leicaM165C和M205C立体显微镜

leicaM165C和M205C立体显微镜
leicaM165C和M205C立体显微镜

超越无限>>

新款 Leica M165 C 和 M205 C 令立体显微镜的跨入了一个新纪元。

>

>

7

>

>>

11

> 12

>>通过集成显微镜,数码像机和应用软件,从而能够使用智能型控制系统对成像任务进行协调,并由此提高生产率。

为不同的显微镜用户提供最大的观察

FusionOptic? (M205 C)

右侧通道具有高

左侧通道具有大

两个通道所提供的信息

在大脑中进行组合

实现以前闻所未闻的分辨率,防止无意中对屈光修正进行调节

眼杯可更换,从而达到最高的卫生标准

光学器件经色差和平滑度修正

在观察,图像摄取或图像分析时,没有不希望

便捷的显微镜下方操作

所有徕卡主物镜都具有最大的工作距

能对工作样本进行最便利的调节

,能对样本进行最大

Christophe Apothéloz

OLYMPUS光学显微镜标准操作程序

OLYMPUS光学显微镜标准操作程序 1.仪器简介 奥林巴斯(OLYMPUS)CX21型光学显微镜由奥林巴斯株式会社生产,光学系统由物镜、目镜、照明装置和光源等组成,倍率包括4倍、10倍、40倍和100倍,总放大倍率为40倍、100倍、400倍和1000倍。 2.光学显微镜原理 光学显微镜是由两组会聚透镜所组成,小的透镜代表一组焦距很短的透镜组即物镜。太的透镜代表身一组焦距较长的透镜即目镜。将被观察体置于物镜前的物方熊点的稍外方,物体发出的光线经物镜放大后成一倒立实像于目镜前焦点附近,再经目镜放大后,就获得—个经两次放大的倒立虚像,该虚像成在观察者的明视距离处。 3.基本资料和性能参数 3.1仪器基本性能资料 制造厂家:奥林巴斯折株式会社生产 设备型号:OLYMPUS CX21 基本原理:物理成像原理 3.2仪器工作环境要求 最大相对湿度:最大800%(31℃) 31℃以上的使用环境时,湿之间从80%呈线性下降到50%, 电源电压变动±10%以内 3.3 光学性能参数 倍率:4倍、10倍、40倍,100倍 数值孔径:0.10 0.25 0.65 1.25 工作距离W.D.(mm):22.0 10.5 0.56 0.13 分辨率(um): 3.36 1.34 0.52 0.27 4.设备规格 4.1 光学系统:UIS光学系统(无限远校正光学系统) 4.2 照明系统:内置照明装置,6V20W卤素灯泡,非利普公司制造7388型 4.3 对焦机构:载物台高度调节机制,微调刻度:2.5um/格;微调一圈:0.3mm/圈;全行程盘:20mm;有粗调限位。粗调旋钮松紧度调整。 4.4 物镜转盘:4孔物镜转盘固定(朝前) 4.5 双眼镜筒:视野范围 I8 镜筒倾斜角落30度瞳距调整范围48-75mm。

显微镜主要分类

显微镜根据其用途以及应用范围分为 生物显微镜、金相显微镜、体视显微镜等。 1 生物显微镜是最常见的一种显微镜,在很多实验室中都可见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、 沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2 体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有: ①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。 ②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3 金相显微镜

