LMS自适应线性预测算法
(完整word版)自适应滤波LMS算法及RLS算法及其仿真.
![(完整word版)自适应滤波LMS算法及RLS算法及其仿真.](https://img.taocdn.com/s3/m/996792410b4c2e3f572763ea.png)
自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。
相应的装置称为滤波器。
实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。
滤波器可分为线性滤波器和非线性滤波器两种。
当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。
自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。
1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。
自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。
1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。
并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。
基于这~准则的最佳滤波器称为维纳滤波器。
20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。
Lecture.LMS算法介绍
![Lecture.LMS算法介绍](https://img.taocdn.com/s3/m/b01ba9e404a1b0717ed5dd17.png)
LMS算法介绍最小均方算法(Least Mean Square, LMS)是一种简单、应用为广泛的自适应滤波算法,是在维纳滤波理论上运用速下降法后的优化延伸,早是由Widrow 和Hoff 提出来的。
该算法不需要已知输入信号和期望信号的统计特征,“当前时刻”的权系数是通过“上一时刻”权系数再加上一个负均方误差梯度的比例项求得。
这种算法也被称为Widrow-Hoff LMS 算法,在自适应滤波器中得到广泛应用,其具有原理简单、参数少、收敛速度较快而且易于实现等优点。
1 最小均方误差以及均方误差曲面自适应滤波算法从某种角度也被称为性能表面搜索法,在性能曲面中,它是通过不断测量一个点是否接近目标值,来寻找优解的。
目前,使用为广泛的曲面函数之一是均方误差(MSE)函数,函数表达式如下:。
准则函数设计为求均方误差函数的小值,我们称之为小均方误差准则(MMSE),维纳滤波器就是基于这个准则推到出来的。
公式:,从上式可以看出均方误差与滤波器权向量是成二次函数关系,引入均方误差曲面来描述函数的映射关系,对应的权向量w的二次函数就是一个超抛物曲面。
2 LMS算法基本原理根据小均方误差准则以及均方误差曲面,自然的我们会想到沿每一时刻均方误差的陡下降在权向量面上的投影方向更新,也就是通过目标函数的反梯度向量来反复迭代更新。
由于均方误差性能曲面只有一个唯一的极小值,只要收敛步长选择恰当,不管初始权向量在哪,后都可以收敛到误差曲面的小点,或者是在它的一个邻域内。
这种沿目标函数梯度反方向来解决小化问题的方法,我们一般称为速下降法,表达式如下:,基于随机梯度算法的小均方自适应滤波算法的完整表达式如下:LMS 自适应算法是一种特殊的梯度估计,不必重复使用数据,也不必对相关矩阵和互相关矩阵进行运算,只需要在每次迭代时利用输入向量和期望响应,结构简单,易于实现。
虽然LMS 收敛速度较慢,但在解决许多实际中的信号处理问题,LMS 算法是仍然是好的选择。
LMS线性预测matlab算法及simulink
![LMS线性预测matlab算法及simulink](https://img.taocdn.com/s3/m/1cb00e5d26d3240c844769eae009581b6bd9bdaf.png)
LMS线性预测matlab算法及simulink概述LMS线性预测算法和simulink的重要性和应用领域LMS(Least Mean Squares)算法是一种自适应滤波算法,用于线性预测问题。
其原理是通过迭代更新滤波器的权值来最小化预测误差的均方差。
LMS算法的步骤如下:初始化滤波器的权值为零或随机值。
提供待预测的输入信号和目标输出信号。
根据当前输入信号和滤波器的权值计算预测输出信号。
计算预测误差,即目标输出信号与预测输出信号之差。
根据预测误差和当前输入信号更新滤波器的权值。
权值的更新公式为:权值 = 权值 + 步长因子 * 预测误差 * 输入信号。
以下是一个基于matlab实现LMS算法的示例:定义输入信号和目标输出信号input_signal =[1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];初始化滤波器的权值filter_weights =zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;迭代更新滤波器的权值for i = 1:length(input_signal)。
