RLS和LMS自适应算法分析

合集下载

回声消除几种常用的算法比较

回声消除几种常用的算法比较

回声消除几种常用的算法比较(1)LMS与RLS自适应滤波算法性能比较最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。

计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。

检测特性相比之下,RLS算法具有良好的收敛性能,除收敛速度快于LMS 算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。

基于自适应噪声抵消系统,对比研究了两类自适应滤波算法在噪声抵消应用中的滤波性能。

计算机仿真实验结果表明,两种算法都能从高背景噪声中提取有用信号。

相比之下,RLS算法具有比LMS好得多的启动速度和收敛速度,对非平稳信号适应性强,其滤波性能明显好于LMS算法,但其计算复杂度高,不便于实时处理。

而LMS算法相对存在收敛速度不够快和抵抗突出值干扰能力不够强。

值得深入研究的是降低RLS算法的计算复杂度,进一步提高LMS算法的收敛速度并减少其残余(失调)误差。

(2)LMS与NLMS的比较通过理论分析和实验对比得出NLMS算法的复杂度最小且鲁棒性最好,但是遇到相关信号时,收敛速率最慢。

在实际应用中,NLMS算法便可以基本满足要求,但是NLMS算法步长选择一种收敛速度和收敛精度的折衷。

(3) NLMS算法与NBLMS算法的比较由于回声消除的效果除了与算法有关外,还与滤波器系数的个数、采样率、削波处理、近端语音信号检测等因素相关,因此对两个算法进行比较时,这些因素都取相同值.两种算法在代码大小和所需指令周期上的比较两种算法在代码大小和所需指令周期上的比较见表1.由此可见:两种算法在性能上的差异与滤波器系数的个数N 和滤波器系数块大小M有关.上述的几种算法各有特点。

(1)RLS算法即使是在输入信号相关矩阵的特征值扩展比较大的情况都能实现快速收敛,且对输入参考信号特征值散布不敏感,但其实现都以增加计算复杂度和稳定性问题为代价,而这些问题对于基于LMS准则的算法来说却并不重要,因此实际应用中很少采用。

RLS和LMS自适应算法分析

RLS和LMS自适应算法分析

RLS和LMS自适应算法分析RLS(Recursive Least Squares)自适应算法和LMS(Least Mean Squares)自适应算法是常见的自适应滤波算法,在信号处理、通信系统等领域有广泛应用。

