【浙江专版】必修2《空间几何体》阶段质量检测试卷含解析
高中数学高一必修2空间立体几何试卷(有详细答案)
高中数学立体几何测试试卷学校:___姓名:___班级:___考号:__一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.参考答案一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n答案:D解析:解:对于选项A,若m,n与α所成角相等,m,n也可能相交、平行、异面;故A错误;对于选项B,若m∥α,n∥α,直线m,n也可能平行,也可能相交,还有可能异面;故B 错误;对于选项C,若m,n与α所成角互余,如与α所成角分别为30°和60°,直线m,n所成的角有可能为30°;故C错误;对于选项D,根据线面垂直的性质,容易得到m⊥n;故D正确;故选D.3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④答案:B解析:解:①根据线面垂直的判定,当m,n相交时,结论成立,故①不正确;②根据平行线的传递性,可得l∥n,故l⊥α时,一定有n⊥α,故②正确;③由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n,故③正确.④m⊂α,n⊥α,则n⊥m,∵l⊥n,∴可以选用正方体模型,可得l,m平行、相交、异面都有可能,如图所示,故④不正确故正确的命题是②③故选B.5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm答案:C解析:解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为acm,则a3=64解得a=4cm故选C6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个答案:C解:∵线段A1C与线段PQ相交且互相平分,∴四边形A1QCP是平行四边形,因A l C的长为定值,为了使得四边形A1QCP面积最大,只须P到A l C的距离为最大即可,由正方体的特征可知,当点P位于B1、C1、D1时,平行四边形A1QCP面积相等,且最大.则使得四边形A1QCP面积最大的点P有3个.故选C.7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④答案:D解析:解:根据棱柱的放置和“看见的棱用实线、看不见的棱用虚线”,则①②③正确,④错误,故选D.二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.答案:2解:连接BE,则∵SB⊥底面ABCD,∠SEC=90°,∴BE⊥CE.故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.设AE=x,则DE=3-x,∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,∴10=1+x2+4+(3-x)2,∴x2-3x+2=0,∴x=1或2,∴满足BE⊥CE的点E的个数为2,∴满足∠SEC=90°的点E的个数是2.故答案为:2.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.答案:①④解析:解:①若m⊥α,n⊂α,利用线面垂直的性质,可得m⊥n,正确;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.④若α⊥β,α∩β=m,n⊂α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.故答案为:①④.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.答案:解:如图所示,正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,∴OA=×AB=,O1A1=×A1B1=,∴棱台的侧棱长为AA1==;又OE=×AB=,O1E1=×A1B1=,∴该棱台的斜高为EE1==.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.。
高中必修二《空间几何体》数学测试试卷附加答案
高中数学学科测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.六棱锥的六条侧棱长相等,则该六棱锥的底面六边形()A.必有内切圆B.必有外接圆C.既有内切圆又有外接圆D.不能确定2.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.43.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.24.棱长为a的正四面体中,高为h,斜高为m,相对棱间的距离为d,则a、m、h、d的大小关系正确的是()A.a>m>h>d B.a>d>m>h C.a>h>d>m D.a>d>h>m正方体表面沿着几条棱裁开放平得到如图的展开图,则在原正方体中有()A.AB∥CD B.AB∥EF C.CD∥GH D.AB∥GH6.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.7.(2015秋•九江校级月考)ABCD-A1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BD C.AC1⊥平面CB1D1D.AC1⊥BD1水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0B.7C.快D.乐二.填空题(共__小题)9.称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,则第四个面中的直角为______.10.已知一个正三棱锥的侧面都是等边三角形,侧棱长为3,则三棱锥的高是______.11.三棱台ABC-A1B1C1,△ABC的面积是4,△A1B1C1的面积是1,棱台的高是2,求截得棱台的棱锥的高是______.12.从正方体ABCD-A1B1C1D1的顶点和各棱的中点中任取两点边成直线,要求所得直线与AC1垂直,则这样的直线共有______条.13.正三棱锥的底面边长是2,侧棱长是3,则它的高h=______.14.若几何体的三视图如图所示,则此几何体的体积为______.一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).17.在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD ∥平面PBC;②OD⊥PA;③OD⊥BC;④PA=2OD.其中正确结论的序号是______.18.四棱锥的四个侧面三角形中,最多有______个直角三角形.19.空间四边形ABCD中,各边长均为1,若BD=1,则AC的取值范围是______.20.在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,则点C到平面A1MD的距离为______.21.一个长方体全面积是20cm2,所有棱长的和是24cm,则长方体的对角线长为______.22.等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:①BD⊥AC②∠BAC=60°③异面直线AB与CD之间的距离为④点D到平面ABC的距离为⑤直线AC与平面ABD所成的角为其中正确结论的序号是______.23.已知命题p:底面是棱形的直棱柱是正四棱柱;命题q:底面是正三角形的棱锥是正三棱锥.有下列四个结论:①p真q假;②“p∧q”为假;③“p∨q”为真;④p假q假其中正确结论的序号是______.(请把正确结论的序号都填上)三.简答题(共__小题)24.已知三棱台ABC-A1B1C1的上底面面积为a2,下底面面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.如图,在长方体ABCD-A1B1C1D1中,AD1、AC、A1C1、BC1分别是四个面上的对角线.求证:∠D1AC=∠A1C1B.已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.30.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.高中数学学科测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.六棱锥的六条侧棱长相等,则该六棱锥的底面六边形()A.必有内切圆B.必有外接圆C.既有内切圆又有外接圆D.不能确定答案:B解析:解:如图所示,∵六棱锥的六条侧棱长相等,∴侧棱在底面上的射影也相等,即OA=OB=OC=OD=OE=OF,从而底面六边形的六个顶点在同一个圆上,则该六棱锥的底面六边形必有外接圆.故选B.2.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.4答案:C解析:解:由三视图可知原几何体为三棱锥,其中底面△ABC为俯视图中的钝角三角形,∠BCA为钝角,其中BC=2,BC边上的高为2,PC⊥底面ABC,且PC=2,由以上条件可知,∠PCA为直角,最长的棱为PA或AB,在直角三角形PAC中,由勾股定理得,PA===2,又在钝角三角形ABC中,AB==.故选C.3.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.4.棱长为a的正四面体中,高为h,斜高为m,相对棱间的距离为d,则a、m、h、d的大小关系正确的是()A.a>m>h>d B.a>d>m>h C.a>h>d>m D.a>d>h>m答案:A解析:解:先判断棱长与斜高的关系,根据直角三角形斜边大于直角边得到a>m,斜高与高之间的关系同理可得m>h,在过相对棱之间的距离的面且垂直与一条棱的面上,两条边上的高比较大小,可以利用勾股定理来做,出大小,h>d综上可知a>m>h>d故选A正方体表面沿着几条棱裁开放平得到如图的展开图,则在原正方体中有()A.AB∥CD B.AB∥EF C.CD∥GH D.AB∥GH答案:C解析:解:由已知中正方体的展开图为:可得正方体的直观图为:由图可得CD∥GH故选C6.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中PA⊥底面ABC,AB是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边AB为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.7.(2015秋•九江校级月考)ABCD-A1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BD C.AC1⊥平面CB1D1D.AC1⊥BD1答案:D解析:解:如图,由ABCD-A1B1C1D1为正方体,可得BD∥B1D1,由线面平行的判定知,A正确;由线面垂直的判断可知BD⊥面ACC1,由此可得AC1⊥BD,B正确;由线面垂直的判定可得AC1⊥B1D1,AC1⊥B1C,则由线面垂直的判定定理可得AC1⊥平面CB1D1,说明C正确;由ABCD-A1B1C1D1为正方体,可得四边形ABC1D1为长方形,若AC1⊥BD1,可得AB=BC1,矛盾,∴D错误.故选:D.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0B.7C.快D.乐答案:B解析:解:将展开图还原成正方体.下面是7;故选B.二.填空题(共__小题)9.称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,则第四个面中的直角为______.答案:∠ABC解析:证明:如图,四直角三棱锥S-ABC中,因为,∠SAB=∠SAC=90°,所以SA⊥AB,SA⊥AC,又AB∩AC=A,所以SA⊥平面ABC,而BC⊂平面ABC,所以SA⊥BC.又∠SBC=90°,所以SB⊥BC,又SA∩SB=S,所以BC⊥平面SAB.而AB⊂平面SAB,所以AB⊥BC,所以∠ABC为直角.故答案为∠ABC.10.已知一个正三棱锥的侧面都是等边三角形,侧棱长为3,则三棱锥的高是______.答案:解析:解:如图,设正三棱锥的顶点P在底面上的射影为D,则在直角三角形PAD中,PA=3,AD=,∴三棱锥的高PD==,故答案为:.11.三棱台ABC-A1B1C1,△ABC的面积是4,△A1B1C1的面积是1,棱台的高是2,求截得棱台的棱锥的高是______.答案:2解析:解:∵△ABC的面积是4,△A1B1C1的面积是1,∴两个三角形的边长的比是1:2设截去的部分棱锥高是h,∴,∴h=2故答案为:212.从正方体ABCD-A1B1C1D1的顶点和各棱的中点中任取两点边成直线,要求所得直线与AC1垂直,则这样的直线共有______条.答案:27解析:解:∵AA1⊥平面ABCD,BD⊆平面ABCD,∴AA1⊥BD又∵正方形ABCD中,AC⊥BD,且AA1、AC是平面AA1C1C内的相交直线∴BD⊥平面AA1C1C,∵AC1⊆平面AA1C1C,∴BD⊥AC1,同理可得BA1⊥AC1,结合线面垂直的判定定理,得AC1⊥平面A1BD因此,平面A1BD内的直线都与AC1垂直,并且平行于平面A1BD的平面都与AC1垂直,该平面内的直线都与AC1垂直,这样,在△A1BD中有三条直线与AC1垂直,在△B1D1C中有三条直线与AC1垂直,在△IJK中有三条直线与AC1垂直,在△RST中有三条直线与AC1垂直,共有3×4=12条直线与AC1垂直而在六边形LMNOPQ中,任意两点的连线都AC1垂直,共=15条直线与AC1垂直综上所述,正方体顶点和各棱的中点中任取两点连成直线,与AC1垂直的直线共12+15=27条故答案为:2713.正三棱锥的底面边长是2,侧棱长是3,则它的高h=______.答案:解析:解:如图,在正三棱锥P-ABC中,底面边长AB=2,侧棱长PA=3,设顶点P在底面的射影为O,连接CO并延长,交AB与点D;连接PD,则CD⊥AB,PD⊥AB;在正△ABC中,∵AB=2,∴CD=,OD=•CD=,PD==,∴PO===.故答案为:.14.若几何体的三视图如图所示,则此几何体的体积为______.答案:32解析:解:由三视图知几何体是一个切割后的几何体,用两个几何体对在一起,可以得到一个棱长是4的正方体,棱长是4的正方体的体积是43=64,∴这个几何体的体积是=32,故答案为:32一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A1C⊥平面B1EF,则A1C⊥B1F,由三垂线逆定理知:B1F⊥A1B,又当F与A不重合时,B1F与A1B不垂直,∴①错误;∵E在侧面BCC1B1上的投影在CC1上,F在侧面BCC1B1上的投影是B,∴△B1EF在侧面BCC1B1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A1B1C1D1∩平面B1EF=l,∵平面A1B1C1D1内总存在与l平行的直线,由线面平行的判定定理得与l平行的直线,与平面B1EF平行,∴③正确;设E与D重合,F位置变化,平面B1EF与平面ABCD所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.17.在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD ∥平面PBC;②OD⊥PA;③OD⊥BC;④PA=2OD.其中正确结论的序号是______.答案:③④解析:解:取BC中点M,连接AM,PM,则O∈AM.∵AO=2OM,∴OD与PM不平行,∴OD∥平面PBC不成立,即①错误;∵OA≠OP,D为PA中点,∴OD⊥PA不成立,即②错误;∵P-ABC为正三棱锥,∴BC⊥PM,BC⊥AM,∴BC⊥面APM,∴OD⊥BC,即③成立;∵PO垂直于平面ABC,OA属于平面ABC∴PO垂直于OA∴三角形AOP为直角三角形∵D为AP中点∴PA=2OD,即④成立.故答案为:③④.18.四棱锥的四个侧面三角形中,最多有______个直角三角形.答案:4解析:解:如图在正方体ABCD-A1B1C1D1中若取A、B、C、D、C1五点组成以C1为顶点的四棱锥则其四个侧面三角形均为直角三角形故答案为:419.空间四边形ABCD中,各边长均为1,若BD=1,则AC的取值范围是______.答案:(0,)解析:解析:如图①所示,△ABD与△BCD均为边长为1的正三角形,当△ABD与△CBD重合时,AC=0,将△ABD以BD为轴转动,到A,B,C,D四点再共面时,AC=,如图②,故AC的取值范围是0<AC<.故答案为:(0,).20.在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,则点C到平面A1MD的距离为______.答案:解析:解:连接A1C、MC可得S△CMD=S ABCD=,△A1DM中,A1D=,A1M=MD=∴S△A1MD=A1M•MDsinA1MD=三棱锥的体积:V A1-MCD=V C-A1DM所以S△MCD×AA1=S△AD1M×d(设d是点C到平面A1DM的距离)∴d==故答案为:.21.