汽车用动力锂离子电池发展现状时间

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车用动力锂离子电池发展现状时间

1车用锂离子电池材料

1. 1理想的车用锂离子电池正负极材料要求

电池材料的物理结构和化学组成决定了它的性能,理想的车用锂离子电池材料应具备以下特征: (1) 具有层状或隧道的晶体结构,以利于锂离子的嵌入和脱出,以保证锂离子电池的循环寿命;(2)充放电过程中,应有尽可能多的锂离子嵌入和脱出,使电极具有较高的电化学容量; ( 3)在锂离子进行嵌脱时,电池有较平稳的充放电电压; (4)锂离子应有较大的扩散系数,以减少极化造成的能量损耗,保证电池有较好的快充放电性能; (5)材料应价格便宜,对环境无污染,质量轻,可回收。

1. 2车用锂离子电池正极材料

目前锂离子电池正极材料主要有:锂钴氧化物、锂镍氧化物、锂锰氧化物、磷酸铁锂等,负极材料主要有石墨、钛酸锂等。不同锂离子电池正极材料性能比较见表1。

从整车安全和电池成本考虑,磷酸铁锂是最有可能在汽车用动力电池上应用的锂电池正极材料,其优点有:

(1) 安全性好:稳定,即使在过充电情况下也不会产生游离氧,不和电解液反应; 可以放电到0 V,电池无大的损伤;与有机电解液反应活性低;热力学稳定状态, 400 ℃以下无变化。

(2) 稳定性高:充放电过程中,晶体结构不会发生变化;三维结构, L i +二维移动,利于锂的嵌入;充电电压低,电解液更稳定,电池副反应少;循环寿命长。

(3) 环保:整个生产过程清洁无毒,所有原料都无毒。

(4) 价格便宜:磷酸盐采用磷酸源和锂源以及铁源为材料,价格便宜。

但磷酸铁锂材料也存在以下缺点:

(1) 导电性差:磷酸铁锂不能得到大范围应用的主要问题,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或颗粒表面包覆导电碳材料,提高材料的电子电导率。

(2) 振实密度较低:一般只能达到1. 3~1. 5,该缺点决定了在小型电池如手机电池等没有优势,主要用来制作动力电池。

(3) 电压平台低:一般为3. 2 V。

目前锂铁电池正极生产技术有以下三种: (1)在粉体颗粒表面以碳元素涂布; (2)用金属氧化物包覆颗粒;

(3)采用纳米制程技术细化材料颗粒,使之微粒化。

2车用锂离子电池系统

车用锂离子电池系统一般由电芯及电池组、电池管理系统(BMS) 、高压电安全系统(直流接触器、熔断器、预充电电阻) 、冷却系统和检测单元(电流传感器、电压传感器和温度传感器)等组成,如图1所示。

2. 1电芯及电池组

一个典型的锂离子电芯主要包括正极片、负极片、正负极集流体、隔膜纸、外壳及密封圈、盖板等,常用电芯形状主要有圆柱形和方形。

为了满足整个电池系统的电压、能量和功率要求,电池组一般是由若干个电芯按照串联或并联的方式组合起来,每个电芯之间由导线连接,同时,为了对电芯的温度、电流、电压、荷电状态(SOC)等信息进行实时监测,又可以把电池组分成若干个模块,各电芯和模块之间以一定方式科学合理组合,保证整个电池组的电性能、热平衡和散热要求。

2. 2电池管理系统BMS

电池管理系统(BMS)用来监控和保护电池的运行状态,应该能精确检测电池的参数,包括:单体电压、模块电压、电流、温度。利用电池模块和电池系统的信息计算并报告荷电状态SOC,寿命状态SOH ( State Of Health) ,当前可用充放电功率,并执行对接触器的控制。BMS系统由BMU(Battery Module Unit,又名

