中考数学专题训练三角形与四边形

合集下载

2020年九年级数学中考一轮专题汇编 考点三角形和四边形 压轴题提高训练检测卷 含答案

2020年九年级数学中考一轮专题汇编 考点三角形和四边形 压轴题提高训练检测卷 含答案

2020年九年级数学中考一轮专题汇编考点三角形和四边形压轴题提高训练检测卷含答案1、如图,在△ABC中,∠ACB=90︒,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30︒时,求证:四边形ECBF是菱形.2、如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.3、如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.4、如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.5、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.6、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.7、如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)8、已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.9、现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)10、如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.11、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA 至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB 交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.12、如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN 的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.13、数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .14、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)15、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE 相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.16、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F 处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有①②⑤(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.17、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x 的取值范围(不用说明理由).答案1、 (1) 证明:∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)证法一:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12CB AB=,12CE AB=.∴CB CE=.又由(1)知,四边形ECBF是平行四边形,[来源:] ∴四边形ECBF是菱形.证法二:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12BC AB BE==,∠ABC=60︒.∴△BCE是等边三角形. ∴CB CE=.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形. 证法三:∵E为AB的中点,∠ACB=90︒,∠A=30︒,∴12CE AB BE==, ∠ABC=60︒.∴△BCE是等边三角形.∴CB CE.又由(1)知,四边形ECBF是平行四边形,2、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.3、【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE =S△ABC=6.4、【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.5、【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ6、【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.7、【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.8、【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.9、(2)仍成立.证明:如图2,连接AC、BD,则由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°∵∠MON=90°∴∠BOM=∠CON在△BOM和△CON中∴△BOM≌△CON(ASA)∴OM=ON(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°又∵∠C=90°∴∠EOF=90°=∠MON∴∠MOE=∠NOF在△MOE和△NOF中∴△MOE≌△NOF(AAS)∴OE=OF又∵OE⊥BC,OF⊥CD∴点O在∠C的平分线上∴O在移动过程中可形成线段AC(4)O在移动过程中可形成直线AC.10、【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.11、【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.12、【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.13、【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM= a,∴==.故答案为.14、【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.15、【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.16、【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴=,∴CM=x(4﹣x),∴S=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,四边形A M C B∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4故⑤正确.故答案为①②⑤.:当y=0时,2x+3=0,x=﹣17、【解答】解:(1)直线l1与x轴坐标为(﹣,0)则直线l1:当y=3时,2x﹣3=3,x=3直线l2与AB的交点坐标为(3,3);则直线l2(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M(x,2x﹣3),1过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x ≤2.。

2021年四川省中考数学试题分类汇编——专题6三角形与四边形(含解析)

2021年四川省中考数学试题分类汇编——专题6三角形与四边形(含解析)

2021年四川省中考数学试题分类汇编——专题6三角形与四边形一.选择题(共15小题)1.(2021•宜宾)若长度分别是a 、3、5的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .4D .82.(2021•资阳)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD .连结EG 并延长交BC 于点M .若AB =√13,EF =1,则GM 的长为( )A .2√25B .2√23C .3√24D .4√253.(2021•乐山)如图,已知直线l 1、l 2、l 3两两相交,且l 1⊥l 3,若α=50°,则β的度数为( )A .120°B .130°C .140°D .150°4.(2021•自贡)如图,A (8,0),C (﹣2,0),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A.(0,5)B.(5,0)C.(6,0)D.(0,6)5.(2021•广元)下列命题中,真命题是()A.2x﹣1=1 2xB.对角线互相垂直的四边形是菱形C.顺次连接矩形各边中点的四边形是正方形D.已知抛物线y=x2﹣4x﹣5,当﹣1<x<5时,y<06.(2021•眉山)正八边形中,每个内角与每个外角的度数之比为()A.1:3B.1:2C.2:1D.3:1 7.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是()A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF 8.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE =BF=2,△DEF的周长为3√6,则AD的长为()A.√6B.2√3C.√3+1D.2√3−1 9.(2021•眉山)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F 在线段AO 上从点A 至点O 运动,连接DF ,以DF 为边作等边三角形DFE ,点E 和点A 分别位于DF 两侧,下列结论:①∠BDE =∠EFC ;②ED =EC ;③∠ADF =∠ECF ;④点E 运动的路程是2√3,其中正确结论的序号为( )A .①④B .①②③C .②③④D .①②③④10.(2021•乐山)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若∠ABC =120°,AB =2,则PE ﹣PF 的值为( )A .32B .√3C .2D .52 11.(2021•资阳)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1:2两部分12.(2021•成都)如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定△ABE ≌△ADF 的是( )A .BE =DFB .∠BAE =∠DAFC .AE =AD D .∠AEB =∠AFD13.(2021•泸州)下列命题是真命题的是( )A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形14.(2021•自贡)如图,AC是正五边形ABCDE的对角线,∠ACD的度数是()A.72°B.36°C.74°D.88°15.(2021•泸州)如图,在▱ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A.61°B.109°C.119°D.122°二.填空题(共9小题)16.(2021•达州)如图,在边长为6的等边△ABC中,点E,F分别是边AC,BC上的动点,且AE=CF,连接BE,AF交于点P,连接CP,则CP的最小值为.17.(2021•乐山)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=4.若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则CP的长为.18.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.19.(2021•遂宁)如图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是.20.(2021•广元)如图,在正方形ABCD中,点O是对角线BD的中点,点P在线段OD 上,连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF 交BD于G,现有以下结论:①AP=PF;②DE+BF=EF;③PB﹣PD=√2BF;④S△AEF 为定值;⑤S四边形PEFG=S△APG.以上结论正确的有(填入正确的序号即可).21.(2021•眉山)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是.22.(2021•南充)如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为.23.(2021•凉山州)菱形ABCD中,对角线AC=10,BD=24.则菱形的高等于.24.(2021•泸州)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3DF,AE,BF相交于点G,则△AGF的面积是.三.解答题(共12小题)25.(2021•宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.26.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD 于点E,CF⊥AD于点F.求证:AF=BE.27.(2021•资阳)已知,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,已知点D在BC边上,∠DAE=90°,AD=AE,连结CE.试探究BD与CE的关系;(2)如图2,已知点D在BC下方,∠DAE=90°,AD=AE,连结CE.若BD⊥AD,AB=2√10,CE=2,AD交BC于点F,求AF的长;(3)如图3,已知点D在BC下方,连结AD、BD、CD.若∠CBD=30°,∠BAD>15°,AB2=6,AD2=4+√3,求sin∠BCD的值.28.(2021•乐山)如图.已知AB=DC,∠A=∠D,AC与DB相交于点O,求证:∠OBC =∠OCB.29.(2021•凉山州)如图,在四边形ABCD中,∠ADC=∠B=90°,过点D作DE⊥AB 于E,若DE=BE.(1)求证:DA=DC;(2)连接AC交DE于点F,若∠ADE=30°,AD=6,求DF的长.30.(2021•泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD =CE.31.(2021•广元)如图,在平行四边形ABCD中,E为DC边的中点,连接AE,若AE的延长线和BC的延长线相交于点F.(1)求证:BC=CF;(2)连接AC和BE相交于点为G,若△GEC的面积为2,求平行四边形ABCD的面积.32.(2021•广安)如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.33.(2021•南充)如图,点E在正方形ABCD边AD上,点F是线段AB上的动点(不与点A重合),DF交AC于点G,GH⊥AD于点H,AB=1,DE=1 3.(1)求tan∠ACE;(2)设AF=x,GH=y,试探究y与x的函数关系式(写出x的取值范围);(3)当∠ADF=∠ACE时,判断EG与AC的位置关系并说明理由.34.(2021•眉山)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=2√5,边长为2的正方形DEFG的对角线交点与点C重合,连接AD,BE.(1)求证:△ACD≌△BCE;(2)当点D在△ABC内部,且∠ADC=90°时,设AC与DG相交于点M,求AM的长;(3)将正方形DEFG绕点C旋转一周,当点A、D、E三点在同一直线上时,请直接写出AD的长.35.(2021•遂宁)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O的直线EF 与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.36.(2021•自贡)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.2021年四川省中考数学试题分类汇编——专题6三角形与四边形参考答案与试题解析一.选择题(共15小题)1.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有4,故选:C.2.【解答】解:由图可知∠AEB=90°,EF=1,AB=√13,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设AE=x,则在Rt△AEB中,有AB2=AE2+BE2,即13=x2+(1+x)2,解得:x1=2,x2=﹣3(舍去).过点M作MN⊥FC于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NC=GC﹣GN=2﹣a,∵tan∠FCB=BFCF=23=NMCN=a2−a,解得:a=4 5.∴GM=√GN2+NM2=√(45)2+(45)2=4√25.故选:D.3.【解答】解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.4.【解答】解:根据已知可得:AB=AC=10,OA=8.在Rt△ABO中,OB=√AB2−OA2=6.∴B(0,6).故选:D.5.【解答】解:A、∵2x﹣1=2 x,∴选项A不符合题意;B、∵对角线互相垂直的平行四边形是菱形(菱形的判定定理),∴选项B不符合题意;C、顺次连接矩形各边中点的四边形是菱形,理由如下:在矩形ABCD中,连接AC、BD,如图:∵四边形ABCD为矩形,∴AC=BD,∵AH=HD,AE=EB,∴EH是△ABD的中位线,∴EH=12BD,同理,FG=12BD,HG=12AC,EF=12AC,∴EH=HG=GF=FE,∴四边形EFGH为菱形,∴选项C 不符合题意;D 、∵抛物线y =x 2﹣4x ﹣5的开口向上,与x 轴的两个交点为(﹣1,0)、(5,0), ∴当﹣1<x <5时,y <0,∴选项D 符合题意;故选:D .6.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,∴∠EAO =∠FCO ,在△AOE 和△COF 中,{∠EAO =∠FCOAO =CO ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .8.【解答】解:如图,连结BD ,作DH ⊥AB ,垂足为H ,∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,∴AD=BD,∠ABD=∠A=∠ADB=60°,∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴DE=DF,∠FDB=∠ADE,∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,∴△DEF是等边三角形,∵△DEF的周长是3√6,∴DE=√6,设AH=x,则HE=2﹣x,∵AD=BD,DH⊥AB,∴∠ADH=12∠ADB=30°,∴AD=2x,DH=√3x,在Rt△DHE中,DH²+HE²=DE²,∴(√3x)²+(2﹣x)²=(√6)²,解得:x=1+√32(负值舍去),∴AD=2x=1+√3,故选:C.9.【解答】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA =∠DAO =∠ODA =60°,AD =OD ,∵△DFE 为等边三角形,∴∠EDF =∠EFD =∠DEF =60°,DF =DE ,∵∠BDE +∠FDO =∠ADF +∠FDO =60°,∴∠BDE =∠ADF ,∵∠ADF +∠AFD +∠DAF =180°,∴∠ADF +∠AFD =180°﹣∠DAF =120°,∵∠EFC +∠AFD +∠DFE =180°,∴∠EFC +∠AFD =180°﹣∠DFE =120°,∴∠ADF =∠EFC ,∴∠BDE =∠EFC ,故结论①正确;②如图,连接OE ,在△DAF 和△DOE 中,{AD =OD ∠ADF =∠ODE DF =DE,∴△DAF ≌△DOE (SAS ),∴∠DOE =∠DAF =60°,∵∠COD =180°﹣∠AOD =120°,∴∠COE =∠COD ﹣∠DOE =120°﹣60°=60°,∴∠COE =∠DOE ,在△ODE 和△OCE 中,{OD =OC ∠DOE =∠COE OE =OE,∴△ODE ≌△OCE (SAS ),∴ED =EC ,∠OCE =∠ODE ,故结论②正确;③∵∠ODE =∠ADF ,∴∠ADF =∠OCE ,即∠ADF =∠ECF ,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2√3,∴点E运动的路程是2√3,故结论④正确;故选:D.10.【解答】解:设AC交BD于O,如图:∵菱形ABCD,∠ABC=120°,AB=2,∴∠BAD=∠BCD=60°,∠DAC=∠DCA=30°,AD=AB=2,BD⊥AC,Rt△AOD中,OD=12AD=1,OA=√AD2−OA2=√3,∴AC=2OA=2√3,Rt△APE中,∠DAC=30°,PE=12AP,Rt△CPF中,∠PCF=∠DCA=30°,PF=12CP,∴PE﹣PF=12AP−12CP=12(AP﹣CP)=12AC,∴PE﹣PF=√3,故选:B.11.【解答】解:A、每条边、每个内角都相等的多边形是正多边形,故错误,是假命题;B、对角线互相平分的四边形是平行四边形,故正确,是真命题;C、过线段中点,并且垂直于这条线段的直线是线段的垂直平分线,故错误,是假命题;D、三角形的中位线将三角形的面积分成1:3两部分,故错误,是假命题.(∵DE是△ABC的中位线,∴DE∥BC,DE=12BC,∴△ADE∽△ABC,相似比为1:2,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形DECB=1:3.)故选:B.12.【解答】解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;故选:C.13.【解答】解:A、对角线互相平分的四边形是平行四边形,对角线相等的四边形也可能是等腰梯形等四边形,故A不符合题意;B、对角线互相平分的四边形是平行四边形,若对角线再相等,则四边形是矩形,故B符合题意;C、对角线互相垂直的四边形不能判定是平行四边形,也就不能判定是菱形,故C不符合题意;D、对角线互相垂直平分的四边形是菱形,不能判断它的内角有直角,故D不符合题意;故选:B.14.【解答】解:∵正五边形ABCDE,∴每个内角为180°﹣360°÷5=108°,∵AB=BC,∴∠BCA =∠BAC =36°,∴∠ACD =∠BCD ﹣∠BCA =108°﹣36°=72°,故选:A .15.【解答】解:∵四边形ABCD 是平行四边形,∠D =58°,∴∠BAD =122°,∠B =∠D =58°,∵AE 平分∠BAD ,∴∠BAE =61°,∴∠AEC =∠B +∠BAE =119°,故选:C .二.填空题(共9小题)16.【解答】解:∵△ABC 是等边三角形,∴AB =AC =BC ,∠CAB =∠ACB =60°,在△ABE 和△ACF 中,{AB =AC ∠BAC =∠ACB AE =CF,∴△ABE ≌△ACF (SAS ),∴∠ABE =∠CAF ,∴∠BPF =∠P AB +∠ABP =∠CAP +∠BAP =60°,∴∠APB =120°,如图,过点A ,点P ,点B 作⊙O ,连接CO ,PO ,∴点P 在AB̂上运动, ∵AO =OP =OB ,∴∠OAP=∠OP A,∠OPB=∠OBP,∠OAB=∠OBA,∴∠AOB=360°﹣∠OAP﹣∠OP A﹣∠OPB﹣∠OBP=120°,∴∠OAB=30°,∴∠CAO=90°,∵AC=BC,OA=OB,∴CO垂直平分AB,∴∠ACO=30°,∴cos∠ACO=ACCO=√32,CO=2AO,∴CO=4√3,∴AO=2√3,在△CPO中,CP≥CO﹣OP,∴当点P在CO上时,CP有最小值,∴CP的最小值=4√3−2√3=2√3,故答案为2√3.17.【解答】解:(1)当∠ABC=60°时,则BC=12AB=2,当点P在线段AB上时,∵∠PCB=30°,故CP⊥AB,则PC=BC cos30°=2×√32=√3;当点P(P′)在AB的延长线上时,∵∠P′CB=30°,∠ABC=60°,则△P′BC为的等腰三角形则BP′=BC=2,(2)当∠ABC=30°时,同理可得,PC=2;故答案为2或√3.18.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.19.【解答】解:∵DE垂直平分BC,∴DB=DC.∴C△ABD=AB+AD+BD=AB+AD+DC=AB+AC=12.∴△ABD的周长是12.故答案为:12.20.【解答】解:取AF的中点T,连接PT,BT.∵AP⊥PF,四边形ABCD是正方形,∴∠ABF=∠APF=90°,∠ABD=∠CBD=45°,∵AT=TF,∴BT=AT=TF=PT,∴A,B,F,P四点共圆,∴∠P AF=∠PBF=45°,∴∠P AF=∠PF A=45°,∴P A=PF,故①正确,将△ADE绕点A顺时针旋转90°得到△ABM,∵∠ADE=∠ABM=90°,∠ABC=90°,∴∠ABC+∠ABM=180°,∴C,B,M共线,∵∠EAF=45°,∴∠MAF=∠F AB+∠BAM=∠F AB+∠DAE=45°,∴∠F AE=∠F AM,在△F AM和△F AE中,{FA =FA ∠FAM =∠FAE AM =AE,∴△F AM ≌△F AE (SAS ),∴FM =EF ,∵FM =BF +BM =BF +DE ,∴EF =DE +BF ,故②正确,连接PC ,过点P 作PG ⊥CF 于G ,过点P 作PW ⊥CD 于W ,则四边形PGCW 是矩形, 在△PBA 和PCB 中,{PB =PB ∠PBA =∠PBC BA =BC,∴△PBA ≌△PBC (SAS ),∴P A =PC ,∵PF =P A ,∴PF =PC ,∵PG ⊥CF ,∴FG =GC ,∵PB =√2BG ,PD =√2PW =√2CG =√2FG ,∴PB ﹣PD =√2(BG ﹣FG )=√2BF ,故③正确,∵△AEF ≌△AMF ,∴S △AEF =S △AMF =12FM •AB ,∵FM 的长度是变化的,∴△AEF 的面积不是定值,故④错误,∵A ,B ,F ,P 四点共圆,∴∠APG =∠AFB ,∵△AFE ≌△AFM ,∴∠AFE =∠AFB ,∴∠APG =∠AFE ,∵∠P AG =∠EAF ,∴△P AG ∽△F AE ,∴S △APGS △AFE =(PA AF )2=(√2PA )2=12, ∴S 四边形PEFG =S △APG ,故⑤正确,故答案为:①②③⑤.21.【解答】解:如图,过点P 作PE ⊥BC 于E ,∵四边形ABCD 是菱形,AB =AC =10,∴AB =BC =AC =10,∠ABD =∠CBD ,∴△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∴∠CBD =30°,∵PE ⊥BC , ∴PE =12PB , ∴MP +12PB =PM +PE ,∴当点M ,点P ,点E 共线且ME ⊥BC 时,PM +PE 有最小值为ME ,∵AM =3,∴MC =7,∵sin ∠ACB =ME MC =√32,∴ME =7√32,∴MP +12PB 的最小值为7√32, 故答案为7√32. 22.【解答】解:在矩形ABCD 中,∠BAD =90°,∵F 为BE 的中点,AF =3,∴BE =2AF =6.∵G ,H 分别为BC ,EC 的中点,∴GH =12BE =3,故答案为3.23.【解答】解:由题意得,菱形的面积=12×AC •BD =12×10×24=120,则AO =5,BO =12,则AB =√AO 2+BO 2=13,设菱形的高为h ,则菱形的面积=BC •h =13h =120,解得h =12013,故答案为12013.24.【解答】解:作FM ⊥AB 于点M ,作GN ⊥AB 于点N ,如右图所示,∵正方形ABCD 的边长为4,点E 是BC 的中点,点F 在CD 上,且CF =3DF , ∴BE =2,MF =4,BM =CF =3,∵GN ⊥AB ,FM ⊥AB ,∴GN ∥FM ,∴△BNG ∽△BMF ,∴BN NG =BM MF =34, 设BN =3x ,则NG =4x ,AN =4﹣3x ,∵GN ⊥AB ,EB ⊥AB ,∴△ANG ∽△ABE ,∴AN AB =NG BE , 即4−3x 4=4x 2, 解得x =411,∴GN =4x =1611,∴△AGF 的面积是:AB⋅MF 2−AB⋅GN 2=4×42−4×16112=5611, 故答案为:5611.三.解答题(共12小题)25.【解答】证明:∵∠AOC =∠BOD ,∴∠AOC ﹣∠AOD =∠BOD ﹣∠AOD ,即∠COD =∠AOB ,在△AOB 和△COD 中,{OA =OC ∠AOB =∠COD OB =OD,∴△AOB ≌△COD (SAS ).26.【解答】证明:∵∠BAC =90°,∴∠BAE +∠F AC =90°,∵BE ⊥AD ,CF ⊥AD ,∴∠BEA =∠AFC =90°,∴∠BAE +∠EBA =90°,∴∠EBA =∠F AC ,在△ACF 和△BAE 中,{∠AFC =∠BEA ∠FAC =∠EBA AC =BA ,∴△ACF ≌△BAE (AAS ),∴AF =BE .27.【解答】解:(1)∵∠EAC +∠CAD =∠EAD =90°,∠BAD +∠DAC =90°, ∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD =45°,BD =CE ,∴∠BCE =∠ACB +∠ACE =45°+45°=90°,∴BD =CE 且BD ⊥CE ;(2)延长BD 和CE 交于点H ,由(1)知BD ⊥CE ,即∠H =90°,CE =BD =2,而∠ADH =90°,∠DAE =90°,故四边形ADHE 为矩形,而AD =AE ,故四边形ADHE 为正方形,在Rt △ACE 中,AE =√AC 2−CE 2=√AB 2−CE 2=√(2√10)2−22=6=DH =EH =AD , 则BH =BD +DH =2+6=8,CH =HE ﹣CE =6﹣2=4,在Rt △BCH 中,tan ∠CBH =CH BH =48=12,在Rt △BDF 中,DF =BD tan ∠CBH =2×12=1,故AF=AD﹣DF=6﹣1=5;(3)作∠DAE=90°,使AD=AE,连结CE,延长EC和BD交于点H,连接DE,由(1)BD=CE且BD⊥CE,即∠H=90°,由作图知,△ADE为等腰直角三角形,设CE=BD=x,在Rt△BHC中,∠HBC=30°,BC=√2AB=√2⋅√6=2√3,则CH=12BC,BH=BC cos30°=3,则DH=BH﹣x=3﹣x,EH=CH+CE=x+√3,则DE2=2AD2=DH2+EH2,即(3﹣x)2+(√3+x)2=2×(4+√3),解得x=2−√3(舍去)或1,即BD=x=1,过点D作DN⊥BC于点N,在Rt△BCD中,∠CBD=30°,BC=2√3,BD=1,则ND=12BD=12,BN=BD cos30°=√32,则CN=CB﹣BN=2√3−√32=3√32,∴CD=√CN2+DN2=√7,则sin∠BCD=DNCD=12√7=√714.28.【解答】证明:在△AOB与△COD中,∵∠A=∠D,∠AOB=∠DOC,AB=DC,∴△AOB≌△COD(AAS),∴OB=OC,∴∠OBC=∠OCB.29.【解答】(1)证明:作DG ⊥BD ,交BC 的延长线于点G ,如右图所示, ∵DE ⊥AB ,∠B =90°,DG ⊥BC ,∴∠DEB =∠B =∠BGD =90°,∴四边形DEBG 是矩形,又∵DE =BE ,∴四边形DEBG 是正方形,∴DG =BE ,∠EDG =90°,∴DG =DE ,∠EDC +∠CDG =90°,∵∠ADC =90°,∴∠EDC +∠ADE =90°,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,{∠ADE =∠CDG DE =DG ∠AED =∠CGD,∴△ADE ≌△CDG (ASA ),∴DA =DC ;(2)∵∠ADE =30°,AD =6,∠DEA =90°,∴AE =3,DE =√AD 2−AE 2=√62−32=3√3,由(1)知,△ADE ≌△CDG ,四边形DEBG 是正方形,∴DG =DE =3√3,AE =CG =3,BE =DG =BG =3√3,∴BC =BG ﹣CG =3√3−3,AE =AE +BE =3+3√3,∵FG ⊥AB ,BC ⊥AB ,∴FE ∥CB ,∴△AEF ∽△ABC ,∴AE AB =EF BC , 即3+3√3=3√3−3,解得EF =6﹣3√3,∴DF =DE ﹣EF =3√3−(6﹣3√3)=3√3−6+3√3=6√3−6, 即DF 的长是6√3−6.30.【解答】证明:在△ABE 与△ACD 中{∠A =∠A AB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA ).∴AD =AE .∴BD =CE .31.【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AD =BC ,∴∠D =∠FCE ;∵E 为DC 中点,∴ED =EC ,在△ADE 与△FCE 中,{∠D =∠FCE ED =EC ∠AED =∠FEC,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴BC =CF .(2)解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =DC ,∴△ABG ∽△CEG ,∴AB EC =BG EG ,S △ABGS △CEG =(AB EC )2,∵DE =CE ,∴AB =2CE ,∴BG EG =2,S △ABGS △CEG =4,∵△GEC 的面积为2,∴S △BGC =2S △CEG =4,S △ABG =4S △CEG =8,∴S △ABC =S △BGC +S △ABG =4+8=12,∴平行四边形ABCD 的面积=2S △ABC =24.32.【解答】解:∵四边形ABCD 是菱形,∴BC =CD ,∠ABC =∠ADC ,∵∠ABC +∠CBE =180°,∠ADC +∠CDF =180°,∴∠CBE =∠CDF ,在△CDF 和△CBE 中,{CD =CB ∠CDF =∠CBE DF =BE,∴△CDF ≌△CBE (SAS ),∴CE =CF .33.【解答】解:(1)过点E 作EM ⊥AC 于点M ,∴∠AME =∠EMC =90°,∵四边形ABCD 是边长为1的正方形,DE =13,∴∠CAD =45°,AE =AD ﹣DE =1−13=23,∴EM =AM =AE •sin ∠CAD =23×√22=√23,AC =√2, ∴CM =AC ﹣AM =√2−√23=2√23,∴tan ∠ACE =EM CM =√232√23=12;(2)∵GH ⊥AD ,AB ⊥AD ,∴GH ∥AB ,∴△DHG ∽△DAF ,∴HG AF=DH DA , ∴y x =1−y 1,∴y =x ﹣xy ,∴y =x x+1(0<x ≤1);(3)当∠ADF =∠ACE 时,EG ⊥AC ,理由如下:∵tan ∠ADF =tan ∠ACE =12,∴AF AD =x 1=12, ∴x =12,y =13,∴HA =GH =13,∴EH =AD ﹣DE ﹣AH =13,∴EG =√GH 2+EH 2=√(13)2+(13)2=√23,∴EG =EM ,又∵EM ⊥AC ,∴点G 与点M 重合,∴EG ⊥AC .34.【解答】解:(1)如图1,∵四边形DEFG 是正方形, ∴∠DCE =90°,CD =CE ;∵∠ACB =90°,∴∠ACD =∠BCE =90°﹣∠BCD ,在△ACD 和△BCE 中,{AC =BC ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ).(2)如图1,过点M 作MH ⊥AD 于点H ,则∠AHM =∠DHM =90°. ∵∠DCG =90°,CD =CG ,∴∠CDG =∠CGD =45°,∴∠ADC =90°,∴∠MDH =90°﹣45°=45°,∴MH =DH •tan45°=DH ;∵CD =DG •sin45°=2×√22=√2,AC =2√5,∴AD =√(2√5)2−(√2)2=3√2,∴MH AH =CD AD =tan ∠CAD =√23√2=13, ∴AH =3MH =3DH ,∴3DH +DH =3√2;∴MH =DH =3√24,∵MH AM =CDAC =sin ∠CAD =√22√5=√10, ∴AM =√10MH =√10×3√24=3√52. (3)如图3,A 、D 、E 三点在同一直线上,且点D 在点A 和点E 之间. ∵CD =CE =CF ,∠DCE =∠ECF =90°,∴∠CDE =∠CED =∠CEF =∠CFE =45°;由△ACD ≌△BCE ,得∠BEC =∠ADC =135°,∴∠BEC +∠CEF =180°,∴点B 、E 、F 在同一条直线上,∴∠AEB =90°,∵AE 2+BE 2=AB 2,且DE =2,AD =BE ,∴(AD +2)2+AD 2=(2√5)2+(2√5)2, 解得AD =√19−1或AD =−√19−1(不符合题意,舍去);如图4,A 、D 、E 三点在同一直线上,且点D 在AE 的延长线上. ∵∠BCF =∠ACE =90°﹣∠ACF ,BC =AC ,CF =CE ,∴△BCF ≌△ACE (SAS ),∴∠BFC =∠AEC ,∵∠CFE=∠CED=45°,∴∠BFC+∠CFE=∠AEC+∠CED=180°,∴点B、F、E在同一条直线上;∵AC=BC,∠ACD=∠BCE=90°+∠ACE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE;∵AE2+BE2=AB2,∴(AD﹣2)2+AD2=(2√5)2+(2√5)2,解得AD=√19+1或AD=√19−1(不符合题意,舍去).综上所述,AD的长为√19−1或√19+1.35.【解答】证明:(1)∵四边形ABCD 是平行四边形, ∴OA =OC ,BE ∥DF ,∴∠E =∠F ,在△AOE 和△COF 中,{∠E =∠F∠AOE =∠COF OA =OC,∴△AOE ≌△COF (AAS ),∴AE =CF ;(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下: 如图:连结BF ,DE ,∵四边形ABCD是平行四边形,∴OB=OD,∵△AOE≌△COF,∴OE=OF,∴四边形BFDE是平行四边形,∵EF⊥BD,∴四边形BFDE是菱形.36.【解答】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.。