一个长方体全面积是20cm2,所有棱长的和是24cm,则长方体的对角线长为______.答案:4解析:解:设长方体的长为a,宽为b,高为c,由题意可得2(ab+bc+ac)=20…①4(a+b+c)=24…②②化为a+b+c=6…③解得a2+b2+c2=16则长方体的对角线长为:4故答案为:422.等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:①BD⊥AC②∠BAC=60°③异面直线AB与CD之间的距离为④点D到平面ABC的距离为⑤直线AC与平面ABD所成的角为其中正确结论的序号是______.答案:①②③④⑤解析:解:∵AD⊥BD,AD⊥CD,平面ABD⊥平面ACD,∴∠BDC=90°,∴BD⊥平面ACD,∴BD⊥AC,∴①正确;又知AD=BD=CD=1,∴△ABC为正三角形,∠BAC=60°,∴②正确;以D为原点,DB、DC、DA分别为x轴、y轴、z轴建立空间直角坐标系,易知A(0,0,1),B(1,0,0),C(0,1,0),∴=(1,0,-1),=(0,1,-1),=(0,1,0),设向量n=(x,y,z),=0,=0得x-z=0,y=0,令z=1得n=(1,0,1),∴异面直线AB与DC之间的距离d==,故③正确;∵△ABC边长为,.∴S△ABC=,由V A-BDC=V D-ABC得×(×1×1)×1=××h,∴h=,故④正确;∵CD⊥平面ABD,∴∠CAD为直线AC与平面ABD所成的角,易知∠CAD=45°,故⑤正确;故答案为:①②③④⑤.23.已知命题p:底面是棱形的直棱柱是正四棱柱;命题q:底面是正三角形的棱锥是正三棱锥.有下列四个结论:①p真q假;②“p∧q”为假;③“p∨q”为真;④p假q假其中正确结论的序号是______.(请把正确结论的序号都填上)答案:②、④解析:解:∵底面是棱形的直棱柱不一定是正四棱柱,易得命题p为假命题,又∵底面是正三角形的棱锥不一定是正三棱锥为假命题,故p是假命题,q是假命题;所以①p真q假;错;②p∧q是假命题,正确;③p∨q是假命题,错;④p假q假,是真命题,正确;故答案为:②④.三.简答题(共__小题)24.已知三棱台ABC-A1B1C1的上底面面积为a2,下底面面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.答案:解:连接BC1,如下图所示:设三棱台的高为h,则=(+)h=++=S△ABC h+h+h,∴,又∵上底面ABC的面积为a2,下底面面积为b2∴=ab所以△AB1C1的面积为ab.解析:解:连接BC1,如下图所示:设三棱台的高为h,则=(+)h=++=S△ABC h+h+h,∴,又∵上底面ABC的面积为a2,下底面面积为b2∴=ab所以△AB1C1的面积为ab.四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.答案:证明:如图,连结BD,取AD的中点E,连结PE,BE;从而易知△ABD也是等边三角形,又∵△PAD为等边三角形,∴AD⊥PE,AD⊥BE,又∵PE∩BE=E;故AD⊥平面PBE;故AD⊥PB.解析:证明:如图,连结BD,取AD的中点E,连结PE,BE;从而易知△ABD也是等边三角形,又∵△PAD为等边三角形,∴AD⊥PE,AD⊥BE,又∵PE∩BE=E;故AD⊥平面PBE;故AD⊥PB.在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.解析:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.答案:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h.由得,即所以为所求.解析:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h.由得,即所以为所求.如图,在长方体ABCD-A1B1C1D1中,AD1、AC、A1C1、BC1分别是四个面上的对角线.求证:∠D1AC=∠A1C1B.答案:证明:∵多面体ABCD-A1B1C1D1为长方体,∴AB∥C1D1且AB=C1D1,∴四边形ABC1D1为平行四边形,∴AD1=C1B.同理AA1∥CC1且AA1=CC1,∴四边形ACC1A1为平行四边形,∴AC=A1C1.连结A1B,CD1,同理可证A1B=CD1.∴△D1AC≌△A1C1B.∴∠D1AC=∠A1C1B.解析:证明:∵多面体ABCD-A1B1C1D1为长方体,∴AB∥C1D1且AB=C1D1,∴四边形ABC1D1为平行四边形,∴AD1=C1B.同理AA1∥CC1且AA1=CC1,∴四边形ACC1A1为平行四边形,∴AC=A1C1.连结A1B,CD1,同理可证A1B=CD1.∴△D1AC≌△A1C1B.∴∠D1AC=∠A1C1B.已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.解析:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.30.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9(2)过O作OG⊥PE于点G,则△POG∽△PEH,且OG=OH=R,∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9(2)过O作OG⊥PE于点G,则△POG∽△PEH,且OG=OH=R,∴,∴R=。
精品解析:人教版高一数学必修2第一章《空间几何体》专题检测(含答案)(解析版).docx
人教版高一数学必修2第一章《空间几何体》专题检测一.选择题1. 在三棱锥P-ABC 屮,PA = PB = AC = BC = 2,AB = 2A //3,PC= 1,则三棱锥P-ABC 的外接球的表而积为( )4兀 52兀 A. — B. 4兀 C. 12n D. ---------------------- 3 3【答案】D【解析】取AB 中点D,连接PD,CD,则AD = \$, PD = ^AP 2-AD 2 = h 所以ABZAPD = 60°, ^APB= 120°,设△ APB 外接圆圆心为0】,半径为「则2T = ------------ = 4 sinl20°所以r = 2.同理可得:CD = L ZACB = 120°, A ABC 的外接圆半径也为2,因为PC = PD = CD= 1,所以APCD 是等边三角形,ZPDC = 60%即二面角P-AB-C 为60。
,球心O 在平面PCD 上, 过平面PCD 的截血如图所示,则O 】D = L PD=1,所以001=^01D = —,所以OF 2 = OO J + O J F 2 = - 3 3 3D.【点睛】本小题主要考查儿何体外接球的表面积的求法,考查三角形外心的求解方法•在解决有关儿何体外 接球有关的问题时,主要的解题策略是找到球心,然后通过解三角形求得半径•找球心的方法是先找到一个 血的外心,再找另一个血的外心,球心就在两个外心垂线的交点位置.2.直三棱柱ABC ・AiB 】C ]的各顶点都在同一球面上,若AB=AC=AA 1=2,则此球的表面积等于()52兀52兀 A. ---- B. 20兀 C- 10n D. 9 ・ 13 _ + 4 =—— ; 3 即R 2 = -,所以外接球的表而积S = 4TT R 2 = —.故选【答案】B【解析】设三角形BAC 外接圆半径为「,则= 盂=薯・•・「= 2・・・球的半径等于、夕+ 1 = “5,表面积等于4HR 2 = 20n.选B ・3. 某几何体的三视图如图所示,则此几何体的体积为(—2—H —2T【答案】C【解析】该儿何体为三棱锥,其直观图如图所示,体枳V = 1x (lx2 ><2卜2=±.故选C.4. 已知正四棱锥P-ABCD 的顶点均在球0上,且该正四棱锥的各个棱长均为2,则球0的表面积为A. 4兀B. 6兀C. 8兀D. 16n 【答案】c【解析】设点P 在底面ABCD 的投影点为O ;贝|JAO‘=-AC = Q, PA = 2, PCT 丄平面ABCD,故 2PO = 7P A 2-AO 2 = 而底iklABCD 所在截面圆的半径AO‘ = ©,故该截血圆即为过球心的圆,则球的半径 R = &‘故球O 的表面积$ = 4?rR 2 = 87T»故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切 问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的A.B. 1C.-D.俯视图关系;(3)球自身的对称性与多面体的对称性;(4)能否做岀轴截面.5. 己知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是6. 如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为【答案】D【解析】由三视图可知,该儿何体为三棱锥,如图所示:C. 6 cm 3D. 7 cm 3【答案】A 【解析】 几何体如图四棱锥’体积为+ 2) x 2 = 4,选A.俯觀图A. 4cm 3B. 5 cm 3()A. 6yj2B. 6&C. 8D. 9AAB = 6, BC = 3忑,BD = CD = 3屈 AD = 9,故选:D点睛:思考三视图还原空间儿何体首先应深刻理解三视图Z间的关系,遵循“长对正,高平齐,宽相等” 的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7.我国古代数学名箸《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺•问:须工儿何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为38丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 78033【答案】B20 + 54【解析】根据棱柱的体积公式,可得城墙所需土方为------ x 38 x 5500 = 7803300 (立方尺),一个秋夭工期2所需人数为------- = 26011,故选B.3008.已知某儿何体是两个正四棱锥的组合体,其三视图如下图所示,则该儿何体外接球的表面积为()A. 2兀B. 2#5兀C. 4兀D. 8兀【答案】D【解析】由已知三视图得:该几何体的直观图如下可知该儿何体外接球的半径为Q则该儿何体外接球的表而积为4兀•(厨=8TI故选D9. 在空间直角坐标系O-xyz 中,四面体ABCD 的顶点坐标分别是A(0Q2), B(220), C(1.2,l), D(222).则该四而体的体积V=()二、填空题10. 在平行六面体 ABCD —A]B]C]D]中,AB = 4 , AD = 3 , A 】A=5,厶 BAD = 90。
数学《必修2》第一章“空间几何体”测试题与答案
数学《必修2》第一章“空间几何体”测试题一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的)1.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是正方形;③等腰梯形的直观图一定是等腰梯形;④平行四边形的直观图一定是平行四边形。
以上结论正确的是()A.①②B.①④C.③④D. ①②③④2.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展开成平面图形D.棱柱的各条棱都相等3.圆台的母线长为6,两底面半径分别为2、7,则圆台的侧面积为()A.54πB.8πC.4πD.164.给出下列结论:①圆柱的母线是其上底面圆周上任意一点与下底面圆周上任意一点的连线;②圆锥的母线是圆锥顶点与底面圆周上任意一点的连线;③圆台的母线是圆台上、下底面圆周上任意两点的连线。
其中正确的是()A.①②B.②③C.①③D.②。
5.已知底面为正方形的长方体的各顶点都在一个球面上,长方体的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π6.下列说法错误的是()A.棱柱最少有5个面B.棱锥最少有4个面C.棱台的底面有2个D.棱锥的底面边数和侧棱数不一定相同7.下列四个图形不是下图1中几何体的三视图之一的是()图1 A B C D8.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台 9.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D. 96 10.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )二、填空题:(本大题共5个小题,每小题5分,共25分)11.半径为2的球的体积等于 ,表面积等于12.圆锥的侧面展开图为圆心角为120、半径为1的扇形,则圆锥的侧面积为 13.如下图所示,等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画的直观图''''A B C D 的面积为 14.某几何体的三视图如下图所示, 则其体积为_______.15.某几何体的三视图如下图所示,则该几何体的体积是____________.第13题图14题图第15题图三、解答题:(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.求下列几何体的体积与表面积。
2017-2018学年高中数学必修二 练习:第1章 空间几何体 学业质量标准检测1 含答案 精品
第一章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2016·菏泽市高一检测)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于导学号 09024213( A )A .2πB .πC .2D .1[解析] 所得旋转体是底面半径为1,高为1的圆柱,其侧面积S 侧=2πRh =2π×1×1=2π.2.设球内切于圆柱,则此圆柱的全面积与球表面积之比是导学号 09024214( C ) A .1︰1B .2︰1C .3︰2D .4︰3[解析] ∵圆柱的底面直径与高都等于球的直径,设球的直径为2R ,则圆柱全面积S 1=2πR 2+2πR ·2R =6πR 2,球表面积S 2=4πR 2,∴S 1S 2=32.3.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是导学号 09024215( A )A .3034B .6034C .3034+135D .135 [解析] 由菱形的对角线长分别是9和15,得菱形的边长为922+1522=3234,则这个菱柱的侧面积为4×3234×5=3034.4.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1︰V 2=导学号 09024216( D )A .1︰3B .1︰1C .2︰1D .3︰1[解析] V 1︰V 2=(Sh )︰(13Sh )=3︰1.5.(2016·寿光现代中学高一月考)若两个球的表面积之比为1︰4,则这两个球的体积之比为导学号 09024217( C )A .1︰2B .1︰4C .1︰8D .1︰16[解析] 设两个球的半径分别为r 1、r 2, ∴S 1=4πr 21,S 2=4πr 22.∴S 1S 2=r 21r 22=14,∴r 1r 2=12.∴V 1V 2=43πr 3143πr 32=(r 1r 2)3=18. 6.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为导学号09024218( D )A .6B .3 2C .6 2D .12[解析] △OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴S △OAB =12×6×4=12.7.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为导学号09024219( D )A .60B .30C .20D .10[解析] 由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P -ACD =13×12×3×5×4=10.故选D .8.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为导学号 09024220( D )A .1B .12C .32D .34[解析] 设圆柱与圆锥的底半径分别为R ,r ,高都是h ,由题设,2R ·h =12×2r ·h ,∴r =2R ,V 柱=πR 2h ,V 锥=13πr 2h =43πR 2h ,∴V 柱V 锥=34,选D . 9.半径为R 的半圆卷成一个圆锥,则它的体积为导学号 09024221( A ) A .324πR 3B .38πR 3C .525πR 3D .58πR 3 [解析] 依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为R 2,高为32R ,所以圆锥的体积为13×π×(R 2)2×32R =324πR 3.10.