底面圆的半径为 A . 2B . 4C. 6D . 89. 如图,点 A 为反比率函数y = 8 (x ﹥ 0)图象上一点,点B 为反比率函数 y = k(x ﹤ 0)图象上一点,直xx线 AB 过原点 O ,且 OA = 2OB ,则 k 的值为A . 2B . 4C .- 2D .- 4yA8ADy =xFky = B OxxBEC(第 9 题)(第 10 题)10.如图,在矩形 ABCD 中, AB = 4,BC = 6,E 为 BC 的中点 . 将△ ABE 沿 AE 折叠,使点B 落在矩形内点 F 处,连接 CF ,则△ CDF 的面积为D .二、填空题 (本大题共 8 小题,每题3 分,共 24 分.不需写出解答过程,请把答案直接填写在答.题卡相应地址 上)......11.9 的算术平方根为 ▲.12.如图,若 AB ∥ CD ,∠ 1= 65°,则∠ 2 的度数为 ▲°.13.分解因式: 12a 2- 3b 2= ▲ .14.如图,⊙ O 的内接四边形ABCD 中,∠ BOD = 100 °,则∠ BCD = ▲°.15.如图,利用标杆 BE 测量建筑物的高度.若标杆BE 的高为,测得 AB =,BC =,则楼高 CD 为 ▲ m .BD1BACOEC 2D DAABC16.小洪依照演讲比赛中九位评委所给的分数制作了以下表格:平均数中位数众数方差若是去掉一个最高分和一个最低分,那么表格中数据必然不发生变化的是▲ .17.将正六边形 ABCDEF 放入平面直角坐标系xOy 后,若点 A , B , E 的坐标分别为( a , b ),(- 3,- 1),(- a , b ),则点 D 的坐标为 ▲ .y18. 如图,平面直角坐标系xOy 中,点 A 是AB直线 y =34 3上一动点,将点 A 向右3 x +3O Cx平移 1 个单位获取点B ,点C (1, 0),则(第 18 题)OB + CB 的最小值为▲ .三、解答题 (本大题共 10 小题,共 96 分.请在答题卡指定地区 内作答,解答时应写出文字说明、.......证明过程或演算步骤)19. (本小题满分 10 分)( 1)计算 ( x + y) 2- y( 2x + y) ;( 2)先化简,再求代数式的值:(a22 2 a 1 ) ÷a 4,其中 a = 25 .a2a a 4a 4a20. (本小题满分 9 分)近来几年来,我国很多地区连续出现雾霾天气.某市记者为了认识“雾霾天气的主要成因”,随机检查了该市部分市民,并对调查结果进行整理,绘制了以下尚不完满的统计图表:组别 见解频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40 C 汽车尾气排放 n D 工厂造成的污染120 E其他60检查结果扇形统计图10%CB A20%DE请依照图表中供应的信息解答以下问题:( 1)填空: m=▲,n=▲,扇形统计图中 E 组所占的百分比为▲% ;( 2)若该市人口约有400 万人,请你计算其中持 D 组“见解”的市民人数;( 3)关于“雾霾”这个环境问题,请用简短的语言发出建议.21.(本小题满分8 分)一个不透明的口袋中装有四个完满相同的小球,把它们分别标号为1, 2, 3, 4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于 4 的概率.22.(本小题满分8 分)如图,小明要测量河内小岛 B 到河边公路 AD 的距离,在点 A 处测得∠ BAD = 37°,沿 AD 方向前进150 米到达点 C,测得∠ BCD = 45°. 求小岛 B 到河边公路 AD 的距离 .(参照数据:sin37°≈, cos37°≈, tan37 °≈)BAC D( 第 22 题)23.(本小题满分8 分)如图,⊙ O 的直径 AB= 10,弦 AC= 6,∠ BAC 的均分线交⊙O 于点 D ,过点 D 作⊙ O 的切线交 AC 的延长线于点 E. 求 DE 的长 .BO DA C E(第 23 题)24. (本小题满分 9 分)若是一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关系方程 .x 12,( 1)若不等式组2的一个关系方程的解是整数,则这个关系方程可以1 x3x 6是 ▲ (写出一个即可);( 2)若方程 3- x =2x ,3+ x =2(x + 1)都是关于 x 的不等式组x ,2x m的关系方程,试求 m2 x 2≤ m的取值范围 .25. (本小题满分 8 分)在△ ABC 中,AB =AC =2,∠ BAC = 45o. △ AEF 是由△ ABC 绕点 A 按逆时针方向旋转获取, 连接 BE , CF 订交于点 D.F( 1)求证: BE = CF ;A( 2)当四边形 ABDF 是菱形时,求CD 的长 .EDBC(第 25 题)26. (本小题满分 10 分)k请用学过的方法研究一类新函数y( k 为常数, k ≠ 0)的图象和性质.x6(1)在给出的平面直角坐标系中画出函数yx 的图象(可以不列表);(2)关于函数 yk,当自变量 x 的值增大时,函数值 y 怎样变化?x(3)函数y kyk的图象可以经过怎样的变化获取函数的图象?x x 2y21-2-1 O 1 2x-2-1(第 26 题)27.(本小题满分13 分)如图,矩形ABCD 中, AB= 4,AD= 6,点 P 在 AB 上,点 Q 在 DC 的延长线上,连接DP ,QP,且∠ APD =∠ QPD, PQ 交 BC 于点 G.