本文将对这两种算法进行详细分析比较,并对它们的优缺点进行评价。

首先,我们先介绍一下这两种算法的基本原理。

RLS算法是一种递归估计算法,通过估计系统的权值并逐步修正的方式逼近期望响应。

根据最小二乘估计准则,RLS算法通过最小化滤波器输出与期望响应之间的均方误差来更新权值。

该算法以过去的输入和期望响应作为参考,通过不断修正权值,逼近最佳解。

常用的RLS算法有全选信号算法、选择性部分信号退化算法等。

LMS算法则是一种基于梯度下降的迭代算法,通过不断修正权值,使得滤波器输出的均方误差逐渐减小。

该算法的优势在于计算简单、适合实时应用。

LMS算法通过使用当前输入和期望响应对滤波器权值进行更新,更新步长由算法的学习速率参数确定,步长过大会导致算法发散,步长过小会降低收敛速度。

接下来,我们以几方面来分析比较这两种算法。

1.性能比较:在滤波效果方面,RLS算法由于基于历史输入和期望响应进行计算,能够更好地估计权值,提高滤波性能。

而LMS算法则在计算简单、实现容易的基础上,性能相对较差。

在噪声较大的环境下,RLS算法的性能相对更为优秀。

2.计算复杂度:RLS算法需要存储历史输入和期望响应,并进行矩阵运算,因此计算复杂度较高。

而LMS算法只需要存储当前输入和期望响应,并进行简单的乘法和加法运算,计算复杂度较低。

在资源受限的环境下,LMS算法更加适用。

3.收敛速度:RLS算法在每次迭代时都通过递归方式重新计算权值,因此收敛速度较快。

而LMS算法只通过当前输入和期望响应更新权值,因此收敛速度较慢。

在需要快速适应的应用场景下,RLS算法更为适合。

4.算法稳定性:由于RLS算法需要存储历史输入和期望响应,内存消耗较大。

基于LMS和RLS算法的自适应滤波器仿真

基于LMS和RLS算法的自适应滤波器仿真

基于LMS和RLS算法的自适应滤波器仿真自适应滤波器是一种可以自动调整其权重参数来适应不断变化的信号环境的滤波器。

常用的自适应滤波算法包括最小均方(LMS)和最小二乘(RLS)算法。

本文将对基于LMS和RLS算法的自适应滤波器进行仿真,并分析其性能和特点。

首先,介绍LMS算法。

LMS算法是一种基于梯度下降的自适应滤波算法。

其权重更新规则为:w(n+1)=w(n)+μ*e(n)*x(n),其中w(n)为当前时刻的权重,μ为步长(学习速率),e(n)为当前时刻的误差,x(n)为输入信号。

通过不断迭代和更新权重,LMS算法可以使滤波器的输出误差逐渐减小,从而逼近期望的输出。

接下来,进行LMS自适应滤波器的仿真实验。

考虑一个声纳系统的自适应滤波器,输入信号x(n)为声波信号,输出信号y(n)为接收到的声纳信号,期望输出信号d(n)为理想的声纳信号。

根据LMS算法,可以通过以下步骤进行仿真实验:1.初始化权重w(n)为零向量;2.读取输入信号x(n)和期望输出信号d(n);3.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n),其中^T表示矩阵的转置;4.计算当前时刻的误差e(n)=d(n)-y(n);5.更新权重w(n+1)=w(n)+μ*e(n)*x(n);6.重复步骤2-5,直到滤波器的输出误差满足预设条件或达到最大迭代次数。

然后,介绍RLS算法。

RLS算法是一种递推最小二乘的自适应滤波算法。

其基本思想是通过不断迭代更新滤波器的权重,使得滤波器的输出误差的二范数最小化。

RLS算法具有较好的收敛性和稳定性。

接下来,进行RLS自适应滤波器的仿真实验。

基于声纳系统的例子,RLS算法的步骤如下:1.初始化滤波器权重w(n)为一个较小的正数矩阵,初始化误差协方差矩阵P(n)为一个较大的正数矩阵;2.读取输入信号x(n)和期望输出信号d(n);3.计算增益矩阵K(n)=P(n-1)*x(n)/(λ+x^T(n)*P(n-1)*x(n)),其中λ为一个正则化参数;4.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n);5.计算当前时刻的误差e(n)=d(n)-y(n);6.更新滤波器权重w(n+1)=w(n)+K(n)*e(n);7.更新误差协方差矩阵P(n)=(1/λ)*(P(n-1)-K(n)*x^T(n)*P(n-1));8.重复步骤2-7,直到滤波器的输出误差满足预设条件或达到最大迭代次数。

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。

我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。

另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。

自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。

自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。

自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。

其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。

线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。

其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。

本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。

我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。

通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。

1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。

(完整word版)自适应滤波LMS算法及RLS算法及其仿真

(完整word版)自适应滤波LMS算法及RLS算法及其仿真

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1. 2自适应滤波发展前景 (2)1. 2. 1小波变换与自适应滤波 (2)1. 2. 2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2. 1最小均方自适应滤波器 (4)2. 1. 1最速下降算法 (4)2.1.2最小均方算法 (6)2. 2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别: 第二小组组员: 黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。

相应的装置称为滤波器。

实际上, 一个滤波器可以看成是一个系统, 这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号, 即期望信号。

滤波器可分为线性滤波器和非线性滤波器两种。

当滤波器的输出为输入的线性函数时, 该滤波器称为线性滤波器, 当滤波器的输出为输入的非线性函数时, 该滤波器就称为非线性滤波器。

自适应滤波器是在不知道输入过程的统计特性时, 或是输入过程的统计特性发生变化时, 能够自动调整自己的参数, 以满足某种最佳准则要求的滤波器。

1. 1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。

自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。

1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。

并利用Wiener. Hopf方程给出了对连续信号情况的最佳解。

基于这~准则的最佳滤波器称为维纳滤波器。

20世纪60年代初, 卡尔曼(Kalman)突破和发展了经典滤波理论, 在时间域上提出了状态空间方法, 提出了一套便于在计算机上实现的递推滤波算法, 并且适用于非平稳过程的滤波和多变量系统的滤波, 克服了维纳(Wiener)滤波理论的局限性, 并获得了广泛的应用。