【十年中考真题系列】绍兴卷 第四章 三角形与四边形

【十年中考真题系列】绍兴卷 第四章 三角形与四边形

【十年中考真题系列】绍兴卷 第四章 三角形与四边形1.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =34°,则∠BED 的度数是( )(A )17° (B )34° (C )56° (D )68°(第1题) (第2题) (第3题) (第4题) 2.如图, D ,E 分别为△ABC 的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( )(A )42° (B )48° (C )52° (D )58°3.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )(A )0.7米 (B )1.5米 (C )2.2米 (D )2.4米4.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )(A )①,② (B )①,④ (C )③,④ (D )②,③5.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO =4m ,AB =1.6m ,CO =1m ,则栏杆C 端应下降的垂直距离CD 为( )(A )0.2m (B )0.3m (C )0.4m (D )0.5m(第5题) (第6题) (第7题)6.如图,在△ABC 中,分别以点A 和点B 为圆心,大于的 1 2AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )(A )7 (B )14 (C )17 (D )207.如图,已知△ABC ,分别以A ,C 为圆心,BC ,AB 长为半径画弧,两弧在直线BC 上方交于点D ,连结AD ,CD .则有( )(A)∠ADC与∠BAD相等(B)∠ADC与∠BAD互补(C)∠ADC与∠ABC互补(D)∠ADC与∠ABC互余8.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()(A)SAS(B)ASA(C)AAS(D)SSS9.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD 是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()(A)7°(B)21°(C)23°(D)24°10.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()(A)5×35212(B)365×29(C)5×36214(D)375×21111.李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P 的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m=3时,求n的值.你解答这个题目得到的n值为()(A)4-2 3 (B)23-4 (C)-233(D)23312.用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是____ ____.13.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是__ __cm(第13题)(第14题)(第15题)14.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为_______m.15.如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为_________.16.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__ __.(第16题)(第17题)17.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC 之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l 上,则DF的长为____________.18.做如下操作:在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是___________(将正确结论的序号都填上).(第18题)(第19题)19.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是_______.20.取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为______________.21.李老师从油条的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB上的14,34均变成12,12变成1,等).那么在线段AB上(除A,B)的点中,在第二次操作后,恰好被拉到与1重合的点所对应的数之和是____________.22.矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为_________.23.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于 1 2EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M . (1)若∠ACD =114°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .24.如图,在△ABC 中,AB =AC ,∠BAC =40°,分别以AB ,AC 为边作两个等腰直角三角形ABD 和ACE ,使∠BAD =∠CAE =90°.(1)求∠DBC 的度数;(2)求证:BD =CE .25.正方形ABCD 和正方形AEFG 有公共顶点A ,将正方形AEFG 绕点A 按顺时针方向旋转,记旋转角∠DAG =α,其中0°≤α≤180°,连结DF ,BF ,如图.(1)若α=0°,则DF =BF ,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由. A B C E D26.课本中有一道作业题:有一块三角形余料ABC ,它的边BC =120mm ,高AD =80mm .要把它加工成正方形零件,使正方 形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ? 小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.27.若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形ABCD 中,点M在CD 边上,连AM ,BM ,∠AMB =90°,则点M 为直角点.(1)若矩形ABCD 一边CD 上的直角点M 为中点,问该矩形的邻边具有何种数量关系?并说明理由;(2)若点M ,N 分别为矩形ABCD 边CD ,AB 上的直角点,且AB =4,BC =3,求MN 的长.D BC AM28.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.29.若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.30.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.31.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.32.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.33.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD =5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.34.(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH =90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).35.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:3,EF⊥CE,求EF:EG的值.36.(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG =BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.37.数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).38.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE =β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=_______°,β=_______°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.39.如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.40.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小敏进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E,F分别在边BC,CD上,如图2,此时她证明了AE=AF.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明.(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).41.如图1,已知□ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是□ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)42.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.。

