LMS类自适应算法
LMS类自适应滤波算法的研究

LMS类自适应滤波算法的研究LMS类自适应滤波算法的研究自适应滤波算法是一种可以根据输入信号的特性自动调整滤波器参数的方法。
它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
LMS(Least Mean Square)是一种常用的自适应滤波算法,它通过最小化均方差来更新滤波器的权重,以实现滤波器的自适应性。
LMS算法的基本原理是通过梯度下降法来调整滤波器的权重。
假设输入信号为 x(n),期望输出信号为 d(n),滤波器的输出信号为 y(n),滤波器的权重为 w(n)。
算法的更新公式如下:w(n+1) = w(n) + μe(n)x(n)其中,w(n+1)是下一时刻的权重,w(n)是当前时刻的权重,μ是步进因子,e(n)是误差信号,x(n)是输入信号。
误差信号可以通过期望输出信号和滤波器的输出信号之间的差异计算得到:e(n) = d(n) - y(n)LMS算法的核心思想是根据误差信号的大小来更新滤波器的权重,使得误差信号逐渐趋近于零,从而实现滤波器的自适应。
步进因子μ的选择对算法的性能有着重要的影响。
当μ过小时,算法的收敛速度较慢;当μ过大时,算法可能发散。
因此,在实际应用中需要根据具体情况选择适当的步进因子。
除了LMS算法,还有一些与之类似的自适应滤波算法,如NLMS(Normalized Least Mean Square)算法和RLS (Recursive Least Squares)算法。
NLMS算法是一种对LMS算法的改进,通过归一化步进因子来改善收敛速度和稳定性。
RLS算法是一种基于递推最小二乘法的自适应滤波算法,相对于LMS算法具有更好的性能,但计算量较大。
LMS类自适应滤波算法广泛应用于信号降噪、自适应控制、信号预测等领域。
在信号降噪方面,LMS算法可以根据输入信号的特性实时调整滤波器的权重,抑制噪声,提高信号的质量。
在自适应控制方面,LMS算法可以根据目标系统的反馈信息实时调整控制器的参数,使得控制系统能够自动适应不同的工况,提高控制精度和稳定性。
自适应均衡算法LMS研究

自适应均衡算法LMS研究一、自适应滤波原理与应用所谓自适应滤波器,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。
根据环境的改变,使用自适应算法来改变滤波器的参数和结构。
1.1均衡器的发展及概况均衡是减少码间串扰的有效措施。
均衡器的发展有史已久,二十世纪60年代前,电话信道均衡器的出现克服了数据传输过程中的码间串扰带来的失真影响。
但是均衡器要么是固定的,要么其参数的调整是手工进行。
1965年,Lucky在均衡问题上提出了迫零准则,自动调整横向滤波器的权系数。
1969年,Gerhso和Porkasi,Milier分别独立的提出采用均方误差准则(MSE)。
1972年,ungeboekc将LMS算法应用于自适应均衡。
1974年,Gedard 在kalmna滤波理论上推导出递推最小均方算法RLS(Recursive least-squares)。
LMS类算法和RLS类算法是自适应滤波算法的两个大类。
自适应滤波在信道均衡、回波抵消、谱线增强、噪声抑制、天线自适应旁瓣抑制、雷达杂波抵消、相参检测、谱估计、窄带干扰抑制、系统辨识、系统建模、语音信号处理、生物医学、电子学等方面获得广泛的应用。
1.2均衡器种类均衡技术可分为两类:线性均衡和非线性均衡。
这两类的差别主要在于自适应均衡器的输出被用于反馈控制的方法。
如果判决输出没有被用于均衡器的反馈逻辑中,那么均衡器是线性的;如果判决输出被用于反馈逻辑中并帮助改变了均衡器的后续输出,那么均衡器是非线性的。
图1.1 均衡器的分类1.3自适应算法LMS 算法LMS 算法是由widrow 和Hoff 于1960年提出来的,是统计梯度算法类的很重 要的成员之一。
它具有运算量小,简单,易于实现等优点。
LMS 算法是建立在Wiener 滤波的基础上发展而来的。
Wiener 解是在最小均方误差(MMSE)意义下使用均方误差作为代价函数而得到的在最小误差准则下的最优解。
LMS及RLS自适应干扰抵消算法的比较

LMS及RLS自适应干扰抵消算法的比较LMS(Least Mean Square)和RLS(Recursive Least Squares)是两种常用的自适应滤波算法,用于干扰抵消。
它们在不同场景下有着不同的特点和适用性。