BPSK调制传输系统LMS算法自适应均衡性能分析
![BPSK调制传输系统LMS算法自适应均衡性能分析](https://img.taocdn.com/s3/m/46b3f3878ad63186bceb19e8b8f67c1cfad6eee8.png)
BPSK调制传输系统LMS算法自适应均衡性能分析BPSK调制传输系统中,LMS(Least Mean Square)算法是一种常用的自适应均衡算法。
它通过自适应地调整均衡器的权重系数来实现信道均衡,从而提高系统的性能。
本文将对LMS算法在BPSK调制传输系统中的性能进行分析。
首先,我们需要了解BPSK调制传输系统的基本原理。
BPSK调制是一种二进制调制方式,它将数字信号转换为两个不同的相位信号,分别代表1和0。
在传输过程中,信号会经过信道引起失真和噪声干扰。
为了恢复原始信号,我们需要对接收到的信号进行均衡处理。
LMS算法的核心思想是根据误差信号来调整均衡器的权重系数。
误差信号是接收信号经过均衡器处理后与已知原始信号之间的差异。
通过不断调整权重系数,LMS算法能够逐步减小误差信号,最终实现信道均衡。
在BPSK调制传输系统中,我们可以对LMS算法的性能进行以下几个方面的分析。
1.收敛速度:LMS算法的收敛速度是衡量其性能的重要指标之一、收敛速度越快,均衡器能够更快地适应信道的变化,提高系统的实时性和鲁棒性。
收敛速度受到多种因素的影响,例如步长参数的选择、信道的时变性等。
在实际应用中,需要根据具体情况进行优化。
2.系统误码率:误码率是衡量系统性能的重要指标。
对于BPSK调制传输系统,误码率反映了接收信号正确解码的概率。
通过调整LMS算法的参数,如步长参数和滤波器长度等,可以改善系统的误码率性能。
同时,深度学习等新兴技术也可以结合LMS算法进行优化,进一步降低误码率。
3.资源利用率:BPSK调制传输系统中,LMS算法会引入一定的计算复杂度和存储开销。
因此,需要考虑LMS算法的资源利用率。
通过算法设计和硬件优化,可以减少计算量和存储需求,提高资源利用率。
4.系统可靠性:LMS算法在均衡过程中,由于噪声和失真等因素的存在,可能导致误差信号不断波动,进而影响系统的可靠性。
可以通过优化算法参数、加入先验知识或调整均衡器结构等方法来提高系统的可靠性。
LMS类自适应滤波算法的研究
![LMS类自适应滤波算法的研究](https://img.taocdn.com/s3/m/34d18949773231126edb6f1aff00bed5b9f37331.png)
LMS类自适应滤波算法的研究LMS类自适应滤波算法的研究自适应滤波算法是一种可以根据输入信号的特性自动调整滤波器参数的方法。
它在信号处理、通信系统、控制系统等领域得到了广泛的应用。
LMS(Least Mean Square)是一种常用的自适应滤波算法,它通过最小化均方差来更新滤波器的权重,以实现滤波器的自适应性。
LMS算法的基本原理是通过梯度下降法来调整滤波器的权重。
假设输入信号为 x(n),期望输出信号为 d(n),滤波器的输出信号为 y(n),滤波器的权重为 w(n)。
算法的更新公式如下:w(n+1) = w(n) + μe(n)x(n)其中,w(n+1)是下一时刻的权重,w(n)是当前时刻的权重,μ是步进因子,e(n)是误差信号,x(n)是输入信号。
误差信号可以通过期望输出信号和滤波器的输出信号之间的差异计算得到:e(n) = d(n) - y(n)LMS算法的核心思想是根据误差信号的大小来更新滤波器的权重,使得误差信号逐渐趋近于零,从而实现滤波器的自适应。
步进因子μ的选择对算法的性能有着重要的影响。
当μ过小时,算法的收敛速度较慢;当μ过大时,算法可能发散。
因此,在实际应用中需要根据具体情况选择适当的步进因子。
除了LMS算法,还有一些与之类似的自适应滤波算法,如NLMS(Normalized Least Mean Square)算法和RLS (Recursive Least Squares)算法。
NLMS算法是一种对LMS算法的改进,通过归一化步进因子来改善收敛速度和稳定性。
RLS算法是一种基于递推最小二乘法的自适应滤波算法,相对于LMS算法具有更好的性能,但计算量较大。
LMS类自适应滤波算法广泛应用于信号降噪、自适应控制、信号预测等领域。
在信号降噪方面,LMS算法可以根据输入信号的特性实时调整滤波器的权重,抑制噪声,提高信号的质量。
在自适应控制方面,LMS算法可以根据目标系统的反馈信息实时调整控制器的参数,使得控制系统能够自动适应不同的工况,提高控制精度和稳定性。
神经网络自适应线性神经元Adaline的LMS算法
![神经网络自适应线性神经元Adaline的LMS算法](https://img.taocdn.com/s3/m/2179f7f0f90f76c661371aaa.png)