【十年中考真题系列】嘉兴、舟山卷 第四章 三角形与四边形

【十年中考真题系列】嘉兴、舟山卷 第四章 三角形与四边形

【十年中考真题系列】嘉兴、舟山卷 第四章 三角形与四边形1.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( )(A )4 (B )5 (C )6 (D )9 2.已知一个正多边形的内角是140°,则这个正多边形的边数是( )(A )6 (B )7 (C )8 (D )93.如图,AB //CD ,EF 分别为交AB ,CD 于点E ,F ,∠1=50°,则∠2的度数为( )(A )50° (B )120° (C )130° (D )150°(第3题)(第4题)(第5题)(第6题)4.如图,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果 AE EC = 2 3 ,那么 AB AC=( )(A ) 13(B )2 3(C )2 5(D )3 55.如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )2 3 (B )3 3 (C )4 3 (D )6 36.如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC =a 米,∠A =90°,∠C =40°,则AB 等于( )米.(A )a sin40°(B )a cos40°(C )a tan40°(D )atan40°7.已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( )(A )40° (B )60° (C )80° (D ) 90°8.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F . AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则 DEEF 的值为( ) (A ) 1 2(B )2(C )2 5(D )3 5(第8题)(第9题)(第10题)(第11题)9.欧几里得的《原本》记载,形如x 2+ax =b 2的方程的图解法是;画Rt △ABC ,使∠ACB =90°,BC =a 2 ,AC =b ,再在斜边AB 上截取BD = a2 .则该方程的一个正根是( ) (A )AC 的长(B )AD 的长(C )BC 的长(D )CD 的长10.如图,在平面直角坐标系xOy 中,已知点A (2,0),B (1,1).若平移点A 到点C ,使以点O ,A ,C ,B 为顶点的四边形是菱形,则正确的平移方法是( ) (A )向左平移1个单位,再向下平移1个单位ABCDFA BC DE(B )向左平移(22-1)个单位,再向上平移1个单位 (C )向右平移2个单位,再向上平移1个单位 (D )向右平移1个单位,再向上平移1个单位11.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )(A ) 5(B )13 6(C )1(D )5 612.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )(A ) (B ) (C ) (D )13.一张矩形纸片ABCD ,已知AB =3,AD =2,小明按所给图步骤折叠纸片,则线段DG 长为( )(A ) 2(B )2 2(C )1(D )2(第13题)(第14题)14.数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q ”. 分别作出了下列四个图形.其中作法错误的是( )(A ) (B ) (C ) (D )15.如图,在一张矩形纸片ABCD 中,AD =4 cm ,点E ,F 分别是CD 和AB 的中点.现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH .若HG 的延长线恰好经过点D ,则CD 的长为( )(A )2 cm(B )2 3 cm (C )4 cm (D )3 3cm(第15题)(第16题)(第17题)(第18题)16.如图,等腰△ABC 中,底边BC =a ,∠A =36°,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD 于E ,设k =5-12,则DE =( ) (A )k 2a(B )k 3a(C )a k 2(D )a k 317.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为斜边并且在AB 的同一侧作等腰直角△ACD 和△BCE ,连结AE 交CD于点M ,连结BD 交CE 于点N ,给出以下三个结论:①ADEBMN∥AB;②1MN=1AC+1BC;③MN≤14AB,其中正确结论的个数是()(A)0 (B)1 (C)2 (D)318.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14 cm2,四边形ABCD面积是11 cm2,则①②③④四个平行四边形周长的总和为()(A)48 cm (B)36 cm (C)24 cm (D)18 cm19.如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=_______度.D(第19题)(第20题)(第21题)(第22题)20.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=_______.21.在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为_________.22.如图,一张三角形纸片ABC,AB=AC=5. 折叠该纸片,使点A落在BC的中点上,折痕经过AC上的点E,则AE的长为__________.23.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为______米.(第23题)(第24题)(第25题)(第26题)24.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知ABAC=13,则EFDE=________.25.如图,已知菱形ABCD的一个内角∠BAD=80º,对角线AC、BD相交于点O,点E在AB上且BE =BO,则∠BAD=_______.26.如图,正方形ABCD的边长为3,点E,F分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为______,小球P所经过的路程为_________.27.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C=,……按此规律,写出tan∠BA n C=(用含n的代数式表示).FEDCAA DCB(第27题)(第28题)28.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是__________.29.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF 为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是__________.(第29题)(第30题)(第31题)30.一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12 cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为.(结果保留根号)31.如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:①AGAB=FGFB;②点F是GE的中点;③AF=23AB;④S△ABC=S△BDF,其中正确的结论序号是___________.32.在四边形ABCD中,∠D=60°,∠B比∠A大20°,∠C是∠A的2倍,求∠A,∠B,∠C的大小.33.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.34.如图,在□ABCD中,已知点E在AB上,点F在CD上且AE=CF.(1)求证:DE=BF;(2)连结BD,并写出图中所有的全等三角形.(不要求证明)35.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.36.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?37.已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.38.如图,正方形ABCD中,点E,F分别在AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.39.已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE=DF .求证:△ABC 是等边三角形.40.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,BD 与AE 、AF 分别相交于G 、H .(1)求证:△ABE ∽△ADF ;(2)若AG =AH ,求证:四边形ABCD 是菱形.41.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上. (1)如图1,当n =1时,求正三角形的边长a 1; (2)如图2,当n =2时,求正三角形的边长a 2;(3)如题图,求正三角形的边长a n (用含n 的代数式表示).ADCBGHF图1图242.以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH . (1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°),① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ;③ 四边形EFGH 是什么四边形?并说明理由.43.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图①,我们将这种变换记为[θ,n ].(1)如图①,对△ABC 作变换[60°,3]得△AB ′C ′,则S △AB ′C ′:S △ABC =_____;直线BC 与直线B ′C ′所夹的锐角为_____度;(2)如图②,△ABC 中,∠BAC =30°,∠ACB =90°,对△ABC 作变换[θ,n ]得△AB 'C ',使点B 、C 、C ′在同一直线上,且四边形ABB 'C '为矩形,求θ和n 的值; (3)如图③,△ABC 中,AB =AC ,∠BAC =36°,BC =l ,对△ABC 作变换[θ,n ]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB 'C '为平行四边形,求θ和n 的值.A BCDHEFG(图2)E BFGDHAC(图3)(图1)A BCDH EFG44.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.45.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠B的平分线BB′方向平移得到△A′B′C′,连结A A′,BC′. 小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)应用拓展:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC =2AB.试探究BC,CD,BD的数量关系.46.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.(1)概念理解:请你根据上述定义举一个等邻角四边形的例子; (2)问题探究:如图1,在四边形ABCD 中,BE 平分∠ABC 交CD 于点E ,AD ∥BE ,∠D =80°,∠C =40° ,探究四边形ABCD 是否为等邻角四边形,并说明理由; (3)应用拓展:如图2,在Rt △ABC 与Rt △ABD 中,∠C =∠D =90°,BC =BD =3,AB =5,将Rt △ABD 绕着点A 顺时针旋转角α(0°<∠α<∠BAC ),得到Rt △AB 'D '(如图3),当凸四边形AD 'BC 为等邻角四边形时,求出它的面积.47.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC 中,AC =6,BC =3,∠ACB =30°,试判断△ABC 是否是“等高底”三角形请说明理由.(2)问题探究:如图2,△ABC 是“等高底”三角形,BC 是“等底”,作△ABC 关于BC 所在直线的对称图形得到△A 'BC ,连结AA '交直线BC 于点D .若点B 是△AA 'C 的重心,求ACBC的值. (3)应用拓展:如图3.已知l 1∥l 2,l 1与l 2之间的距离为2.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45° 得到△A 'B 'C ,AC 所在直线交l 2于点D .求CD 的值.图1D'D 图2BDCE48.如图,AM 是△ABC 的中线,D 是线段AM 上一点(不与点A 重合).DE ∥AB 交AC 于点F ,CE ∥AM ,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; (2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由. (3)如图3,延长BD 交AC 于点H ,若BH ⊥AC ,且BH =AM .①求∠CAM 的度数;②当FH =3,DM =4时,求DH 的长.49.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图3,在边长为1的小正方形组成的5×5网格中,点A ,C ,B 都在格点上,在格点上找一点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成的四边形CFGH 是正方形.画出点D ,并 求正方形CFGH 的边长.图3图1 图2EH EH FG50.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=1.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?51.小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.11。

中考数学三角形与四边形复习题及答案

中考数学三角形与四边形复习题及答案

第二部分空间与图形第四章三角形与四边形第1讲线、角、相交线和平行线一级训练1.(2011年安徽芜湖)一个角的补角是36°35′,这个角是________.2.如图4-1-12,已知线段AB=10 cm,AD=2 cm,D为线段AC的中点,那么线段CB=________cm.图4-1-123.(2012年湖南株洲)如图4-1-13,已知直线a∥b,直线c与a,b分别交于点A,B,且∠1=120°,则∠2=()图4-1-13A.60°B.120°C.30°D.150°4.(2011年四川南充)如图4-1-14,直线DE经过点A,DE∥BC,∠B=60°,下列结论成立的是()图4-1-14A.∠C=60°B.∠DAB=60°C.∠EAC=60°D.∠BAC=60°5.下列命题中,正确的是()A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0 D.若a·b=0,则a=0或b=06.(2012年湖北孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠r互余,则∠β-∠r的值等于()A.45°B.60°C.90°D.180°7.(2011年浙江丽水)如图4-1-15,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°图4-1-158.如图4-1-16,下列条件中,不能判断l1∥l2的是()图4-1-16A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.(2011年湖北孝感)如图4-1-17,直线AB,CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT=()图4-1-17A.30°B.45° C. 60° D. 120°10.(2012年湖南怀化)如图4-1-18,已知AB∥CD,AE平分∠CAB,且交CD于点D,若∠C=110°,则∠EAB=()A.30°B.35°C.40°D.45°图4-1-1811.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路变直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象有()A.①②B.①③C.②④D.③④12.如图4-1-19,一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()图4-1-19A.45°B.60°C.75°D.80°二级训练13.(2012年四川广元)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度()A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°14.如图4-1-20,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°图4-1-2015.如图4-1-21,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′=()图4-1-21A.70°B.65°C.50°D.25°w16.观察下图4-1-22,寻找对顶角(不含平角):(1)(2)(3)图4-1-22(1)如图4-1-22(1),图中共有______对对顶角;(2)如图4-1-22(2),图中共有______对对顶角;(3)如图4-1-22(3),图中共有______对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成______对对顶角;(5)若有2 008条直线相交于一点,则可形成______对对顶角.三级训练17.如图4-1-23,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.图4-1-23(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?第2讲三角形第1课时三角形一级训练1.已知在△ABC中,若∠A=70°-∠B,则∠C=()A.35°B.70°C.110°D.140°2.如图4-2-14,在△ABC中,∠A=70°,∠B=60°,点D在BC的延长线上,则∠ACD=()A.100°B.120°C.130°D.150°图4-2-143.已知如图4-2-15的两个三角形全等,则α的度数是()图4-2-15A.72°B.60°C.58°D.50°4.(2011年湖南怀化)如图4-2-16,∠A,∠1,∠2的大小关系是()图4-2-16A. ∠A>∠1>∠2B. ∠2>∠1>∠AC. ∠A>∠2>∠1D. ∠2>∠A>∠15.(2011年江西)如图4-2-17,下列条件中,不能证明△ABD≌△ACD的是()图4-2-17A.BD=DC,AB=AC B.∠ADB=∠ADC,∠BAD=∠CADC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.(2011年上海)下列命题中,是真命题的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等7.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线8.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASAC.AAS D.角平分线上的点到角两边距离相等图4-2-189.(2011年安徽芜湖)如图4-2-19,已知在△ABC中,∠ABC=45°,F是高AD和BE 的交点,CD=4,则线段DF的长度为()图4-2-19A.2 2B.4C.3 2D.4 210.以三条线段3,4,x-5为边组成三角形,则x的取值范围为________.11.若△ABC的周长为a,点D,E,F分别是△ABC三边的中点,则△DEF的周长为__________.12.(2011年江西)如图4-2-20,两块完全相同的含30°的直角三角形叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC;②△ADG≌△ACF; ③O为BC的中点;④AG∶DE =3∶4.其中正确结论的序号是__________.图4-2-20二级训练13.(2011年山东威海)在△ABC中,AB>AC,点D,E分别是边AB,AC的中点,点F 在边BC上,连接DE,DF,EF,则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等?()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF14.(2011年浙江)如图4-2-21,点D,E分别在AC,AB上.(1)已知BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,“CD=BE”记为②,“AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是________命题,命题2是_________命题(选择“真”或“假”填入空格).图4-2-2115.(2012年湖北随州)如图4-2-22,在△ABC中,AB=AC,点D是BC的中点,点E 在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.图4-2-22三级训练16.(2011年湖南衡阳)如图4-2-23,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.图4-2-2317.如图4-2-24,两根旗杆间相距12 m ,某人从点B 沿BA 走向点A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM =DM ,已知旗杆AC 的高为3 m ,该人的运动速度为1 m/s ,求这个人运动了多长时间?图4-2-24第二部分 空间与图形 第四章 三角形与四边形第1讲 线、角、相交线和平行线 【分层训练】 1.143°25′ 2.B 3.B 4.B 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.A 解析:如图D9,过点O 作OD ⊥OC ,根据平面镜反射定律,可得∠AOD =∠BOD .又∵AO 垂直于水平面,OB 平行于水平面,∴∠AOB =90°.∴∠AOD =∠BOD =45°.又∵OD ⊥OC ,∴∠BOC =90°-∠BOD =45°.由于OB 平行于水平面,可得∠1=∠BOC =45°.图D911.D 13.B14.C 解析:由题意,可得∠EAB +∠DBA =180°,又由∠C =90°,可得∠CAB +∠CBA =90°,于是∠CAE +∠DBC =90°.故∠CAE =90°-∠DBC =70°.15.C 解析:∠D ′EF =∠DEF =∠EFB =65°,于是∠AED ′=180°-∠D ′ED =50°. 16.(1)2 (2)6 (3)12 (4)n (n -1) (5)4 030 056解析:(1)如图4-1-22(1),图中共有1×2=2对对顶角; (2)如图4-1-22(2),图中共有2×3=6对对顶角; (3)如图4-1-22(3),图中共有3×4=12对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成(n -1)n 对对顶角;(5)若有2 008条直线相交于一点,则可形成(2 008-1)×2 008=4 030 056对对顶角.17.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 第2讲 三角形 第1课时 三角形 【分层训练】1.C 2.C 3.D 4.B 5.D 6.D 7.C 8.A 9.B10.6<x <12 解析:由题意,可得1<x -5<7,解得6<x <12. 11.a 2 解析:由题意,可得△DEF 的三边为△ABC 的中位线,故其周长为a 2. 12.①②③④ 13.C 14.(1)证明:连接BC ,∵ BD =CE ,CD =BE ,BC =CB , ∴ △DBC ≌△ECB (SSS). ∴ ∠DBC =∠ECB . ∴ AB =AC . (2)真 假15.证明:(1)∵D 是BC 的中点, ∴BD =CD .在△ABD 和△ACD 中, ⎩⎪⎨⎪⎧BD =CD ,AB =AC ,AD =AD (公共边),∴△ABD ≌△ACD (SSS).(2)由(1),可知:△ABD ≌△ACD , ∴∠BAD =∠CAD ,即∠BAE =∠CAE . 在△ABE 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAE =∠CAE , AE =AE ,∴△ABE ≌△ACE (SAS).∴BE =CE (全等三角形的对应边相等).16.7 解析:因为将△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:∵∠CMD =90°, ∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD . ∴AC =BM =3.∴他到达点M 时,运动时间为3÷1=3(s). 答:这人运动了3 s.。

中考数学冲刺专题训练(附答案):三角形与四边形

中考数学冲刺专题训练(附答案):三角形与四边形

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°, 故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt △CEF 中,OC =12EF =22x , △EAF 中,∠EAO =∠FAO =22.5°=∠BAE =22.5°, ∴OE =BE , ∵AE =AE ,∴Rt △ABE ≌Rt △AOE (HL ), ∴AO =AB =1, ∴AC =2=AO+OC ,∴1+22x =2, x =2﹣2,∴BE EC =1(22)22---=(21)(22)2-+=22; 故②不正确; ③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF =AH ,∠DAF =∠BAH , ∵∠EAF =45°=∠DAF+∠BAE =∠HAE , ∵∠ABE =∠ABH =90°, ∴H 、B 、E 三点共线, 在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a ''∴=-=-,3255EC BC BE a a =-=-=. 在ADB '∆与B CE '∆中,90A 90B AD EBC B DD C ︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩, ADB B CE ''∴∆⋃∆,DB AB CE B E'''∴=,即2112355a a a -=,解得153a =,20a =(舍去). 综上,所求a 的值为53或53. 故答案为53或53. 11.如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90°得ABG ∆,则CF 的长为_____.【答案】6-25 【解析】作FM AD M FN AG N ⊥⊥于,于 ,如图,易得四边形CFMD 为矩形,则4FM =∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴425254GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=32,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。

中考数学:三角形四边形求角度专项复习题(含答案)

中考数学:三角形四边形求角度专项复习题(含答案)

中考数学复习非圆几何求角度1、【基础题】(2015呼和浩特)如左下图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B. 100°C. 110°D. 120°2、【基础题】(2015)如右上图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B. 110°C. 115°D.120°3、【基础题】(2015)如右图,在△A BC中,∠C=31°,∠A BC的平分线BD交A C于点D,如果DE垂直平分BC,那么∠A= °.4、【综合Ⅰ】在△ABC中,∠A:∠B:∠C=1:2:3,求△ABC各角的度数.5、【综合Ⅰ】(2015)如左下图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°6、【综合Ⅱ】(2015)如右上图,△ABC中,CD是边AB上的高,且AD CD CD BD.(1)求证:△ACD ∽△CBD;(2)求∠ACB的大小.7、【综合Ⅲ】如左下图,点O是△ABC一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于_______8、【基础题】(2015)右上图是由射线AB、BC、CD、DE、EA,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.9、【综合Ⅱ】(2015)如左下图,平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠3+∠1-∠2=°10、【基础题】(2015)如右上图,□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD的度数是()A.61º B.63º C.65º D.67º11、【综合Ⅱ】如右图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.12、【综合Ⅱ】(2010襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、【综合Ⅲ】如左下图,在矩形ABCD中,AC与BD相交于一点O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度数.14、【综合Ⅱ】(2015)如右上图,已知点E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=______度.15、【综合Ⅱ】(2015黄冈)如左下图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.16、【综合Ⅲ】(2015)如右上图,等腰直角三角形BDC的顶点D在等边三角形ABC的部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.17、【综合Ⅲ】(2014)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45°18、【综合Ⅲ】(2015襄阳)在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .19、【提高题】如左下图,等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( )A. 45°B. 60°C. 75°D. 80°20、【提高题】(2015)如右上图,在△ABC 中,∠B=40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= 度。

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考平面几何压轴(三角形与四边形)训练15题(精选)1.如图,四边形ABCD 是平行四边形,且对角线AC , BD 交于点O ,点M , N 分别在AD , BC 上,且AM = CN ,点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE = OF ;(2)连接BM 交AC 于点H ,连接HE ,HF ;(i)如图2,若HE ∥AB ,求证: FH ∥AD ;(ii)如图3,若四边形ABCD 为菱形且DM = 2AM ,∠EHF=60°,求AC BD 的值.2.(1)如图①,在矩形ABCD 的AB 边上取一点E ,将ΔADE 沿DE 翻折,使点A 落在BC 上的A′处,若AB =6,BC =10,求AEEB 的值;(2)如图②,在矩形ABCD 的BC 上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B′处,若BC ·CE =24,AB =6,求BE 的值;(3)如图③,在ΔABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD+53EF 的值.3. 在正方形ABCD 中,AB =10, AC 是对角线,点O 是AC 的中点,点E 在AC 上,连接DE ,点C 关于DE 的对称点是C',连接DC' ,EC'.(1) 如图1,若DC'经过点O ,求证:OC ′CE = √22. (2) 如图2,连接CC',BC',若∠ADC' = 2∠CBC',求CC'的长;(3) 当点B , C', E 三点共线时,直接写出CE 的长.4.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED= EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C 重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB= 1,当∠DEB′=45°时,求BM的长.5.如图,在正方形ABCD中,点M、N在直线BD上,连接AM,AN并延长交BC、CD于点E、F,连接EN.(1)如图1,若M,N都在线段BD上,且AN = NE,求∠MAN;(2)如图2.当点M在线段DB 延长线上时,AN = NE,(1)中∠MAN的度数不变,判断BM,DN,MN之间的数量关系并证明;(3)如图3,若点M在DB的延长线上,N在BD的延长线上,且∠MAN=135°(i)AB=√6,MB=√3,求DN.(ii)求证:2AM2 - MB 2= MN2 - BN2.6.如图,在RtΔABC与RtΔBDE中,∠BAC=∠BDE=90°,∠ABC=∠DBE=α.(1)如图1,当α= 60°,且点E为BC的中点时,若AB=2,连接AD.求AD的长度;(2)如图2,若α≠ 60°,且点E为BC中点时,取CE中点F,连接AF、DF。