LMS及RLS自适应干扰抵消算法的比较

LMS及RLS自适应干扰抵消算法的比较

LMS及RLS自适应干扰抵消算法的比较LMS(Least Mean Square)和RLS(Recursive Least Squares)是两种常用的自适应滤波算法,用于干扰抵消。

它们在不同场景下有着不同的特点和适用性。

LMS算法是一种迭代算法,通过不断调整滤波器的权值来最小化误差信号的均方差。

它的优点是实现简单,计算量较小,适用于大多数实时应用。

它采用梯度下降法来更新权值,根据误差信号和输入信号的乘积来调整权值,使得误差不断减小。

然而,LMS算法有一个较大的问题,就是收敛速度较慢,因为它只基于当前样本进行权值更新,对数据的统计特性要求较高。

另外,LMS算法对噪声的功率估计不准确,容易导致性能退化。

与LMS算法相比,RLS算法是一种递推算法,通过不断更新逆协方差矩阵来获得最佳权值。

它的优点是收敛速度快,稳定性好,适用于非平稳环境下的信号处理。

RLS算法通过在线估计输入信号的统计特性,能够更准确地抵消干扰。

然而,RLS算法的计算量较大,实时性不如LMS算法,而且对初始参数的选择要求较高,误差传播的问题可能会导致性能下降。

虽然LMS算法和RLS算法在特点和适用性上存在差异,但在实际应用中,可以根据具体的场景选择合适的算法。

如果系统对实时性要求较高,并且希望实现简单,LMS算法是一个合适的选择。

如果系统需要更准确的干扰抵消,并且可以容忍一定的计算复杂度,RLS算法是一个更好的选择。

另外,也可以考虑将两种算法结合使用,利用它们各自的优点来提高干扰抵消的性能。

总结起来,LMS算法和RLS算法是两种常用的自适应干扰抵消算法。

LMS算法具有实现简单、计算量小的特点,适用于实时应用;RLS算法具有收敛速度快、稳定性好的特点,适用于非平稳环境下的信号处理。

在实际应用中可以根据具体的场景选择合适的算法,或者结合两种算法来提高干扰抵消的性能。

LMS和RLS算法在盲从多用户检测中的比较

LMS和RLS算法在盲从多用户检测中的比较

LMS和RLS算法在盲从多用户检测中的比较LMS(最小均方算法)和RLS(递推最小二乘算法)是常用于盲从多用户检测的算法。

它们都是自适应滤波算法,用于减小信号传输中的干扰,提高检测的准确性。

本文将对这两种算法进行比较,并分析它们在盲从多用户检测中的优缺点。

首先,我们来介绍一下LMS算法。

LMS算法是一种迭代算法,通过根据误差信号的大小来调整滤波器的权值。

算法的核心思想是不断调整滤波器的权值,使得输出信号的误差最小化。

具体来说,算法的步骤如下:1.初始化权值向量w,设定学习率μ和迭代次数。

2.对于每个迭代过程,计算输出信号y和误差信号e。

3.根据误差信号e和学习率μ,调整滤波器的权值。

4.迭代次数达到要求后,输出滤波器的权值。

LMS算法的优点是简单易懂,计算量小,适用于实时性要求较高的场景。

然而,LMS算法也有一些缺点。

首先,由于是迭代算法,收敛速度较慢,对于噪声较大的情况容易陷入局部最优。

其次,LMS算法对于误差信号的估计过程十分敏感,当误差信号不稳定或噪声过大时,算法的性能会下降。

接下来,我们来介绍一下RLS算法。

RLS算法是一种递推算法,根据过去的误差信号来逐步更新滤波器的权值。

相比于LMS算法,RLS算法具有更快的收敛速度和更好的稳定性。

算法的步骤如下:1.初始化权值矩阵w和协方差矩阵P,设定遗忘因子λ。

2.对于每个样本,计算输出信号y和误差信号e。

3.根据误差信号e,更新权值矩阵w和协方差矩阵P。

4.重复2-3步骤,直至达到收敛条件。

RLS算法的优点是稳定性好,收敛速度快。

它能够对误差信号进行有效的建模,并根据建模结果调整滤波器的权值。

然而,RLS算法也有一些缺点。

首先,计算复杂度较高,尤其是对于大规模的问题。

其次,RLS算法对于误差信号的建模需要较为准确的先验知识,对于未知的信号特性表现较差。

总结来说,LMS算法和RLS算法都是盲从多用户检测中常用的自适应滤波算法。