5
最陡下降算法 4
在步幅系数选择为 0.02 ,最小误差为 Emin 0.001 0.2633 的条件下,在 MATLAB
下编程计算,得到某一次的相应结果如下。 权值向量 W [0.3516 均方误差曲线
0.9
0.3240];
0.8
0.7
均方误差 E
0.6
0.5
0.4
0.3
0.2
2.0106 1.1515 R ; 1.1515 1.7398
P 1.1058 1.0074 ; W* 0.3517 0.3463;
E ( 2 )min 0.2623
2) 阈值待定的情况下 根据样本数据得到的运算结果如下。
2
2.0106 1.1515 0.0269 R 1.1515 1.7398 0.0422 ; 0.0269 0.0422 1.0000
5
10
15
20 迭代次数 N
25
30
35
40
图 2
随机逼近算法均方误差曲线
可以看到,经过 38 次的迭代算法,最后均方误差收敛到的计算阈值 0.2633。
4
不同的步幅系数对迭代步数的影响
表 1 给出了在不同的步幅系数的条件下测试随机逼近算法达到收敛时的迭代次数。
3
表 1
不同步幅系数下随机逼近法的迭代次数
y f ( I ) I WXT
得到的,线性函数的相比于硬限幅函数,在这里其最大的特点就是线性函数是可微的。LMS 算法基于上式右侧递推得到,三种递推算法的核心递推环节通过求导得到,因此,失去线性 函数的条件,而换成硬限幅函数作为传递函数,以上算法均无法进行。
6
若采用硬限幅函数,那么我们只能运用硬限幅函数的权值递推式来求权值 6
NLMSLMS算法介绍参考
![NLMSLMS算法介绍参考](https://img.taocdn.com/s3/m/443bfd6bcec789eb172ded630b1c59eef8c79a2c.png)
NLMSLMS算法介绍参考NLMS(Normalized Least Mean Squares)算法是一种自适应滤波算法,是LMS(Least Mean Squares)算法的一种改进版本。
可以应用于许多信号处理应用领域,例如声音增强、自适应滤波、自适应降噪等。
LMS算法是一种采用最小均方误差准则的自适应滤波算法。
它通过最小化输入信号与期望输出信号之间的均方误差来调整滤波器的系数,实现自适应滤波。
然而,LMS算法存在一个缺陷,就是它对输入信号的动态范围非常敏感,需要较小的步长参数才能保证算法的收敛性。
为了解决LMS算法的不足,NLMS算法在每次迭代中对步长参数进行了归一化处理。
具体来说,在更新滤波器系数时,NLMS算法除以输入信号的功率来归一化步长。
这样可以有效地改善算法的收敛速度和稳定性,提高算法的适应性。
NLMS算法的更新公式如下:w(k+1)=w(k)+μ/(α+x(k)*x(k)')*e(k)*x(k)其中,w(k)表示第k个迭代步骤时的滤波器系数向量,μ是步长参数,α是一个小的正常数,x(k)表示第k个迭代步骤时的输入信号向量,e(k)表示第k个迭代步骤时的误差信号。
NLMS算法的优点是可以自动调节步长参数,能够快速适应信号的变化。
此外,由于步长参数的归一化处理,算法对输入信号的幅度变化不敏感,能够更好地处理动态范围大的信号。
然而,NLMS算法也存在一些问题。
首先,算法的收敛速度可能会受到输入信号的动态范围变化的影响。
当信号的动态范围较大时,步长参数的归一化处理会导致算法的收敛速度变慢,甚至可能导致算法无法收敛。
其次,算法对输入信号的变化有一定的延迟响应,可能导致一些误差信号被忽略。
总而言之,NLMS算法是一种改进的自适应滤波算法,通过归一化步长参数来提高算法的收敛速度和稳定性。
它在许多信号处理应用领域都有广泛应用,同时也存在一些局限性。
毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]
![毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]](https://img.taocdn.com/s3/m/e45ae55891c69ec3d5bbfd0a79563c1ec4dad715.png)
前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。
1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
自适应波束成形算法LMS、RLS、VSSLMS
![自适应波束成形算法LMS、RLS、VSSLMS](https://img.taocdn.com/s3/m/b858f12de518964bce847c1e.png)
传统的通信系统中,基站大线通常是全向天线,此时,基站在向某一个用户发射或接收信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。
然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即"波束成形" ,且波束的方向性可控。