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

中考数学总复习专题三解答题重难点题型突破题型二几何图形探究题类型与三角形、四边形有关的探究题课件

(2)如图②,过点 F 作 FG⊥AB 于 G,连接 FE.∵AF=BE,AF∥BE,∴ 四边形 ABEF 是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32 3= 8×FG,∴FG=4 3,在 Rt△FAG 中,AF=8,∴∠FAG=60°,当点 G 在 线段 AB 上时,∠FAB=60°,当点 G 在线段 BA 延长线时,∠FAB=120°,
解:(1)原命题不成立,新结论为:∠APB=90°, AF+BE=2AB(或 AF=BE=AB),证明:∵AM∥BN, ∴∠MAB+∠NBA=180°,∵AE,BF 分别平分∠MAB,∠NBA,
∴∠EAB=12∠MAB,∠FBA=12∠NBA,
∴∠EAB+∠FBA=12(∠MAB+∠NBA)=90°, ∴∠APB=90°,∵AE 平分∠MAB,∴∠MAE=∠BAE, ∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA, ∴AB=BE,同理:AF=AB,∴AF+BE=2AB(或 AF=BE=AB);
辽宁专用
专题三 解答题重难点题型突破
题型二 几何图形探究题 类型1 与三角形、四边形有关的探究题
【例1】 (2016·抚顺)如图,在△ABC中,BC >AC,点E在BC上,CE=CA, 点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.
(1)如图①,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F. ①求证:FA=DE; ②请猜想三条线段DE、AD、CH之间的数量关系,直接写出结论; (2)如图②,当∠ACB=120°时,三条线段DE、AD、CH之间存在怎样的数量关 系?请证明你的结论.
(3)成立.∵四边形 ABCD 是正方形,∴BC=CD,∠FBC=∠ECD=90 °,

中考数学专题《与三角形、四边形相关的压轴题》2022年中考数学真题分项汇编(全国通用)原卷

中考数学专题《与三角形、四边形相关的压轴题》2022年中考数学真题分项汇编(全国通用)原卷

专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正7x 12 0的两个根OA OB半轴上,M 为BC 的中点,OA、OB 的长分别是一元二次方程x2,4tan DAB ,动点P 从点D 出发以每秒 1 个单位长度的速度沿折线DC CB 向点B 运动,到达B 点停3止.设运动时间为t 秒,△APC 的面积为S.(1)求点C 的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P,使!CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,V ABC 和V BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE ,ADC 120,从而得出V ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由.2②若AE2AG 10 ,试求出正方形ABCD 的面积.3.(2022·海南)如图 1,矩形ABCD 中,AB 6, AD 8,点P 在边BC 上,且不与点B、C 重合,直线AP 与DC 的延长线交于点E.(1)当点P 是BC 的中点时,求证:△ABP≌△ECP ;V,点B落在矩形ABCD 的内部,延长PB交直线AD 于点F.(2)将△APB 沿直线AP 折叠得到APB①证明F A FP ,并求出在(1)条件下AF 的值;②连接B C ,求△PCB周长的最小值;③如图 2,BB 交AE 于点H,点G 是AE 的中点,当EAB 2AEB 时,请判断AB 与H G的数量关系,并说明理由.4.(2022·吉林)如图,在V ABC 中,ACB 90, A 30, AB 6cm .动点 P 从点 A 出发,以 2cm/ s 的速度沿边 AB 向终点 B 匀速运动.以 P A 为一边作A P Q 120 ,另一边 PQ 与折线 AC CB 相交于点 ,以Q PQ 为边作菱形 PQMN ,点 N 在线段 PB 上.设点 P 的运动时间为 x (s) ,菱形 PQMN 与V ABC 重叠部分图形y (cm ) .(1)当点Q 在边 AC 上时, PQ 的长为cm ;(用含 x 的代数式表示) 的面积为 2 (2)当点 M 落在边 BC 上时,求 的值;(3)求 关于 的函数解析式,并写出自变量 的取值范围.x y x x 5.(2022·黑龙江牡丹江)在菱形 ABCD 和正三角形 BGF 中,ABC 60 , P 是 DF 的中点,连接 PG 、 PC .(1)如图 1,当点G 在 BC 边上时,写出 PG 与 PC 的数量关系 .(不必证明)(2)如图 2,当点 F 在 AB 的延长线上时,线段 PC 、 PG 有怎样的数量关系,写出你的猜想,并给予证明;(3)如图 3,当点 F 在CB 的延长线上时,线段 PC 、 PG 又有怎样的数量关系,写出你的猜想(不必证 明).6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,AEF 90,且EF 交正方形外角的平分线CF 于点F .求证AE EF .(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图 1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF ;BE(3)在(2)的条件下,连接AC ,过点E 作EP AC,垂足为P .设kBC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.△△7.(2022·福建)已知ABC ≌DEC ,AB=AC,AB>BC.(1)如图 1,CB 平分∠ACD,求证:四边形ABDC 是菱形;(2)如图 2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC),BC,DE 的延长线相交于点F,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图 3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC),若BAD BCD ,求∠ADB 的度数.8.(2022·湖南衡阳)如图,在菱形ABCD 中,AB 4 ,BAD 60,点P 从点A 出发,沿线段AD 以每秒 1PQ AB个单位长度的速度向终点D 运动,过点P 作于点,作Q PM AD交直线AB于点,交直线BCM于点F ,设V PQM 与菱形ABCD重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与的函数关系式;V V t(4)以线段PQ为边,在PQ右侧作等边三角形PQE ,当 2 t 4时,求点E 运动路径的长.39.(2022·浙江金华)如图,在菱形ABCD 中,AB 10,sin B,点E 从点B 出发沿折线B C D 向终点D5运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F,在EF 的右侧作矩形EFGH .(1)如图 1,点G 在AC 上.求证:F A FG .(2)若EF FG ,当EF 过AC 中点时,求AG 的长.(3)已知FG 8 ,设点E 的运动路程为s.当s 满足什么条件时,以G,C,H 为顶点的三角形与BEF 相似V(包括全等)?10.(2022·四川南充)如图,在矩形 ABCD 中,点 O 是 AB 的中点,点 M 是射线 DC 上动点,点 P 在线段 AM1 上(不与点 A 重合),OP AB .(1)判断△ABP 的形状,并说明理由.(2)当点 M 为边 D C 中点时,连接CP CPQ 90 ,当 时, 28 Q AB 5, AD 4,DQ 在边 AD 上,并延长交 AD 于点 N .求证: PN AN .(3) 点 5 求 DM 的长.11.(2022·湖北武汉)已知CD 是V ABC 的角平分线,点 E ,F 分别在边 AC , BC 上,AD m , BD n , V ADE 与V BDF 的面积之和为 S .(1)填空:当ACB 90, DE AC , DF BC时, n n S _____________; S _____________;①如图 1,若 B 45 , m 5 2 ,则 _____________, ②如图 2,若 B 60 , m 4 3 ,则 _____________, (2)如图 3,当 ACB EDF 90 时,探究 S 与 m 、n 的数量关系,并说明理由: (3)如图 4,当 ACB 60 , EDF 120 n 4时,请直接写出 S 的大小., m 6 ,12.(2022·山东临沂)已知V ABC 是等边三角形,点B,D 关于直线AC 对称,连接AD,CD.(1)求证:四边形ABCD 是菱形;(2)在线段AC 上任取一点Р(端点除外),连接PD.将线段PD 绕点Р 逆DPQ 时针旋转,使点D 落在BA 延长线上的点Q 处.请探究:当点Р 在线段AC 上的位置发生变化时,的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ 与CP 之间的数量关系,并加以证明.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角PEF90 , FP 60的一个顶点放在正方形中心处,并绕点逆时针旋转,探究直角三角板O O PEF板与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为 2).(1)操作发现:如图 1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在S 1S的关系为__________;旋转过程中,重叠部分的面积与(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,OE,OP 分别与正方形的边相交于点M,N.①如图 2,当BM CN 时,试判断重叠部分V OMN的形状,并说明理由;②如图 3,当CM CN 时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH (设GOH ),将GOH绕点O 逆时针旋转,在旋转过程中,GOH ABCD 的边所围成的图形的面积为S2 ,的两边与正方形请直接写出S2 的最小值与最大值(分别用含的式子表示),6 2 6 2(参考数据:sin15,cos15, tan15 2 3 )4414.(2022·贵州贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.AD如图,在□ABCD 中,AN 为BC 边上的高,m ,点M 在AD 边上,且BA BM ,点E 是线段AM 上AN任意一点,连接BE ,将△ABE 沿BE 翻折得V FBE .AMAN (1)问题解决:如图①,当BAD 60,将△ABE 沿BE 翻折后,使点F 与点M 重合,则BE 翻折后,使EF ∥BM ,求ABE______;(2)问题探究:如图②,当BAD 45 ,将△ABE 沿的度数,并求出此m的最小值;(3)拓展延伸:当BAD 30,将△ABE 沿BE 翻折后,若EF AD ,且AE MD ,根据题时m意在备用图中画出图形,并求出的值.15.(2022·吉林长春)【探索发现】在一次折纸活动中,小亮同学选用了常见的A4 纸,如图①,矩形ABCD 为它的示意图.他查找了A4 纸的相关资料,根据资料显示得出图①中AD 2AB .他先将A4 纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想△ADG≌△AFG .【问题解决】(1)小亮对上面△ADG≌△AFG 的猜想进行了证明,下面是部分证明过程:证明:四边形ABCD 是矩形,∴BAD B C D 90.12由折叠可知,BAF B AD 45 ,BF A EF A.∴EF A BFA 45 .∴AF 2AB AD .请你补全余下的证明过程.FG【结论应用】(2) DAG 的度数为________度,的值为_________;AF1(3)在图①的条件下,点P 在线段AF 上,且AP AB ,点Q 在线段AG 上,连结FQ 、PQ ,如图②,设2FQ PQAB =a ,则的最小值为_________.(用含a 的代数式表示)16.(2022·广东深圳)(1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将△AEB 沿BE 翻折到V BEF 处,延长EF 交CD 边于G 点.求证:△BFG≌△BCGAD 8, AB 6,(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且将△AEB 沿BE 翻折到V BEF 处,延长EF 交BC 边于点G, 延长BF 交CD 边于点H,且FH CH, 求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,E为CD 边上的三等分点, D 60,将V ADE 沿AE 翻折得到BC 于点P, 求CP 的长.△AFE ,直线EF 交17.(2022·黑龙江)V ABC 和V ADE 都是等边三角形.(1)将V ADE 绕点A 旋转到图①的位置时,连接BD,CE 并延长相交于点P(点P 与点A 重合),有P A PB PC (或P A PC PB )成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD,CE 相交于点PV,连接 P A ,猜想线段 P A 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将V ADE 绕点 A 旋转到图③的 位置时,连接 BD ,CE 相交于点 P ,连接 P A ,猜想线段 P A 、PB 、PC 之间有怎样的数量关系?直接写出结 论,不需要证明.18.(2022·辽宁锦州)在V ABC 中, AC BC ,点 D 在线段 AB 上,连接CD 并延长至点 E ,使 DE CD ,过点 E 作 EF AB ,交直线 AB 于点 F .(1)如图 1,若 ACB 120 ,请用等式表示 AC 与 EF 的数量关系:____________.(2)如图 2.若ACB 90,完成以下问题:①当点 D ,点 F 位于点 A 的异侧时,请用等式表示 AC , AD ,DF 之间的数量关系,并说明理由; ②当点 D ,点 F 位于点 A 的同侧时,若 DF 1, AD 3,请直接写出 AC 的长. 19.(2022·广西)已知 MON ,点 A ,B 分别在射线OM ,ON 上运动, AB 6.(1)如图①,若 90,取 AB 中点 D ,点 A ,B 运动时,点 D 也随之运动,点 A ,B ,D 的对应点分别为 A , B , D OD ,OD OD 与OD 60,以 AB,连接 .判断 有什么数量关系 证明你的结论:(2)如图②,若 ? 45,当点 A ,B 运 为斜边在其右侧作等腰直角三角形 ABC ,求点 O 与点 C 的最大距离:(3)如图③,若 动到什么位置时,V AOB 的面积最大?请说明理由,并求出V AOB 面积的最大值.20.(2022·湖北十堰)【阅读材料】如图①,四边形ABCD 中,AB AD , B D180,点E ,F 分别在BC ,CD 上,若BAD 2EAF ,则EF BE DF .【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知CD CB 100m ,D 60ABC 120BCD 150M N DM 100m,,,道路AD ,AB 上分别有景点,,且,M A N的长少_________ BN 50 3 1 m,若在M,N M N之间修一条直路,则路线的长比路线m (结果取整数,参考数据: 3 1.7 ).21.(2022·陕西)问题提出(1)如图 1,AD 是等边V ABC 的中线,点P 在AD 的延长线上,且AP AC ,则APC的度数为__________.问题探究(2)如图 2,在V ABC 中,CA C B 6, C 120.过点 l BC ,分别交 AB 、BC 于点 O 、E ,求四边形OECA 的面积.A 作 ,且 AP BC,过点 P 作直线 AP ∥BC 问题解决(3)如图 3,现有一块V ABC 型板材,ACB 为钝角, BAC 45 .工人师傅想用这块板材裁出一个 BAP 15, AP AC △ABP 型部件,并要求 .工人师傅在这块板材上的作法如下: ①以点 C 为圆心,以CA 长为半径画弧,交 AB 于点 D ,连接CD ;②作CD 的垂直平分线 l ,与CD 于点 E ;③以点 A 为圆心,以 AC 长为半径画弧,交直线 l 于点 P ,连接 AP 、BP ,得△ABP . 请问,若按上述作法,裁得的△ABP 型部件是否符合要求?请证明你的结论.。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

2019、2020年浙江中考数学试题分类(5)——三角形与四边形(含答案)

2019、2020年浙江中考数学试题分类(5)——三角形与四边形(含答案)