LMS算法简单易懂,计算量小,适用于实时性要求较高的场景,但收敛速度较慢且对误差信号估计过程敏感;RLS算法收敛速度快,稳定性好,能够对误差信号进行有效建模,但计算复杂度高且对信号的先验知识要求较高。

RLS和LMS自适应算法分析

RLS和LMS自适应算法分析

RLS和LMS自适应算法分析RLS (Recursive Least Squares) 和 LMS (Least Mean Squares) 是两种常见的自适应滤波算法。

它们在信号处理、通信系统和自适应控制等领域得到广泛应用。

本文将对这两种算法进行分析比较。

首先,我们来看看RLS算法。

RLS算法使用最小均方误差准则来自适应调整滤波器系数。

它利用递归方式计算出均方误差的最小值。

RLS算法基于Wiener-Hopf方程,通过解析方法来计算最优系数。

这种方法计算量较大,但是提供了更好的性能。

RLS算法根据观测数据和期望输出之间的误差信号来不断调整滤波器的权重,并且在递归过程中更新这些权重。

相比于LMS算法,RLS算法具有更快的收敛速度和更高的精度。

但是,RLS 算法也存在一些问题,比如计算复杂度高、存储要求大以及对噪声和系统不确定性敏感。

接下来,我们来看看LMS算法。

LMS算法是一种基于随机梯度下降的自适应算法。

在LMS算法中,滤波器的系数通过逐步调整以减小误差标准差。

LMS算法利用误差信号和输入信号之间的乘积来更新滤波器系数。

这种算法简单易于实现,计算复杂度低,并且对存储要求不高。

LMS算法适用于非平稳环境下的自适应滤波问题。

然而,LMS算法的收敛速度较慢,需要一定的迭代次数才能达到最优解,而且对于高阶滤波器,可能存在稳定性问题。

此外,LMS算法对输入信号的统计特性有一定的要求。

综上所述,RLS算法和LMS算法都是常见的自适应滤波算法,它们在不同的应用领域有不同的适用性和特点。

RLS算法在计算复杂度和存储要求上较高,但是具有更快的收敛速度和更高的精度。

LMS算法计算复杂度低,存储要求小,但是收敛速度较慢。

一般情况下,对于较小的系统和较简单的滤波器,可以使用LMS算法,而对于复杂的系统和高阶滤波器,可以使用RLS算法。

在实际应用中,需要根据具体的要求和约束来选择合适的算法。

此外,还可以根据实时计算需求和系统资源限制等因素,对RLS 和LMS算法进行优化和改进,如考虑快速RLS算法和正则化LMS算法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RLS 和LMS 自适应算法分析摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, LeastMean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。

我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。

通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。

用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。

关键词:自适应滤波、LMS 、RLS 、Matlab仿真Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS,Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process.Keywords:, LMS and RLS adaptive filter, the Matlab simulation课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产生的AR 过程。

AR 模型的系统函数为:H(Z)=218.06.111--+-Z Z假设1a =-1.6,2a =0.8将系统函数转化为差分方程为:)()2()1()(21n w n a n x a n x +----=其中w(n)为白噪声,参数1a =-1.6,2a =0.8。