(2015·全国卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有导学号 09024222( B )A .14斛B .22斛C .36斛D .66斛[解析] 设圆锥底面半径为r ,则14×2×3r =8,∴r =163,所以米堆的体积为14×13×3×(163)2×5=3209,故堆放的米约为3209÷1.62≈22,故选B .11.已知底面为正三角形,侧面为矩形的三棱柱有一个半径为 3 cm 的内切球,则此棱柱的体积是导学号 09024223( B )A .9 3 cm 3B .54 cm 3C .27 cm 3D .18 3 cm 3[解析] 由题意知棱柱的高为2 3 cm ,底面正三角形的内切圆的半径为 3 cm ,∴底面正三角形的边长为6 cm ,正三棱柱的底面面积为9 3 cm 2,∴此三棱柱的体积V =93×23=54(cm 3).12.(2016·山东,文)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为导学号 09024224( C )A .13+23π B .13+23π C .13+26π D .1+26π [解析] 根据三视图可知,四棱锥的底面是边长为1的正方形、高是1,半球的半径为22,所以该几何体的体积为13×1×1×1+12×43π(22)3=13+26π.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如图是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是__16__.导学号 09024225[解析] 在△AOB 中,OB =4,高为8,则面积S =12×4×8=16.14.圆柱的高是8 cm ,表面积是130π cm 2,则它的底面圆的半径等于__5__cm.导学号 09024226[解析] 设底面圆的半径为r ,由题意得2πrh +2πr 2=130π, 即r 2+8r -65=0,解得r =5.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__11__.导学号 09024227[解析] 设棱台的高为x ,则有(16-x 16)2=50512,解之,得x =11.16.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为__2+π2__.导学号 09024228[解析] 该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1︰4,母线长为10 cm.求圆锥的母线长.导学号 09024229[解析] 如图,设圆锥母线长为l ,则l -10l =14,所以l =403cm.18.(本小题满分12分)如图所示,四棱锥V -ABCD 的底面为边长等于2 cm 的正方形,顶点V 与底面正方形中心的连线为棱锥的高,侧棱长VC =4 cm ,求这个四棱锥的体积.导学号 09024230[解析] 如图,连接AC 、BD 相交于点O ,连接VO ,∵AB =BC =2 cm , 在正方形ABCD 中, 求得CO = 2 cm , 又在直角三角形VOC 中, 求得VO =14 cm ,∴V V -ABCD =13S ABCD ·VO =13×4×14=4143(cm 3).故这个四棱锥的体积为4143cm 3.19.(本小题满分12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.导学号 09024231[解析] 因为V 半球=12×43πR 3=12×43×π×43≈134(cm 3),V 圆锥=13πr 2h =13π×42×12≈201(cm 3),134<201, 所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子.20.(本小题满分12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.导学号 09024232[解析] 由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为4π×1-π(32)2×1=7π4.21.(本小题满分12分)据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图案中圆锥、球、圆柱的体积比.导学号 09024233[解析] 设圆柱的底面半径为r ,高为h ,则V 圆柱=πr 2h . 由题意知圆锥的底面半径为r ,高为h ,球的半径为r , ∴V 圆锥=13πr 2h ,∴V 球=43πr 3.又h =2r , ∴V 圆锥︰V 球︰V圆柱=(13πr 2h )︰(43πr 3)︰(πr 2h )=(23πr 3)︰(43πr 3)︰(2πr 3)=1︰2︰3.22.(本小题满分12分)如图所示,有一块扇形铁皮OAB ,∠AOB =60°,OA =72 cm ,要剪下来一个扇形环ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).导学号 09024234试求:(1)AD 的长; (2)容器的容积.[解析] (1)设圆台上、下底面半径分别为r 、R ,AD =x , 则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R ,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm.(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-R -r2=362--2=635.∴V =13πh (R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).即容器的容积为50435π cm 3.。
高中数学必修二:空间几何体单元检测解析版
空间几何体单元检测解析版一、选择题(本大题共12个小题,每小题5分,共计60分) 1.过棱柱不相邻两条侧棱的截面是( ). A .矩形 B .正方形 C .梯形D .平行四边形答案:D解析:侧棱平行且相等.2.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如右图;②存在四棱柱,其正视图、俯视图如右图;③存在圆柱,其正视图、俯视图如右图.其中真命题的个数是( ).A .3B .2C .1D .0答案:A解析:①正确,一直三棱柱,其中四边形BCC 1B 1与四边形BAA 1B 1是全等的矩形,且面BCC 1B 1⊥面BAA 1B 1,即满足要求.②正确,如图一正四棱柱ABCD A 1B 1C 1D 1,即满足要求.③正确.横卧的圆柱即可.如图.3.若某空间几何体的三视图如图所示,则该几何体的体积是( ).A.13B.23C .1D .2答案:C解析:根据三视图可以推测出该物体应该为一个三棱柱,底面是直角三角形,因此1(1)12V Sh ===,选C.4.已知水平放置的△ABC 是按“斜二测画法”得到如右图所示的直观图,其中1B O C O ''=''=,A O ''=,那么原△ABC 是一个( ).A .等边三角形B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形 答案:A解析:依据斜二测画法的原则可得,2BC B C ''==,2OA ==, ∴AB =AC =2,故△ABC 是等边三角形. 5.轴截面为正方形的圆柱的侧面积与全面积的比是( ). A .1∶2 B .2∶3 C .1∶3D .1∶4答案:B解析:设圆柱的底面半径为r ,母线长为l ,依题意得l =2r ,而S 侧=2πrl ,S 全=2πr 2+2πrl ,∴S 侧∶S 全=2πrl ∶(2πr 2+2πrl )=2∶3,故选B.6.下列几何体各自的三视图中,有且仅有两个视图相同的是( ).A .①②B .①③C .①④D .②④答案:D解析:正方体的三视图都是正方形,所以①不符合题意,排除A 、B 、C.7.一平面截一球得到直径是6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是( ). A.1003π cm 3B.2083πcm 3C.5003π cm 3cm 3答案:C解析:根据球的截面性质,截面小圆的圆心与球心的连线与截面垂直,因此球心到截面的距离、小圆半径与球的半径构成直角三角形.由勾股定理得球的半径为5 cm ,故球的体积为34500533ππ⨯=cm 3. 8.一圆台上底面半径为5 cm ,下底面半径为10 cm ,母线AB 长为20 cm ,其中A 在上底面上,B 在下底面上,从AB 中点M ,拉一条绳子,绕圆台的侧面一周转到B 点,则这条绳子最短长为( ).A .30 cmB .40 cmC .50 cmD .60 cm答案:C解析:画出圆台的侧面展开图,并还原成圆锥展开的扇形,则扇形圆心角为90°,且圆锥的母线长为40 cm 50= (cm).9.圆台的母线长扩大到原来的n 倍,两底面半径都缩小为原来的1n,那么它的侧面积为原来的__________倍.( ).A .1B .nC .n 2 D.1n答案:A 解析:设改变之前圆台的母线长为l ,上底半径为r ,下底半径为R ,则侧面积为π(r +R )l ,改变后圆台的母线长为nl ,上底半径为r n ,下底半径为Rn,则侧面积为()()r Rnl r R l nππ+=+,故它的侧面积为原来的1倍. 10.设下图是某几何体的三视图,则该几何体的体积为( ).A .9π+42B .36π+18 C.9122π+D.9182π+ 答案:D解析:由三视图可知,该几何体是一个球体和一个长方体的组合体.其中,3439()322V ππ=⋅=球,V 长方体=2×3×3=18.所以9+182V π=总 11.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,右图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是( ).A .0B .9C .快D .乐答案:B解析:本题考查了正方体的表面展开图,选B.12.如图,在一个盛满水的圆柱形容器内的水面下有一个用细绳吊着的薄壁小球,小球下方有一个小孔,当慢慢地、匀速地将小球从水下面往上拉动时,圆柱形容器内水面的高度h 与时间t 的函数关系图象大致为( ).答案:C解析:由球顶到球中心被拉出时,小球的体积越露越大,水面高度下降得快,所以曲线向上弯;当球从中心开始到整个球被拉出水面时,球的体积变化越来越小,水面高度下降得慢,所以曲线向下弯.在整个过程中,函数关系图象大致为C.二、填空题(本大题共4小题,每小题4分,共16分)13.若球O 1、O 2表面积之比124S S =,则它们的半径之比12RR =__________.答案:2解析:由S =4πR 2易知.14.一个正四棱柱的各个顶点都在一个直径为2 cm 的球面上.如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为__________cm 2.答案:2+解析:设正四棱柱的高为a ,由长方体与球相接的性质知4=1+1+a 2,则a =∴正四棱柱的表面积为S(2=+cm 2.15.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是__________cm 3.15题 16题 答案:144解析:由几何体的三视图知该几何体是正四棱台与长方体的组合体,所以几何体的体积为V =13144.16.一个无盖的正方体盒子展开后的平面图,如图所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC =__________.答案:90°解析:如下图所示,折成正方体,很明显,点A 、B 、C 是上底面正方形的三个顶点,则∠ABC =90°.三、解答题(本题共6小题,满分74分)17.(12分)画出如图所示几何体的三视图.解:该几何体的上面是一个圆柱,下面是一个四棱柱,其三视图如图所示.18.(12分)一个直角梯形的两底长为2和5,高为4,将其绕较长的底旋转一周,求所得旋转体的侧面积.解:如图所示,梯形ABCD中,AD=2,AB=4,BC=5.作DM⊥BC,垂足为点M,则DM=4,MC=5-2=3,在Rt△CMD中,由勾股定理得5CD==在旋转生成的旋转体中,AB形成一个圆面,AD形成一个圆柱的侧面,CD 形成一个圆锥的侧面,设圆柱与圆锥的侧面积分别为S1,S2,则S1=2π×4×2=16π,S2=π×4×5=20π,故此旋转体的表面积为S=S1+S2=36π.19.(12分)一个正三棱柱的三视图如图,求这个正三棱柱的表面积.解:由题意可知正三棱柱的高为2,底面三角形的高为的边长为a=∴a =4,∴224S ===底. 正三棱柱侧面积S 侧=3×2×4=24.∴正三棱柱表面积S表=S 侧+2S 底=20.(12分)如图所示是一个正方体,H 、G 、F 分别是棱AB 、AD 、AA 1的中点.现在沿△GFH 所在平面锯掉正方体的一个角,问锯掉部分的体积是原正方体体积的几分之几?解:设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是Rt△AGF ,即∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,所以AF =AG =12a .所以△AGF 的面积为211112228a a a ⨯⨯=.又因AH 是三棱锥的高,H 又是AB 的中点,所以12AH a =.所以锯掉的部分的体积为23111132848a a a ⨯⨯=. 又因33114848a a ÷=,所以锯掉的那块的体积是原正方体体积的148.21.(12分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边长为6,高为4的等腰三角形.求:(1)该几何体的体积V ; (2)该几何体的侧面面积S .解:由已知知该几何体是一个四棱锥,记P ABCD . 如图所示,由已知,知AB =8,BC =6,高h =4.由俯视图知:底面ABCD 是矩形,连接AC ,BD 交于点O ,连接PO ,则PO =4,即为棱锥的高.作OM ⊥AB 于M ,ON ⊥BC 于N ,连接PM ,PN , 因为PA =PB =PC ,M 、N 为AB 、BC 的中点, 则PM ⊥AB ,PN ⊥BC .故5PM ==,PN =.(1)V =13Sh =13×(8×6)×4=64.(2)S 侧=2S △PAB +2S △PBC =AB ·PM +BC ·PN=8×5+6×22.(14分)如图是从上下底面处在水平状态下的棱长为a 的正方体ABCD A 1B 1C 1D 1中分离出来的.(1)∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°,对吗? (2)∠A 1C 1D 的真实度数是60°,对吗?(3)设BC =1,如果用图示中这样一个装置来盛水,那么最多能盛多少体积的水?解:(1)对.因为四边形DD 1C 1C 是正方形,且是正对的后面,即恰好是正投影.所以∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°.(2)对.事实上,连接DA 1以后,△DA 1C 1的三条边都是正方体的面对角线,,所以△DA1C 1是等边三角形,所以∠A 1C 1D =60°.(3)如果用图示中的装置来盛水,那么最多能盛水的体积等于三棱锥C 1CB 1D 1的体积,111111-111·36C CB D B C D V S CC == ,所以最多能盛水的体积为16.。
高中数学必修2空间几何体测试试卷 含答案
②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若∠ABC=90°,H是AC的中点,则PA=PB=PC;
④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是______.
19.已知三棱锥O-ABC,OA=5,OB=4,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M、N分别是棱OA、BC的中点,则MN=______.
①f(1)= π
②f( )= π
③f( )= π
④函数f(r)在(0,1)上是增函数,f(r)在( , )上是减函数
其中为真命题的是______(写出所有真命题的序号)
如图是边长分别为a、b的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则 的取值范围是______.
A.外心
B.内心
C.垂心
D.重心
3.下列命题:
(1)三棱锥的四个面不可以都是钝角三角形;
(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥;
(3)有两个平面互相平行,其余各面都是梯形的几何体是棱台.
其中正确命题的个数是 ( )
A.0
B.1
C.2
D.3
4.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个( )
其中正确命题的个数为( )
A.3个
B.2个
C.1个
D.0个
答案:C
解析:
解:根据正方体的表面展开图,可画出正方体直观图,如右图所示.