LMS算法是一种迭代算法,通过不断调整滤波器的权值来最小化误差信号的均方差。
它的优点是实现简单,计算量较小,适用于大多数实时应用。
它采用梯度下降法来更新权值,根据误差信号和输入信号的乘积来调整权值,使得误差不断减小。
然而,LMS算法有一个较大的问题,就是收敛速度较慢,因为它只基于当前样本进行权值更新,对数据的统计特性要求较高。
另外,LMS算法对噪声的功率估计不准确,容易导致性能退化。
与LMS算法相比,RLS算法是一种递推算法,通过不断更新逆协方差矩阵来获得最佳权值。
它的优点是收敛速度快,稳定性好,适用于非平稳环境下的信号处理。
RLS算法通过在线估计输入信号的统计特性,能够更准确地抵消干扰。
然而,RLS算法的计算量较大,实时性不如LMS算法,而且对初始参数的选择要求较高,误差传播的问题可能会导致性能下降。
虽然LMS算法和RLS算法在特点和适用性上存在差异,但在实际应用中,可以根据具体的场景选择合适的算法。
如果系统对实时性要求较高,并且希望实现简单,LMS算法是一个合适的选择。
如果系统需要更准确的干扰抵消,并且可以容忍一定的计算复杂度,RLS算法是一个更好的选择。
另外,也可以考虑将两种算法结合使用,利用它们各自的优点来提高干扰抵消的性能。
总结起来,LMS算法和RLS算法是两种常用的自适应干扰抵消算法。
LMS算法具有实现简单、计算量小的特点,适用于实时应用;RLS算法具有收敛速度快、稳定性好的特点,适用于非平稳环境下的信号处理。
在实际应用中可以根据具体的场景选择合适的算法,或者结合两种算法来提高干扰抵消的性能。
LMS自适应均衡算法研究及改进实验报告

目录一、绪论 (2)1.1 论文背景及研究意义 (2)1.2 音频简介 (2)1.3 自适应滤波理论的发展 (3)1.3.1 FIR滤波器的结构 (5)1.4 自适应滤波算法简介 (6)1.4.1 基于维纳滤波理论的算法 (6)1.4.2 基于卡尔曼滤波理论的算法 (7)1.4.3 基于最小二乘法的算法 (8)1.4.4 基于神经网络的算法 (8)1.5自适应LMS算法的发展 (9)1.5.1 LMS算法的历史 (9)1.5.2 LMS算法的发展现状 (10)1.5.3 LMS算法的发展前景 (10)1.6 变步长LMS算法 (11)二、最小均方算法 (12)2.1 LMS算法原理 (12)2.2 LMS算法性能分析 (13)2.2.1 收敛性 (13)2.2.2 收敛速度 (15)2.2.3 稳态误差 (16)2.2.4 计算复杂度 (17)2.3 变步长的LMS (17)三、实验过程 (19)3.1 LMS算法实现 (19)3.1.1 音频读取 (19)3.1.2 参考噪声及带噪信号的获得 (19)3.1.3 LMS算法 (21)3.1.4 代码实现 (23)3.2 VSSLMS算法实现 (25)3.2.1 VSSLMS算法 (25)3.2.2 代码实现 (27)3.3 本章总结 (29)四、总结与展望 (30)4.1 论文总结 (30)4.2 展望 (30)五、参考文献 (31)一、绪论1.1 论文背景及研究意义自适应信号处理是现代通信处理的一个重要分支学科。
与传输函数恒定的滤波器相比,自适应滤波器能根据环境自动调节抽头系数以达到最佳工作状态,被广泛应用于通信、雷达、系统控制和生物医学工程等领域。
自适应信号处理的主要应用有均衡、系统辨识、阵列信号的波束成形、噪声对消和预测编码等。
在音频降噪方面,自适应信号处理也应用诸多。
音频中降噪方法很多,按照是否有参考信号可以将降噪分为主动降噪和被动降噪。
RLS和LMS自适应算法分析

RLS和LMS自适应算法分析RLS (Recursive Least Squares) 和 LMS (Least Mean Squares) 是两种常见的自适应滤波算法。
它们在信号处理、通信系统和自适应控制等领域得到广泛应用。
本文将对这两种算法进行分析比较。
首先,我们来看看RLS算法。
RLS算法使用最小均方误差准则来自适应调整滤波器系数。
它利用递归方式计算出均方误差的最小值。
RLS算法基于Wiener-Hopf方程,通过解析方法来计算最优系数。
这种方法计算量较大,但是提供了更好的性能。
RLS算法根据观测数据和期望输出之间的误差信号来不断调整滤波器的权重,并且在递归过程中更新这些权重。
相比于LMS算法,RLS算法具有更快的收敛速度和更高的精度。
但是,RLS 算法也存在一些问题,比如计算复杂度高、存储要求大以及对噪声和系统不确定性敏感。
接下来,我们来看看LMS算法。
LMS算法是一种基于随机梯度下降的自适应算法。