(1)求证: DQ= PQ;(2)求 AP· DQ 的最大值;(3)若 P 为 AB 的中点,求PG 的长 .D C QGA P B(第 27 题)28.(本小题满分13 分)已知二次函数y=ax2+bx+ c( c≠4a),其图象L 经过点 A(- 2,0) .(1)求证: b2- 4ac>0;(2)若点 B(-2a c, b+ 3)在图象 L 上,求 b 的值;(3)在( 2)的条件下,若图象 L 的对称轴为直线 x=3,且经过点 C( 6,- 8),点D( 0, n)在 y 轴负半轴上,直线BD 与 OC 订交于点E,当△ ODE 为等腰三角形时,求n 的值 .★ 保密资料阅卷使用2017 年中考第二次适应性试卷数学试题参照答案与评分标准说明: 本评分标准每题给出了一种解法供参照,若是考生的解法与本解答不相同,参照本评分标准的精神给分.一、选择题(本大题共10 小题,每题 3 分,共 30 分.)题号 12 3 4 5 6 7 8 9 10选项BADDACCBAB二、填空题(本大题共8 小题,每题3 分,共 24 分.)11 . 3 12. 6513. 3(2a + b)(2a -b)14 . 13015 . 16.中位数17.( 3,- 1)18 . 13三、解答题(本大题共10 小题,共 96 分.)19.(本小题满分 10 分)( 1)解:原式= x 2+2xy + y 2- 2xy - y 2 ··························4 分= x 2 ··········································5 分a2-a( 2)解:原式= [ - a 1 2 ] ···························6 分-2) - 2) -a( a (a a4 +- --a=(a2)(a2) a( a1)····························7 分-2) 2-4a(aa- 4a =a······································8 分-2) 2-4a(a a1= (a -2) 2·········································9 分当 a = 2- 5 时,1=12=1··················10 分(a -2)2--2)5(2 520.(本小题满分 9 分)( 1) 80, 100, 15; ·········································3 分( 2) 400×120= 120(万),400答:其中持D 组“见解”的市民人数约为120 万人;··············6 分( 3)依照所抽取样本中持 C 、 D 两种见解的人数占总人数的比率较大,所以建议今后的环境改进中严格控制工厂的污染排放,同时市民多乘坐公共汽车,减少个人车出行的次数. ··································9 分21.(本小题满分 8 分)12 3 41( 1,2) ( 1, 3) ( 1, 4)2 ( 2,1)( 2, 3) ( 2, 4)3( 3,1) ( 3,2)( 3, 4)4 ( 4,1) ( 4,2) ( 4, 3)··················································5 分因为所有等可能的结果数共有12 种,其中所标数字之和大于 4 的占 8 种,··················································6 分所以 P (数字之和大于4)= 128= 23.···························8 分22.(本小题满分 8 分)解:过 B 作 BE ⊥ CD 垂足为 E ,设 BE = x 米,·······················1 分BBE在 Rt △ ABE 中, tanA = AE , ··············2 分AE = BE = BE = 4 x , ··············3 分tanA tan37 3 °AC EBE D在 Rt △ ABE 中, tan ∠ BCD = CE , ···········4 分( 第 22 题)CE =BE=x = x , ············5 分tan ∠ BCDtan45 °4∵ AC = AE - CE ,∴ 3 x - x = 150解得 x = 450 (7)分答:小岛 B 到河边公路 AD 的距离为 450 米 . ··························8 分23.(本小题满分 8 分)解:连接 OD ,过点 O 作 OH ⊥ AC ,垂足为 H . ·····················1 分B由垂径定理得 AH =1AC=3 .2在 Rt △AOH 中, OH = 52- 32= 4. ············2 分OD∵ DE 切⊙ O 于 D ,∴ OD ⊥ DE ,∠ ODE = 90°. ·················3 分AHCE∵ AD 均分∠ BAC ,∴∠ BAD =∠ CAD .(第 23 题)∵OA=OD,∴∠ BAD =∠ ODA ,∴∠ CAD =∠ ODA ,∴ OD ∥ AC.··············5 分∴∠ E= 180°-90°= 90°.又OH⊥ AC,∴∠ OHE = 90°,∴四边形 ODEH 为矩形.