波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱利用率,降低干扰。
传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。
然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。
自适应波束成形算法可以满足上述要求。
本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技术。
要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。
(一)波束成形:波束成形,源于自适应大线的一个概念。
接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。
从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。
例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。
同样原理也适用用于发射端。
对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。
波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。
在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。
虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个“波束”。
波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将大线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。
LMS算法及改进
![LMS算法及改进](https://img.taocdn.com/s3/m/1ea40449cf84b9d528ea7aba.png)
浅析LMS算法的改进及其应用摘要:本文简单介绍了LMS算法,以及为了解决基本LMS算法中收敛速度和稳态误差之间的矛盾,提出了一种改进的变步长LMS 算法,并将其应用于噪声抵消和谐波检测中去。
关键字:LMS算法;变步长;噪声抵消;谐波检测引言自适应滤波处理技术可以用来检测平稳和非平稳的随机信号,具有很强的自学习和自跟踪能力,算法简单易于实现,在噪声干扰抵消、线性预测编码、通信系统中的自适应均衡、未知系统的自适应参数辨识等方面获得了广泛的应用。
自适应滤波则是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。
所谓“最优”是以一定的准则来衡量的,根据自适应滤波算法优化准则不同,自适应滤波算法可以分为最小均方误差(LMS)算法和递推最小二乘(RLS)算法两类最基本的算法。
基于最小均方误差准则,LMS算法使滤波器的输出信号与期望输出信号之间的均方误差最小,因此,本文在基本LMS算法基础上,提出一种新的变步长自适应滤波算法,将其应用于噪声抵消和谐波检测中去。
一.LMS算法LMS算法即最小均方误差(least-mean-squares) 算法,是线性自适应滤波算法,包括滤波过程和自适应过程。
基于最速下降法的LMS算法的迭代公式如下:e ( n) = d ( n)- w ( n - 1) x ( n) (1)w ( n) =w ( n - 1) + 2μ( n) e ( n) x ( n) (2)式中,x ( n)为自适应滤波器的输入;d ( n)为参考信号;e ( n)为误差;w ( n)为权重系数;μ( n)为步长。
LMS算法收敛的条件为:0 <μ< 1/λmax ,λmax是输入信号自相关矩阵的最大特征值。
二.LMS算法的改进由于LMS算法具有结构简单,计算复杂度小,性能稳定等特点,因而被广泛地应用于自适应均衡、语音处理、自适应噪音消除、雷达、系统辨识及信号处理等领域。
LMS自适应滤波算法
![LMS自适应滤波算法](https://img.taocdn.com/s3/m/db796d5baf1ffc4ffe47ac74.png)
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
RLS和LMS自适应算法分析
![RLS和LMS自适应算法分析](https://img.taocdn.com/s3/m/927d1b5e8762caaedc33d4cb.png)
RLS 和LMS 自适应算法分析摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。
我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。
通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。
