LMS自适应线性预测算法

合集下载

(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。

相应的装置称为滤波器。

实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。

滤波器可分为线性滤波器和非线性滤波器两种。

当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。

自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。

1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。

自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。

1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。

并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。

基于这~准则的最佳滤波器称为维纳滤波器。

20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。

Lecture.LMS算法介绍

Lecture.LMS算法介绍

LMS算法介绍最小均方算法(Least Mean Square, LMS)是一种简单、应用为广泛的自适应滤波算法,是在维纳滤波理论上运用速下降法后的优化延伸,早是由Widrow 和Hoff 提出来的。

该算法不需要已知输入信号和期望信号的统计特征,“当前时刻”的权系数是通过“上一时刻”权系数再加上一个负均方误差梯度的比例项求得。

这种算法也被称为Widrow-Hoff LMS 算法,在自适应滤波器中得到广泛应用,其具有原理简单、参数少、收敛速度较快而且易于实现等优点。

1 最小均方误差以及均方误差曲面自适应滤波算法从某种角度也被称为性能表面搜索法,在性能曲面中,它是通过不断测量一个点是否接近目标值,来寻找优解的。

目前,使用为广泛的曲面函数之一是均方误差(MSE)函数,函数表达式如下:。

准则函数设计为求均方误差函数的小值,我们称之为小均方误差准则(MMSE),维纳滤波器就是基于这个准则推到出来的。

公式:,从上式可以看出均方误差与滤波器权向量是成二次函数关系,引入均方误差曲面来描述函数的映射关系,对应的权向量w的二次函数就是一个超抛物曲面。

2 LMS算法基本原理根据小均方误差准则以及均方误差曲面,自然的我们会想到沿每一时刻均方误差的陡下降在权向量面上的投影方向更新,也就是通过目标函数的反梯度向量来反复迭代更新。

由于均方误差性能曲面只有一个唯一的极小值,只要收敛步长选择恰当,不管初始权向量在哪,后都可以收敛到误差曲面的小点,或者是在它的一个邻域内。

这种沿目标函数梯度反方向来解决小化问题的方法,我们一般称为速下降法,表达式如下:,基于随机梯度算法的小均方自适应滤波算法的完整表达式如下:LMS 自适应算法是一种特殊的梯度估计,不必重复使用数据,也不必对相关矩阵和互相关矩阵进行运算,只需要在每次迭代时利用输入向量和期望响应,结构简单,易于实现。

虽然LMS 收敛速度较慢,但在解决许多实际中的信号处理问题,LMS 算法是仍然是好的选择。

LMS线性预测matlab算法及simulink

LMS线性预测matlab算法及simulink

LMS线性预测matlab算法及simulink概述LMS线性预测算法和simulink的重要性和应用领域LMS(Least Mean Squares)算法是一种自适应滤波算法,用于线性预测问题。

其原理是通过迭代更新滤波器的权值来最小化预测误差的均方差。

LMS算法的步骤如下:初始化滤波器的权值为零或随机值。

提供待预测的输入信号和目标输出信号。

根据当前输入信号和滤波器的权值计算预测输出信号。

计算预测误差,即目标输出信号与预测输出信号之差。

根据预测误差和当前输入信号更新滤波器的权值。

权值的更新公式为:权值 = 权值 + 步长因子 * 预测误差 * 输入信号。

以下是一个基于matlab实现LMS算法的示例:定义输入信号和目标输出信号input_signal =[1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];定义输入信号和目标输出信号input_signal = [1.2.3.4.5];target_output = [2.4.6.8.10];初始化滤波器的权值filter_weights =zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));初始化滤波器的权值filter_weights = zeros(1.length(input_signal));设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;设置步长因子step_size = 0.01;迭代更新滤波器的权值for i = 1:length(input_signal)。