在LMS算法中,滤波器的系数通过逐步调整以减小误差标准差。
LMS算法利用误差信号和输入信号之间的乘积来更新滤波器系数。
这种算法简单易于实现,计算复杂度低,并且对存储要求不高。
LMS算法适用于非平稳环境下的自适应滤波问题。
然而,LMS算法的收敛速度较慢,需要一定的迭代次数才能达到最优解,而且对于高阶滤波器,可能存在稳定性问题。
此外,LMS算法对输入信号的统计特性有一定的要求。
综上所述,RLS算法和LMS算法都是常见的自适应滤波算法,它们在不同的应用领域有不同的适用性和特点。
RLS算法在计算复杂度和存储要求上较高,但是具有更快的收敛速度和更高的精度。
LMS算法计算复杂度低,存储要求小,但是收敛速度较慢。
一般情况下,对于较小的系统和较简单的滤波器,可以使用LMS算法,而对于复杂的系统和高阶滤波器,可以使用RLS算法。
在实际应用中,需要根据具体的要求和约束来选择合适的算法。
此外,还可以根据实时计算需求和系统资源限制等因素,对RLS 和LMS算法进行优化和改进,如考虑快速RLS算法和正则化LMS算法等。
基于LMS算法的自适应滤波器研究与应用

基于LMS算法的自适应滤波器研究与应用一、引言随着科技的不断进步,人们对于信号处理技术的需求越来越高。
自适应滤波器是一种能够高效地滤除噪声和干扰的信号处理方法,其在语音信号处理、图像处理等领域都有广泛应用。
LMS算法是一种经典的自适应滤波算法,本文将对基于LMS算法的自适应滤波器进行深入研究。
二、自适应滤波器自适应滤波器是利用反馈机制将输出信号与期望信号进行比较,不断调节滤波器的参数,使输出信号与期望信号的差别最小化,从而实现滤波效果的提高。
在自适应滤波器中,LMS算法是一种相对简单而又广泛应用的算法。
LMS算法的核心思想是,利用误差信号不断更新滤波器的参数,从而实现自适应调节。
具体来讲,LMS算法通过对于受到噪声和干扰的输入信号进行滤波,使得输出信号与期望信号之间的误差最小化,从而增强信号的可读性、可靠性和清晰度。
三、LMS算法的具体原理LMS算法的核心思想是不断寻求让滤波器的输出信号与期望信号之间误差最小的滤波参数。
具体而言,LMS算法采用误差,即输出信号与期望信号之间的差别,来更新滤波器的权值向量。
通过不断迭代计算,LMS算法可以优化滤波器的参数,实现更好的滤波效果。
在LMS算法中,滤波器的权值向量w被初始化为任意值,然后通过误差信号进行调整。
假设输出信号为y(n),期望信号为d(n),滤波器的输入信号为x(n),则LMS算法的更新公式为:w(n+1) = w(n) + 2μe(n)x(n)其中,w(n+1)表示n+1时刻的滤波器权值向量,w(n)表示n时刻的滤波器权值向量,μ为步长,e(n)为误差信号。
通过不断地迭代计算,LMS算法可以不断优化滤波器的参数,从而完善滤波效果。
四、LMS算法的应用LMS算法的应用非常广泛,在图像处理、语音识别、自适应控制等领域都有重要应用。
下面将针对图像和语音两类应用进行介绍。
1. 图像处理中的应用在图像处理中,LMS算法可以应用于图像降噪、图像去模糊等场景。
LMS自适应滤波算法

LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
RLS和LMS自适应算法分析

RLS 和LMS 自适应算法分析摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。
我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。
通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。
用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。
关键词:自适应滤波、LMS 、RLS 、Matlab 仿真Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS, Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process.Keywords:, LMS and RLS adaptive filter, the Matlab simulation课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产生的AR 过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 =1,则称u(n)是u(n-1)的相干信号; =0,则 a ( n) a ( n) u(n)与u(n-1)不相关;0 < <1,称u(n)与u(n-1)相关。