用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。
关键词:自适应滤波、LMS 、RLS 、Matlab 仿真Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS, Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process.Keywords:, LMS and RLS adaptive filter, the Matlab simulation课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产生的AR 过程。
lms算法基本思想及原理
![lms算法基本思想及原理](https://img.taocdn.com/s3/m/de170525844769eae009edeb.png)
lms算法基本思想及原理
一、最小均方算法(LMS)概述1959年,Widrow和Hoff在对自适应线性元素的方案一模式识别进行研究时,提出了最小均方算法(简称LMS算法)。
LMS算法是基于维纳滤波,然后借助于最速下降算法发展起来的。
通过维纳滤波所求解的维纳解,必须在已知输入信号与期望信号的先验统计信息,以及再对输入信号的自相关矩阵进行求逆运算的情况下才能得以确定。
因此,这个维纳解仅仅是理论上的一种最优解。
所以,又借助于最速下降算法,以递归的方式来逼近这个维纳解,从而避免了矩阵求逆运算,但仍然需要信号的先验信息,故而再使用瞬时误差的平方来代替均方误差,从而最终得出了LMS 算法。
因LMS算法具有计算复杂程度低、在信号为平稳信号的环境中的收敛性好、其期望值无偏地收敛到维纳解和利用有限精度实现算法时的稳定性等特性,使LMS算法成为自适应算法中稳定性最好、应用最广泛的算法。
下图是实现算法的一个矢量信号流程图:
图1 LMS算法矢量信号流程图
由图1我们可以知道,LMS算法主要包含两个过程:滤波处理和自适应调整。
一般情况下,LMS算法的具体流程为:
(1)确定参数:全局步长参数以及滤波器的抽头数(也可以称为滤波器阶数)
(2)对滤波器初始值的初始化
(3)算法运算过程:
滤波输出:y(n)=wT(n)x(n)
误差信号:e(n)=d(n)-y(n)
权系数更新:w(n+1)=w(n)+e(n)x(n)
二、性能分析在很大程度上,选取怎样的自适应算法决定着自适应滤波器是否具有好的性能。
因此,对应用最为广泛的算法算法进行性能分析则显得尤为重要。
平稳环境下算法的。
LMS类自适应算法ppt课件
![LMS类自适应算法ppt课件](https://img.taocdn.com/s3/m/e2db830d5727a5e9856a61cf.png)
用前向预测器对瞬时估计误差 滤波,则得到滤波型LMS算法。
16
解相关LMS算法
滤波型LMS算法: 步骤一:初始化 w(0)=0; 步骤二:更新:
e(n) d (n) wH (n 1)u(n)
e(n) [e(n), e(n 1),…,e(n-M+1)]T
2、学习速率参数选择时变
(n) c
n
这样也存在问题。在参数c比较大时,LMS算法可能 在经过若干次迭代后即变为发散。
3、固定+时变
两个经典例子(n): 0
(1)
1 (n / )
(2)
(n) 0, n N0
(n)
eNd 0
, (nN0 )
n
N0
21
学习速率参数选择
u(n)u
H
(n)w(n)]
进时而 梯,度将算真 法是 :梯度w(wn向()n量w1)(n用1(瞬)n)e时*((nn)梯)uu((nn度))[d(向n) 量uT代(n)w替*(,n 1既)]*得瞬
e(n) d (n) uT (n)w*(n 1) d (n) wH (n 1)u(n)
e(n) d (n) wH (n 1)u(n)
a(n)
uH (n 1)u(n) uH (n 1)u(n 1)
v(n) u(n) a(n)u(n 1)
w(n) w(n 1) u(n)v(n)
(n)
e(n)
uH (n)v(n)
上述算法中,参数 称为修正因子
14
J (n) J (n)
LMS自适应滤波算法
![LMS自适应滤波算法](https://img.taocdn.com/s3/m/db796d5baf1ffc4ffe47ac74.png)
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
LMSAPANLMSFRLS算法分析
![LMSAPANLMSFRLS算法分析](https://img.taocdn.com/s3/m/117eb35dc381e53a580216fc700abb68a982ad21.png)
LMSAPANLMSFRLS算法分析
LMS算法是最常用的自适应滤波算法之一,它是基于最小均方差(MSE)原则的一种加权最小二乘算法。
它的基本思想是以期望和观察误差之间的均方差作为一个指标,试图最小化误差,从而获得一个最优滤波器设计。