激励源是白噪声w(n)。

本文用Matlab 仿真做出了模型系数的收敛过程及平均的学习曲线。

分别用LMS 算法和RLS 算法,分别做出了模型系数的收敛过程及学习曲线,还对两种算法的特性进行了对比。

引言:由于随机信号的未知性和随时间变化的统计特性,需要设计参数随时间变化的滤波器算法,即所谓的自适应滤波。

它是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。

自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。

不同的自适应滤波器算法,具有不同的收敛速度、稳态失调和算法复杂度。

自适应滤波算法中利用了输出反馈,属于闭环算法。

其优点是能在滤波器输入变化时保持最佳的输出,而且还能在某种程度上补偿滤波器元件参数的变化和误差以及运算误差。

但其缺点是存在稳定性问题以及收敛速度不高。

所以探讨如何提高收敛速度、增强稳定性以满足信号处理的高效性、实时性,一直是人们研究的重点和热点。

本文基对比研究了两类基本的自适应算法LMS和RLS,并对它们权系数的收敛过程及学习过程进行了分析。

LMS原理分析:LMS算法是自适应滤波器中常用的一种算法与维纳算法不同的是其系统的系数随输入序列而改变。

维纳算法中截取输入序列自相关函数的一段构造系统的最佳系数。

而LMS算法则是对初始化的滤波器系数依据最小均方误差准则进行不断修正来实现的。

因此理论上讲LMS算法的性能在同等条件下要优于维纳算法但是LMS算法是在一个初始化值得基础上进行逐步调整得到的因此在系统进入稳定之前有一个调整的时间这个时间受到算法步长因子μ的控制在一定值范围内增大μ会减小调整时间但超过这个值范围时系统不再收敛μ的最大取值为R的迹。

LMS采用平方误差最小的原则代替均方误差最小的原则,信号基本关系如下:)()()(1i n x n w n y N i -=∑-)()()(n y n d n e -=)()(2)()1(i n x n e n w n w i i -+=+μ写成矩阵形式为:)()()(n X n W n y T=)()()(n y n d n e -=)()(2)()1(n X n e n W n W μ+=+ 式中W(n)为n时刻自适应滤波器的权矢量,TN n w n w n w n w n W )]()........(),(),([)(1210-=N 为自适应滤波器的阶数。

X(n)为n 时刻自适应滤波器的参考输入矢量,由最近的N个信号的采样值构成,T N n x n x n x n X )]1()......1(),([)(---=。

d(n)是期望的输出值;e(n)为自适应滤波器的输出误差调节信号;μ是控制自适应速度与稳定性的增益常数。

LMS 的算法流程图:RLS 算法原理分析:λ为遗忘因子,它是小于1的正数)(n d :参考信号或期望信号 )(n w 第n 次迭代的权值)(n ε均方误差按照如下准则:min)()(20→=∑=-k e n nk k n λε越旧的数据对)(n ε的影响越小。

对滤波器的系数w 求偏导,并令结果等于0知0)()(2)(0=-=∂∂∑=-k x k e w n nk k n λε整理得到标准方程为:∑∑=-=-=nk k n nk Tkn k x k d w k x k x 00)()(])()([λλ定义:∑=-=nk k n k x k d n R 0)()()(λ∑=-=n k k n k x k d n P 0)()()(λ标准方程可以简化为:)()(n P w n R =经求解可以得到迭代形式:)1()1()()1(+++=+n x n x n R n R T λ)1()1()()1(+++=+n x n d n P n P λ定义:)()(1n R n T -=,则可知T 的迭代方程为: 11)]()()1([)(--+-=n x n x n T n T T λ系数的迭代方程为)1|()()1()(-+-=n n e n k n w n w其中增益)(n k 和误差)1|(-n n e 的定义分别为:)()1()()1|(n x n w n d n n e T --=-)()1()()()1()(n x n T n x n x n T n k T -+-=λ参数递推估计,每取得一次新的观测数据后,就在前次估计结果的基础上,利用新引入的观测数据对前次估计的结果,根据递推算法进行修正,减少估计误差,从而递推地得出新的参数估计值。