易知AF与NC异面,故①错;
由四边形BENC为平行四边形可知,BE∥NC,故②错;
∵DE∥FC,∴AF与DE所成角即为AF与FC所成角,
必修二空间几何体试题三套含答案
(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.D5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,主视图 左视图 俯视图则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
高中数学必修二第一章《空间几何体》单元测试卷及答案
高中数学必修二第一章 《空间几何体》 单元测试卷及答案 (2套)测试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中只 有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为()2.如图,△ O ′A ′B ′是水平放置的△ OAB 的直观图,则△ OAB 的面积为( )A.6B . 3 2C . 62 D.12 3.已知一个底面是菱形的直棱柱的侧棱长为 5, 菱形的对角线的长分别是 9 和 15,则这个棱柱的侧面积是( )A. 30 34 B . 60 34 C . 30 34 135D.1354. 半径为 R 的半圆卷成一个圆锥,则它的体积为 ( )A.3 R 3B . 3 R 3C .5R 3D.53 R2482585.已知圆柱与圆锥的底面积相等, 高也相等, 它们的体积分别为 V 1 和 V 2,则 V 1:V 2=(A .圆台B .四棱锥C .四棱柱D .四棱台)6.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )7.一个正方体的体积是 8,则这个正方体的内切球的表面积是( )A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )11 1 A .1B .C .D .2 369.《九章算术》 是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米 (如图,A .1:3B .1:1C .2:1D .3:116A米堆为一个圆锥的四分之一),米堆底部的弧度为8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为3,估算出堆放斛的米约有()A.14 斛B.22斛C.36 斛D.66斛10.正三棱柱有一个半径为 3 cm 的内切球,则此棱柱的体积是()A.9 3 cm3B.54cm3C.27cm3D.18 3cm3 11.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3 cm ,高为 6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.17 B.C.10 D.27 2712.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,体积为( )500 3 cm 3 33C .cm D . cm33二、填空题(本大题共 4个小题,每小题 5 分,共 20分,把正确答案填在题中横线上)13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_______________________________________________________________________________ (填入所有可能的几何体前的编号 ) .①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为 2 的正三角形的直观图时, 如果在已知图形中取的 x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是 ___________________ .15.棱锥的高为 16,底面积为 512 ,平行于底面的截面面积为 50,则截得的棱台的高为 16.如图是一个组合几何体的三视图,则该几何体的体积是再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的A . 3B . cm3三、解答题(本大题共 6 个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10 分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1: 4 ,母线长为10cm .求圆锥的母线长.18.(12 分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12 分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇如果冰淇淋融化了,淋,会溢出杯子吗?请用你的计算数据说明理由.求这个几何体的20.(12 分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,体积.21.(12 分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7 m ,制造这个塔顶需要多少铁板?22.(12 分)如图,正方体ABCD - A ′B′C ′D ′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D 的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D 的体积.)答案一、选择题(本大题共12 个小题,每小题 5 分,共60 分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选 D .2.【答案】D【解析】△OAB 是直角三角形,OA=6,OB=4,∠ AOB=90°,1∴S△OAB 6 4 12 .故选D .23.【答案】A22【解析】由菱形的对角线长分别是9和15,得菱形的边长为9 15 3 34,2 2 2 则这个菱柱的侧面积为4 334 5 30 34 .故选 A .24.【答案】A【解析】依题意,得圆锥的底面周长为πR,母线长为R,则底面半径为R,高为3R,所22以圆锥的体积1R2 3 R3 R3.故选 A .322245.【答案】D【解析】V1 :V2 Sh 1Sh 3:1.故选 D .36.【答案】B【解析】设球半径是R,依题意知,该三棱柱是一个底面边长为2,侧棱长为1 的正三棱柱,记上,下底面的中心分别是O1,O,易知球心是线段O1O 的中点,2于是2 1于是R23219,因此所求球的表面积是24 R241919,2312123故选 B .7.【答案】C【解析】设正方体的棱长为a,则a3=8,所以a=2,而此正方体内的球直径为2,所以S 表=4π2r=4π.故选C.8.【答案】C解析】 该几何体的直观图为如图所示的四棱锥 P - ABCD ,且 PA =AB =AD = 1,PA ⊥AB , 1 PA ⊥ AD ,四边形 ABCD 为正方形,则 V 2 12 1 1 1 ,故选 C . 3 39.【答案】B【解析】 设圆锥底面半径为r ,则 12 3r 8, 16 ∴ r 16 ,所以米堆的体积为 2 43 11 3 16 320 5, 故堆放的米约为 320 1.62 22 ,故选 B . 43 3 9 910.【答案】 B【解析】 由题意知棱柱的高为 2 3 cm ,底面正三角形的内切圆的半径为 3 cm , ∴底面正三角形的边长为 6cm ,正三棱柱的底面面积为 9 3 cm 2 ,∴此三棱柱的体积 V 9 3 2 3 54 cm 3 .故选 B .11.【答案】 C【解析】 由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×23×6 π×22×4 π×23×2=20π (cm3 ),V 20 10 原来毛坯体积V 2=π×23×6=54 π (cm3).故所求比值为1.故选C.V2 54 2712.【答案】A【解析】设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则R2=(R-2)2+42,解得R=5.4 53∴球的体积为 4 53500 3 cm .故选 A .3二、填空题(本大题共4个小题,每小题 5 分,共20 分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件.四棱锥的三视图中含有三角形,满足条件.三棱柱的三视图中含有三角形,满足条件.四棱柱的三视图中都为四边形,不满足条件.圆锥的三视图中含有三角形,满足条件.圆柱的三视图中不含有三角形,不满足条件.故答案为①②③⑤.614.【答案】6415.【答案】1116.【答案】 36+128 π【解析】 由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1 V 3 4 6 16 8 36 128 2三、解答题(本大题共 6 个大题,共 70分,解答应写出文字说明,证明过程或演算步骤)40 17.【答案】 40 cm .3【解析】 如图,设圆锥母线长为 l ,则 l 10 1 ,所以 l 40 cm .l 4 3解析】 设棱台的高为 x ,则有16 x 16 50 55102,解之,得 x = 11.其中AB=AC,AD⊥BC,且BC的长是俯视图正六边形对边的距离,即BC 3a,AD 是正六棱锥的高,即AD 3a ,所以该平面图形的面积为1 3a 3a 3a2.22(3)设这个正六棱锥的底面积是S,体积为V,则S 6 3 a2 3 3a2,42所以V1 3 32 a3a33 a.32219.【答案】不会,见解析.【解析】因为V半球14 3 1 4 R343 134 cm23231 V圆锥3r2h14212201 cm 3,134<201,3所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子.20.【答案】V 7.4【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半2 径为 2 和3的同心圆,故该几何体的体积为V 4 13 1 7.2 2 421.【答案】8 2 m2.【解析】如图所示,连接AC 和BD 交于O,连接SO.作SP⊥AB,连接OP.在Rt△ SOP中,SO 7 m ,OP 1BC 1 m ,所以SP 2 2 m ,2则△ SAB的面积是1 2 2 2 2 2 m2.所以四棱锥的侧面积是 4 2 2 8 2 m2,即 2制造这个塔顶需要8 2 m 铁板.22.【答案】(1)3;(2)a.33 【解析】(1)∵ ABCD -A′B′C′D′是正方体,∴ A B A C A D BC BD C D 2a ,∴三棱锥A′-BC′D 的表面积为 4 1 2a 3 2a 2 3a2.22 而正方体的表面积为6a2,故三棱锥 A ′-BC′D 的表面积与正方体表面积的比值为 2 3a 2 3 .2.6a2 3(2)三棱锥A′-ABD,C′-BCD,D-A′D′C′,B-A′B′C′是完全一样的.故V 三棱锥A′-BC′D=V 正方体-4V 三棱锥A′-ABD=a3 4 1 1 a2 a a 3 2 3测试卷二一、选择题(本大题共12 个小题,每小题 5 分,共60 分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D .123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,△OAB 是水平放置的△OAB的直观图,则△AOB的面积是()A.6 B.3 26.下列几何图形中,可能不是平面图形的是( A .梯形 B .菱形C .6 2 D .12)C .平行四边形D .四边形7.如图所示,在正方体ABCD A1B1C1D1中,部分在平面ADD1A1上的正投影为()M、N分别是BB1、BC 的中点.则图中阴影8.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.12 3 B.36 3 C.27 3 D.69.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中()10.若圆台两底面周长的比是1: 4 ,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是()11.如图所示,正四棱锥S ABCD 的所有棱长都等于a,过不相邻的两条棱SA,SC 作截面SAC,则截面的面积为()3 2 2 1 2 1 2A.a 2B.a2C.a2D .a2A.AB∥CD B.AB∥平面CD C.CD ∥GH D .AB∥GHB.1C.1 D.391292 2 312.一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是()A.①③④B.②③④C.①②④ D .①②③二、填空题(本大题共4个小题,每小题 5 分,共20 分,把正确答案填在题中横线上)13.已知A、B、C、D 四点在同一个球面上,AB⊥BC,AB⊥BD,AC⊥CD,若AB=6,AC 2 13,AD=8,则B、C 两点间的球面距离是 _________ .14.若棱长为 3 的正方体的顶点都在同一球面上,则该球的表面积为 _________ .15.下列有关棱柱的说法:①棱柱的所有的面都是平的;②棱柱的所有的棱长都相等;③棱柱的所有的侧面都是长方形或正方形;④棱柱的侧面的个数与底面的边数相等;⑤棱柱的上、下底面形状、大小相等.其中正确的有______ .(填序号) 16.如图,是一个正方体的展开图,在原正方体中,相对的面分别是三、解答题(本大题共 6 个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)画出如图所示的四边形OABC的直观图.(要求用斜二测画法,并写出画法)18.(12分)已知四棱锥P ABCD ,其三视图和直观图如图,求该四棱锥的体积.19.(12分)如图,在正三棱柱ABC A1B1C1中,AB=3,AA1=4,M 为AA1的中点,P是BC 上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29 ,设这条最短路线与CC1 的交点为N .求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC 和NC 的长.20.(12 分)已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为 4 的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为 4 的等腰三角形.求:(1)该几何体的体积V;(2)该几何体的侧面积S.21.(12 分)如图所示,一个封闭的圆锥型容器,当顶点在上面时,放置于锥体内的水面高度11为h1,且水面高是锥体高的1,即h1 1 h ,若将锥顶倒置,底面向上时,水面高为h2,求33h2 的大小.22.(12 分)如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm ,要剪下来一个扇形环ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试1)AD 应取多长?(2)容器的容积.答案一、选择题(本大题共12 个小题,每小题 5 分,共60 分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D2.【答案】 A 【解析】由三视图得几何体为四棱锥,如图记作S ABCD ,其中SA⊥面ABCD,SA=2,AB=2,AD=2,CD=4,且ABCD 为直角梯形.1 1 1 1∠DAB =90°,∴ V 1SA 1AB CD AD 1 2 1 2 4 2 4 ,故选A.3 2 3 23.【答案】A【解析】由空间几何体的概念可知,存在两条异面直线同时平行于同一个平面, A 正确;由面面平行的判定定理可知,若一个平面内两条相交直线与另一个平面平行,则这两个平面平行,所以 B 不正确;底面是矩形的直四棱柱是长方体,所以 C 不正确;正棱台的侧面都是等腰梯形,所以 D 不正确,故选 A .4.【答案】B5.【答案】D【解析】△OAB 为直角三角形,两直角边分别为 4 和6,S=12.故选D.6.【答案】D【解析】四边形可能是空间四边形,如将菱形沿一条对角线折叠成 4 个顶点不共面的四边形.故选 D .7.【答案】A8.【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为 3 3 ,所以正三角形边长为6,所以V 3 36 4 36 3 ,故选 B .49.【答案】C【解析】原正方体如图,由图可得CD∥GH,C 正确.故选C.10.【答案】D【解析】设上,下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r 2=4r1,r0 5 r1 ,2 22V上r1 r1r0 r0∴ 2 2V下r2 r2r0 r0 11.【答案】C 39,故选D.129解析】 根据正棱锥的性质,底面 ABCD 是正方形,∴ AC 2a .在等腰三角形 SAC 中, SA =SC =a ,又 AC2a ,∴∠ ASC =90°,即 S △SAC 1 a 2.故选 C . 212.【答案】 A 【解析】 当截面平行于正方体的一个侧面时得③; 当截面过正方体的体对角线时可得④; 当 截面既不过体对角线又不与任一侧面平行时,可得①.但无论如何都不能截得②.故选 A .二、填空题(本大题共 4个小题,每小题 5 分,共 20分,把正确答案填在题中横线上) 4 13.【答案】 43 【解析】如图所示, 由条件可知 AB ⊥BD ,AC ⊥CD .由此可知 AD 为该球的直径, 设 AD 的中点为 O , 则 O 为球心,连接 OB 、 OC ,由 AB =6,AD =8, AC 2 13 ,得球的半径 OB =OC =OA15.【答案】 ①④⑤16.【答案】 ①与④,②与⑥,③与⑤【解析】 将展开图还原为正方体,可得①与④相对,②与⑥相对,③与⑤相对.=OD =4,BC = AC 2- AB 22 13 624 ,所以球心角∠ BOC =60°,所以 B 、C 两点间的球面距离为 60 R 4 .180 314.【答案】 27 π【解析】 若正方体的顶点都在同一球面上,则球的直径 d 等于正方体的体对角线的长. ∵棱 长为 3,∴ d 3 32 3 3 R 2∴ S = 4πR 2= 27π.三、解答题(本大题共 6 个大题,共 70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】 见解析.【解析】 直观图如下图所示.(1)画轴:在直观图中画出 x ′轴, y ′轴,使∠ x ′O ′y ′=45°.(2)确定 A ′,B ′,C ′三点,在 x ′轴上取 B ′使 O ′B ′=4.过 (2,0),(4,0)两点作 y ′轴的平行线, 过(0,2) , 0, 1 两点作 x ′轴的平行线,得交点 A ′,C ′. (3)顺次连接 O ′A ′,A ′B ′,B ′C ′,C ′O ′并擦去辅助线, 就得到四边形 OABC 的直观图 O ′A ′B ′C ′.