LMS算法可以快速而高效地调整滤波器系数,以最大化信号的抑制噪声的能力,是一种逐步增加信号的方法。
APA算法是另一种常用的自适应滤波器算法。
它基于最大似然准则,试图估计出使得观测值合理和自相关系数最大的滤波器。
APA算法不仅考虑了噪声的强度,而且考虑了噪声的自相关性,从而更有效地抑制噪声。
在大多数情况下,APA算法比LMS算法更有效,更稳定,滤波器系数的更新也更平滑。
NLMS算法是一种非线性自适应滤波算法,其基本思想是受到距离准
则的启发,以希尔伯特误差函数作为最小化准则,从而来寻求最优的滤波器设计。
NLMS算法的主要优势在于它的精确度高,收敛速度快,在噪声
多的情况下也有良好的表现。
它也比其他算法更容易实现,因为它只需要计算一个最小二乘系数来计算中间变量,而不需要逆矩阵的计算。
FRLS算法是一种近似最小二乘的自适应滤波算法,它基于利用逆维
费雪滤波器的思想,可以有效地处理一些求逆复杂的情况。
LMS算法自适应均衡实验(word文档良心出品)
![LMS算法自适应均衡实验(word文档良心出品)](https://img.taocdn.com/s3/m/77feb40f83c4bb4cf7ecd188.png)
Harbin Institute of Technology自适应信号处理实验课程名称:自适应信号处理设计题目:LMS算法自适应均衡器实验院系:电子与信息工程学院专业:信息与通信工程设计者:宋丽君学号:11S005090指导教师:邹斌设计时间:2011.4.10哈尔滨工业大学一、实验目的研究用LMS算法自适应均衡未知失真的线性色散信道。
通过本实验加深对LMS算法的理解,并分析特征值扩散度和步长参数对收敛迭代次数的影响。
二、实验原理最小均方算法(LMS算法)是线性自适应滤波算法,包括滤波过程和自适应过程,这两个过程一起工作组成了反馈环。
图1给出了自适应横向滤波器的框图。
图1 自适应横向滤波器框图LMS算法是随机梯度算法中的一员,LMS算法的显著特点是实现简单,同时通过对外部环境的自适应,它可以提供很高的性能。
由于LMS算法在计算抽头权值的迭代计算的过程中移走了期望因子,因此抽头权值的计算会受到梯度噪声的影响。
但是因为围绕抽头权值起作用的反馈环像低通滤波器,平均时间常数与步长参数μ成反比,所以通过设置较小的μ可以让自适应过程缓慢的进行,这样梯度噪声对抽头权值的影响在很大程度上可以滤除,从而减少失调的影响。
LMS算法在一次迭代中需要2M+1次复数乘法和2M次复数加法,计算的复杂度为O(M),M 为自适应滤波器中抽头权值的数目。
LMS算法广泛地应用于自适应控制、雷达、系统辨识及信号处理等领域。
主要应用有:处理时变地震数据的自适应反卷积,瞬态频率的测量,正弦干扰的自适应噪声消除,自适应谱线增强,自适应波束形成。
三、 实验内容在实验中假设所使用的数据是实数,进行研究的系统框图如下图2所示。
随机数发生器1产生用来探测信道的测试信号n x ;随机数发生器2用来干扰。
信道输出的白噪声源()v n 。
这两个随机数发生器是彼此独立的。
自适应均衡器用来纠正存在加性白噪声的信道畸变。
经过适当延迟,随机数发生器1也提供用做训练序列的自适应均衡器的期望响应。
LMS算法原理及推导[1]
![LMS算法原理及推导[1]](https://img.taocdn.com/s3/m/3bf2d1f5f90f76c661371a28.png)
{ } { } { } { } E ε 2 (k) = E d 2 (k) − 2E d(k)X T (k) W + W T E X (k)X T (k) W
(8-1-4) (8-1-5)
定义互相关函数行向量 RxTd :
{ } RxTd = E d (k)X T (k)
(8-1-13) (8-1-14)
(8-1-15)
图 8-2 LMS 算法的实现方框图
下面分析梯度估值 ∇ˆ (k) 的无偏性。 ∇ˆ (k) 的数学期望为
{ } E ∇ˆ (k) = E{−2X (k)ε (k)}
{ } = −2E X (k)[d(k) − X T (k)W (k)]
= −2[RXd − RXXW (k )]
E {W (k + 1)} = (I − 2μQ ∑ Q−1)k+1W
注意到以下恒等式及关系式:
k
∑ +2μ (I − 2μQ ∑ Q−1)i RXd i=0
(8-1-20)
(1)
(I − 2μQ ∑ Q−1)i = (QQ−1 − 2μQ ∑ Q−1)i = [Q(I − 2μ ∑)Q−1]i = Q(I − 2μ ∑)Q−1 LQ(I − 2μ ∑)i Q−1 = Q(I − 2μ ∑)i Q−1
(8-1-11)
利用式(8-1-10)求最佳权系数向量的精确解需要知道 RXX 和RXd 的先验统计知识,而且还需 要进行矩阵求逆等运算。Widrow and Hoff (1960)提出了一种在这些先验统计知识未知时求 Wopt 的近似值的方法,习惯上称为 Widrow and Hoff LMS 算法。这种算法的根据是最优化方
第一节 LMS 自适应维纳滤波器