BPSK调制传输系统LMS算法自适应均衡性能分析

BPSK调制传输系统LMS算法自适应均衡性能分析

BPSK调制传输系统LMS算法自适应均衡性能分析BPSK调制传输系统中,LMS(Least Mean Square)算法是一种常用的自适应均衡算法。

它通过自适应地调整均衡器的权重系数来实现信道均衡,从而提高系统的性能。

本文将对LMS算法在BPSK调制传输系统中的性能进行分析。

首先,我们需要了解BPSK调制传输系统的基本原理。

BPSK调制是一种二进制调制方式,它将数字信号转换为两个不同的相位信号,分别代表1和0。

在传输过程中,信号会经过信道引起失真和噪声干扰。

为了恢复原始信号,我们需要对接收到的信号进行均衡处理。

LMS算法的核心思想是根据误差信号来调整均衡器的权重系数。

误差信号是接收信号经过均衡器处理后与已知原始信号之间的差异。

通过不断调整权重系数,LMS算法能够逐步减小误差信号,最终实现信道均衡。

在BPSK调制传输系统中,我们可以对LMS算法的性能进行以下几个方面的分析。

1.收敛速度:LMS算法的收敛速度是衡量其性能的重要指标之一、收敛速度越快,均衡器能够更快地适应信道的变化,提高系统的实时性和鲁棒性。

收敛速度受到多种因素的影响,例如步长参数的选择、信道的时变性等。

在实际应用中,需要根据具体情况进行优化。

2.系统误码率:误码率是衡量系统性能的重要指标。

对于BPSK调制传输系统,误码率反映了接收信号正确解码的概率。

通过调整LMS算法的参数,如步长参数和滤波器长度等,可以改善系统的误码率性能。

同时,深度学习等新兴技术也可以结合LMS算法进行优化,进一步降低误码率。

3.资源利用率:BPSK调制传输系统中,LMS算法会引入一定的计算复杂度和存储开销。

因此,需要考虑LMS算法的资源利用率。

通过算法设计和硬件优化,可以减少计算量和存储需求,提高资源利用率。

4.系统可靠性:LMS算法在均衡过程中,由于噪声和失真等因素的存在,可能导致误差信号不断波动,进而影响系统的可靠性。

可以通过优化算法参数、加入先验知识或调整均衡器结构等方法来提高系统的可靠性。

LMS类自适应滤波算法的研究

LMS类自适应滤波算法的研究

LMS类自适应滤波算法的研究LMS类自适应滤波算法的研究自适应滤波算法是一种可以根据输入信号的特性自动调整滤波器参数的方法。

它在信号处理、通信系统、控制系统等领域得到了广泛的应用。

LMS(Least Mean Square)是一种常用的自适应滤波算法,它通过最小化均方差来更新滤波器的权重,以实现滤波器的自适应性。

LMS算法的基本原理是通过梯度下降法来调整滤波器的权重。

假设输入信号为 x(n),期望输出信号为 d(n),滤波器的输出信号为 y(n),滤波器的权重为 w(n)。

算法的更新公式如下:w(n+1) = w(n) + μe(n)x(n)其中,w(n+1)是下一时刻的权重,w(n)是当前时刻的权重,μ是步进因子,e(n)是误差信号,x(n)是输入信号。

误差信号可以通过期望输出信号和滤波器的输出信号之间的差异计算得到:e(n) = d(n) - y(n)LMS算法的核心思想是根据误差信号的大小来更新滤波器的权重,使得误差信号逐渐趋近于零,从而实现滤波器的自适应。

步进因子μ的选择对算法的性能有着重要的影响。

当μ过小时,算法的收敛速度较慢;当μ过大时,算法可能发散。

因此,在实际应用中需要根据具体情况选择适当的步进因子。

除了LMS算法,还有一些与之类似的自适应滤波算法,如NLMS(Normalized Least Mean Square)算法和RLS (Recursive Least Squares)算法。