解析】 由三视图知底面 ABCD 为矩形, AB = 2,BC =4.顶点 P 在面 ABCD 内的射影为 BC 中点 E ,即棱锥的高为 2,则体积 V P ABCD 1 S ABCD PE 1 2 4 2 16 .3 3 319.【答案】(1) 97;(2)PC =2, NC 4 .5【解析】(1)正三棱柱 ABC A 1B 1C 1的侧面展开图是一个长为 9,宽为 4 的矩形,其对角线 的长为 92 4 2 97 .(2)18.【答案】 16 3如图所示,将平面 BB 1C 1C 绕棱 CC 1旋转 120°使其与侧面 AA 1C 1C 在同一平面上, 点 P 运动 到点 P 1的位置,连接 MP 1,则 MP 1就是由点 P 沿棱柱侧面经过棱 CC 1到点 M 的最短路线. 设 PC = x ,则 P 1C =x .在 Rt △MAP 1中,22 x 22 29,求得 x =2.∴ PC =P 1C =2. 4 ,∴ NC . 5 V 64 ;( 2) S 侧 40 24 2 .由已知该几何体是一个四棱锥 P -ABCD ,如图所示. 由已知, AB = 8,BC = 6,高 h = 4,由俯视图知底面 ABCD 是矩形,连接 AC 、 BD 交于点 O ,连接 PO ,则 PO =4,即为棱锥的 高.作 OM ⊥AB 于 M ,ON ⊥BC 于 N ,连接 PM 、 PN ,则 PM ⊥AB ,PN ⊥BC .∴在勾股定理得 3∵ NC P 1C 2MA P 1 A 520.【答案】(1) 【解析】PM PO 2 OM 2 42 32 5, PN PO 2 ON 2 42 42 4 2. 18011V Sh 8 6 4 64 .33 (2) S 侧 2S △ PAB 2S △ PBC AB PM BC PN 8 5 6 4 2 40 24 2 .21.【答案】 h 2 19 h .232 1 2 1 2 2 19 V r h r h3 3 3 3 81解析】(1)设圆台上、下底面半径分别为 r 、R ,AD =x ,则 OD 72 x , 2)∵ 2 r 3 OD 3 36,∴ r 6cm ,解析】 当锥顶向上时,设圆锥底面半径为 r ,水的体积为:当锥顶向下时,设水面圆半径为 r ′,则V 13 r'2 h 2.又 r' h h 2r ,此时 V 1322h 2 r h 2 h 2 3h 2 r 23h 232 h2 r 19 r 2h ,∴ 2 r h ,∴ 3h 2 81 h 23139 h , 即所求 h 2的值为 19 h .2322.【答案】( 1) AD 36 cm ;( 2)V 504 35 cm 3由题意得 2 R 6072 x 3R R 12 .即 AD 应取 36cm .x 36圆台的高 h Rr 362 12 6 2 6 35 .r 2h .1 6 35 122 12 6 6 2 504 35 cm3 3 3 2 3 3 18.【答案】( 1)正六棱锥; (2)见解析, 3a 2;(3) 3a 3 .22 【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图. 1 2 2∴ V h R 2 Rr r 2 3。
2023-2024学年浙江省杭州市高中数学人教A版 必修二第八章 立体几何专项提升-2-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年浙江省杭州市高中数学人教A 版 必修二第八章 立体几何专项提升(2)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 侧棱长都为的三棱锥的侧面都是直角三角形,且四个顶点都在一个球面上,则球的表面积为( )A.B.C.D.72322. 我国古代《九章算术》将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的表面积为( )A. B. C. D. 两两平行两两异面两两垂直两两相交3. 已知平面 有一个公共点,直线满足:,则直线 不可能满足以下哪种关系( )A. B. C. D. 4.如图,在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1 , G 2 , G 3三点重合,重合后的点记为G ,则在四面体S -EFG 中必有( )SG ⊥△EF G 所在平面SD ⊥△EFG 所在平面GF ⊥△SEF 所在平面GD ⊥△SEF 所在平面A. B. C. D. 5. 已知某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.若,则若,则若,则若,则6. 设,是两个不同的平面,,是两条不同的直线,且,( )A. B. C. D. 188π185π177π173π7. 已知直三棱柱的底面是边长分别为5,12,13的直角三角形,若该三棱柱有内切球,则其外接球的表面积为()A. B. C. D. 8. 已知三棱锥A -BCD 内接于球O ,AB =AD =AC =BD= , ∠BCD =60°,则球O 的表面积为( )A.B.C.D.若,, 则若,, 则若 ,, 则若 ,, 则9. 设m ,n 是不同的直线, ,是不同的平面,则下列命题正确的是( )A. B. C. D. 10. 在四面体中,平面 ,,,, 则该四面体外接球的表面积为( )A.B.C.D.若,, 则若,, 则若 ,, 则若m ,n 与所成的角相等,则11. 已知m ,n 是两条不同的直线,是平面,则下列四个结论中正确的是( )A. B. C. D.若, 则若, 则12. 设m ,n 是空间中两条不同的直线, , 是两个不同的平面,则下列说法正确的是( )A. B.若.则若,则C. D.13. 中国有悠久的金石文化,印信是金石文化的代表之一.如下图的印信,可以看成是将一个棱长等于2cm的正方体截去8个一样的四面体之后得到的,则该印信的所有棱长之和等于 cm,该印信的表面积等于.14. 棱长为2的正四面体ABCD的外接球的球心为O,过点A,B,O的平面截四面体ABCD所得截面的面积为 .15. 已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,侧棱垂直于底面)的8个顶点都在球O的表面上,AB=1,AA1′=2,则球O的半径R= ;若E,F是棱AA1和DD1的中点,则直线EF被球O截得的线段长为.16. 关于如图所示几何体的正确说法为.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④这是一个四棱柱和三棱柱的组合体;⑤这是一个被截去一个三棱柱的四棱柱.阅卷人三、解答题(共6题,共70分)17. 如图,在棱长为1的正方体中,为棱的中点,点满足,,.(1) 若平面 , 求的值;(2) 当三棱锥体积最大时,求点位置,并求体积的最大值.18. 如图,在四棱锥中,平面,底面是菱形,,,, 为与的交点, 为棱上一点.(I )证明:平面 平面 ;(II )若 平面 ,求三棱锥的体积.19. 如图1,在直角梯形 中, , ,且 .现以 为一边向形作正方形 ,然后沿边将正方形翻折,使平面 与平面垂直,为的中点,如图2.(1) 求证: 平面 ;(2) 求证: 平面 ;(3) 求点到平面的距离.20. 如图,在多面体中四边形是正方形,平面,平面,.(1) 证明:平面平面.(2) 求平面与平面所成锐二面角的余弦值.21. 如图,在三棱锥中,底面是边长为2的等边三角形,,,点,,分别为,,的中点.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)20.(1)(2)21.。
必修2《空间几何体》检测(带答案)
必修2《空间几何体》检测(时间:120分钟满分:150分)一、选择题(每小题5分,共50分)1.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可以都是棱柱2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.给出四个命题:①各侧面都是正方形的棱柱一定是正棱柱;②底面是矩形的平行六面体是长方体;③有两个侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确命题的个数是()A.0个B.1个C.2个D.3个4.如图1-1是一幅电热水壶的主视图,它的俯视图是()5.已知各顶点都在一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是() A.16π B.20π C.24π D.32π6.两个球的体积之和为12π,且这两个球的大圆周长之和为6π,那么这两球半径之差是()A.12B.1 C.2 D.37.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是()A.4 B.3 C.2 D.58.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现又沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图1-2所示的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下9.图1-3是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.32π B.16π C.12π D.8π10.在△ABC中,AB=2,BC=1.5,∠ABC=120°,如图1-4.若将△ABC绕BC旋转一周,则所形成的旋转体的体积是()A.92π B.72π C.52π D.32π二、填空题(每小题5分,共20分)11.正三棱柱的底面边长为2,高为2,则它的体积为__________.12.圆台的高是12 cm,上、下两个底面半径分别为4 cm和9 cm,则圆台的侧面积是_______.13.已知四棱锥P-ABCD的底面是边长为6的正方形,侧棱PA⊥底面ABCD,且PA=8,则该四棱锥的体积是________.14.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长比为1∶2,则它们的体积比为__________.三、解答题(共80分)15.(12分)圆柱的轴截面是边长为5 cm的正方形ABCD,求圆柱的侧面上从A到C的最短距离.16.(12分)如图1-5,设计一个正四棱锥形冷水塔塔顶,高是0.85 m,底面的边长是1.5 m,制造这种塔顶需要多少平方米铁板(精确到0.1 m2)?17.(14分)如图1-6是一个奖杯的三视图.求这个奖杯的体积(精确到0.01 cm3).18.(14分)如图1-7,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC,BC,A1C1的中点,则当底面ABC水平放置时,液面的高为多少?19.(14分)如图1-8,已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)当x 为何值时,圆柱的侧面积最大.20.(14分)如图1-9,在正四棱台内,以小底为底面,大底面中心为顶点作一内接棱锥.已知棱台小底面边长为b ,大底面边长为a ,并且棱台的侧面积与内接棱锥的侧面面积相等,求这个棱锥的高,并指出有解的条件.参考答案:1.D 2.D 3.A 4.D 5.C 6.B7.B 解析:如图D60,设球的半径是r ,则π·BD 2=5π,π·AC 2=8π,∴BD 2=5,AC 2=8.又AB =1,设OA =x.∴x 2+8=r 2,(x +1)2+5=r 2.解得r =3.图D608.B 9.C10.D 解析:旋转体的体积就是一个大圆锥体积减去一个小圆锥的体积,13·π·(3)2×52-13·π·(3)2×1=32π. 11.2 3 12.169π cm 2 13.96 14.1∶8 15.解:如图D61,由圆柱的轴截面是边长为5 cm 的正方形,知:圆柱高CD 为5 cm ,底面半径为2.5 cm ,底面周长为5π cm ,则AD 为2.5π cm ,圆柱侧面上从A 到C 的最短距离即是矩形ABCD 的对角线长为52+(2.5π)2=52 π2+4 (cm).图D6116.解:SE =0.852+0.752. 所需铁板面积为S =4×⎝ ⎛⎭⎪⎫12×1.5×0.852+0.752≈3.4(m 2). 17.解:由三视图可以得到奖杯的结构,底座是一个正四棱台,杯身是一个长方体,顶部是球体.V 正四棱台=13×5×(152+15×11+112)≈851.667(cm 3),V 长方体=18×8×8=1152(cm 3), V 球=43π×33≈113.097(cm 3),所以,这个奖杯的体积为V =V 正四棱台+V 长方体+V 球≈2116.76(cm 3).18.解:当侧面AA 1B 1B 水平放置时,纵截面中水液面积占1-14=34,所以水液体积与三棱柱体积比为34. 当底面ABC 水平放置时,液面高度为8×34=6.19.解:(1)设内接圆柱底面半径为r.其轴截面如图D62.S 圆柱侧=2πr·x. ① ∵r R =H -x H , ∴r =R H (H -x). ②②代入①,得S 圆柱侧=2πx·R H (H -x)=2πR H (-x 2+Hx)(0<x<H).(2)S 圆柱侧=2πR H (-x 2+Hx)=2πR H ⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫x -H 22+H 24, ∴x =H 2时,S 圆柱侧最大=πRH 2.图D62 图D63 20.解:如图D63,过高OO 1和AD 的中点E 作棱锥和棱台的截面,得棱台的斜高EE 1和棱锥的斜高EO 1. 设OO 1=h ,所以S 锥侧=12·4b·EO 1=2bEO 1,S 台侧=12(4a +4b)·EE 1=2(a +b)·EE 1.所以2bEO 1=2(a +b)EE 1. ① 由于OO 1E 1E 是直角梯形,其中OE =b 2,O 1E 1=a 2.由勾股定理,有EE 21=h 2+⎝ ⎛⎭⎪⎫a 2-b 22,EO 21=h 2+⎝ ⎛⎭⎪⎫b 22. ② ①式两边平方,把②代入,得b 2⎝ ⎛⎭⎪⎫h 2+b 24=(a +b)2⎣⎢⎡⎦⎥⎤h 2+⎝ ⎛⎭⎪⎫a 2-b 22. 解得h 2=a (2b 2-a 2)4(a +2b ),所以h =12 a (2b 2-a 2)a +2b. 显然,由于a>0,b>0,所以此题当且仅当a<2b 时才有解.。
2019-2020年高中数学必修二第一章《空间几何体》整章测试卷及答案解析
第 1 页 共 10 页 2019-2020年高中数学必修二
第一章《空间几何体》整章测试卷
第Ⅰ卷(选择题,共60分)
一、选择题(本大题共12小题,每题5分,共60分)
1.下列说法不正确的是( )
A .圆柱的侧面展开图是一个矩形
B .圆锥的过轴的截面是一个等腰三角形
C .直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
D .圆台平行于底面的截面是圆面
答案 C
2.如图所示的直观图的原平面图形是(
)
A .任意三角形
B .直角梯形
C .任意四边形
D .平行四边形
答案 B
3.三视图如图所示的几何体是(
)
A .三棱锥
B .四棱锥
C .四棱台
D .三棱台
答案 B
4.下图中的图形经过折叠不能围成棱柱的是(
)
答案 D。
2023年高一下数学必修二《空间几何体》测试试卷及答案解析
2023年高一下数学必修二《空间几何体》测试试卷一.选择题(共18小题)1.如图几何体中不是柱体的有()A.1个B.2个C.3个D.4个2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等3.在侧棱长为3的正三棱锥P﹣ABC中,∠APB=∠BPC=∠CPA=40°过点A作截面AEF与PB、PC侧棱分别交于E、F两点,则截面的周长最小值为()A.4B.2C.10D.94.如图,在三棱台ABC﹣A1B1C1中,截去三棱锥A1﹣ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.五棱锥5.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为,OO1=,则∠AO1B =()A.B.C.D.π6.若长方体的一个顶点上三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是()A.6πB.9πC.3πD.12π7.如图,是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.88.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确10.如图所示的水平放置的平面图形的直观图,所表示的图形ABCD是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形11.如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=,A′O′=,那么△ABC的面积是()A.B.C.D.312.若某几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.13.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为()A.1B.2C.4D.814.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm315.如图所示四个几何体中,几何体只有正视图和侧视图相同的是()A.①②B.①③C.①④D.②④16.从长32cm,宽20cm的矩形薄铁板的四角剪去相等的正方形,做一个无盖的箱子,若使箱子的容积最大,则剪去的正方形边长为()A.4cm B.2cm C.1cm D.3cm17.若一个圆锥侧面展开图是面积为2π的半圆面,则该圆锥底面的面积为()A.πB.2πC.3πD.4π18.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为线段B1C的中点,F是棱C1D1上的动点,若点P为线段BD1上的动点,则PE+PF的最小值为()A.B.C.D.二.填空题(共4小题)19.下面三视图的实物图形的名称是20.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是.(填序号)21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为.22.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为.三.解答题(共5小题)23.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,点F为CE上一点,且BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求多面体ABCDE的表面积.24.长方体A1B1C1D1﹣ABCD中,AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,求证:AM⊥A1N.25.有一盛满水的圆柱形容器,内壁底面半径为5,高为2.将一个半径为3的玻璃小球缓慢浸没与水中.(1)求圆柱体积;(2)求溢出水的体积.26.