主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。

高熵合金颗粒增强钛合金复合材料摩擦磨损行为研究

Material Sciences 材料科学, 2018, 8(10), 1007-1015 Published Online October 2018 in Hans. https://www.360docs.net/doc/3e7314479.html,/journal/ms https://https://www.360docs.net/doc/3e7314479.html,/10.12677/ms.2018.810120 The Wear Behavior of High-Entropy Alloy Particles Reinforced Titanium Alloy Composite Jingwen Qiu1, Zhengfan Fu2, Di Pan3*, Yi Shu4, Jianhui Yan1,2, Zhongyuan Duan2, Weihua Li2 1Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan Hunan 2Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan Hunan 3State Key Laboratory of Powder Metallurgy, Central South University, Changsha Hunan 4Hunan Yufone Vacuum Science and Technology Co., Ltd, Xiangtan Hunan Received: Oct. 2nd, 2018; accepted: Oct. 19th, 2018; published: Oct. 26th, 2018 Abstract In this paper, Ti-11Fe-3Nb-3Mn-3Sn (at.%) alloys was prepared by the spark plasma sintering (SPS) method using elemental powders after ball-milling. And then the 10 wt.% FeCoCrNiMo alloy particles was mixed with the elemental powders after ball-milling to obtain high-entropy alloy particles reinforced Ti-11Fe-3Nb-3Mn-3Sn (at.%) alloy composite by the same SPS method. The wear behaviors of Ti-11Fe-3Nb-3Mn-3Sn (at.%) alloy and its composite were investigated by reci-procating sliding wear tests at the room temperature. Field emission scanning electron micro-scope, microhardness tester and 3D optical surface profiler were employed to study the micro-structures and wear behaviors. The results showed that: the hardness and wear resistance of the high-entropy alloy reinforced titanium alloy was improved significantly after the addition of high-entropy alloy particles. A diffusion layer with a certain thickness was formed between the particles and titanium alloy matrix. The wear mechanism of Ti-11Fe-3Nb-3Mn-3Sn and its compo-site is mainly adhesive wear, abrasive wear and some plastic deformation. Keywords Titanium Alloys, High-Entropy Alloys, Particle Reinforced Composite, Microstructure, Tribological Properties 高熵合金颗粒增强钛合金复合材料摩擦磨损行为研究 *通讯作者。

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

一显微镜的构造及使用方法

实验一显微镜的构造及使用方法 一、目的要求 1.了解显微镜的构造、性能及成像原理。 2.掌握显微镜的正确适用及维护方法。 二、实验器材 1.显微镜、纱布、绸布 2.酵母菌示教标本 三、普通光学显微镜简介 微生物的最显著的特点就是个体微小,必须借助显微镜才能观察到它们的个体形态和细胞结构。熟悉显微镜并掌握其操作技术是研究微生物不可缺少的手段。 显微镜可分为电子显微镜和光学显微镜两大类。光学显微镜包括:明视野显微镜、暗视野显微镜、相差显微镜、偏光显微镜、荧光显微镜、立体显微镜等。其中明视野显微镜为最常用普通光学显微镜,其它显微镜都是在此基础上发展而来的,基本结构相同,只是在某些部分作了一些改变。明视野显微镜简称显微镜。 (一)显微镜的构造 普通光学显微镜的构造可以分为机械和光学系统两大部分。 图1-1 显微镜构造 1.目镜 2.镜筒 3. 转换器 4. 物镜 5. 载物台 6. 聚光器 7. 虹彩光圈 8. 聚光镜调节钮9.反光镜10. 底座11. 镜臂12. 标本片移动钮 13. 细调焦旋钮14. 粗调焦旋钮15.电源开关16.光亮调节钮17.光源 1.机械系统: (1)镜座Base:在显微镜的底部,呈马蹄形、长方形、三角形等。 (2)镜臂Arm:连接镜座和镜筒之间的部分,呈圆弧形,作为移动显微镜时的握持部分。 (3)镜筒Tube:位于镜臂上端的空心圆筒,是光线的通道。镜筒的上端可插入接目镜,下面可与转换器相连接。镜筒的长度一般为160mm。显微镜分为直筒式和斜筒式; 有单筒式的,也有双筒式的。 (4)旋转器Nosepiece:位于镜筒下端,是一个可以旋转的圆盘。有3~4个孔,用于安