CECU, Center Electronic Controller Unit) , CSC (Cell Supervising Circuit,又名LECU, Local Electronic Control Unit) 、接触器、预充电电阻、保险丝、电压传感器温度传感器,以及电流传感器等模块组成。图2显示了电池及其管理系统与外部连接的典型例子。

在BMS中, CSC主要功能有:

(1) 单体/模块电压采集:一个模块由若干个电池单体串并联组成,并由一个CSC监控,每个CSC采集模块内各个单体的电压和整个模块的电压;

(2) 模块内平衡: CSC根据判断模块内各个单体的电压,通常是通过电阻放电的形式,消除模块间容量的差异;

(3) 电池模块温度检测: CSC测量若干点模块内电池的温度;

(4) CAN通信: CSC将采集到的数据上传给BMU。

BMU主要功能有:

(1) 系统电压测量: BMU采集整个系统的总电压;

(2) 电流测量: BMU采集整个系统的电流,通常通过分流器( shunt)或者霍尔器件(Hall) ;

(3) 绝缘检测: BMU 测量电池组对车身地(vehicle chassis)之间的绝缘电阻,可通过三电压法等方式;

(4) SOC预测功能:在实时充放电过程中,能在线监测电池组容量,能随时给出电池组整个系统的剩余容量百分比;

(5) SOH预测功能:根据实际的运行累积状况,给出蓄电池组的当前容量,内阻,循环寿命,日历寿命等;

(6) 可充放电功率计算: BMU通过不同SOC,温度来计算当前整车可以放电和充电的功率;

(7) 故障保护:过电流、过压、欠压、过温、单体间电压/温度不平衡。在以上故障出现时, BMU通知给VMS整车管理系统,请求降功率运行或关断充放电回路;

(8) 预充电: BMU在闭合高压接触器时,先对高压母线预充电;

(9) 模块间平衡: BMU通过命令控制CSC,来补偿不同模块间的容量差异;

(10) 热管理: BMU通过电池温度,实现对散热装置的控制(如风冷,控制风扇的转速) ;

(11) 通讯功能: BMU采用CAN总线的方式分别与子系统模块、VMS整车管理系统及充电器进行通讯;

(12) 充电器控制: BMU控制充电器的输出,并监测整个充电过程。

2. 3电池安全及高压电

2. 3. 1电池安全

对于车用锂离子电池,国标和美国先进电池协会(USABC)有严格的滥用性能测试要求及测试项目。滥用测试性能等级要求从1到7级,当等级大于2级,电池即遭到了不可修复的损坏。滥用测试项目分为3大类,包括机械、热和电滥用总共16个项目。每个量产的电池产品都必须完成以上滥用测试。

如果车用锂离子电池系统使用不当,如过充、过放、过热、碰撞等条件下可能产生以下安全隐患: (1)内部短路,应用钴酸锂的锂电池在过充时(甚至正常充放电时) ,锂离子在负极堆积形成枝晶,刺穿隔膜,形成内部短路; ( 2)产生大电流,包括外部短路时,电池瞬间大电流放电,产生巨大热量,内部短路,隔膜穿透,温度上升,短路扩大,形成恶性循环; (3)气体排放,如有机电解液在大电流,高温条件下电解,产生气体,导致内压升高,严重时冲破壳体; (4)燃烧,金属锂在壳体破裂时与空气接触,导致燃烧,同时引燃电解质发生爆炸。如图3所示。

因此在设计车用锂离子动力电池系统时,应从电池材料(包括正负极材料、隔膜、电解液)、电芯的设计和制造(包括电池结构、安全设计、均一性)、电池系统的安全功能(包括电池管理系统、热管理系统、高压安全、外壳等)、整车安全功能等不同层面进行研究和分析,确保其在车上的安全使用。

2. 3. 2高压互锁回路HVL

车用锂离子电池系统设计时,电池管理系统要提供一个手动开关,手动开关内部集成主回路的保险丝及主回路的高压互锁电路。当手动开关从电池系统中拔出,此时要保证电池系统的输出端没有任何潜在的

相关文档
最新文档