如图,平行四边形ABCD中,BD=2,AB=2,AD=4,将△BCD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(I)求证:AB⊥DE(Ⅱ)求三棱锥E﹣ABD的侧面积.27.如图所示,在长方体ABCD﹣A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.(1)求三棱锥A1﹣BCD的体积(2)求证:BD⊥平面A1AC.2023年高一下数学必修二《空间几何体》测试试卷参考答案与试题解析一.选择题(共18小题)1.如图几何体中不是柱体的有()A.1个B.2个C.3个D.4个【分析】可知柱体分为棱柱和圆柱,从而可判断哪些图形不是柱体,即得出不是柱体的个数.【解答】解:①是三棱柱,②的上下两个平面不平行,不是三棱柱,③是四棱柱,④是圆柱,⑤是四棱柱,⑥是四棱台,⑦三棱锥;∴不是柱体的为②⑥⑦,共3个.故选:C.【点评】考查柱体的定义,以及棱柱和圆柱的定义,棱锥的定义.2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等【分析】从棱柱的定义出发判断A、B、D的正误,找出反例否定C,即可推出结果.【解答】解:棱柱的侧面都是四边形,A不正确;正方体和长方体都是特殊的四棱柱,正确;所有的几何体的表面都能展成平面图形,球不能展开为平面图形,C不正确;棱柱的各条棱都相等,应该为侧棱相等,所以D不正确;故选:B.【点评】本题考查棱柱的结构特征,考查基本知识的熟练情况,是基础题.3.在侧棱长为3的正三棱锥P﹣ABC中,∠APB=∠BPC=∠CPA=40°过点A作截面AEF与PB、PC侧棱分别交于E、F两点,则截面的周长最小值为()A.4B.2C.10D.9【分析】将三棱锥的侧面展开,则截面的周长最小值的最小值,即可转化为求AA1的长度,解三角形PAA1,即可得到答案.【解答】解:将三棱锥的侧面A展开,如图,则图中∠APA1=120°,AA1为所求,由余弦定理可得AA1=,故选:D.【点评】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点间距离问题,是解答本题的关键.4.如图,在三棱台ABC﹣A1B1C1中,截去三棱锥A1﹣ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.五棱锥【分析】画出图形,根据图形和四棱锥的结构特征,即可得出剩余几何体是什么图形.【解答】解:如图所示,三棱台A′B′C′﹣ABC中,沿A′BC截去三棱锥A′﹣ABC,剩余部分是四棱锥A′﹣BCC′B′.故选:B.【点评】本题考查了空间几何体结构特征的应用问题,是基础题目.5.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为,OO1=,则∠AO1B =()A.B.C.D.π【分析】由题意知应先求出AB的长度,在直角三角形AOB中由余弦定理可得AB=1,由此知三角形AO1B的三边长,由此可以求出∠AO1B的值.【解答】解:由题设知OO1=,OA=OB=1,在圆O1中有O1A=O1B=,又A,B两点间的球面距离为,由余弦定理,得:AB=1,在三角形AO1B中由勾股定理可得:∠AO1B=,故选:B.【点评】本题的考点是球面距离及相关计算,其考查背景是球内一小圆上两点的球面距,对空间想象能力要求较高,此类题是一个基本题型,属于基础题.6.若长方体的一个顶点上三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是()A.6πB.9πC.3πD.12π【分析】长方体的对角线的长度,就是外接球的直径,求出直径即可求出表面积.【解答】解:由题意得,此问题是球内接长方体,所以可得长方体的对角线长等于球的直径,即,所以,所以求得表面积为.故选:B.【点评】本题考查球的表面积,球的内接体,考查计算能力和空间想象力,是基础题.7.如图,是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.8【分析】根据俯视图可知这个几何体,底面是4个小正方体,根据主视图及左视图,可知里面上方有两个小正方体,从而可得结论.【解答】解:根据俯视图可知这个几何体,底面是4个小正方体,根据主视图及左视图,可知里面上方有两个小正方体,故共有6个小正方体.故选:B.【点评】本题考查三视图还原几何体,考查学生分析解决问题的能力,属于基础题.8.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【分析】利用中心投影和平行投影的定义即可判断出.【解答】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.B.台灯的光线是由台灯光源发出的光线,是中心投影;C.手电筒的光线是由手电筒光源发出的光线,是中心投影;D.路灯的光线是由路灯光源发出的光线,是中心投影.综上可知:只有A不是中心投影.故选:A.【点评】本题考查了中心投影和平行投影的定义,属于基础题.9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确【分析】按照三视图的作法:上下、左右、前后三个方向的射影,四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.【解答】解:因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.故②③正确故选:B.【点评】本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.10.如图所示的水平放置的平面图形的直观图,所表示的图形ABCD是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形【分析】由直观图可知,BC,AD两条边与横轴平行且不等,边AB与纵轴平行,得到AB与两条相邻的边之间是垂直关系,而另外一条边CD不和上下两条边垂直,得到平面图形是一个直角梯形.【解答】解:根据直观图可知,BC,AD两条边与横轴平行且不等,边AB与纵轴平行,∴AB⊥AD,AB⊥BC,∴平面图形ABCD是一个直角梯形,故选:B.【点评】本题考查平面图形的直观图,考查有直观图得到平面图形,考查画直观图要注意到两条坐标轴之间的关系.11.如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=,A′O′=,那么△ABC的面积是()A.B.C.D.3【分析】′O′=C′O′=,A′O′=,直接计算△ABC即可.【解答】解:因为B′O′=C′O′=,A′O′=,所以△ABC的面积为=.故选:C.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.12.若某几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.【分析】根据已知中的三视图,结合三视图中有两个三角形即为锥体,有两个矩形即为柱体,有两个梯形即为台体,将几何体分解为简单的几何体分析后,即可得到答案.【解答】解:由已知中三视图的上部分有两个矩形,一个三角形故该几何体上部分是一个三棱柱下部分是三个矩形故该几何体下部分是一个四棱柱故选:A.【点评】本题考查的知识点是由三视图还原实物图,考查学生的识图能力,比较基础.13.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为()A.1B.2C.4D.8【分析】由斜二测画法还原出原图,求面积.【解答】解:由斜二测画法可知原图应为:其面积为:S==4,故选:C.【点评】本题考查直观图与平面图形的画法,注意两点:一是角度的变化;二是长度的变化;考查计算能力.14.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【分析】由三视图知几何体为直三棱柱削去一个三棱锥,且三棱柱的高为5,底面是直角三角形,两直角边长分别为3、4,代入体积公式计算.【解答】解:由三视图知几何体为直三棱柱削去一个三棱锥,且三棱柱的高为5,底面是直角三角形,两直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××4×5=20(cm3),故选:B.【点评】本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.15.如图所示四个几何体中,几何体只有正视图和侧视图相同的是()A.①②B.①③C.①④D.②④【分析】分别根据四个几何体的三视图进行判断.【解答】解:①正方体的正视图,侧视图和俯视图都是正方形,不满足条件.②圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,满足条件.③三棱台的正视图为等腰梯形,侧视图为梯形,但正视图和侧视图不相同,不满足条件.④正四棱锥的正视图和侧视图为相同的三角形,俯视图为正方形,满足条件.故选:D.【点评】本题主要考查三视图的识别和判断,要求熟练掌握常见空间几何体的三视图,比较基础.16.从长32cm,宽20cm的矩形薄铁板的四角剪去相等的正方形,做一个无盖的箱子,若使箱子的容积最大,则剪去的正方形边长为()A.4cm B.2cm C.1cm D.3cm【分析】设剪去的正方形的边长为xcm,(0<x<10),箱子的容积V=(32﹣2x)(20﹣2x)•x=4(x3﹣26x2+160x),V′=12(x﹣4)(x﹣),由此利用导数性质能求出若使箱子的容积最大,则剪去的正方形边长为4cm.【解答】解:设剪去的正方形的边长为xcm,(0<x<10),则做成的无盖的箱子的底是长为(32﹣2x)cm,宽为(20﹣2x)cm的矩形,箱子的高为xcm,∴箱子的容积V=(32﹣2x)(20﹣2x)•x=4(x3﹣26x2+160x),V′=12(x﹣4)(x﹣),当0<x<10时,V′=0只有一个解x=4,在x=4附近,V′是左正右负,∴V有x=4处取得极大值即为最大值,∴若使箱子的容积最大,则剪去的正方形边长为4cm.故选:A.【点评】本题考查棱柱体积的求法及应用,是中档题,解题时要注意导数性质的合理运用.17.若一个圆锥侧面展开图是面积为2π的半圆面,则该圆锥底面的面积为()A.πB.2πC.3πD.4π【分析】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥底面的面积.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥底面的面积为π,故选:A.【点评】本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.18.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为线段B1C的中点,F是棱C1D1上的动点,若点P为线段BD1上的动点,则PE+PF的最小值为()A.B.C.D.【分析】连接BC1,得出点P、E、F在平面BC1D1中,问题转化为在平面内直线BD1上取一点P,求点P到定点E的距离与到定直线的距离的和的最小值问题,利用平面直角坐标系,求出点E关于直线BD1的坐标即可.【解答】解:连接BC1,则BC1∩B1C=E,点P、E、F在平面BC1D1中,且BC1⊥C1D1,C1D1=1,BC1=,如图1所示;在Rt△BC1D1中,以C1D1为x轴,C1B为y轴,建立平面直角坐标系,如图2所示;则D1(1,0),B(0,),E(0,);设点E关于直线BD1的对称点为E′,∵BD1的方程为x+=1①,∴k EE=﹣=,′∴直线EE′的方程为y=x+②,由①②组成方程组,解得,直线EE′与BD1的交点M(,);所以对称点E′(,),∴PE+PF=PE′+PF≥E′F=.故选:D.【点评】本题考查了空间几何体中距离和的计算问题,解题的关键是把空间问题转化为平面问题解答,是难题.二.填空题(共4小题)19.下面三视图的实物图形的名称是四棱锥【分析】只看正视图或侧视图可以判断几何体可能是柱体或锥体,结合俯视图,即可判断几何体的形状.【解答】解:只看正视图或侧视图可以判断几何体可能是柱体或锥体,由正视图和侧视图可以判断几何体是锥体,结合俯视图,几何体是四棱锥.故答案为:四棱锥.【点评】本题是基础题,考查常见几何体的三视图复原几何体的特征,考查空间想象能力.20.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是①②⑤.(填序号)【分析】利用中心投影和平行投影的定义即可判断出.【解答】解:探照灯、车灯、台灯的光线是由源发出的光线,是中心投影;太阳、月亮距离地球很远,我们认为是平行光线,因此不是中心投影.故答案为:①②⑤.【点评】本题考查了中心投影和平行投影的定义,属于基础题.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为12+2π.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体已知由圆柱切割获得.【解答】解:由题意,圆柱的底面半径为2,高为3;则曲面面积为:×2×3=2π,其他两个侧面为矩形,边长为2,3.故面积为2×3×2=12.故该几何体的侧面积为:12+2π.故答案为:12+2π.【点评】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.22.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为16π.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,代入柱体体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,其底面面积S==4π,高h=4,故几何体的体积V=Sh=16π,故答案为;16π【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.三.解答题(共5小题)23.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,点F为CE上一点,且BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求多面体ABCDE的表面积.【分析】(1)线面平行转化证明线线平面即可.记AC∩BD=M,连FM,则M为AC的中点;证明FM∥AE,可证AE∥平面BFD;(2)多面体ABCDE的表面积各面的面积之和.根据题设各边长计算即可.【解答】(1)证明:如图,记AC∩BD=M,连FM,则M为AC的中点;而BF⊥平面ACE,∴BF⊥CE,在△BCE中,∵BE=BC,∴F为CE的中点;从而FM是△ACE的中位线,所以FM∥AE,又FM⊂平面DBF,AE⊄平面DBF,∴AE∥平面BFD;(2)由题意:由BF⊥平面ACE,∴AE⊥BF;∵BC⊥平面ABE,∴AE⊥BC,AE⊥平面BEC,AE⊥BE,因此△ABE为直角三角形,所以,而,所以△CDE为正三角形.所以多面体ABCDE的表面积S ABCD+S△ESC+S△CFD+S AEFD=.【点评】本题考查了线面平行的证明和多面体ABCDE的表面积的计算.属于基础题.24.长方体A1B1C1D1﹣ABCD中,AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,求证:AM⊥A1N.【分析】两条异面直线垂直的证明,通过平行相交,求角是90°即可.或者是建立空间直角坐标系,用向量进行计算.【解答】解法一:解:由题意:M为棱C1C的中点,C1D与D1C交于点N,即N是C1D,D1C的中点.取A1B1的中点E,连接ME,MN.∵CD,A1AB,AB=CD.∴平面MNA1E是平行四边形,则有A1N;所以:AM与A1N所成的角是∠AME.取A1A的中点F,连接NF,由A1B1C1D1﹣ABCD是长方体:∴A1FN是直角三角形,A1F=A1A=,FN==∴A1N=EM=AE=AM=在△AME中,∵AE2=AM2+EM2,∴△AME是直角三角形,∠AME=90°,即AM与A1N所成的角是90°.故AM⊥A1N,得证.解法二:解:以A为原点,以为正交基底建立空间直角坐标系,∵AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,即中点.则有A(0,0,0),,,∴,,∵,∴AM⊥A1N【点评】本题考查了两条异面直线垂直的证明,常用方法是通过平行相交,求角是90°即可.或者证明其中一条直线垂直另外一条直线所在的平面.或者是建立空间直角坐标系,用向量进行计算.属于基础题.25.有一盛满水的圆柱形容器,内壁底面半径为5,高为2.将一个半径为3的玻璃小球缓慢浸没与水中.(1)求圆柱体积;(2)求溢出水的体积.【分析】(1)利用圆柱的体积公式求圆柱体积;(2)利用球的体积公式求溢出水的体积.【解答】解:(1)∵内壁底面半径为5,高为2,∴圆柱体积V=π•52•2=50π;(2)溢出水的体积=•=12π.【点评】本题着重考查了球体积公式和圆柱体积公式等知识,考查学生的计算能力,属于基础题.26.如图,平行四边形ABCD中,BD=2,AB=2,AD=4,将△BCD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(I)求证:AB⊥DE(Ⅱ)求三棱锥E﹣ABD的侧面积.【分析】(Ⅰ)利用面面垂直,证明线面垂直转化为线线垂直.证明AB⊥BD,在证明AB⊥平面EBD,可得AB⊥DE(Ⅱ)三棱锥E﹣ABD的侧面积等于三面之和,由(1)可得ED⊥平面ABCD,可求三个面的面积.【解答】解:(Ⅰ)证明:由题意:AB=2,BD=2,AD=4,∵AB2+BD2=AD2∴AB⊥BD;∵平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,∴AB⊥平面EBD.∵DE⊆平面EBD,∴AB⊥DE.(Ⅱ)由(Ⅰ)可知AB⊥BD,∵CD∥AB,∴CD⊥BD,从而DE⊥BD.在三角形DBE中,∵DB=,DE=CD=AB=2.∴又∵AB⊥平面EBD,EB⊂平面EBD,∴AB⊥BE.∵BE=BC=AD=4,∴.又∵DE⊥BD,平面EBD⊥平面ABD,∴DE⊥平面ABD,而DE⊂平面ABD,DE⊥AD.∴综上,三个面之和为三棱锥E﹣ABD的侧面积,即为8+2.【点评】本题考查了面面垂直转化为线面垂直来证明线线垂直.以及侧面积的计算.属于基础题.27.如图所示,在长方体ABCD﹣A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.(1)求三棱锥A1﹣BCD的体积(2)求证:BD⊥平面A1AC.【分析】(1)以BCD为棱锥的底面,则AA1为棱锥的高,代入棱锥的体积公式计算即可;(2)连结AC,由底面正方形可知BD⊥AC,由AA1⊥平面ABCD可知AA1⊥BD,故而BD⊥平面A1AC.【解答】解:(1)在长方体ABCD﹣A1B1C1D1中,∵A1A⊥平面ABCD,即A1A是三棱锥A1﹣BCD的高,∵AA1=BB1=2,AB=BC=1,∴.∴.证明:(2)连结AC,∵A1A⊥平面ABCD,BD⊂平面ABCD,∴A1A⊥BD.又AB=BC,∴矩形ABCD是正方形,∴BD⊥AC,∵AC⊂平面A1AC,A1A⊂平面A1AC,A1A∩AC=A,∴BD⊥平面A1AC.【点评】本题考查了长方体的结构特征,线面垂直的判定,棱锥的体积计算,属于基础题.。
2017-2018学年高中数学人教A版浙江专版必修2:课时跟