·····················7 分∴DE=OH = 4.··························8 分24.(本小题满分9 分)( 1) x- 2= 0;(答案不唯一)·································3分( 2)解方程 3- x=2x 得 x= 1,解方程1分3+ x= 2(x+ ) 得 x= 2, (5)2解不等式组,分x 2 x m得 m< x≤ m+ 2, (7)x 2 ≤ m∵1,2 都是该不等式组的解,∴ 0≤m<1.·········································9 分25.(本小题满分8 分)(1)由△ABC≌△ ADE 且 AB=AC,得∴AE=AD =AC=AB,∠ BAC=∠ EAF,∴∠BAE=∠ CAF.∴△ ABE≌△ ACF,····································3 分∴BE=CF.··········································4 分(2)∵四边形 ABDF 是菱形,∴ AB∥ DF ,∴∠ ACF =∠ BAC= 45°.································5 分∵ AC=AF,∴∠ CAF = 90°,即△ ACF 是以 CF 为斜边的等腰直角三角形,∴ CF= 2 2 . (7)分又∵ DF =AB= 2,∴ CD= 2 2 - 2.···························8 分26.(本小题满分10 分)(1)图略;··········································4 分(2)若 k>0,当 x<0 时, y 随 x 的增大而增大,当 x>0 时, y 随 x 的增大而减小;··························6分若 k<0,当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大;··························8分( 3)函数y k2 个单位长度获取函数yk···10 分的图象向左平移的图象.x x 227.(本小题满分13 分)( 1)∵四边形 ABDF 是矩形,∴ AB ∥CD ,∴∠ APD =∠ QDP . ··································1 分∵∠ APD =∠ QPD ,∴∠ QPD =∠ QDP , ···································2 分∴ DQ = PQ . ·········································3 分( 2)过点 Q 作 QE ⊥ DP ,垂足为 E ,则 DE = 1DP . (5)分 2∵∠ DEQ =∠ PAD =90°,∠ QDP =∠ APD ,∴△ QDE ∽△ DPA ,∴DQ=DE, ··························6 分DP AP12∴ AP ·DQ = DP · DE =2DP .在 Rt △ DAP 中,有 DP 2= DA 2+ AP 2 =36+ AP 2,∴ AP ·DQ = 1( 36+ AP2). ·······························7 分 2∵点 P 在 AB 上,∴ AP ≤ 4,∴ AP ·DQ ≤ 26,即 AP · DQ 的最大值为26. ·················8 分1( 3)∵ P 为 AB 的中点,∴ AP = BP = 2AB = 2,由( 2)得, DQ = 14( 36+ 22)= 10. ··························9 分∴ CQ =DQ - DC =6.设 CG = x ,则 BG = 6- x ,由( 1)得, DQ ∥ AB ,∴CQ =CG, ··························11 分BP BG即 6= 2x6- x,解得x = 9, ································12 分2∴ BG = 6- 92=32,∴ PG = PB 2+ BG 2= 5. (13)分 228.(本小题满分 13 分)( 1)证明:由题意,得4a - 2b + c =0,∴ b =2a + 1c . ················1 分22121 2. ·························2 分∴ b - 4ac = (2a +c) - 4ac =(2a -c)22∵ c ≠ 4a ,∴ 2a - 1 c ≠ 0,∴ (2a - 1c)2> 0,即 b 2-4ac > 0. ············3 分2 2( 2)解:∵点 B (- c,b + 3)在图象 L 上,2a∴ a c2 b (c) c b3,整理,得 c(4 a 2b c)b 3 .·······4 分4 a22a4a∵ 4a- 2b+ c=0,∴ b+3= 0,,解得 b=- 3.················6 分( 3)解:由题意,得33 ,且 36a-18+ c=- 8,解得 a=1, c=- 8.2a2∴图象 L 的剖析式为12y= x - 3x- 8.···························7 分2设OC 与对称轴交于点 Q,图象 L 与 y 轴订交于点 P,则Q(3,- 4), P(0,- 8), OQ= PQ=5.