2019、2020年浙江中考数学试题分类(5)——三角形与四边形一.三角形三边关系(共3小题)1.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.72.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,113.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.8二.三角形内角和定理(共2小题)4.(2019•绍兴)如图,墙上钉着三根木条a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°5.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°三.全等三角形的判定与性质(共4小题)6.(2020•湖州)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=√2DT C.BD=BO D.2OC=5AC7.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长8.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE.(2)连结AE,当BC=5,AC=12时,求AE的长.四.角平分线的性质(共1小题)10.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42五.等腰三角形的性质(共2小题)11.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C 点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°12.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.六.等边三角形的判定与性质(共1小题)13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 .七.勾股定理(共2小题)14.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和15.(2020•绍兴)如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为2√3,则m 的值为 .八.勾股定理的证明(共1小题)16.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形SSSSS 正方形SSSS 的值是( )A .1+√2B .2+√2C .5−√2D .154 九.勾股定理的应用(共3小题)17.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .245B .325C .12√3417D .20√341718.(2019•衢州)一块圆形宣传标志牌如图所示,点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .现测得AB =8dm ,DC =2dm ,则圆形标志牌的半径为( )A .6dmB .5dmC .4dmD .3dm19.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆P A =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O 转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3).(1)点P 到MN 的距离为 cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为 cm .一十.等腰直角三角形(共1小题)20.(2019•宁波)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为( )A .60°B .65°C .70°D .75°一十一.三角形中位线定理(共1小题)21.(2020•宁波)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为( )A .2B .2.5C .3D .4一十二.三角形综合题(共1小题)22.(2020•金华)如图,在△ABC 中,AB =4√2,∠B =45°,∠C =60°.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF .①如图2,当点P 落在BC 上时,求∠AEP 的度数.②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.一十三.多边形(共2小题)23.(2020•湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .√22 D .√3224.(2019•衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A.1 B.√2C.√3D.2一十四.平面镶嵌(密铺)(共1小题)25.(2019•绍兴)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F 分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.一十五.平行四边形的性质(共2小题)26.(2020•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°27.(2020•绍兴)如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.一十六.平行四边形的判定与性质(共1小题)28.(2019•湖州)如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.一十七.菱形的性质(共1小题)29.(2019•温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.一十八.菱形的判定(共1小题)30.(2020•嘉兴)如图,▱ABCD 的对角线AC ,BD 相交于点O ,请添加一个条件: ,使▱ABCD 是菱形.一十九.矩形的性质(共6小题)31.(2019•台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( ) A .14 B .12 C .817 D .815 32.(2019•金华)如图,矩形ABCD 的对角线交于点O .已知AB =m ,∠BAC =∠α,则下列结论错误的是( )A .∠BDC =∠αB .BC =m •tan α C .AO =S 2SSSSD .BD =S SSSS 33.(2020•绍兴)将两条邻边长分别为√2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).①√2,②1,③√2−1,④√32,⑤√3. 34.(2019•绍兴)有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°,要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.35.(2019•舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.36.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.二十.正方形的性质(共5小题)37.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和238.(2019•绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E 从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变39.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.40.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.41.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.二十一.正方形的判定与性质(共1小题)42.(2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②二十二.四边形综合题(共8小题)43.(2020•衢州)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当S1S2=13时,求SSSS的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.44.(2020•嘉兴)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF =4cm,并进行如下研究活动.活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.【思考】图2中的四边形ABDE是平行四边形吗?请说明理由.【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.45.(2020•绍兴)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.(2020•温州)如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知y=−65x+12,当Q为BF中点时,y=24 5.(1)判断DE与BF的位置关系,并说明理由.(2)求DE,BF的长.(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系.②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.47.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.48.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.49.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.50.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()2019、2020年浙江中考数学试题分类(5)——三角形与四边形参考答案与试题解析一.三角形三边关系(共3小题)1.【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.2.【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.3.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.二.三角形内角和定理(共2小题)4.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.5.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.三.全等三角形的判定与性质(共4小题)6.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=√2CD=√2DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,根据筛选法,故选:D.7.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.8.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.9.【解答】证明:(1)∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)∵△ABC≌△DCE,∴CE=BC=5,∵∠ACE=90°,∴AE=√SS2+SS2=√25+144=13.四.角平分线的性质(共1小题)10.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=12AB•DH+12BC•CD=12×6×4+12×9×4=30,故选:B.五.等腰三角形的性质(共2小题)11.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.12.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=12(180°﹣∠B)=12[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=12(180°﹣m°)=90°−12m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+12m°,∵EA=EC,∴∠CAE=12S AEB=90°−12n°−12m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+12m°+90°−12n°−12m°=12n°.六.等边三角形的判定与性质(共1小题)13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.七.勾股定理(共2小题)14.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.15.【解答】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=√3,当点D、B在AC的两侧时,如图,∵BD=2√3,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2√3,∴D′E=3√3,∴AD′=√(3√3)2+12=2√7,∴m=2√7,综上所述,m的值为2或2√7,故答案为:2或2√7.八.勾股定理的证明(共1小题)16.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BGC =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=S 2(√2+1)2+S 2=(4+2√2)S 2, ∴S 正方形SSSS S 正方形SSSS=(4+2√2)S 22S 2=2+√2.故选:B .九.勾股定理的应用(共3小题) 17.【解答】解:过点C 作CF ⊥BG 于F ,如图所示:设DE =x ,则AD =8﹣x ,根据题意得:12(8﹣x +8)×3×3=3×3×6, 解得:x =4, ∴DE =4, ∵∠E =90°,由勾股定理得:CD =√SS 2+SS 2=√42+32=5, ∵∠BCE =∠DCF =90°, ∴∠DCE =∠BCF ,∵∠DEC =∠BFC =90°, ∴△CDE ∽△CBF , ∴SS SS =SS SS ,即3SS=58,∴CF =245.故选:A .18.【解答】解:连接OA ,OD ,∵点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D .AB =8dm ,DC =2dm , ∴AD =4dm ,设圆形标志牌的半径为r ,可得:r 2=42+(r ﹣2)2, 解得:r =5, 故选:B . 19.【解答】解:(1)如图3中,延长PO 交MN 于T ,过点O 作OH ⊥PQ 于H .由题意:OP =OQ =50cm ,PQ =P A ﹣AQ =140﹣60=80(cm ),PM =P A +BC =140+60=200(cm ),PT ⊥MN ,∵OH ⊥PQ ,∴PH =HQ =40(cm ), ∵cos ∠P =SSSS =SSSS , ∴4050=SS 200,∴PT =160(cm ),∴点P 到MN 的距离为160cm , 故答案为160.(2)如图4中,当O ,P ,A 共线时,过Q 作QH ⊥PT 于H .设HA =xcm .由题意AT =PT ﹣P A =160﹣140=20(cm ),OA =P A ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm , ∵QH ⊥OA ,∴QH 2=AQ 2﹣AH 2=OQ 2﹣OH 2, ∴602﹣x 2=502﹣(90﹣x )2, 解得x =4609,∴HT =AH +AT =6409(cm ), ∴点Q 到MN 的距离为6409cm .故答案为6409.一十.等腰直角三角形(共1小题) 20.【解答】解:设AB 与直线n 交于点E , 则∠AED =∠1+∠B =25°+45°=70°. 又直线m ∥n ,∴∠2=∠AED =70°.故选:C .一十一.三角形中位线定理(共1小题) 21.【解答】解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =6, ∴AB =√SS 2+SS 2=√82+62=10. 又∵CD 为中线, ∴CD =12AB =5.∵F 为DE 中点,BE =BC 即点B 是EC 的中点, ∴BF 是△CDE 的中位线,则BF =12CD =2.5. 故选:B .一十二.三角形综合题(共1小题) 22.【解答】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt △ABD 中,AD =AB •sin45°=4√2×√22=4.(2)①如图2中,∵△AEF ≌△PEF ,∴AE =EP ,∵AE =EB ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠PEB =90°,∴∠AEP =180°﹣90°=90°.②如图3中,由(1)可知:AC =SS SSS60°=8√33, ∵PF ⊥AC ,∴∠PF A =90°,∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,∴∠AFE =∠B ,∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴SS SS =SS SS ,即4√2=√28√33,∴AF =2√3,在Rt △AFP ,AF =FP ,∴AP =√2AF =2√6.方法二:AE =BE =PE 可得直角三角形ABP ,由PF ⊥AC ,可得∠AFE =45°,可得∠F AP =45°,即∠P AB =30°. AP =AB cos30°=2√6.一十三.多边形(共2小题)23.【解答】解:根据题意可知菱形ABC ′D ′的高等于AB 的一半,∴菱形ABC ′D ′的面积为12SS 2,正方形ABCD 的面积为AB 2. ∴菱形ABC ′D ′的面积与正方形ABCD 的面积之比是12.故选:B .24.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=√32×2=√3.故选:C .一十四.平面镶嵌(密铺)(共1小题)25.【解答】解:如图所示:图1的周长为1+2+3+2√2=6+2√2;图2的周长为1+4+1+4=10;图3的周长为3+5+√2+√2=8+2√2.故四边形MNPQ 的周长是6+2√2或10或8+2√2.故答案为:6+2√2或10或8+2√2.一十五.平行四边形的性质(共2小题)26.【解答】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°,∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .27.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥CF ,∴∠DAE =∠CFE ,∠ADE =∠FCE ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△FCE 中,{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ADE ≌△FCE (AAS ),∴CF =AD =2;(2)∵∠BAF =90°,添加一个条件:当∠B =60°时,∠F =90°﹣60°=30°(答案不唯一).一十六.平行四边形的判定与性质(共1小题)28.【解答】(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点,∴DF ∥BC ,EF ∥AB ,∴DF ∥BE ,EF ∥BD ,∴四边形BEFD 是平行四边形;(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3,∵四边形BEFD 是平行四边形,∴四边形BEFD 是菱形,∵DB =3,∴四边形BEFD 的周长为12.一十七.菱形的性质(共1小题)29.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=√2x,IK=√2x﹣x,∵Rt△CIK中,(√2x﹣x)2+x2=22,解得x2=2+√2,又∵S菱形BCOI=IO×CK=12IC×BO,∴√2x2=12×2×BO,∴BO=2√2+2,∴BE=2BO=4√2+4,AB=AE=√2BO=4+2√2,∴△ABE的周长=4√2+4+2(4+2√2)=12+8√2,故答案为:12+8√2.一十八.菱形的判定(共1小题)30.【解答】解:∵邻边相等的平行四边形是菱形,∴当AD=DC,▱ABCD为菱形;故答案为:AD=DC(答案不唯一).一十九.矩形的性质(共6小题)31.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=SS SS∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a 2=4+(8﹣a )2,∴a =174 ∴CM =154 ∴tan α=tan ∠DMC =SS SS =815 故选:D .32.【解答】解:A 、∵四边形ABCD 是矩形,∴∠ABC =∠DCB =90°,AC =BD ,AO =CO ,BO =DO ,∴AO =OB =CO =DO ,∴∠DBC =∠ACB ,∴由三角形内角和定理得:∠BAC =∠BDC =∠α,故本选项不符合题意;B 、在Rt △ABC 中,tan α=SS S ,即BC =m •tan α,故本选项不符合题意;C 、在Rt △ABC 中,AC =S SSSS ,即AO =S 2SSSS ,故本选项符合题意; D 、∵四边形ABCD 是矩形,∴DC =AB =m ,∵∠BAC =∠BDC =α,∴在Rt △DCB 中,BD =S SSSS,故本选项不符合题意; 故选:C .33.【解答】解:如图所示:则其中一个等腰三角形的腰长可以是①√2,②1,③√2−1,④√32,不可以是√3. 故答案为:①②③④.34.【解答】解:(1)①若所截矩形材料的一条边是BC ,如图1所示:过点C 作CF ⊥AE 于F ,S 1=AB •BC =6×5=30;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF ∥AB 交CD 于F ,FG ⊥AB 于G ,过点C 作CH ⊥FG 于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,∵∠C =135°,∴∠FCH =45°,∴△CHF 为等腰直角三角形,∴AE =FG =6,HG =BC =5,BG =CH =FH ,∴BG =CH =FH =FG ﹣HG =6﹣5=1,∴AG =AB ﹣BG =6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.35.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.36.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.二十.正方形的性质(共5小题)37.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.38.【解答】解:连接DE,∵S△SSS=12S四边形SSSS,S △SSS =12S 正方形SSSS ,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D .39.【解答】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:√32−22=√5,故阴影部分的面积是:2×√52×4=4√5,故答案为:4√5.40.【解答】解:∵四边形ABCD 是正方形,∴AD =AE ,∠DAE =90°,∴∠BAM =180°﹣90°﹣30°=60°,AD =AB ,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合, ∴∠ADE =45°,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E ′A =E ′M , ∴△AE ′M 为等边三角形,∴∠E ′AM =60°,∴∠DAE ′=360°﹣120°﹣90°=150°,∵AD =AE ′,∴∠ADE ′=15°,故答案为:15°或45°.41.【解答】解:(1)设正方形CEFG 的边长为a ,∵正方形ABCD 的边长为1,∴DE =1﹣a ,∵S 1=S 2,∴a 2=1×(1﹣a ),解得,S 1=−√52−12(舍去),S 2=√52−12,即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1,∴CH =0.5,∴DH =√12+0.52=√52,∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .二十一.正方形的判定与性质(共1小题)42.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .二十二.四边形综合题(共8小题)43.【解答】(1)解:如图1中,△AFG 是等腰三角形.理由:∵AE 平分∠BAC ,∴∠1=∠2,∵DF ⊥AE ,∴∠AHF =∠AHG =90°,∵AH =AH ,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB ,∴SS SS =SS SS ,∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD ,∴SS SS =SS SS ,∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,S 1S 2=13, ∴SS SS=23=SS SS ,设CD =2x ,AC =3x ,则AD =√5x , ∴SS SS =SS SS =√52.(4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S +2S =S SS ,∴BE =S (S +2S )SS ,由题意:10×12×2a ×S (S +2S )SS =AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD =2√5a ,∴BE =S (S +2S )SS =4√55a ,AB =4a , ∴tan ∠BAE =SS SS =√55.②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF ,∴SS SS =SS SS ,即SS SS =SS SS ,∴SS S −2S =S SS , ∴BE =S (S −2S )SS , 由题意:10×12×2a ×S (S −2S )SS =AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k =143a ,∴AD =2√1053a , ∴BE =S (S −2S )SS =8√10545a ,AB =83a , ∴tan ∠BAE =SS SS =√10515, 综上所述,tan ∠BAE 的值为√55或√10515.44.【解答】解:【思考】四边形ABDE 是平行四边形.证明:∵△ABC ≌△DEF ,∴AB =DE ,∠BAC =∠EDF ,∴AB ∥DE ,∴四边形ABDE 是平行四边形;【发现】如图1,连接BE 交AD 于点O ,∵四边形ABDE 为矩形,∴OA =OD =OB =OE ,设AF =x (cm ),则OA =OE =12(x +4),∴OF =OA ﹣AF =2−12x ,在Rt △OFE 中,∵OF 2+EF 2=OE 2,∴(2−12S )2+32=14(S +4)2,解得:x =94,∴AF =94cm .【探究】BD =2OF ,证明:如图2,延长OF 交AE 于点H ,由矩形的性质及旋转的性质知:OA =OB =OE =OD ,∴∠OAB =∠OBA =∠ODE =∠OED ,∴∠OBD =∠ODB ,∠OAE =∠OEA ,∴∠BDE +∠DEA =∠ABD +∠EAB ,∵∠ABD +∠BDE +∠DEA +∠EAB =360°,∴∠ABD +∠BAE =180°,∴AE ∥BD ,∴∠OHE =∠ODB ,∵EF 平分∠OEH ,∴∠OEF =∠HEF ,∵∠EFO =∠EFH =90°,EF =EF ,∴△EFO ≌△EFH (ASA ),∴EO =EH ,FO =FH ,∴∠EHO =∠EOH =∠OBD =∠ODB ,∴△EOH ≌△OBD (AAS ),∴BD =OH =2OF .45.【解答】解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=∠C'OC=α=30°,∴C′H=C′O•cos30°=2√3,∴点C′到直线OF的距离为2√3.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2√2,∴点C′到直线DE的距离为2√2−2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴C′N=2√2,∴点C′到直线DE的距离为2√2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2√5,OM=2,∠OMA′=90°,∴A′M=√S′S2−SS2=√(2√5)2−22=4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.。

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题-三角形、四边形综合1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

4.几何图形的归纳、猜想问题中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

对于这类归纳总结问题来说,思考的方法是最重要的。

5.阅读理解问题如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。

阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。

对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。

所以如何读懂题以及如何利用题就成为了关键。

解题策略1.学会运用数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想.数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

三角形相似综合训练-2023年中考数学拉分专题(教师版含解析)

三角形相似综合训练-2023年中考数学拉分专题(教师版含解析)