a ( n)
解相关LMS算法
现用解相关的结 n )v ( n )
解相关LMS算法
思路二:利用前向预测 在解相关LMS算法中,其实可视为一种自适应辅助 变量法,其中辅助变量为:v(n) u(n) a(n)u(n 1) 。现用 一前向预测器的误差向量代替。令 a (n) 为一M阶前 向预测其的权向量,计算前向预测误差: 式中,
T
w(n 1) (n)e *(n)u (n)
e(n) d (n) uT (n)w *(n 1) d (n) wH (n 1)u (n) 式中,
式11,即为最小均方差自适应算法,简称LMS算法。 易证:瞬时梯度向量是真实梯度向量的无偏估计。
LMS算法及其基本变型
e(n) d (n) w (n 1)u (n)
H
u H (n 1)u (n) a ( n) H u (n 1)u (n 1)
v(n) u(n) a(n)u(n 1)
w(n) w(n 1) u(n)v(n)
上述算法中,参数 称为修正因子
( n)
~
w( n) w( n 1) e ( n) e( n)
f
~
学习速率参数选择
为什么要选择学习参数 LMS算法中的步长参数µ决定抽头权向量在每步迭代 中的更新量,是影响算法收敛的关键参数。由于 LMS算法的目的是在更新过程中使抽头权向量逼近 Wiener滤波器,所以权向量更新可视为一种学习过 程,而µ决定了LMS算法学习过程的快慢。故步长参 数µ也称为学习速率参数。
LMS算法及其基本变型
在式6中,将数学期望分别用相应的瞬时值代替,便 得到了瞬时梯度:
J (n) 2[u (n)d *(n) u (n)u H (n) w(n)]
^
进而,将真是梯度向量用瞬时梯度向量代替,既得 瞬时梯度算法: (n) w(n 1) (n)u (n)[d (n) u (n)w *(n 1)]* w
v(n) u(n) a(n)u(n 1)
另步长参数µ(n)应该是满足下列最小化问题的解:
(n) arg min J [w(n 1) v (n)]
e(n) ( n) H u ( n ) v ( n)
解相关LMS算法
综上所述,提出解相关算法: 步骤一: 初始化 w(0)=0; 步骤二:更新:
学习速率参数选择
2、学习速率参数选择时变
( n)
c n
这样也存在问题。在参数c比较大时,LMS算法可能 在经过若干次迭代后即变为发散。 3、固定+时变 两个经典例子: 0 ( n) (1) 1 (n / ) (2)
( n) 0 , n N 0 ( n) 0 e N
e(n) d (n) wH (n 1)u (n)
e f (n) u (n) aT (n)u (n 1)
e(n) [e(n), e(n 1),…,e(n-M+1)]T
e f (n) [e f (n), e f (n 1),…,e f (n M 1)]
e ( n ) e( n ) a H ( n ) e( n )
H
解相关LMS算法
解相关算法的提出:
在LMS算法中,有一个独立性假设:假定滤波 器的输入向量是彼此独立的向量序列。当他 们之间有耦合时,算法性能下降,尤其是收 敛速度。因此需要解除各时刻输入向量之间 的相关(解相关),使其保持统计独立。
解相关LMS算法
1、时域解相关LMS算法 思路一:在输入量中根据实际剔除相关量 定义u(n)与u(n-1)在n时刻的相关系数为:
e (n) u (n) ai (n)u (n 1) u (n) a(n)u (n 1)
f i 1 M
u (n 1) [u (n 1), u (n 2), …,u(n-M)]T a(n) [a1 (n), a2 (n), …,aM (n)]T
解相关LMS算法
使用前向预测误差向量作辅助变量,即更新方向向 量:
v(n) e f (n) [e f (n), e f (n 1),…,e f (n M 1)]
用前向预测器对瞬时估计误差 波,则得到滤波型LMS算法。
e(n) y(n) wH (n 1)u (n)
滤
解相关LMS算法
滤波型LMS算法: 步骤一:初始化 w(0)=0; 步骤二:更新:
LMS算法及其基本变型
[ (1)r Rw(n 1)]为误差向量,代表了抽头权向量的校 正量; (2)参数µ(n)称为在时间n的“步长参数”,决定 了更新算法的收敛速度; (3)当自适应算法趋于收敛是,有 1 r Rw(n 1) 0 n , lim w(n 1) R r n 0 即抽头权向量收敛为之前所说的Wiener滤波器。