分两种情况:①当 OD=OE 时,如图 1,过点 Q 作直线 MQ ∥DB ,交 y 轴于点 M,交 x 轴于点 H,则 OM OQ,∴ OM =OQ=5. ∴点 M 的坐标为(0,- 5) .OD OE设直线 MQ 的剖析式为 y k1x 5 .∴ 3k1 5 4 ,解得 k11 . 3∴ MQ 的剖析式为y1x 5 .易得点 H ( 15, 0) .3又∵ MH ∥ DB,ODOB . OM OH即n 8,∴ n8.·····························10 分5153②当 EO=ED 时,如图2,∵ OQ=PQ,∴ 1=2,又 EO=ED,∴ 1= 3.∴2= 3,∴ PQ∥ DB .设直线 PQ 交于点 N,其函数表达式为y k2 x8∴ 3k28 4 ,解得 k24 . 3∴ PQ 的剖析式为y48 . ∴点 N的坐标为(6, 0).x3∵ PN∥ DB ,∴OD n832. ···········12 分OB ,∴,解得 nOP ON863综上所述,当△ ODE 是等腰三角形时,n 的值为8 或32. ····13 分y 33yA O EB H xNA O1BxQ QDM2ECP P CD3(第 28题答图 1)(第 28 题答图 2)。
2017年省南通市通州区中考一模试卷数学
2017年江苏省南通市通州区中考一模试卷数学一、选择题(每题3分,共24分)1. 二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. (1, 3)B. (-1,3)C. (1, -3)D. (-1, -3)解析:二次函数y=-2(x-1)2+3的图象的顶点坐标为(1,3).答案:A2. 当二次函数y=x2+4x+9取最小值时,x的值为()A. -2B. 1C. 2D. 9解析:T y=x2+4x+9=(x+2)2+5,「.当x=-2时,二次函数有最小值.答案:A3. 二次函数y=x2+2x+2与坐标轴的交点个数是()A. 0个B. 1个C. 2个D. 3个解析:•••△ =22-4 X 1 X 2=4 0,•••二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.•••二次函数y=x2+2x+2与坐标轴的交点个数是1个.答案:B4. 为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是()矚慫润厲钐瘗睞枥庑赖賃軔。
A. 600 m2B. 625 m2C. 650 m2D. 675 m2解析:设矩形的一边长为xm,则其邻边为(50-x)m,若面积为S,则S=x(50-x)=-x2+50x=-(x-25)2+625.••• -1 V 0,二S有最大值.当x=25时,最大值为625.答案:B5. 设A(-2, y1), B(1, y2), C(2, y3)是抛物线y=-(x+1)2+a 上的三点,贝U y1, y2 , y3 的大小关系为()聞創沟燴鐺險爱氇谴净祸測。
A. yl > y2 > y3B. yl >y3> y2C. y3>y2> y1D. y3> y1 > y2解析:•.•函数的解析式是y=-(x+1)2+a ,如图,.••对称轴是x=-1,那么点A'、B 、C 都在对称轴的右边,而对称轴右边 y 随x 的增大而减小,于是 答案:A y1 > y2> y3.6.如图,直径为10的O A 经过点C 和点0,点B 是y 轴右侧O A 优弧上一点, 则点C 的坐标为()残骛楼諍锩瀨濟溆塹籟婭骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通州区2017年初三模拟考试数学试卷2017年4月一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是A .圆锥B .四棱锥C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是6.如果21=+b a ,那么a b b b a a -+-22的值是 错误!未找到引用源。
A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是y xA O 2O 1A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 的位置 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分)11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示 ( 发芽率精确到 0.001 ) : 实验的麦种数 800 800 800 800 800 发芽的麦种数 787 779 786 789 782 发芽率0.9840.9740.9830.9860.978在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D ,E ,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取 OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.bb aa BCDAEA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.EDBA