专题02 三角形相似综合训练1.如图,在矩形ABCD 中,将ADC △绕点D 逆时针旋转90︒得到FDE B F E ,、、三点恰好在同一直线上,AC 与BE 相交于点G ,连接DG .以下结论正确的是( )①AC BE ⊥;BCG GAD ~②;③点F 是线段CD 的黄金分割点;④CG EG = A .①②③ B .①③C .①②③D .①③④【答案】D 【详解】证明:FDE ADC ≌,∴AD DF DC DE ==,又∴四边形ABCD 是矩形,∴90ADC ∠=︒, ∴90DAC DCA ∠+∠=即DAG DEF ∠+∠=即BGC 是直角三角形,而AGD 不是直角三角形,∴②错误;Rt FCB 和Rt 中, BFC EFC ∠=∠Rt FCB Rt FDE ∽, FC BCDF DE=, BC AD DF DE DC ===,FC DFDF DC=, F 是线段CD 的黄金分割点,和DEG '中,∴SAS DCG DEG '≌(DG DG CDG ='∠=,90CDG GDA ∠+∠=︒90EDG GDA ∠'+∠=90GDG ∠'=︒,∴GDG '是等腰直角三角形,2GG DG '=EG CG '=EG EG ='故选:D .【我思故我在】2.如图,在ABC 中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则( )A .ADANANAEB .BD MNMN CEC .DN NEBM MCD .DN NEMC BM,AN ANNE DN NEAM AMMCBMMC,故选相似三角形的判定和性质,解题的关键是熟练掌握3.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72aACD BCA ∆,再由相似三角形的性质得到答案ACD BCA ∆,2AC BC ⎛⎫= ⎪⎝⎭,即BCA ∆的面积为的面积为:.4.如图,在矩形ABCD 中,E,F分别为边BC 、CD 中点,线段AE ,AF 与对角线BD 分别交于点G ,H .设矩形ABCD 的面积为S ,则以下4个结论中:①AG :GE =2:1 ②BG :GH :HD =1:1:1;③12325S S S S ++=;④ 246124S S S =::::正确的结论有( )A .1个B .2个C .3个D .4个【答案】C∴,BGE DGA ∽ 2,AG AD BGGE BE DG===②∴AG AD BGGE BE DG==13BG BD =,1所以本题的3个结论符合题意; 故选:C .【我思故我在】本题考查了矩形的性质,三角形相似的性质和判定,三角形面积等知识,解题的关键是理解题意,等底同高三角形面积相等,相似三角形面积的比等于相似比的平方. 5.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于E 、F ,连接BD 、DP ,BD 与CF 相交于点H .给出以下结论:①3BE AE =;②DFP BPH ;③2DP PH PC =⋅;④若2AB =,则1BPD S △.其中正确结论的是( )A .①②③④B .②③④C .①②④D .①③④从而证明DFP BPH ,正确;利用DPH CPD ~,得DP PC ,将ΔBPD S 转化为S 四边形解:BPC ∆是等边三角形,BC ,60PBC PCB BPC ∠=∠=∠=ABCD 中,AB BC CD =,A ∠30ABE DCF ∴∠==︒2BE AE ∴=故①错误PC CD =PDC ∴∠=FDP ∴∠=DBA =∠DFP ∠=DFP BPH ∴~,故②正确;30PDH PCD ∠=∠=︒DPH CPD ∴~,∴DP PHPC DP=, 2DP PH PC ∴=⋅,故③正确;如图,过点P 作PM正方形的边长6.如图, 在平行四边形ABCD 中, 点,M N 分别是AD BC 、上的点, 且22AM DM BN CN ==,, 点O 是CM , DN 的交点, 直线AB 分别与CM DN ,的延长线交于点,P Q . 若平行四边形ABCD 的面积为144 , 则POQ △的面积为( )A .72B .216C .268D .300∴AMP DMC ∽, AP AMDC DM=, 2AM DM = 2AP AMDC DM==, 2AP CD =, ∴COD POQ ∽, 1215h CD h PQ ==, ∴∴POQ 的高为56h ,144ABCDS CD h =⋅=151POQS=故选:D 【我思故我在】的性质及平行四边形的性质是解题的关键.7.如图,在正方形ABCD 中,点G 是BC 上一点,且12GC BG =,连接DG 交对角线AC 于F 点,过D 点作DE DG ⊥交CA 的延长线于点E ,若5AE =,则DF 的长为( )A .BC .92D ,证明DEH DGC ∽,推出,求出5EH HA ==延长线于H ,DE DG ⊥EDG ∠∴21∴∠+∠1∠∠∴=DEH DGC ∴∽,∴EH DHGC DC =, 12GC BG =, ∴设GC x =,则BG =∴3EH DHGC x=, AC 是正方形DAC ∴∠EAH ∠=HEA ∴∠=EH HA ∴=2EH HA ∴+EH HA ∴=在正方形8.已知,如图,平行四边形ABCD 中,:1:3=CE BE ,且1EFC S =△,那么ABCS=_____.ACD ABC SS =,证明1:4AD =,则CE AD =. 9.P 是ABC 边上的任一点(P 不与A 、B 、C 重合),过点P 的一条直线截ABC ,如果截得的三角形与ABC 相似,我们称这条直线为过点P 的∴ABC 的“相似线”.Rt ABC △中,90C ∠=︒,30B ∠=︒,当点P 是边BC 上一个三等分点时(PB PC >),过点P 的ABC 的“相似线”最多有___________条.【答案】4【分析】根据相似线的定义,可知截得的三角形与ABC 有一个公共角,分①公共角为A ∠时;②公共角为B ∠时;③公共角为C ∠时;三种情况进行讨论,即可得出答案.【详解】解:①当公共角为A ∠时,不存在;②公共角为B ∠时,过点P 作PD BC ⊥,交AB 于点D ,如图所示:∴90DPB C ∠=∠=︒,B B ∠=∠,∴BPD BCA ∽;过点P 作PD AB ⊥于点D ,如图所示:∴90PDB C ∠=∠=︒,B B ∠=∠,∴BPD BAC ∽△△;③公共角为C ∠时,连接AP ,如图所示:∴30B ∠=︒,∴2AB AC =,设AC a =,则2AB a =,∴ACP BCA∽;过点P作PD AB∥,交∴CDP CAB∽;综上分析可知,过点的ABC的“相似线故答案为:4.【我思故我在】本题主要考查了相似三角形的判定,平行线的性质,勾股定理,解题的关键是熟练掌握三角形相似的判定方法.10.如图,在ABC中,6BC=,AE AFEB FC=,动点P在射线EF上,BP交CE于点D,CBP∠的平分线交CE于点Q,当14CQ CE=时,EP BP+的值为______.【答案】18【分析】如图,延长EF交BQ的延长线于G.首先证明PB PG=,EP PB EG+=,由EG BC∥,11.如图,在矩形ABCD中,点E,F分别是,==∠=︒∠=︒,则BC的长度是___________.3,6,30,45BE CD FED FDE【答案】3##3+【分析】作FN DE ⊥于点N ,延长DE 交CB 的延长线于点M ,先证FND ∆是等腰直角三角形,设FN x =,利用勾股定理、含30度角的直角三角形的性质求出DN ,EF ,NE 的长度,FDE ∠=DFN ∴∠FND ∴∆是等腰直角三角形.由题意得:设FN x =FED ∠=2EF FN ∴=NE ∴=DE DN ∴=3BE =,AE BE ∴=又EAD ∠=EAD ∴∆∆≌AD BM ∴=EBM ∠=EBM ∴∆∽BM BE MN NF ∴=解得:BM 12.如图,在ABC 中,146AB AC ==,,在AC 上取一点D ,使2AD =,如果在AB 上取点E ,使ADE 和ABC 相似,则AE =___________.①ABC AED ;②ABC ADE ;可根据各四条线段的比例关系式求出AE 的长.此时ADE ACB ,::AC AE AD =,146AC AD ==,,此时ADE ABC ,::AC AD AE =,146AC AD ==,,67=, 故答案为:143或67.13.如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方,某一时刻,太阳光线恰好垂直照射叶片OA 、OB ,此时各叶片影子在点M 右侧成线段CD .测得8.5m MC =,13m CD =,垂直于地面的木棒EF 与影子FG 的比为23:.则点O 、M 之间的距离等于___________m ;【答案】10【分析】连接OM 交AC 于点H ,过点C 作CN BD ⊥,通过证明HMC EFG HAO ∽∽△△△,通过相似三角形对应边成比例即可解答.【详解】解:连接OM 交AC 于点H ,过点C 作CN BD ⊥,14.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果23CE BE =,求FE EG的值.15.矩形ABCD 中,AC BD ,为对角线,6cm 8cm AB BC ==,,E 为DC 中点,动点P 从点A 出发沿AB 方向,向点B 运动,动点Q 同时以相同速度,从点B 出发沿BC 方向向点C 运动,P 、Q 的速度都是1cm/秒,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为x 秒.()06t <<(1)PQ AC ∥时,求运动时间t ;(2)PQ BD ⊥时,求运动时间t ;(3)当t 为何值时,以点P ,B ,Q 为顶点的三角形与QCE 相似?(4)连接PE PQE ,△的面积能否达到矩形ABCD 面积的三分之一,若能求出t 的值;若不能,说明理由.7BP BQBP BQ为顶点的三角形与QCE相似216.解答题=;(1)如图1,ABC和ADE都是等边三角形,连接BD、CE,求证,BD CE[类比探究](2)如图2,ABC 和ADE 都是等腰直角三角形,90ABC ADE ∠=∠=︒,连接BD CE ,.求BD CE的值.[拓展提升](3)如图3,ABC 和ADE 都是直角三角形,90ABC ADE ∠=∠=︒,2AC AE AB AD==.连接BD CE 、,延长CE 交BD 于点F ,连接AF .若AFC ∠恰好等于90︒,请直接写出此时AF BF CF ,,之间的数量关系.证明BAD CAE ∽,从而得出结果;B 作BH CF ⊥,垂足为点AOF BOH ∆∽,根据对应边成比例,【详解】(1)解:∴ABC 和ADE 都是等边三角形,AC ,AD AE =,∠∠DAE BAC =BAC BAE ∠-∠,即:在BAD 和CAE 中,AB AC DAB EAC AD AE =∠=∠=,(SAS BAD CAE ≌△△BD CE =.∴ABC 和ADE 都是等腰直角三角形,45BAC =∠=︒,ADE ∠ADE △∽,AE AC ,则AD AB AE AC=,BAE BAC -∠=∠-∠在BAD 和CAE 中,DAB EAC =∠,AD AE ∴BAD CAE ∽,BD AB CE AC =, 令AB x =,根据勾股定理可得:2BD AB x CE AC x===(3)∴BAD CAE ∽,ACE ABD ∠=∠,在FOB ∆和AOC ∆中,ACE ABD ∠=∠,∠60OFB OAC ∠=∠=设FH x =,OH y =,则17.在△ABC 中,90ACB ∠=,BE 是AC 边上的中线,点D 在射线BC 上.(1)如图1,点D 在BC 边上,:1:2CD BD =,AD 与BE 相交于点P ,过点A 作AF BC ,交BE 的延长线于点F ,易得AP PD的值为 ; (2)如图2,在△ABC 中,90ACB ∠=,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,:1:2DC BC =,求AP PD的值; (3)在(2)的条件下,若CD=2,AC=6,则BP= .18.在∴ABC 中,CA CB =,ACB α∠=,点P 在平面内不与点A ,C 重合,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接,,AD BD CP .(1)如图①,当60α=︒,BD CP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)如图②,当90α=︒时,请写出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数,并说明理由. (3)当90α=︒时,若点E ,F 分别是,CA CB 中点,点P 在直线EF 上,请直接写出当C ,P ,D 在同一直线上时,求AD CP 的值. ,ABC 是等腰直角三角形,根据等腰直角三角形的性质证明,利用相似的性质即可得解;上,和P 在线段解:如图,延长CP 交60︒,∴ABC 是等边三角形,由题意可知∴PAD 是等边三角形,PAD ∠=∠CAP ∠+∠在CAP 和BAD 中,CA BA CAP BAD AP AD =⎧⎪∠=∠⎨⎪=⎩,CAP BAD △≌△ (SAS),PC BD ACP =∠=∠在AOC 和△1BD PC=,直线BD ∴ABC 是等腰直角三角形,CAB ∠=∠∴ AB AC =AB AD AC AP∴=CAB ∠+∠AD是ABC的中位线,2219.如图,点E是矩形ABCD的边AB的中点,F是BC边上一动点(点F与点B,点C不重合),线段DE和:AF相交于点P,连接PC.(1)若在线段DP 上取一点Q ,使得2DP EQ =,连接AQ ,猜想PC 与AQ 的关系并证明;(2)若AF DE ⊥时,8,10AB AD ==,求BF 的长;(3)当点F 为BC 的中点时,求AP PF 的值. AEQCDP ∆,即可得出结论;,再判断出DAE ABF ,即可得出结论;,先判断出(AAS)ADE BGE ∆≅∆,再判断出2,2AD BF BG BF ==,进而判断出,即可得出结论.∴90BAF AED .90BAF AFB ∠+∠=︒,AED AFB ∠=∠,90DAE ABF ∠=∠=︒,∴DAEABF , AD AE AB BF =,即1083.2BF =;(3)解:如图,延长AD GC ,APD FPG ∆,23AD GF ==.【我思故我在】此题查了矩形的性质,构造出相似三角形是解本题的关键.。