浅析光学显微镜机械结构设计

浅析光学显微镜机械结构设计 发表时间:2019-04-28T09:29:27.077Z 来源:《基层建设》2019年第6期作者:朱濛1 陈振波2 孔欢3 王鹏程4 姚新科5 [导读] 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 1、南京工程学院电力工程学院 21167; 2、南京工程学院机械工程学院 21167; 3、南京工程学院电力工程学院 21167; 4、南京工程学院建筑工程学院 21167; 5、南京工程学院自动化学院 21167 摘要:光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。光学显微镜的使用范围非常的广泛,发展至今,也衍生出了非常多的类型,本文结合光学显微镜的结构组成,从人体工程视角探索光学显微镜的机械结构设计,从使用的安全性、科学性、可靠性的角度分析了光学显微镜的机械结构设计的规范和标准。 关键词:光学显微镜;机械结构;人体工程学 光学显微镜的结构主要有光学结构和机械结构组成,机械结构的部分不仅能对光学结构有很好的固定作用,还起着关键性的调节作用,机械结构能够发挥光学系统的最大功效,辅助光学系统完成相关的显微镜观察工作。光学显微镜的机械结构的部分主要在载物台、物镜转换器以及调焦装置等,这些机械结构的设计不仅要遵循基本的机械结构设计原则,还要保证在光学显微镜中的具体的光学操作,除此之外,设计的原则还要迎合人体操作的需求,使得光学显微镜的机械结构更加的吻合人体工程学的设计要求,使得光学显微镜使用更加的舒适方便。 一、光学显微镜的基本构造 对于光学显微镜的机械设计,我们首先要了解光学显微镜的构造组成部分,而且还要知道这些零部件的作用,只有熟知了这些零部件的作用和使用规范,我们才能更加合理的设计光学显微镜的机械结构部分,光学显微镜一般是由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台的作用是放置被观察的物体,使用调焦旋钮来驱动调焦机构能完成对载物台的调节工作。聚光灯照明系统由聚光灯和光源组成,聚光灯的作用能够让光更多的聚集到被观察的部位。物镜距离载物台比较近,是第一级的放大装置。目镜则是于人眼靠近的第二级放大镜头。 这三部分是光学显微镜的重要组成部分,构成了光学显微镜的主要工作原理。 那么机械装置有哪些呢?一般光学显微镜的机械装置有镜座、镜臂、载物台、镜筒、物镜转换器、与调焦装置。这些机械装置的主要作用是固定和调节光学镜头,调节标本的位置等。其中镜座是支撑整个显微镜的装置,而镜臂则用来支撑精通和载物台。 二、基于人体工程学的光学显微镜的机械结构设计 人体工程学的设计原理主要是考虑到人体结构和机械结构尺寸,并且综合考虑到人们劳动、工作效果、工作效能等方面,利用系统工程、控制理论、统计学的原理设计出一系列的设计方法。具体到光学显微镜的机械结构设计中,我们就要考虑到人们的身体尺寸和应用习惯,首先我们从有关部分获得了我国成年人的人体部分尺寸的表格(表-1),以此为根据设计光学显微镜结构部分。 1、载物台的设计 从上面的介绍中我们知道,载物台的作用是用来放置被观察物体的,并且式样能够在载物台上自由的移动,以获取最佳的观察效果。一般的移动范围是30mm*70mm和50mm*70mm,主要的设计标准就是,载物台距离工作底面的距离于载物台和人体的水平距离,分别设为B1和B2,考虑到人在调节使用载物台的过程中的行为习惯,得出计算式。 其中y1和y2分别衣着修正指数和身体活动余量修正。同理得出B2的表达式。经过计算得出: B1=307~357mm B2=301~348mm 2、调焦机构设计 调焦机构用于调节光学结构以便于观察人员获取最佳的成像效果,调焦的动作主要包括了上下移动和粗微调节机构,如何合理的设计能够使得人在调焦的过程中更加的舒适和便捷。首先是调焦旋钮的位置,在具体的使用过程中,显微镜是放在工作台上的,我们无法获取具体的使用高度和姿势,所以我们只能将人体的上身活动分为三个维度的多个不同程度的拆解动作,分别为手肘在X、Y、Z轴上的旋转方向,并在matlab的环境下运行得出,人体的手臂舒适度域: 为了适应大多数人的使用习惯,我们从95百分位这一阶段的数据为设计的参考点,确定出调焦按钮的最佳设计尺寸,从而确定调焦按钮在光学显微镜中的位置。其次是调焦按钮的外形和尺寸,旋钮的截面形状对于人手的握持方式有着一定的影响,当旋钮和手掌的接触面积越大的时候,人手的贴合的程度越好,那么使用的手感就越好,但是太大了会让人手在长期的握持中增加疲劳感,所以对于旋钮的直径设计要求为。旋钮的直径设计保持在35mm-75mm之间,厚度的大小在20mm-50mm范围内波动。最后是旋钮的扭矩M,扭矩的大小设计也非常的重要,太大了会使握持不舒服,太小的话又不利于调焦的准确,由于人类的手部关节的操作力范围为12N-18N,根据人体工程学的计算方法得出M的大小为: 除了基本的形态和尺寸设计,我们还要考虑到载物台移动过程中的摩擦力设计,太小的摩擦力会让调节过程难以掌握精确度,阻力太大的话会增加人使用的机体劳累,所以适当的摩擦力设计也是机械结构设计中需要考虑的内容。 3、物镜转换器的设计 物镜转换器是迅速切换物镜的机械装置,有内定位和外定位两种,转换器的设计直接影响了成像的质量,根据人体工程学的原理,内定位型的转换器比较能够减轻操作的负担,同时还能节省操作台的空间,所以很多光学显微镜的采用内定位转换器,其设计也非常的满足心理学和生理学的设计要求。 结语 本文通过对光学显微镜的主要结构做了介绍,并对光学显微镜的机械部分的功能做了相应的阐述,利用人体工程学的设计理论,对光学显微镜的机械结构部分作出了具体的设计标准的研究,是符合我国当前光学显微镜制造标准的。 参考文献: [1]史红伟,石要武,杨爽等.光学显微镜自动调焦指导函数的评价与选择[J].计算机辅助设计与图形学学报,2013,25(2):235-24