学习速率参数选择
基于LMS算法收敛,给出学习速度参数的选择问题: 1、均值收敛: E{e(n)} 0 n 0 ^ 或 lim E{w(n)} wopt n 0 均值收敛条件: 0 2
max
2、均方差收敛:
lim E{| (n) |2 } c
n 0
均方差收敛条件: 0
式中,
R E{u (n)u H (n)} r E{u (n)d *(n)}
自适应实现在滤波器中的引入
使用中最广泛的形式是:“下降算法”
w(n) w(n 1) (n)v(n)
式中,w(n)为第n步迭代(即时刻n)的权向量,µ(n) 为第n次迭代的更新步长,而v(n)为第n次迭代的 更新方向。 依据下降算法的两种主要实现方式,分为自适应梯 度算法和自适应高斯-牛顿算法。 下面主要讲:自适应梯度算法,其包括LMS类自适 应算法
自适应实现在滤波器中的引入
在导出梯度向量后,再定义:
u (n) [u (n), u (n 1), , u (n M 1)]T w(n) [ w0 (n), w1 (n), , wM 1 (n)]T
则式3可改写为向量式:
J (n) 2 E{u (n)[d *(n) u H (n) w(n)]} 2r 2Rw(n)
d
( n N0 )
, n N0
学习速率参数选择
4、自适应学习速率 如果时变的学习速率是由LMS算法的实际运行状态 控制的,则这类时变的学习速率称为自适应学习速 率,也成为“学习规则的学习”。下介绍两个例子: (1)根据预测误差的平方来调节学习速率; (2)直接用模糊系统理论和语言模型来实现,构成所 谓的模糊步长调节。
自适应实现在滤波器中的引入
自适应实现:N阶FIR滤波器的抽头权系数可以 根据估计误差e(n)的大小自动调节,使得某个代价 函数最小。
自适应实现在滤波器中的引入
MMSE准则是滤波器设计最常用的准则。故在设计 中采用均方误差为代价函数:
J (n) E{| (n) |2 } E{| d (n) wH u (n) |2 }
LMS算法及其基本变型
自适应梯度下降算法中,更新方向向量v(n)取 自第n-1次迭代的代价函数J[w(n-1)]的负梯度,即统 一形式为: 1
w(n) w(n 1) (n)J (n 1) 2
其中,系数1/2是为了使得到的更新公式更简单。将 更新公式中的部分用之前结论带入,既得抽头权向 量w(n)的更新公式为: w(n) w(n 1) (n)[r Rw(n 1)], n 1, 2, 由更新公式式9得到:
2 总的输入能量
学习速率参数选择
自适应学习速率参数 1、学习速率参数选择常数
(n)
选择学习速率参数为常数,在收敛与稳态性能 上会引起矛盾:大的学习速率参数能提高收敛速度, 但稳定性就会减低;反之,稳定性增加了,收敛速 度变慢了。因此,学习速率参数的选择应该兼顾稳 定性和收敛性,简单而有效地方法就是时变的学习 速率。
LMS类自适应算法
樊辉
11电工
自适应算法的提出
个人理解:传统系统设计均是在某种情况下按 照某些特定参数推导得出,是系统设计完成后运行 在该类特定情况效果最佳。系统一旦发生某些参数 变化,则系统输出效果一般会明显变差。诚如PID这 类控制系统中使用最广最常用的控制算法,也只具 有一定的鲁棒性。提出自适应算法,通过某些系统 参数的在线学习,适应改变的系统,优化系统性能, 就显得有必要了。
之前最优滤波理论中可知,代价函数相对于滤波器 的抽头权向量w的梯度为:
k J (n) 2 E{u (n k )e *(n)} 2 E{u (n k )[d (n) wH u (n)]*}, k 0,1, …,M-1
则对应的梯度向量为:
J ( n) J ( n) a ( n) j b ( n) 0 0 J ( n) J ( n) a ( n) j b ( n) T J (n) [ 0 J (n), 1 J (n), …, M 1 J (n)] 1 1 J ( n) j J ( n) a ( n) bM 1 (n) M 1
LMS自适应算法: 步骤1:初始化权抽头向量:w(0)=0; 步骤2:更新: e(n) d (n) wH (n 1)u (n) w(n)=w(n-1)+µ(n)u(n)e*(n)
注:1、µ(n)=c(c取常值),则为基本LMS算法 2、µ(n)= u (n)u(n) , (0, 2), 0 ,则为归一化LMS算法 3、当期望信号未知时,可直接用滤波器输出y(n)代替d(n)