2021年广西百色中考数学专题训练:专题4 三角形、四边形的证明与计算

2021年广西百色中考数学专题训练:专题4  三角形、四边形的证明与计算

专题四 三角形、四边形的证明与计算【题型一】 三角形的证明与计算【例1】(2020·上海中考)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上, BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .【解析】(1)想办法证明∠H =∠BCE 即可解决问题;(2)利用相似三角形的判定和性质结合已知条件解决问题即可.【针对训练】1.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:△ABD ≌△ACE ; (2)求证:∠M =∠N .题型二 四边形的证明与计算【例2】(2020·云南中考)如图,四边形ABCD 是菱形,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE ⊥AB ,垂足为点E ,点F 在AD 的延长线上,CF ⊥AD ,垂足为点F ,(1)若∠BAD =60°,求证:四边形CEHF 是菱形;(2)若CE =4,△ACE 的面积为16,求菱形ABCD 的面积.【解析】(1)根据菱形的性质得到∠EAC =∠F AC =30°,根据角平分线的性质得到CE =CF ,根据直角三角形的性质得到EH =FH =12AC ,于是得到结论;(2)根据三角形的面积公式得到AE 的长,根据勾股定理得到AC =CE 2+AE 2 ,连接BD ,则BD ⊥AC ,AH =12AC ,根据相似三角形的性质得到BD =2BH ,由菱形的面积公式即可得到结果.【针对训练】2.(2020·重庆中考A 卷)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F .AC 平分∠DAE .(1)若∠AOE =50°,求∠ACB 的度数; (2)求证:AE =CF .3.(2020·乐山中考)如图,点E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.题型三 三角形、四边形的几何探究【例3】(2020·湘潭中考)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心. (1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积;(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA ,S △OBCS △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由;(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积.【解析】(1)连接DE ,利用相似三角形证明OD AO =12,运用勾股定理求出AD 的长,运用三角形面积公式求解;(2)根据(1)的解题思路可求解;(3)①连接BD 交AC 于点O ,可知点O 为BD 的中点,点E 为CD 的中点,从而可以得到点M 是△BCD 的重心,即可得到EM 和BE 的关系,再根据勾股定理求出BE 的长;②分别求出S △BMC 和S △ABM 即可求得正方形ABCD 的面积.【针对训练】4.(2020·德州中考)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到点E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED ≌△CAD 的判定定理是__________; (2)AD 的取值范围是____________; 方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC ;(4)如图3,在矩形ABCD 中,AB BC =12 ,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且EF BE =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .图1图2图3【专题过关】1.(2020·苏州中考)问题1:如图①,在四边形ABCD 中,∠B =∠C =90°,点P 是BC 上一点,P A =PD ,∠APD =90°.求证:AB +CD =BC ;问题2:如图②,在四边形ABCD 中,∠B =∠C =45°,点P 是BC 上一点,P A =PD ,∠APD =90°.求AB +CDBC的值.图①图②2.如图,在四边形ABCD 中,点E ,F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形;(2)若tan ∠CAB =25,∠CBG =45°,BC =42 ,则▱ABCD 的面积是__________.3.如图,在▱ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,且∠AFE =∠D . (1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,sin D =45,求AF 的长.4.(2020·成都中考)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF ·FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求ABBC的值.5.(2020·玉林中考)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,且OA =OB =OC =OD =22AB . (1)求证:四边形ABCD 是正方形;(2)若点H 是边AB 上一点(点H 与点A ,B 不重合),连接DH ,将线段DH 绕点H 顺时针旋转90°,得到线段HE ,过点E 分别作BC 及AB 延长线的垂线,垂足分别为点F ,G .设四边形BGEF 的面积为s 1,以HB ,BC 为邻边的矩形的面积为s 2,且s 1=s 2.当AB =2时,求AH 的长.6.(2020·贵港中考)已知:在矩形ABCD 中,AB =6,AD =23 ,点P 是BC 边上的一个动点,将矩形ABCD 折叠,使点A 与点P 重合,点D 落在点G 处,折痕为EF .(1)如图1,当点P 与点C 重合时,则线段EB =________,EF =________;(2)如图2,当点P 与点B ,C 均不重合时,取EF 的中点O ,连接并延长PO 与GF 的延长线交于点M ,连接PF ,ME ,MA .①求证:四边形MEPF 是平行四边形;②当tan ∠MAD =13时,求四边形 MEPF 的面积.,)).7.(2020·武汉中考)问题背景 如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图2,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F .点D 在BC 边上,AD BD =3 ,求DFCF的值;拓展创新 如图3,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23 ,直接写出AD 的长.8.(2020·扬州中考)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD ,OD 交于点E ,F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AEAF的值;(3)当四边形ABCD 的周长取最大值时,求DEDF的值.图1图2. 答案专题四 三角形、四边形的证明与计算【题型一】 三角形的证明与计算【例1】(2020·上海中考)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上, BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .【解析】(1)想办法证明∠H =∠BCE 即可解决问题;(2)利用相似三角形的判定和性质结合已知条件解决问题即可. 【解答】证明:(1)∵四边形ABCD是菱形,∴CD =CB ,∠D =∠B ,CD ∥AB . ∵DF =BE ,∴△CDF ≌△CBE (SAS ). ∴∠DCF =∠BCE .∵CD ∥BH ,∴∠H =∠DCF . ∴∠BCE =∠H . 又∵∠B =∠B , ∴△BEC ∽△BCH ;(2)∵BE 2=AB ·AE ,∴BE AB =AEBE.∵AG ∥BC ,∴△AEG ∽△BEC . ∴AE BE =AG BC .∴BE AB =AG BC . ∵DF =BE ,BC =AB ,∴BE =AG =DF ,即AG =DF . 【针对训练】1.已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:△ABD ≌△ACE ; (2)求证:∠M =∠N .证明:(1)在△ABD 和△ACE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS );(2)∵∠1=∠2,∴∠BAN =∠CAM . 由(1)知△ABD ≌△ACE ,∴∠B =∠C . 又∵AB =AC ,∴△ABN ≌△ACM (ASA ). ∴∠M =∠N .题型二 四边形的证明与计算【例2】(2020·云南中考)如图,四边形ABCD 是菱形,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE ⊥AB ,垂足为点E ,点F 在AD 的延长线上,CF ⊥AD ,垂足为点F ,(1)若∠BAD =60°,求证:四边形CEHF 是菱形;(2)若CE =4,△ACE 的面积为16,求菱形ABCD 的面积.【解析】(1)根据菱形的性质得到∠EAC =∠F AC =30°,根据角平分线的性质得到CE =CF ,根据直角三角形的性质得到EH =FH =12AC ,于是得到结论;(2)根据三角形的面积公式得到AE 的长,根据勾股定理得到AC =CE 2+AE 2 ,连接BD ,则BD ⊥AC ,AH =12AC ,根据相似三角形的性质得到BD =2BH ,由菱形的面积公式即可得到结果. 【解答】(1)证明:∵四边形ABCD 是菱形,∠BAD =60°,∴∠EAC =∠F AC =30°.又∵CE ⊥AB ,CF ⊥AD ,∴CE =CF =12AC .∵点H 为对角线AC 的中点,∴EH =FH =12AC .∴CE =CF =EH =FH .∴四边形CEHF 是菱形;(2)解:∵CE ⊥AB ,CE =4,△ACE 的面积为16, ∴AE =8.∴AC =CE 2+AE 2 =45 .连接BD ,则BD ⊥AC ,BD 过点H ,AH =12AC =25 .∵∠AHB =∠AEC =90°,∠BAH =∠CAE ,∴△ABH ∽△ACE .∴BH CE =AH AE ,即BH 4 =258.∴BH =5 .∴BD =2BH =25 .∴S 菱形ABCD =12 AC ·BD =12×25 ×45 =20.【针对训练】2.(2020·重庆中考A 卷)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F .AC 平分∠DAE .(1)若∠AOE =50°,求∠ACB 的度数; (2)求证:AE =CF .(1)解:∵AE ⊥BD , ∴∠AEO =90°. ∵∠AOE =50°, ∴∠EAO =40°.∵AC 平分∠DAE ,∴∠DAC =∠EAO =40°. ∵四边形ABCD 是平行四边形,∴AD ∥BC . ∴∠ACB =∠DAC =40°;(2)证明:∵四边形ABCD 是平行四边形, ∴OA =OC .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°. ∵∠AOE =∠COF , ∴△AEO ≌△CFO (AAS ). ∴AE =CF .3.(2020·乐山中考)如图,点E 是矩形ABCD 的边CB 上的一点,AF ⊥DE 于点F ,AB =3,AD =2,CE =1.求DF 的长度.解:∵四边形ABCD 是矩形,∴DC =AB =3,∠ADC =∠C =90°. ∵CE =1,∴DE =DC 2+CE 2 =32+12 =10 . ∵AF ⊥DE ,∴∠AFD =90°=∠C . ∴∠ADF +∠DAF =90°. 又∵∠ADF +∠EDC =90°,∴∠EDC =∠DAF .∴△EDC ∽△DAF . ∴DE AD =EC DF ,即102 =1DF. ∴DF =105.题型三 三角形、四边形的几何探究【例3】(2020·湘潭中考)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积;(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA ,S △OBCS △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由;(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积.【解析】(1)连接DE ,利用相似三角形证明OD AO =12,运用勾股定理求出AD 的长,运用三角形面积公式求解;(2)根据(1)的解题思路可求解;(3)①连接BD 交AC 于点O ,可知点O 为BD 的中点,点E 为CD 的中点,从而可以得到点M 是△BCD 的重心,即可得到EM 和BE 的关系,再根据勾股定理求出BE 的长;②分别求出S △BMC 和S △ABM 即可求得正方形ABCD 的面积.【解答】解:(1)图(一)中,连接DE . ∵点O 为△ABC 的重心,∴点D ,E 分别为BC ,AC 边上的中点. ∴DE 为△ABC 的中位线.∴DE ∥AB ,DE =12AB .∴△ODE ∽△OAB .∴OD OA =DE AB =12.∵在等边三角形ABC 中,AB =2,BD =1,AD ⊥BC ,∠ABD =60°,∴AD =3 ,OD =33.∴S △OBC =12 BC ·OD =12 ×2×33 =33 ,S △ABC =12 BC ·AD =12 ×2×3 =3 ;(2)OD OA ,S △OBC S △ABC都为定值. 由(1)同理可得,OD OA =12;由此得点O 到BC 的距离和点A 到BC 的距离之比为1∶3,则△OBC 和△ABC 的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比.∴S △OBC S △ABC =13; (3)①图(三)中,连接BD 交AC 于点O .∵点O 为BD 的中点,点E 为CD 的中点, ∴点M 是△BCD 的重心.由(2)可得EM BE =13.∵点E 为CD 的中点,∴CE =12CD =2.∴BE =BC 2+CE 2 =25 .∴EM =235 ;②∵S △CME =1,且EM BM =12,∴S △BMC =2,S △CME S △AMB =⎝⎛⎭⎫EM BM 2 =14 .∴S △AMB =4.∴S △ABC =S △BMC +S △ABM =2+4=6. 又∵S △ADC =S △ABC ,∴正方形ABCD 的面积为2S △ABC =12. 【针对训练】4.(2020·德州中考)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到点E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED ≌△CAD 的判定定理是__________; (2)AD 的取值范围是____________; 方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连接BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC ;(4)如图3,在矩形ABCD 中,AB BC =12 ,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且EF BE =12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .图1图2图3解:(1)SAS ;(2)1<AD <5;(3)证明:图2中,延长AD 至点H ,使DH =DA ,连接BH .∵AD 是△ABC 的中线,∴CD =BD . 又∵∠ADC =∠HDB ,∴△ADC ≌△HDB (SAS ). ∴∠CAD =∠H ,AC =BH . ∵AE =EF ,∴∠EAF =∠AFE .∵∠BFH =∠AFE ,∴∠H =∠BFH . ∴BF =BH . ∴BF =AC ;(4)证明:图3中,延长CG 至点N ,使NG =CG ,连接EN ,CE ,FN . ∵点G 是DF 的中点,∴GF =GD . 又∵∠NGF =∠CGD , ∴△NGF ≌△CGD (SAS ).∴NF =CD ,∠NFG =∠CDG . ∵AB BC =CD BC =12 ,EF BE =12, ∴tan ∠DBC =tan ∠EBF =12.∴∠EBF =∠DBC .∴∠EBC =2∠DBC .∵∠EBF +∠EFB =90°,∠DBC +∠BDC =90°,∴∠EFB =∠BDC =∠NFG ,∠EBF +∠EFB +∠DBC +∠BDC =180°. ∴2∠DBC +∠EFB +∠NFG =180°. 又∵∠NFG +∠EFB +∠EFN =180°, ∴∠EFN =2∠DBC .∴∠EBC =∠EFN . ∵CD BC =12 =EF BE ,且CD =NF ,∴BE EF =BC NF . ∴△BEC ∽△FEN .∴∠BEC =∠FEN . ∴∠BEF =∠NEC =90°.又∵CG =NG ,∴EG =12NC .∴EG =GC【专题过关】1.(2020·苏州中考)问题1:如图①,在四边形ABCD 中,∠B =∠C =90°,点P 是BC 上一点,P A =PD ,∠APD =90°.求证:AB +CD =BC ;问题2:如图②,在四边形ABCD 中,∠B =∠C =45°,点P 是BC 上一点,P A =PD ,∠APD =90°.求AB +CDBC的值.图① 图②问题1:证明:∵∠B =∠APD =90°,∴∠APB +∠BAP =90°,∠APB +∠CPD =90°.∴∠BAP =∠CPD . 在△ABP 和△PCD 中, ∵⎩⎪⎨⎪⎧∠B =∠C ,∠BAP =∠CPD ,AP =PD ,∴△ABP ≌△PCD (AAS ). ∴AB =PC ,BP =CD .∴AB +CD =PC +BP =BC ;问题2:解:图②中,分别过点A ,D 作BC 的垂线,垂足为点E ,F . 由问题1可得,AE +DF =EF .在Rt △ABE 和Rt △DFC 中,∠B =∠C =45°, ∴AE =BE ,DF =CF ,AB =2 AE ,CD =2 DF . ∴BC =BE +EF +CF =2(AE +DF ), AB +CD =2 (AE +DF ). ∴AB +CD BC =2(AE +DF )2(AE +DF )=22 .2.如图,在四边形ABCD 中,点E ,F 是对角线AC 上的两点,AE =CF ,DF =BE ,且DF ∥BE ,过点C 作CG ⊥AB 交AB 的延长线于点G .(1)求证:四边形ABCD 是平行四边形;(2)若tan ∠CAB =25,∠CBG =45°,BC =42 ,则▱ABCD 的面积是__________.(1)证明:∵AE =CF , ∴AE +EF =CF +EF , 即AF =CE . ∵DF ∥BE ,∴∠DF A =∠BEC .又∵DF =BE ,∴△ADF ≌△CBE (SAS ). ∴AD =CB ,∠DAF =∠BCE .∴AD ∥CB . ∴四边形ABCD 是平行四边形; (2)243.如图,在▱ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,且∠AFE =∠D . (1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,sin D =45,求AF 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD =BC .∴∠D +∠C =180°,∠ABF =∠BEC .∵∠AFB +∠AFE =180°,∠AFE =∠D ,∴∠C =∠AFB .∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD ·sin D =5×45=4. 在Rt △ABE 中,根据勾股定理,得BE =AE 2+AB 2 =42+82 =45 .∵BC =AD =5,△ABF ∽△BEC ,∴AF BC =AB BE ,即AF 5 =845. ∴AF =25 .4.(2020·成都中考)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF ·FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.解:(1)由题意,得∠A =90°,AD ∥BC .由折叠可知BF =BC =2BA ,∠CBE =12∠CBF .∴∠AFB =30°.∴∠FBC =∠AFB =30°. ∴∠CBE =15°;(2)由题意,得∠A =∠D =90°,∠AFB +∠DFE =90°,∠DEF +∠DFE =90°.∴∠AFB =∠DEF .∴△F AB ∽△EDF .∴AF DE =AB DF .∴DE =AF ·DF AB =105=2. ∴EF =CE =CD -DE =3.由勾股定理,得FD =EF 2-DE 2 =5 .∴AF =10FD=25 . ∴BC =AD =AF +DF =35 ;(3)过点N 作NG ⊥BF 于点G ,则∠NGF =∠A =90°.又∵∠NFG =∠BF A ,∴△NFG ∽△BF A .∴GN AB =FG F A =NF BF. ∵NF =AN +FD ,即NF =12 AD =12 BC =12 BF ,∴GN AB =FG F A =NF BF =12. 又∵BM 平分∠ABF ,NG ⊥BF ,∠A =90°,∴AN =GN =12AB .易得BG =AB . ∴FG F A =BF -BG AN +NF =BC -AB 12AB +12BC =12 . ∴AB BC =35. 5.(2020·玉林中考)如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,且OA =OB =OC =OD =22AB . (1)求证:四边形ABCD 是正方形;(2)若点H 是边AB 上一点(点H 与点A ,B 不重合),连接DH ,将线段DH 绕点H 顺时针旋转90°,得到线段HE ,过点E 分别作BC 及AB 延长线的垂线,垂足分别为点F ,G .设四边形BGEF 的面积为s 1,以HB ,BC 为邻边的矩形的面积为s 2,且s 1=s 2.当AB =2时,求AH 的长.(1)证明:∵OA =OB =OC =OD ,∴AC =BD .∴四边形ABCD 是矩形.∵OA =OB =22AB , ∴OA 2+OB 2=AB 2.∴∠AOB =90°,即AC ⊥BD .∴四边形ABCD 是正方形;(2)解:∵EF ⊥BC ,EG ⊥AG ,∴∠G =∠EFB =∠FBG =90°.∴四边形BGEF 是矩形.∵将线段DH 绕点H 顺时针旋转90°,得到线段HE ,∴∠DHE =90°,DH =HE .∴∠ADH +∠AHD =∠AHD +∠GHE =90°.∴∠ADH =∠GHE .又∵∠DAH =∠G =90°,∴△ADH ≌△GHE (AAS ).∴AD =GH ,AH =GE .∵AB =AD ,∴AB =GH .∴AB -BH =GH -BH ,即AH =BG .∴BG =GE .∴矩形BGEF 是正方形.设AH =x ,则BG =EG =x ,BH =2-x .∵s 1=s 2,∴x 2=2(2-x ).解得x 1=5 -1,x 2=-5 -1(舍去).∴AH =5 -1.6.(2020·贵港中考)已知:在矩形ABCD 中,AB =6,AD =23 ,点P 是BC 边上的一个动点,将矩形ABCD 折叠,使点A 与点P 重合,点D 落在点G 处,折痕为EF .(1)如图1,当点P 与点C 重合时,则线段EB =________,EF =________;(2)如图2,当点P 与点B ,C 均不重合时,取EF 的中点O ,连接并延长PO 与GF 的延长线交于点M ,连接PF ,ME ,MA .①求证:四边形MEPF 是平行四边形;②当tan ∠MAD =13时,求四边形 MEPF 的面积. ,))(1)2;4;(2)①证明:在矩形ABCD 中,CD ∥AB .∴折叠后MG ∥PE .∴∠MFO =∠PEO .∵点O 是EF 的中点,∴OF =OE .又∵∠FOM =∠EOP ,∴△FOM ≌△EOP (ASA ).∴MF =PE .∴四边形MEPF 是平行四边形;②解:连接P A ,交EF 于点H ,则EF ⊥P A 且PH =AH .由折叠性质得AE =EP .又由①知PO =MO ,∴MA ∥EF .∴MA ⊥P A .∵DA ⊥AB ,∴∠MAD =∠BAP .∴tan ∠MAD =tan ∠BAP =13 =PB AB. ∵AB =6,∴PB =2.在Rt △PEB 中,设AE =PE =x ,则BE =6-x .由勾股定理,得22+(6-x )2=x 2.解得x =103. 又∵PG ⊥MG ,且PG =AD =23 ,∴S 四边形MEPF =PE ·PG =103 ×23 =2033.7.(2020·武汉中考)问题背景 如图1,已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;尝试应用 如图2,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F .点D 在BC 边上,AD BD =3 ,求DF CF的值; 拓展创新 如图3,D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =23 ,直接写出AD 的长.问题背景 证明:∵△ABC ∽△ADE ,∴AB AD =AC AE,∠BAC =∠DAE . ∴AB AC =AD AE,∠BAD =∠CAE . ∴△ABD ∽△ACE ;尝试应用 解:连接EC .由已知可得△ABC ∽△ADE .由(1)知,△ABD ∽△ACE .∴AE EC =AD BD=3 ,∠ADE =∠B =∠ACE . ∵∠AFD =∠EFC ,∴△ADF ∽△ECF .∴DF CF =AD EC. 在Rt △ADE 中,∠ADE =30°,∴AD AE =3 .∴AD EC =AD AE ·AE CE=3 ×3 =3. ∴DF CF=3. 拓展创新 AD =5 .8.(2020·扬州中考)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD ,OD 交于点E ,F .(1)求证:OC ∥AD ;(2)如图2,若DE =DF ,求AE AF的值; (3)当四边形ABCD 的周长取最大值时,求DE DF 的值.图1 图2(1)证明:∵OA =OD ,∴∠OAD =∠ODA .∵OC 平分∠BOD ,∴∠DOC =∠BOC .又∵∠DOC +∠BOC =∠OAD +∠ODA ,∴∠ODA =∠DOC .∴OC ∥AD ;(2)解:如图①,过点E 作EM ∥FD 交AD 的延长线于点M .设∠DAC =α.由(1)知OC ∥AD ,∴∠ACO =∠DAC =α.∵OA =OC ,∴∠OAC =∠OCA =α.∴∠OAD =2α.∵OA =OD ,∴∠ODA =∠OAD =2α.∵DE =DF ,∴∠DFE =∠DEF =3α.∵OA =OB =OD ,∴∠ADB =90°.∴∠DAE +∠AED =90°,即4α=90°.∴∠ADF =2α=45°.∵EM ∥DF ,∴∠M =∠ADF =45°,△AME ∽△ADF .∴EM =2 DE =2 DF .∴AE AF =EM DF=2 ;图①图②(3)解:如图②,∵OC 平分∠BOD ,∴∠BOC =∠DOC .∵OB =OD ,OC =OC ,∴△BOC ≌△DOC (SAS ).∴BC =DC .设BC =CD =x ,CG =m ,则OG =2-m .∵OD =OB ,∠DOG =∠BOG ,∴OG ⊥BD ,GB =GD . ∴BG 2=OB 2-OG 2=BC 2-CG 2,即22-(2-m )2=x 2-m 2.解得m =14 x 2.∴OG =2-14x 2. 又∵OA =OB ,∴AD =2OG =4-12x 2. ∴四边形ABCD 的周长为2BC +AD +AB =2x +4-12 x 2+4=-12 x 2+2x +8=-12(x -2)2+10.∵-12 <0,∴当x =2时,四边形ABCD 的周长取最大值10. ∴CD =BC =2.∴△COD ,△BCO 均为等边三角形.∴∠DOC =∠BOC =60°. ∵OC ∥AD ,∴∠ADF =∠DOC =60°,∠DAO =∠BOC =60°.∵OA =OC ,∴∠CAO =∠ACO =30°. ∴∠DAF =30°.∴∠AFD =90°. ∴DE DA =33 ,DF =12 DA .∴DE DF =233 .。

中考数学几何基础、三角形与四边形复习专题训练精选试题及答案

中考数学几何基础、三角形与四边形复习专题训练精选试题及答案

立体图形的认识及角、相交线与平行线专题训练一、填空题:(每题 3 分,共 36 分)1、32.43°=___度___分___秒。

2、若∠1=30°,则∠A 的补角是____度。

3、如图,∠1和∠2是直线AB 、AC 被BC 所截而成的____角。

4、如图,射线OA 表示的方向是_______。

5、锯木头时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这种做法的理由是______________。

6、如图,AC ⊥l 1,AB ⊥l 2,则点A 到直线 l 2 的距离是指线段________的长度。

7、如图,已知:AB ∥CD ,∠1=∠2,若∠1=50°,则∠3=____度。

8、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD =127°, 则∠BOC =____。

9、下面是一些相同的小正方体构成的几何体的三视图。

则至少要___个正方体搭成。

主视图 左视图 俯视图10、如图,要得到AB ∥CD 的结论,则需要角相等的条件是______(写出一个即可)11、直线 a ∥b ,则∠ACB =____。

12、平面内有若干条直线,当下列情形时,可将平面最多分成几部分。

① 有一条直线时,最多分成两部分。

② 有两条直线时,最多分成 2+2=4 部分。

③ 有三条直线时,最多分成____部分。

二、选择题。

(每题 4 分,共 24 分)A B CG D E F (第10题)A O DB C(第8题) A D E C ) ) ) 1 2 3 (第7题) ┘ ┘A B C l 1 l 2 (第6题) ) ) 1 2 A B C (第3题) 东 南西 A北 ) 30° O (第4题)(第11题) a b A B 28° 50°C1、在下列立体图形中,不属于多面体的是( )A 、正方体B 、三棱柱C 、长方体D 、圆锥 2、两条直线被第三条直线所截,则( ) A 、同位角相等 B 、同错角相等 C 、同旁内角互补 D 、无法确定 3、在修建泉厦高速公路时,有时需将弯曲的道路改直,根据( )A 、直线公理B 、直线公理或线段最短公理C 、线段最短公理D 、平行公理4、如图是一个台球桌面的示意图,如果一个球按图中所示的方向被击中(球可以经过多次反射),那么该球最后将落入的球袋是( )A 、1号袋B 、2号袋C 、3号袋D 、4号袋5、下面图形中,不能折成正方体的是( )AB D 6、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是( )A 、相等B 、互补C 、相等或互补D 、相等且互补三、解答题:(每题 8 分,共 40 分)1、已知C 为线段AB 的中点,D 在线段CB 上,且DA =6,DB =4,求CD 的长度。

三角形与四边形重难点题型-三年中考数学真题分项汇编(原卷版)

三角形与四边形重难点题型-三年中考数学真题分项汇编(原卷版)

三角形与四边形重难点题型共23道题一、单选题1.(2022·浙江温州)如图,在Rt ABC 中,90ACB ∠=︒,以其三边为边向外作正方形,连结CF ,作GM CF ⊥于点M ,BJ GM ⊥于点J ,⊥AK BJ 于点K ,交CF 于点L .若正方形ABGF 与正方形JKLM 的面积之比为5,102CE =CH 的长为( )A 5B 35+C .2D 102.(2020·浙江湖州)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .22D 33.(2020·浙江温州)如图,在Rt △AB C 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ∠FG 于点R ,再过点C 作PQ ∠CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .83D .54.(2020·浙江台州)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .842+二、填空题5.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.6.(2021·浙江绍兴)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数ky x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.7.(2021·浙江杭州)如图是一张矩形纸片ABCD ,点M 是对角线AC 的中点,点E 在BC 边上,把DCE 沿直线DE 折叠,使点C 落在对角线AC 上的点F 处,连接DF ,EF .若MF AB =,则DAF ∠=_____度.8.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC 上的点P 处安装一平面镜,BC 与刻度尺边MN 的交点为D ,从A 点发出的光束经平面镜P 反射后,在MN 上形成一个光点E .已知,, 6.5AB BC MN BC AB ⊥⊥=,4,8BP PD ==.(1)ED 的长为____________.(2)将木条BC 绕点B 按顺时针方向旋转一定角度得到BC '(如图2),点P 的对应点为P ',BC '与MN 的交点为D′,从A 点发出的光束经平面镜P '反射后,在MN 上的光点为E '.若5DD '=,则EE '的长为____________.9.(2020·21的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的_____(填序号). 2,∠1,2﹣1,33 10.(2021·浙江宁波)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.三、解答题11.(2022·浙江湖州)已知在Rt ∠AB C 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记∠ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S . ∠若19S =,216S =,求S 的值;∠延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ∠AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在∠ABF 内),连结EF ,CF .若EF ∠CF ,试探索21S S -与S 之间的等量关系,并说明理由.12.(2022·浙江宁波)(1)如图1,在ABC 中,D ,E ,F 分别为,,AB AC BC 上的点,,,DE BC BF CF AF =∥交DE 于点G ,求证:DG EG =.(2)如图2,在(1)的条件下,连接,CD CG .若,6,3⊥==CG DE CD AE ,求DEBC的值. (3)如图3,在ABCD 中,45,︒∠=ADC AC 与BD 交于点O ,E 为AO 上一点,EG BD ∥交AD 于点G ,⊥EF EG 交BC 于点F .若40,︒∠=EGF FG 平分,10∠=EFC FG ,求BF 的长.13.(2021·浙江宁波)【证明体验】(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠.【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长. 【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,25,2BC CD AD AE ===,求AC 的长.14.(2021·浙江湖州)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.15.(2020·浙江绍兴)问题:如图,在∠AB D中,BA=B D.在BD的延长线上取点E,C,作∠AEC,使EA =EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠D AC=45°思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.16.(2020·浙江舟山)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:课题测量河流宽度测量工测量角度的仪器,皮尺等具测量小第一小组第二小组第三小组组测量方案示意图说明点B,C在点A的正东方向点B,D在点A的正东方向点B在点A的正东方向,点C在点A的正西方向.测量数据BC=60m,∠ABH=70°,∠ACH=35°.BD=20m,∠ABH=70°,∠BCD=35°.BC=101m,∠ABH=70°,∠ACH=35°.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)17.(2020·浙江衢州)如图1,在平面直角坐标系中,∠ABC的顶点A,C分别是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE∠BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:∠线段EF长度是否有最小值.∠∠BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现∠BEF能成为直角三角形,请你求出当∠BEF为直角三角形时m的值.18.(2020·浙江湖州)已知在△AB C中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.AC;(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12(2)变式求异如图2,若∠C=90°,m=2,AD=7,过点D作DH∠AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.19.(2020·浙江金华)如图,在∠AB C中,AB=42∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将∠AEF折叠得到∠PEF.∠如图2,当点P落在BC上时,求∠AEP的度数.∠如图3,连结AP,当PF∠AC时,求AP的长.20.(2022·浙江绍兴)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2DE =时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.21.(2021·浙江衢州)【推理】如图1,在正方形ABC D 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长. 【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).22.(2021·浙江绍兴)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变.∠当点E 与点F 重合时,求AB 的长;∠当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.23.(2020·浙江金华)如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F , 已知OB =8.(1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点D ),点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P , Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.。

江苏省苏州市中考数学专题训练(四)三角形、四边形中的相关证明及计算-人教版初中九年级全册数学试题

江苏省苏州市中考数学专题训练(四)三角形、四边形中的相关证明及计算-人教版初中九年级全册数学试题
2017中考数学专题训练(四)三角形、四边形中的相关证明及计算
纵观近5年中考题,三角形常与旋转、折叠、平移等知识点结合起来考查;四边形中要特别关注平行四边形、矩形、菱形和正方形的性质和判定,以及运用其性质解决有关计算的问题.
类型1三角形的有关计算及证明
【例1】如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
7.(2016某某中考)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.
(1)求证:△ABE≌△CDF;
(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.
解:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中, ,∴△ABE≌△CDF(SAS);(2)四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.
针对练习
5.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.
(1)求证:△ABC≌△ADC;
(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
解:(1)在△ABC与△ADC中, ∴△ABC≌△ADC(SSS);(2)设BE=x,∵∠BAC=30°,∴∠ABE=60°,∴AE=tan60°·x= x,∵∠BCA=45°,∴CE=BE=x,∴ x+x=4,∴x=2 -2,∴BE=2 -2.