这样,随着新观测数据的逐次引入,一次接一次地进行参数估计,直到参数估计值达到满意的精确程度为止。

RLS 算法流程图:计算T(n),w(n),k(n),e(n|n-1))()()(10i nx n w n y N i -=∑-计算误差e(n)=d(n)-y(n)更新权)1|()()1()(-+-=n n e n k n w n wLMS 算法程序:clear close all clca1=-1.6; a2=0.8; n=1000; P=50;初始化(0)0W =;1(0)P I σ-=e=zeros(1,n);ep=zeros(1,n);ee=zeros(1,n);x=zeros(1,n)';w=randn(1,n)';%算法for p=1:Px(1)=w(1);x(2)=-a1*x(1)+w(2);for i=3:nx(i)=-a1*x(i-1)-a2*x(i-2)+w(i);endL=2;u=0.0005;wL=zeros(L,n);for i=(L+1):nX=x(i-L:1:(i-1));y(i)=X'*wL(:,i); %i时刻输出信号e(i)=x(i)-y(i); %i时刻误差信号wL(:,(i+1))=wL(:,i)+2*u*e(i)*X; %i时刻滤波器的权值ee(i)=e(i)^2;endep=ep+ee;endeq=ep/P;a1L=-wL(2,1:n); % a1在LMS算法下值的变化,wL矩阵中第一行的1到n个数a2L=-wL(1,1:n); % a2在LMS算法下值的变化,wL矩阵中第二行的1到n个数%画图subplot(2,2,1);plot(1:n,x);title('高斯白噪声w');subplot(2,2,2);plot(1:n,a1L,'r-',1:n,a1,'k-'); title('a1的学习过程');subplot(2,2,3);plot(1:n,a2L,'r-',1:n,a2,'k-'); title('a2的学习过程');subplot(2,2,4);plot(1:n,eq);title('50次平均后的学习过程');图1:步长因子μ=0.0005时LMS仿真图形图2:步长因子μ=0.001时LMS仿真图形图3:步长因子μ=0.005时LMS仿真图形结果分析:1.在仿真过程中可以看到,图形的收敛时间随着步长因子μ的增大而减小。

说明步长因子μ与收敛时间成反比,其决定了LMS算法学习过程的快慢。

2.由上图对比可知,当步长因子μ增大时,收敛时间减少,但会使失调增大,当μ等于0.0005与0.001时图形没有失调,但当μ等于0.005时,就会发现图形失调严重。

3.综上所述可得出结论:控制失调与加快收敛速度矛盾。

4.LMS与RLS对比程序:程序:clear;close all;clc;a1=-1.6;a2=0.8;n=1000;x=zeros(1,n)';w=randn(1,n)';x(1)=w(1);x(2)=-a1*x(1)+w(2);for i=3:nx(i)=-a1*x(i-1)-a2*x(i-2)+w(i); end;%LMS滤波L=2;u=0.001;wL=zeros(L,n);for i=(L+1):nX=x(i-1:-1:(i-L));y(i)=X'*wL(:,i);e(i)=x(i)-y(i);wL(:,(i+1))=wL(:,i)+2*u*e(i)*X; end;a1L=-wL(1,1:n);a2L=-wL(2,1:n);%RLS滤波L=2;namuta=0.98;wR=zeros(L,n);T=eye(L,L)*10;% %RLS算法下T参数的初始化,T初始值为10 for i=(L+1):nX=x(i-1:-1:(i-L));K=(T*X)/(namuta+X'*T*X);%i时刻增益值e1=x(i)-wR(:,i-1)'*X;wR(:,i)=wR(:,i-1)+K*e1; %i时刻权值y(i)=wR(:,i)'*X;e(i)=x(i)-y(i);T=(T-K*X'*T)/namuta; %i时刻的维纳解end;a1R=-wR(1,1:n);a2R=-wR(2,1:n);%画图subplot(2,1,1);plot(1:n,a1L,'r-',1:n,a1R,'g-',1:n,a1,'k-');title('LMS与RLS算法a1权系数收敛过程对比');subplot(2,1,2);plot(1:n,a2L,'r-',1:n,a2R,'g-',1:n,a2,'k-');title('LMS与RLS算法a2权系数收敛过程对比');图4:LMS与RLS仿真图形对比结果分析:1.RLS算法在算法的稳态阶段即算法的后期收敛阶段其性能和LMS算法相差不明显但在算法的前期收敛段RLS算法的收敛速度要明显高于LMS算法。

相关文档
最新文档