NLMS算法是一种对LMS算法的改进,通过归一化步进因子来改善收敛速度和稳定性。

RLS算法是一种基于递推最小二乘法的自适应滤波算法,相对于LMS算法具有更好的性能,但计算量较大。

LMS类自适应滤波算法广泛应用于信号降噪、自适应控制、信号预测等领域。

在信号降噪方面,LMS算法可以根据输入信号的特性实时调整滤波器的权重,抑制噪声,提高信号的质量。

在自适应控制方面,LMS算法可以根据目标系统的反馈信息实时调整控制器的参数,使得控制系统能够自动适应不同的工况,提高控制精度和稳定性。

神经网络自适应线性神经元Adaline的LMS算法

神经网络自适应线性神经元Adaline的LMS算法

5
最陡下降算法 4
在步幅系数选择为 0.02 ,最小误差为 Emin 0.001 0.2633 的条件下,在 MATLAB
下编程计算,得到某一次的相应结果如下。 权值向量 W [0.3516 均方误差曲线
0.9
0.3240];
0.8
0.7
均方误差 E
0.6
0.5
0.4
0.3
0.2
2.0106 1.1515 R ; 1.1515 1.7398
P 1.1058 1.0074 ; W* 0.3517 0.3463;
E ( 2 )min 0.2623
2) 阈值待定的情况下 根据样本数据得到的运算结果如下。
2
2.0106 1.1515 0.0269 R 1.1515 1.7398 0.0422 ; 0.0269 0.0422 1.0000
5
10
15
20 迭代次数 N
25
30
35
40
图 2
随机逼近算法均方误差曲线
可以看到,经过 38 次的迭代算法,最后均方误差收敛到的计算阈值 0.2633。
4
不同的步幅系数对迭代步数的影响
表 1 给出了在不同的步幅系数的条件下测试随机逼近算法达到收敛时的迭代次数。
3
表 1
不同步幅系数下随机逼近法的迭代次数
y f ( I ) I WXT
得到的,线性函数的相比于硬限幅函数,在这里其最大的特点就是线性函数是可微的。LMS 算法基于上式右侧递推得到,三种递推算法的核心递推环节通过求导得到,因此,失去线性 函数的条件,而换成硬限幅函数作为传递函数,以上算法均无法进行。
6
若采用硬限幅函数,那么我们只能运用硬限幅函数的权值递推式来求权值 6

NLMSLMS算法介绍参考

NLMSLMS算法介绍参考

NLMSLMS算法介绍参考NLMS(Normalized Least Mean Squares)算法是一种自适应滤波算法,是LMS(Least Mean Squares)算法的一种改进版本。

可以应用于许多信号处理应用领域,例如声音增强、自适应滤波、自适应降噪等。

LMS算法是一种采用最小均方误差准则的自适应滤波算法。

它通过最小化输入信号与期望输出信号之间的均方误差来调整滤波器的系数,实现自适应滤波。

然而,LMS算法存在一个缺陷,就是它对输入信号的动态范围非常敏感,需要较小的步长参数才能保证算法的收敛性。

为了解决LMS算法的不足,NLMS算法在每次迭代中对步长参数进行了归一化处理。

具体来说,在更新滤波器系数时,NLMS算法除以输入信号的功率来归一化步长。

这样可以有效地改善算法的收敛速度和稳定性,提高算法的适应性。

NLMS算法的更新公式如下:w(k+1)=w(k)+μ/(α+x(k)*x(k)')*e(k)*x(k)其中,w(k)表示第k个迭代步骤时的滤波器系数向量,μ是步长参数,α是一个小的正常数,x(k)表示第k个迭代步骤时的输入信号向量,e(k)表示第k个迭代步骤时的误差信号。

NLMS算法的优点是可以自动调节步长参数,能够快速适应信号的变化。

此外,由于步长参数的归一化处理,算法对输入信号的幅度变化不敏感,能够更好地处理动态范围大的信号。

然而,NLMS算法也存在一些问题。

首先,算法的收敛速度可能会受到输入信号的动态范围变化的影响。

当信号的动态范围较大时,步长参数的归一化处理会导致算法的收敛速度变慢,甚至可能导致算法无法收敛。

其次,算法对输入信号的变化有一定的延迟响应,可能导致一些误差信号被忽略。

总而言之,NLMS算法是一种改进的自适应滤波算法,通过归一化步长参数来提高算法的收敛速度和稳定性。

它在许多信号处理应用领域都有广泛应用,同时也存在一些局限性。

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。

我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。

另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。

自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。

自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。

自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。

其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。

线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。

其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。

本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。

我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。

通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。

1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档