课时跟踪检测(四)空间几何体的直观图层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( )A.90°,90°B.45°,90°C.135°,90°D.45°或135°,90°解析:选D根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.若把一个高为10 cm的圆柱的底面画在x′O′y′平面上,则圆柱的高应画成( ) A.平行于z′轴且大小为10 cmB.平行于z′轴且大小为5 cmC.与z′轴成45°且大小为10 cmD.与z′轴成45°且大小为5 cm解析:选A平行于z轴(或在z轴上)的线段,在直观图中的方向和长度都与原来保持一致.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,A D,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC,有一边在水平线上,用斜二测画法作出的直观图是正三角形A′B′C′,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形.6.水平放置的正方形ABCO 如图所示,在平面直角坐标系xOy 中,点B 的坐标为(4,4),则由斜二测画法画出的该正方形的直观图中,顶点B ′到x ′轴的距离为________.解析:由斜二测画法画出的直观图如图所示,作B ′E ⊥x ′轴于点E ,在Rt △B ′EC ′中,B ′C ′=2,∠B ′C ′E =45°,所以B ′E =B ′C ′sin 45°=2×22= 2. 答案: 27.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2. 答案:36 28.在直观图中,四边形O ′A ′B ′C ′为菱形且边长为2cm ,则在坐标系xOy 中原四边形OABC 为________(填形状),面积为________cm 2.解析:由题意,结合斜二测画法可知,四边形OABC 为矩形,其中OA =2 cm ,OC =4 cm ,所以四边形OABC 的面积S =2×4=8(cm 2).答案:矩形 8 9.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解:(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O 的作法作出上底面⊙O′.(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.10.如图,正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连接O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.层级二应试能力达标1.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m.如果按1∶500的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( )A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C由比例尺可知,长方体的长、宽、高和棱锥的高应分别为4 cm,1 cm,2 cm 和1.6 cm,再结合直观图,图形的尺寸应为4 cm,0.5 cm,2 cm,1.6 cm.2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( )A.12+22B .1+22C .1+ 2D .2+ 2解析:选D 平面图形是上底长为1,下底长为1+2,高为2的直角梯形.计算得面积为2+ 2.4.水平放置的△ABC 的斜二测直观图如图所示,已知B ′C ′=4,A ′C ′=3,B ′C ′∥y ′轴,则△ABC 中AB 边上的中线的长度为( ) A.732 B.73C .5 D.52 解析:选A 由斜二测画法规则知AC ⊥BC ,即△ABC 为直角三角形,其中AC =3,BC =8,所以AB =73,AB 边上的中线长度为732.故选A. 5.有一个长为5 cm ,宽为4 cm 的矩形,则其直观图的面积为________ cm 2.解析:该矩形的面积为S =5×4=20(cm 2),由平面图形的面积与直观图的面积间的关系,可得直观图的面积为S ′=24S =52(cm 2). 答案:5 26.如图所示,△A ′O ′B ′表示水平放置的△AOB 的直观图,点B ′在x ′轴上,A ′O ′与x ′轴垂直,且A ′O ′=2,则△AOB 的边OB 上的高为________.解析:设△AOB 的边OB 上的高为h ,由直观图中边O ′B ′与原图形中边OB 的长度相等,及S 原图=22S 直观图,得12OB ×h =22×12×A ′O ′×O ′B ′,则h =4 2.故△AOB 的边OB 上的高为4 2.答案:4 27.如图所示,△ABC 中,AC =12cm ,边AC 上的高BD =12cm ,求其水平放置的直观图的面积.解:法一:画x ′轴,y ′轴,两轴交于O ′,使∠x ′O ′y ′=45°,作△ABC 的直观图如图所示,则A ′C ′=AC =12 cm ,B ′D ′=12BD =6 cm , 故△A ′B ′C ′的高为22B ′D ′=3 2 cm ,所以S △A ′B ′C ′=12×12×32=182(cm 2), 即水平放置的直观图的面积为18 2 cm 2.法二:△ABC 的面积为12AC ·BD =12×12×12=72(cm 2),由平面图形的面积与直观图的面积间的关系,可得△ABC 的水平放置的直观图的面积是24×72=182(cm 2).8.已知某几何体的三视图如下,请画出它的直观图(单位:cm).解:画法:(1)建系:如图①,画x 轴,y 轴,z 轴,三轴相交于点O ,使∠xOy =45°,∠xOz =90°.(2)画底:在x 轴上取线段OB =8 cm ,在y 轴上取线段OA ′=2 cm ,以OB 和OA ′为邻边作平行四边形OBB ′A ′.(3)定点:在z 轴上取线段OC =4 cm ,过C 分别作x 轴,y 轴的平行线,并在平行线上分别截取CD =4 cm ,CC ′=2 cm.以CD 和CC ′为邻边作平行四边形CDD ′C ′.(4)成图:连接A ′C ′,BD ,B ′D ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该几何体的直观图(如图②).。
人教版高中数学必修二浙江专用练习:阶段质量检测(一) 空间几何体
阶段质量检测(一) 空间几何体(时间120分钟 满分150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( ) A .棱柱的侧面可以是三角形 B .正方体和长方体都是特殊的四棱柱 C .所有的几何体的表面都能展成平面图形 D .棱柱的各条棱都相等解析:选B 棱柱的侧面必须是平行四边形,侧棱长相等,但底面只需为多边形,且边长也不需要与侧棱长相等,故A 、D 不正确;球的表面不能为平面图形,故C 不正确.2.如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图;③存在圆柱,其正视图、俯视图如图.其中正确命题的个数是( )A .3B .2C .1D .0解析:选A 底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图可以是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的正视图和俯视图,因此②正确;当圆柱侧放,即侧视图为圆时,它的正视图和俯视图可以是全等的矩形,因此③正确.故选A.3.如图,已知平面A 1B 1C 1与平面ABC 平行,则能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC ,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.已知圆锥的表面积是其底面面积的3倍,则该圆锥的侧面展开图的圆心角为( ) A .120° B .150° C .180°D .240°解析:选C 设圆锥的底面半径为R ,母线长为L .由题意,πR 2+πRL =3πR 2,∴L =2R ,圆锥的底面圆周长l =2πR .展开成扇形后,设扇形圆心角为n ,则扇形的弧长l =n πL 180°=n π×2R 180°,∴2πR =2n πR180°,∴n =180°,即展开后扇形的圆心角为180°.5.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:选A 若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,①③都是能符合要求的几何体,故选A.6.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD .b ,d解析:选A 正视图和侧视图完全相同时,牟合方盖相对的两个曲面正对前方,正视图为一个圆,而俯视图为一个正方形,且有两条实线的对角线.故选A.7.某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.8.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8解析:选C 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的两底边长分别为1,2,高为2,∴该几何体的体积为V =12×(2+1)×2×2=6.9.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析: 选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.10.已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A.7π4 B .2π C.9π4D .3π解析:选C 由题意知,正三角形ABC 的外接圆半径为22-12=3,则AB =3,过点E 的截面面积最小时,截面是以AB 为直径的圆,截面面积S =π×⎝⎛⎭⎫322=9π4.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)11.某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知题中几何体是由圆柱的一半和球的四分之一组成的,所以该几何体的体积V =12V 圆柱+14V 球=12×π×12×2+14×43π×13=43π.答案:4 3π12.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.(本题第一空2分,第二空3分.)解析:先求面数,有如下两种方法.法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.法二:一般地,对于凸多面体,顶点数(V)+面数(F)-棱数(E)=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为半正多面体的棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=2 2x.又AM+MN+NF=1,即22x+x+22x=1.解得x=2-1,即半正多面体的棱长为2-1.答案:262-113.一个几何体的三视图如图,其中正视图和侧视图是相同的等腰三角形,俯视图由半圆和一等腰三角形组成.则这个几何体可以看成是由________和________组成的,若它的体积是π+26,则a =________.解析:由三视图可知该几何体可以看成是由一个三棱锥和半个圆锥组成的.半圆锥的底面半径为1,高为a ,三棱锥的底面是以2为直角边长的等腰直角三角形,高为a ,所以该几何体的体积为13×⎝⎛⎭⎫12π+12×2×2a =π+26,解得a =1. 答案:三棱锥 半个圆锥 114.(2019·温州高三适应性考试)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)等于________,表面积(单位:cm 2)等于________.解析:由三视图得该几何体的底面是上底为2、下底为4、高为1的等腰梯形,高是1的直四棱柱,则其体积为1×2+42×1=3,表面积为2×2+42×1+1×2+1×4+2×1×2=12+2 2.答案:3 12+2 215.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积等于________,表面积为________.解析:由三视图可知该几何体是一个四棱锥,如图,其底面是一个边长为2的正方形,高为2,故其体积为V=13×2×2×2=83.在△ECD中,CD边上的高为2,故S△ECD=12×2×2=2.△EBC与△EAD是全等的直角三角形,BC⊥EC,且BC=2,EC=5,故S△EAD=S△EBC=12×2×5= 5.在△EAB中,EA=EB=3,AB=2,则S△EAB=12×2×9-1=22,故该几何体的表面积为S=2+4+25+22=2(3+2+5).答案:832(3+2+5)16.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC1的平面A1B1EF,这个平面分三棱台成两部分,这两部分的体积之比为________.解析:设三棱台的上底面面积为S0,则下底面面积为4S0,高为h,则V三棱台ABC-A1B1C1=13(S0+4S0+2S0)h=73S0h,V三棱柱FEC-A1B1C1=S0h.设剩余的几何体的体积为V,则V=73S0h-S0h=43S0h,体积之比为3∶4或4∶3.答案:3∶4(或4∶3)17.(2019·全国卷Ⅲ)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6 cm和4 cm,故V挖去的四棱锥=13×12×4×6×3=12(cm3).又V长方体=6×6×4=144(cm3),所以模型的体积为V长方体-V挖去的四棱锥=144-12=132(cm3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)18.(本小题满分14分)某五面体的三视图如图所示,其正视图、俯视图均是等腰直角三角形,侧视图是直角梯形,部分长度已标出,试画出该几何体,并求出此几何体各棱的长.解:借助正方体(棱长为1)及题目所给的三视图,该几何体可看作是从正方体中截出来的(如图①所示),然后将所得图形从正方体中分离出来,即可得到该几何体(如图②所示),易知该几何体为四棱锥A -BMC 1C .结合给定的三视图的长度关系,可知在四棱锥A -BMC 1C 中,AB =1,BC =1,AC =2,BM =12,AM =52,CC 1=1,AC 1=3,MC 1=52.19.(本小题满分15分)如图所示,在多面体FE -ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24,V =V E -ADG +V F -BHC +V AGD -BHC =⎝⎛⎭⎫13×12×24×2+24×1=23. 20.(本小题满分15分)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解:连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2.∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分 别是A 1A ,CC 1的中点,∴h 1+h 2=B 1D 1=2a .又S △C 1EF =12C 1F ·EF =12×a 2×2a =24a 2,∴VC 1-B 1EDF =VB 1-C 1EF +VD -C 1EF =13·S△C 1EF ·(h 1+h 2)=13×24a 2×2a =16a 3.21.(本小题满分15分)已知圆柱OO 1的底面半径为2,高为4. (1)求从下底面出发环绕圆柱侧面一周到达上底面的最短路径长; (2)若平行于轴OO 1的截面ABCD 将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求V Ⅰ∶V Ⅱ(体积之比).解:(1)将侧面沿某条母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面出发环绕侧面一周到达上底面的最短路径长即为此矩形的对角线长41+π2.(2)连接OA ,OB ,∵截面ABCD 将底面圆周截去14,∴∠AOB =90°,∵OA =OB =2,∴AB =22, 而截面ABCD 是矩形且AD =4, ∴S 截面ABCD =22×4=8 2. (3)依题知V 圆柱=Sh =16π, 三棱柱AOB -DO 1C 的体积是8, 则V Ⅰ+8=14V 圆柱=4π,∴V Ⅰ=4π-8,而V Ⅱ=V 圆柱-V Ⅰ=12π+8, 于是V Ⅰ∶V Ⅱ=π-23π+2.22.(本小题满分15分)已知一个几何体的三视图如图所示.(1)求此几何体的表面积S;(2)如果点P,Q在正视图中所示位置:P为所在线段的中点,Q为所在线段的端点,求在几何体的表面上,从点P到点Q的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥和一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面面积之和.又S圆锥侧=πa×2a=2πa2,S圆柱侧=2πa×2a=4πa2,S圆柱底=πa2,2+5πa2.所以S=2πa2+4πa2+πa2=()(2)沿点P与点Q所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,所以在几何体的表面上,从点P到点Q的最短路径的长为a1+π2.由Ruize收集整理。