C22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.DFE ACB24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若cos ∠ABD =21,OA=m , 请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R &D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R &D )活动中的经费投入约为_________亿元,你的预估理由是___________________________.EDBOA C26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.x … 1 2 4 5 6 8 9 … y…3.921.950.980.782.442.440.78…小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =7对应的函数值y 约为______________.②该函数的一条性质:______________________________________________________. 27.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.28.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC.(1)如图1,AB=1,点E是AB的中点,求BD的长;(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE 与BD间的数量关系并证明;(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.初三数学第一次模拟检测参考答案一、选择题(本题共30分,每小题3分)1. B,2. A,3.D,4.B,5. D ,6.A,7.D,8. B,9.A, 10. D二、填空题(本题共18分,每小题3分)11.1≥x ; 12.答案不唯一; 13.98.0左右;14.564左右; 15.53;16.SSS.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.解:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.=223+………………………………..(5分)18.解:⎪⎩⎪⎨⎧<++>-x x x x 529)2(213.5>x ………………………………..(5分)19.①BD AC =………………………………..(2分)②BD DE =………………………………..(4分) ③AC DE =………………………………..(5分)20.(1)①2=m ………………………………..(1分)②x y 2=………………………………..(3分) (2)1>n ………………………………..(5分) 21. (1)21=m ………………………………..(3分) (2)2121==x x ………………………………..(5分)22.①小李……………………..(1分)②小张抽样调查所抽取的单位职工数量过少……………………..(3分)③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.……………………..(5分)23.(1)①BF CD CF BD //,//………………………………..(2分)四边形DBFC 是平行四边形………………………………..(3分)(2)①过点C 作CH ⊥BF 于点H ,2=CH2==CE CH ………………………………..(4分)②22=AC ………………………………..(5分) 24.(1)①连接OC ,OC //BD ………………………………..(1分)②∠OCB =∠BDC ………………………………..(2分) ③∠OBC =∠DBC ………………………………..(3分) (2)思路通顺 ………………………………..(5分) 25. (1)图正确………………………………..(3分)(2)增加,理由充分 ………………………………..(5分) 26.(1)过点;符合函数概念………………………………..(3分) (2)答案需和图形统一 ………………………………..(5分)27. 解:(1)D (m ,-m +2) ……………………..(2分)(2)m =3或m =1 ……………………..(5分) (3)1≤m ≤3 ……………………..(7分)28.解:(1)21=BD ……………………..(2分) (2)AE =BD ……………………..(3分)证明思路1:利用等边三角形的性质, 证明△BDE 与EC 所在的三角形全等; 证明思路2:利用等腰三角形的轴对称性, 作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°,构造平行四边形; ……………………..(6分) ……(3)图形正确 ……………………..(7分)29.(1)①4………………………………..(2分) ②x y 32=………………………………..(4分) (2)∠MON =90°………………………………..(6分)(3)5224+≤<OE ………………………………..(8分)。