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形

2023年中考数学专题复习——专项训练(五)四边形一、选择题(本大题共10小题,每小题3分,共30分)1. 从七边形的一个顶点作对角线,把这个七边形分成三角形的个数是()A. 7B. 6C. 5D. 42. “花影遮墙,峰峦叠窗.”苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗,图②是这种窗棂中的部分图案.若∠1=∠2=75º,∠3=∠4=65º,则∠5的度数是()A. 80ºB. 75ºC. 65ºD. 60º①②第2题图第3题图第4题图第5题图3. 如图,已知四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF的度数是()A.70°B.60°C.80°D.45°4. 如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A. 当AB=BC时,四边形ABCD是矩形B. 当AC=BD时,四边形ABCD是菱形C. 当∠ABC=90º时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形5. 如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A. 20°B. 25°C. 30°D. 40°6. 用图①所示两种图形可以无缝隙拼接成图②所示的正方形ABCD.已知图①所示图形,∠F=45°,∠H=15°,MN=2,则图②中正方形的对角线AC的长为()A. B. C.1 D.2①②第6题图第8题图第9题图第10题图7. 已知E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,对角线AC,BD相交于点O.根据下列条件,不能证明四边形EFGH是矩形的是()A. AC⊥BDB. AB=BC,OB=ODC. AB=BC,OA=OCD. AB=BC,CD=AD8. 如图,菱形ABCD的边长为2,∠ABC=60º,CE∥BD,则△BDE的面积为()A. 1B. 2C. 3D.9. 如图,在平面直角坐标系中,四边形ABCD是正方形,点A的坐标为(0,2),∠ABO=30º,E为CD的中点,则点E的坐标为()21 B.)2 C. D.2A. )10. 如图,菱形ABCD的边长为12,∠ABC=60°,直线EF⊥AC,垂足为H,分别与AD,AB及CB的延长线交于点E,M,F.若AE∶BF=1∶2,则CH的长为()A. 12B. 10C. 8D. 6二、填空题(本大题共6小题,每小题4分,共24分)11. 六边形的内角和比它的外角和多__________度.12. 如图,在△ABC中,∠ACB=120º,分别以AC,BC为边,向△ABC外作正方形ACDE和正五边形BCFGH,则∠DCF的度数是.第12题图第13题图第14题图13. 如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上.若A(2,0),D(4,0),以点O为圆心,OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是.14. 如图,小明同学将边长为6的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移得到△A'B'C'.当两个三角形重叠部分为菱形时,A'D的长为.15. 把一张宽为2 cm的矩形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为4 cm的等腰直角三角形,则纸片的长AD为cm.第15题图第16题图16. 如图13,在□ABCD中,AE⊥BC于点E,N是EC的中点,M是AB的中点.已知S△ABD=6,BC=4,则MN的长为.三、解答题(本大题共4小题,共46分)17. (10分)如图,在□ABCD中,AE⊥BC于点E,延长BC至点F,使CF=BE,连接AF,DE,DF.求证:四边形AEFD是矩形.第17题图第18题图第19题图第20题图18. (10分)如图,在□ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等;(不写作法,保留作图痕迹)(2)若BC=8,CD=5,求CE的长.19. (12分)如图,在四边形ABCD中,AB∥CD,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C 作CE⊥AB,交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=6,BD=8,求CE的长.20.(14分)如图,在正方形ABCD中,E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N.若正方形ABCD的边长为10,P是MN上一点,求△PDC周长的最小值.参考答案专项训练(五)答案详解9. A 解析:先分别求出点C,D的坐标,再利用中点坐标求解.10. B 解析:因为四边形ABCD是菱形,所以AD∥BC,AB=BC=12,∠MAH=∠EAH.因为EF⊥AC,所以∠AHM=∠AHE=∠CHE= 90°.因为AH=AH,所以△AHM≌△AHE.所以AM=AE.因为AD∥BC,所以△AME∽△BMF.所以AM AEBM BF==12.所以AM=AE=4,BM=8.所以BF=8.所以CF=20.因为∠ABC=60°,所以△ABC是等边三角形.所以∠ACB=60°.所以CH=CF•cos 60°=10.16.52【解析】连接AC交BD于点O,连接ON,OM,取BE的中点M′,连接MM′,如图所示.易得四边形OMM′N 是矩形,则∠MON=90º.因为S□ABCD=2S△ABD=12,BC=4,所以BC•AE=12.所以AE=3.利用三角形中位线定理,得OM=2,ON=32.由勾股定理,得MN=52.第16题图三、17.证明:因为CF=BE,所以CF+EC=BE+EC,即EF=BC.因为四边形ABCD是平行四边形,所以AD∥BC,AD=BC.所以AD∥EF,AD=EF.所以四边形AEFD是平行四边形. 因为AE⊥BC,所以∠AEF=90°.所以□AEFD是矩形.18. 解:(1)如图所示,点E即为所求.第18题图(2)因为四边形ABCD是平行四边形,所以AB=CD=5,AD∥BC.所以∠DAE=∠BEA.因为AE是∠BAD的平分线,所以∠DAE=∠BAE.所以∠BAE=∠BEA.所以BE=AB=5.所以CE=BC﹣BE=3.19.(1)证明:因为AB∥CD,所以∠OAB=∠DCA.因为AC 平分DAB ∠,所以∠OAB=∠DAC.所以∠DAC=∠DCA.所以CD=AD.因为AB=AD ,所以CD=AB. 因为AB ∥CD ,所以四边形ABCD 是平行四边形.因为AD=AB ,所以□ABCD 是菱形. (2)解:因为四边形ABCD 是菱形,BD=8,所以OA=OC ,BD ⊥AC ,OB=OD=12BD=4.所以∠AOB=90°.所以所以AC=2OA=所以菱形ABCD 的面积为12AC•BD=12×8=.因为CE ⊥AB ,所以菱形ABCD 的面积为AB •CE=,解得. 20. 解:(1)结论:CF=2DG.证明:因为四边形ABCD 是正方形,所以AD=BC=CD=AB ,∠ADC=∠C=90º. 因为E 是AD 的中点,所以DE=AE.所以AD=CD=2DE.因为EG ⊥DF ,所以∠DHG=90º.所以∠CDF+∠DGE=90º,∠DGE+∠DEG=90º. 所以∠CDF=∠DEG.所以△DEG ∽△CDF.所以12DG DE CF CD ==.所以CF=2DG. (2)作点C 关于直线NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时△PDC 的周长值最小,最小值为CD+PD+PC=CD+PD+PK=CD+DK.由(1),知CD=AD=10,ED=AE=5,DG=52,所以.因为12DE •DG=12EG •DH ,所以DH=DE DGEG⋅所以EH=2DH=同法可得2DH EHHM DE⋅==,所以DM=CN=NK==1.在Rt △DCK 中,所以△PCD 的周长的最小值为10+第20题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ECB F AD1) 若一凸多边形的内角和等于它的外角和,则它的边数是___________. 2) 等腰三角形的底角为75°,顶角是 °,顶角的余弦值是 。

3) 如图,EF 是△ABC 的中位线,若BC =2 cm ,则EF______cm 。

4) 对角线长分别为6cm 和8cm 的菱形的边长为_____________cm .5) 已知梯形的上底长为3cm ,中位线长为5cm ,那么下底长为______________cm . 6) 已知∠α与∠β互余,且∠α=15°,则∠β的补角为 度.7) 如图,梯形ABCD 中,AD ∥BC ,∠D=Rt ∠,BC=CD=12,∠ABE=45°,点E 在DC 上,AE ,BC 的延长线相交于点F ,若AE=10,则S △ADE +S △CEF 的值是 . 8) △ABC 中,∠A =∠B +∠C ,则∠A =____.9) 在Rt ⊿ABC 中,︒=∠90C ,如果AB = 6,21sin =A ,那么BC = ________.10) 在Rt ΔABC 中,∠C=900,AB=3,BC=1,以AC 所在直线为轴旋转一周,所得圆锥的侧面展开图的面积是 ;11)圆锥可以看成是直角三角形以它的一条直角边所在的直线为轴,其余各边旋转一周而成的面所围成的几何体,那么圆台可以看成是 所在的直线为轴,其余各边旋转一周而成的面所围成的几何体;如果将一个半圆以它的直径所在的直线为轴旋转一周,所得的几何体应是 .12) 当图中的∠1和∠2满足 时,能使OA ⊥OB.(只需填上一个条件即可)13) 已知等腰三角形的一边等于3,一边等于6,则它的周长________ 14) 圆锥的底面圆的直径是6cm ,高为4cm ,那么这个圆锥侧面展开图的面积为 cm 2。

(按四舍五入法,结果保留两个有效数字,π取 3.14) 15) 如图,在坡度1:2的山坡一种树。

要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米; 16)如图2,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要 _元。

17)如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形图形分割成两个全等图形。

18) 在四边形ABCD 中,若分别给出四个条件:①AB ∥CD ,②AD =BC ,③∠A =∠C ,④AB =CD .现以其中的两个为一组,能判定四边形ABCD 为平行四边形的条件是________(只填序号,填上一组即可,不必考虑所有可能情况).19)不能判定四边形ABCD 为平行四边形的题设是( ) 1. AB=CD AD=BC B 、AB=CD AB ∥CD C 、AB=CD AD ∥BC D 、AB ∥CD AD ∥BC 20) 如图,平行四边形ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE 等于( )(A )100°(B )80°(C )60°(D )40°21)边长为a 的正六边形的边心距为( )21A BO E B AC D(A )a (B )a 23(C ) a 3 (D )2a22) 如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为3,则圆柱的侧面积为( )(A )30π(B )76π(C )20π(D )74π23) 如图,ΔABC 中,AB=7,AC=6,BC=5,点D 、E 分别是边AB 、AC 的中点,则DE 的长为( )A 、2.5B 、3C 、3.5D 、6 A 、33 B 、624) 已知菱形的边长为6,一个内角为600,则菱形较短的对角线长是( )3 C 、3 D 、625) 如图,有一住宅小区呈四边形ABCD ,周长为2000m ,现规划在小区周围铺上宽为3m 的草坪的面积是(精确到1m 2)( )A 、6000m 2B 、6016m 2C 、6028m 2D 、6036m 2 26) 如果直角三角形的三边为2,4,a ,那么a 取值可以有( )(A )0个(B )1个(C )2个(D )3个27) 已知角α=54O ,那么它的补角的度数是( )A. 36oB. 46oC. 126oD. 136o28) 已知等腰三角形的一边为4,一边为8则它的周长是( )A. 12B. 16C. 20D. 16或2029) 下列图形中,不是..中心对称图形的是( )30) 在△ABC中,∠A ,∠B 都是锐角,且sinA=22,则△ABC 三个21,cosB=角的大小关系是( )(A )∠C >∠A >∠B (B )∠B >∠C >∠A(C )∠A >∠B >∠C (D )∠C >∠B >∠A31) 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( )(A )4(B )3(C )2(D )132) 为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应是( )(A )19.5(B )20.5(C )21.5(D )25.533) 用反证法证明:“三角形中必有一个内角不小于60°”,应先假设这个三角形中( )(A ) 有一个内角小于60°(B )每一个内角都小于60°(B ) 有一个内角大于60°(D )每一个内角都大于60°ABCDC DPBAO5 6.564911875.58A 村B 村D 村C 村电厂34) 如图,下列图案是我国几家银行的标志,其中是轴对称图形有( )A 、1个B 、2个C 、3个D 、4个35) 若梯形的中位线的长是高的2倍,面积是18cm 2,则这个梯形的高等于( )A 、62㎝ B 、6㎝ C 、32㎝ D 、3㎝36) 已知∠A 的补角为320,∠A 则的度数为( )A .32° B.57° C. 68° D.148°37) 已知如图,梯形ABCD 的面积是4㎝2,M 为CD 中点,连AM ,BM ,则△ABM 的面积是( )A.1 ㎝2B.2 ㎝2C.3 ㎝2D. 4㎝238) 下列四个图形中,既轴对称图形,又是中心对称图形的是( ): (A )(1)、(2) (B ) (1)、(3) (C )(2)、(3) (D ) (1)、(4)39) 如果一个多边形的内角和等于它的外角和,那么这个多边形是( )(A )三角形 (B )四边形 (C )五边形 (D )六边形40) 下列说法错误的是( )A 、 一组对边平行且一组对角相等的四边形是平行四边形B 、 每组邻边都相等的四边形是菱形;C 、 四个角相等的四边形是矩形;D 、 对角线互相垂直的平行四边形是正方形;41) 如图所示,光线l 照射到平面镜I 上,然后在平面镜I 、II 之间来回反射,B .55°C .60°已知∠α=55°,∠γ=75°,则∠β为( )A .50° D .65°42) 已知:如图,在梯形ABCD 中,AB ∥CD ,E 、F 为AB 上两点,且AE =BF ,DE =CF ,EF ≠CD .求证:AD =BC .43) 已知:如图,AB ⊥BC ,AD ⊥DC ,垂足分别为B 、D ,AC 平分∠BCD 。

求证:BC=DC 。

AM DC B44) 已知:如图,矩形ABCD .(1)作出点C 关于BD 所在直线的对称点C '(用尺规作图,不写作法,保留作图痕面积等于△ABD 面积的23,迹).(2)连结C B '、C D ',若C BD '△与△ABD 重叠部分的求∠CBD 的度数.45) 已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,DE ⊥AC ,E 、F 分别是垂足。

求证:AE=AF 。

46) 已知:如图,在平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,平行四边形 ABCD 的周长为28,面积为40, AB ∶AD = 4∶3. 求(1) DE 的长; (2)EDF ∠sin 的值.直线AE 交DC 的延长线47) 已知:如图,梯形ABCD 中,AB CD //,E 是BC 的中点,于点F 。

(1)求证:∆∆ABE FCE ≅;(2)若BC AB ⊥,且BC=10,AB=12,求AF的长。

48) 如图,若把边长为1的正方形ABCD 的四个角9阴影部分)剪掉,得一四边形1111D C B A 。

试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的95,请说明理由(写出证明及计算过程)。

51.已知:如图,CD ⊥AB 于点D ,BE ⊥AC 于E ,BE 、CD 交于点O ,且AO平分∠BAC ,求证:OB=OC 。

A FED C BFA BCD E52.已知:如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,DF ∥AB 。

求证:AE =DF53.如图3,点C 是线段BA 延长线上的一点,正方形ACDE 和正方形ABGF 在AB 的同侧。

求证:CF =BE 。

54.已知如图,四力形ABCD 是矩形,对角线AC 、BD 交于O ,CE∥DB 交AB 的延长线于E.求证:AC=CE 。

55.已知等腰梯形ABCD ,AD ∥BC ,E 为梯形内一点,且EA=ED.求证:EB=EC.56.如图,在⊿ABC 中,AQ=PQ ,PR=PS , PS ⊥AC 于S ,PR ⊥AB 于R ,则三个结论:①AS=AR ;②⊿BRP∽⊿QSP ;③PQ ∥AB 中,正确的是____________. 请证明你所得到的结论.57.如图,在梯形ABCD 中,AD ‖BC , ∠BAD =90°,AD+AB=14,(AB>AD )AOEDCBABC DEFG图3A S PR CBQEB DA的定义域; 58.求证:等腰梯形下底的中点到两腰的距离相等。

(要求完成图形,写出已知。

求证,并加以证明)59.如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB=AC ,∠B=∠C ,求证:AD=AE 。

60.如图,等腰梯形ABCD 中,AD ∥BC ,tgB=3,上底AD=10,梯形的高是6,求(1)∠B 的度数;(2)下底BC 的值。

相关文档
最新文档