2023-2024学年浙江省高中数学人教A版 必修二第八章 立体几何同步测试-20-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年浙江省高中数学人教A 版 必修二第八章立体几何同步测试(20)姓名:____________ 班级:____________学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 已知等腰梯形,上底 ,腰 ,下底 ,以下底所在直线为 轴,则由斜二测画法画出的直观图的面积为( )A. B. C. D.16212. 中国南北朝时期数学家、天文学家祖冲之、祖暅父子总结了魏晋时期著名数学家刘徽的有关工作,提出“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.详细点说就是,界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖暅原理.一个上底面边长为1,下底面边长为2,高为 的正六棱台与一个不规则几何体满足“幂势既同”,则该不规则几何体的体积为( )A. B. C. D. 3. 在正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段DB 1和A 1C 上不重合的两个动点,则下列结论中正确的个数是( )①BC 1⊥MN ;②点M 在侧面D 1DCC 1上的投影在D 1C 上;③B 1N//CM ;④直线BM 与直线A 1D 1为异面直线.0123A. B. C. D. 4. 如果 , , , , , , 则( )A. B. C. D.若 , ,则若 , ,则 若 , ,则 若 , ,则5. 已知两条不同的直线, ,三个不重合的平面 , , ,下列命题正确的是( )A. B. C. D. 6. 如图,是一个正三棱台,而且下底面边长为6,上底面边长和侧棱长都为3,则棱台的高为( )A. B. C. D.1237. 用斜二测画法画出的某平面图形的直观图如图所示,边平行于 轴, 平行于 轴,已知四边形的面积为,则原四边形的面积为 .A. B. C. D. 37.5mm 25mm 15mm 12.5mm8. 某同学用一个半径为mm ,圆心角为的扇形铁片卷成了一个简易的圆锥形状的容器(接缝处忽略不计),口朝上放在院子中间接雨水来测量降雨量(容器不漏),24h 所收集的雨水的高度达到容器高度的一半,然后将这些雨水倒入底面半径为100mm 的圆柱形量杯3中,则量杯中水面高度为( )A. B. C. D. 8cm 6cm 2(1+ )cm 2(1+ )cm9. 如图,正方形O′A′B′C′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A. B. C. D.若α//β,m ⊂α,n ⊂β,则m//n若α⊥β,m ⊂α,n ⊂β,则m ⊥n 若点A 、B 到平面α的距离相等,则直线AB//α若m ⊥α,m//β,则α⊥β10. 设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列结论正确的是( )A. B. C. D. 直线a 一定与平面α内所有直线平行直线a 一定与平面α内所有直线异面直线a 一定与平面α内唯一一条直线平行直线a 一定与平面α内一组平行直线平行11. 若直线a 平行于平面α,则下列结论正确的是( )A. B. C. D. 12. 一个正六棱锥,其侧面和底面的夹角大小为, 则该正六棱锥的高和底面边长之比为( )A. B. C. D. 13. 在长方体中,已知 , , 在该长方体内放置一个球,则最大球的体积为 .14. 在三棱锥 中, 底面 ,则该三棱锥的外接球的体积为 .15. 斧头的形状叫楔形,在《算数书》中又称之为“郓(yùn )都”或“潮(qiàn )堵”:其上底是一矩形,下底是一线段.有一斧头:上厚为三,下厚为六,高为五及袤(mào )为二,问此斧头的体积为几何?意思就是说有一斧头形的几何体,上底为矩形,下底为一线段,上底的长为3,下底线段长为6,上下底间的距离高为5,上底矩形的宽为2,则此几何体的体积是 .16. 已知三棱锥P ﹣ABC 中,PA=4,AB=AC=2 ,BC=6,PA ⊥平面ABC ,则此三棱锥的外接球的半径为 .17. 如图,在三棱锥 中,平面 平面 , 分别是 的中点.求证:(1) 平面(2) 平面平面.18.)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.(1)求三棱锥A﹣MCC1的体积;(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.19. 如图,在三棱锥中,平面平面,为等边三角形,且,分别为的中点.(1) 求证:平面 .(2) 求证:平面平面 .(3) 求三棱锥的体积.20. 如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.(1) 求证:AE//平面PDC;(2) 若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.21. 如图所示,在四棱锥中,四边形为矩形,为等腰三角形,,平面平面,且,,,分别为,的中点.(1) 证明:平面;(2) 证明:平面平面;(3) 求四棱锥的体积.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)(3)20.(1)(2)21.(1)(2)(3)。
2023-2024学年浙江省高中数学人教A版 必修二第八章 立体几何同步测试-18-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年浙江省高中数学人教A 版 必修二第八章 立体几何同步测试(18)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 攒尖顶是中国古代建筑中屋顶的一种结构形式,通常有圆形、三角、四角、六角、八角等结构,多见于亭阁式建筑.如图所示,某园林的亭阁建筑为六角攒尖顶,它的屋顶轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为 ,则该正六棱锥底面内切圆半径与侧棱长之比为()A. B. C. D.P 1, P 2 P 2 , P 3 P 1 , P 3 P 3 , P 42. 空间中有不重合的平面和直线a ,b ,c ,则下列四个命题中正确的有( )P 1:若 ,则;P 2:若a ⊥b ,a ⊥c ,则b//c ;P 3:若,则a//b ;P 4:若,则a ⊥b.A. B. C. D. 3. 已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A. B. C. D.圆柱圆台球体棱台4. 用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是( )A. B. C. D.32 3648645. 已知表面积为24π的球体,其内接正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,则这个正四棱柱的侧面积为( )A. B. C. D. ①②②③②④②③④6. 设、是两个不同的平面,m 、n 是两条不同的直线,有下列命题:①如果,,,那么; ②如果,,那么;③如果,,那么;④如果平面内有不共线的三点到平面的距离相等,那么;其中正确的命题是( )A. B. C. D. 三角形四边相等的四边形梯形平行四边形7. 下列图形中不一定是平面图形的是( )A. B. C. D. 12π8. 底面半径为2,母线长为4的圆锥的表面积为( )A. B. C. D.充分而不必要条件必要而不充分条件充要条件既不充分也不必要条件9. 已知平面a ,β和直线l 1 , l 2 , 且a∩β=l 2 , 则“l 1∥l 2,”是“l 1∥a ,且l 1∥β”的( )A. B. C. D. 10. 如图是一个底面半径和高都是1的圆锥形容器,匀速给容器注水,则容器中水的体积是水面高度的函数 ,若正数 ,满足 , 则的最小值为()A. B. C. D.若是两条直线,且 ,那么平行于经过的任何平面若直线和平面满足,那么与内的任何直线平行平行于同一条直线的两个平面平行若直线和平面满足不在平面内,则11. 下列命题中正确的是( )A. B. C. D. 12. 设m ,n 是两条不同的直线,是三个不同的平面,给出下列四个命题:1234①若, , 则②若, , , 则③若, , , 则④若 , , , 则正确命题的个数是( )A. B. C. D. 13. 如图,已知正方体ABCD–A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为 .14. 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是,那么这个三棱柱的体积是 .15. 已知底面半径和高都为 的圆锥,其内接圆柱的高为 ,则这个圆柱的侧面积为 .16. 某几何体由圆锥挖去一个正三棱柱而得,且正三棱柱的上底面与圆锥内接,下底面在圆锥的底面上,已知该圆锥的底面半径 ,正三棱柱的底面棱长 ,且圆锥的侧面展开图的圆心角为 ,则该几何体的体积为 .17. 如图,在三棱锥 中, , , 为 的中点.(1) 求证:平面 ;(2) 若点 在棱 上,且 ,求点 到平面的距离.18. 如图所示的多面体中,平面 , 平面 , ,且 , , , .(1) 求直线与平面所成角的正弦值;(2) 求证:平面;(3) 求二面角的余弦值.19. 已知正四棱柱 ABCD- A1B1C1D1的底面边长为2,侧棱长为4,E,F分别为B1C1, AD的中点.(Ⅰ)求证:BEP平面C1FD1;(Ⅱ)求直线BE到平面C1FD1的距离.20. 在四棱锥P﹣ABCD中,设底面ABCD是边长为1的正方形,PA⊥面ABCD.(1) 求证:PC⊥BD;(2) 过BD且与直线PC垂直的平面与PC交于点E,当三棱锥E﹣BCD的体积最大时,求二面角E﹣BD﹣C的大小.21. 如图,已知直三棱柱,,E是棱上动点,F是AB中点,,.(1) 求证:平面;(2) 当是棱中点时,求与平面所成的角;(3) 当 时,求二面角 的大小.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)18.(1)(2)(3)19.20.(1)(2)21.(1)(2)(3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【浙江专版】必修2《空间几何体》阶段质量检测试卷含解析时期质量检测(一)空间几何体(时刻120分钟满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是()A.棱柱的侧面能够是三角形B.正方体和长方体差不多上专门的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等解析:选B棱柱的侧面必须是平行四边形,侧棱长相等,但底面只需为多边形,且边长也不需要与侧棱长相等,故A、D不正确;球的表面不能为平面图形,故C不正确.2.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体解析:选D依照三棱柱和长方体的结构特点,可知此组合体左边是三棱柱,右边是长方体.3.如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图;③存在圆柱,其正视图、俯视图如图.其中正确命题的个数是()A.3B.2C.1 D.0解析:选A底面是等腰直角三角形的三棱柱,当它的一个矩形侧面放置在水平面上时,它的正视图和俯视图能够是全等的矩形,因此①正确;若长方体的高和宽相等,则存在满足题意的正视图和俯视图,因此②正确;当圆柱侧放,即侧视图为圆时,它的正视图和俯视图能够是全等的矩形,因此③正确.故选A.4.已知圆锥的表面积是其底面面积的3倍,则该圆锥的侧面展开图的圆心角为( ) A .120° B .150° C .180°D .240°解析:选C 设圆锥的底面半径为R ,母线长为L .由题意,πR 2+πRL =3πR 2,∴L =2R ,圆锥的底面圆周长l =2πR .展开成扇形后,设扇形圆心角为n ,则扇形的弧长l =n πL180°=n π×2R 180°,∴2πR =2n πR 180°,∴n =180°,即展开后扇形的圆心角为180°. 5.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中能够作为该几何体的俯视图的是( )A .①③B .①③④C .①②③D .①②③④解析:选A 若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求,①③差不多上能符合要求的几何体,故选A.6.(福建高考)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,因此底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,因此该几何体的表面积为8+22+3=11+2 2.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.因此V 1V 2=1656=15,故选D.8.(山东高考)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知题中几何体是由圆柱的一半和球的四分之一组成的,因此该几何体的体积V =12V 圆柱+14V 球=12×π×12×2+14×43π×13=43π.答案:43π10.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为________,表面积为________.解析:因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,因此半径r =1212+12+(2)2=1,因此V 球=4π3×13=4π3,S 球=4π×12=4π.答案:43π 4π11.一个几何体的三视图如图,其中正视图和侧视图是相同的等腰三角形,俯视图由半圆和一等腰三角形组成.则那个几何体能够看成是由________和________组成的,若它的体积是π+26,则a =________.解析:由三视图可知该几何体能够看成是由一个三棱锥和半个圆锥组成的.半圆锥的底面半径为1,高为a ,三棱锥的底面是以2为直角边长的等腰直角三角形,高为a ,因此该几何体的体积为13×⎝⎛⎭⎫12π+12×2×2a =π+26,解得a =1. 答案:三棱锥 半个圆锥 112.某空间几何体的三视图(单位:cm)如图所示,则此几何体的侧视图的面积为________cm 2,此几何体的体积为________cm 3.解析:该几何体是半圆锥和半圆柱的组合体,侧视图面积为12π×12=π2(cm 2),此几何体的体积为12×⎝⎛⎭⎫π×12×3+13π×12×2=11π6(cm 3). 答案:π2 11π613.已知某个几何体的三视图如图所示,依照图中标出的尺寸,可得那个几何体的体积等于________,表面积为________.解析:由三视图可知该几何体是一个四棱锥,如图,其底面是一个边长为2的正方形,高为2,故其体积为V =13×2×2×2=83.在△ECD 中,CD 边上的高为2,故S △ECD =12×2×2=2.△EBC 与△EAD 是全等的直角三角形,BC ⊥EC ,且BC =2,EC =5,故S △EAD =S △EBC =12×2×5= 5.在△EAB 中,EA =EB=3,AB =2,则S △EAB =12×2×9-1=22,故该几何体的表面积为S =2+4+25+22=2(3+2+5).答案:832(3+2+5)14.如图,在上、下底面对应边的比为1∶2的三棱台中,过上底面一边作一个平行于棱CC 1的平面A 1B 1EF ,那个平面分三棱台成两部分,这两部分的体积之比为________.解析:设三棱台的上底面面积为S 0,则下底面面积为4S 0,高为h ,则V 三棱台ABC -A 1B 1C 1=13(S 0+4S 0+2S 0)h =73S 0h ,V 三棱柱FEC -A 1B 1C 1=S 0h .设剩余的几何体的体积为V ,则V =73S 0h -S 0h =43S 0h ,体积之比为3∶4或4∶3.答案:3∶4(或4∶3)15.一块正方形薄铁片的边长为4,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形(如图),用这块扇形铁片围成一个圆锥筒,则那个圆锥筒的容积为________.解析:设圆锥筒的底面半径为r ,高为h .由题意,得2πr =14×2π×4,因此r =1,因此h=42-12=15,因此V =13πr 2h =13×π×12×15=153π.答案:153π 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)某五面体的三视图如图所示,其正视图、俯视图均是等腰直角三角形,侧视图是直角梯形,部分长度已标出,试画出该几何体,并求出此几何体各棱的长.解:借助正方体(棱长为1)及题目所给的三视图,该几何体可看作是从正方体中截出来的(如图①所示),然后将所得图形从正方体中分离出来,即可得到该几何体(如图②所示),易知该几何体为四棱锥A -BMC 1C .结合给定的三视图的长度关系,可知在四棱锥A -BMC 1C 中,AB =1,BC =1,AC =2,BM =12,AM =52,CC 1=1,AC 1=3,MC 1=52.17.(本小题满分15分)如图所示,在多面体FE -ABCD 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,求该多面体的体积V .解:如图所示,分别过A ,B 作EF 的垂线AG ,BH ,垂足分别为G ,H .连接DG ,CH ,容易求得EG =HF =12.因此AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24,V =V E -ADG +V F -BHC +V AGD -BHC =⎝⎛⎭⎫13×12×24×2+24×1=23. 18.(本小题满分15分)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是A 1A ,CC 1的中点,求四棱锥C 1-B 1EDF 的体积.解:连接EF ,B 1D 1.设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2.∵正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分 别是A 1A ,CC 1的中点, ∴h 1+h 2=B 1D 1=2a .又S △C 1EF =12C 1F ·EF =12×a 2×2a =24a 2,∴VC1-B1EDF=VB1-C1EF+VD-C1EF=13·S△C1EF·(h1+h2)=13×24a2×2a=16a3.19.(本小题满分15分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6 m铁丝.再用面积为S m2的塑料片制成圆柱的侧面和下底面(不安装上底面).圆柱底面半径为r m.(1)当r取何值时,S取得最大值?并求出该最大值(结果精确到0.01).(2)若要制作一个如图所示的底面半径为0.3 m的灯笼,请作出该灯笼的三视图(作图时,不需考虑骨架等因素).解:(1)设圆柱的高为h m,由题意,可知4(4r+2h)=9.6,即2r+h=1.2.S=2πrh+πr2=πr(2.4-3r)=3π[-(r-0.4)2+0.16](0<r<0.6).因此当r=0.4时,S max=0.48π≈1.51(m2).(2)由r=0.3,2r+h=1.2,得圆柱的高h=0.6,则该灯笼的三视图为:20.(本小题满分15分)已知一个几何体的三视图如图所示.(1)求此几何体的表面积S;(2)假如点P,Q在正视图中所示位置:P为所在线段的中点,Q为所在线段的端点,求在几何体的表面上,从点P到点Q的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥和一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面面积之和.又S圆锥侧=πa×2a=2πa2,S圆柱侧=2πa×2a=4πa2,S圆柱底=πa2,因此S=2πa2+4πa2+πa2=()2+5πa2.(2)沿点P与点Q所在母线剪开圆柱侧面,如图.则PQ=AP2+AQ2=a2+(πa)2=a1+π2,因此在几何体的表面上,从点P到点Q的最短路径的长为a1+π2.。