基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法研究

基于视觉计算的扫描电子显微镜下微纳尺度三维形面测量方法 研究 随着微、纳领域科学技术的不断发展,微、纳米材料在芯片制造、电子封装、生物医药等高新技术领域得到越来越广泛应用。由于微、纳米材料与结构具有尺寸效应,在力-电-磁-热等多场耦合负载作用下,极易产生变形、裂纹进而导致结构与器件失效。因此,在微纳尺度下实施精确地三维形面测量对了解上述变形机理、失效机制分析、指导微纳系统设计与加工等具有重要意义。近年来,微纳尺度精密测试技术不断进步,涌现出多种微纳尺度三维形面测量方法。 其中,基于扫描电子显微镜(Scanning Electron Microscope,SEM)测量方法(3D SEM),具有高效、非接触式、测量范围大和对样品表面粗糙度的良好脱敏性等一系列优点而受到国内外众多学者的共同关注。然而,由于SEM是以可视化为目的进行设计与制造,要将其应用于三维形貌测量,在成像模型及标定、图像畸变校正、特征匹配与三维测量算法等方面仍存在着诸多问题。为此,本论文针对3D SEM在实施与应用中所面临的问题,主要开展SEM成像模型通用化建模、SEM图像畸变校正、基于视差-深度映射的局部高效三维测量方法和自适应SfM-SEM框架下整体精细三维测量方法等四个方面的研究,以形成一套完备的SEM下三维形面测量理论与技术体系。具体研究工作如下:针对SEM成像模型分歧大、无法根据SEM的放大倍率对成像模型进行准确划分等问题,在不依赖任何假设的条件下, 从SEM成像过程本质出发,建立连续通用成像模型以表征SEM系统成像特性。 根据SEM成像过程的连续性约束,利用径向基函数来表达像素点与空间直线的对应关系,进而参数化连续通用成像模型;澄清放大倍率与成像规律的关系,揭示SEM成像系统真实成像本质,实现SEM在不同倍率下的成像模型通用化与可视化表达。可视化建模结果验证部分学者对SEM成像特性和放大倍率的关系假设。通过精度实验证明相比于传统成像模型,连续通用成像模型可更精准地刻画SEM 成像过程,为探索SEM成像规律提供新思路,具有重要的理论和应用价值。针对SEM图像畸变原因复杂、无明显规律且无法利用光学参数化模型校正等问题,提出一种顾及倍率变化的SEM图像畸变校正方法。 对于SEM的时间漂移畸变与空间畸变,从产生根源入手,独立建模,分而治之,分别建立漂移畸变-采集时间畸变模型与空间畸变-像素位置畸变模型;结合不同

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

用zemax设计光学显微镜光学系统设计实验报告

课 程 设 计 光学显微镜设计 设计题目 学 号 专业班级 指导教师 学生姓名 测量显微镜

根据学号得到自己设计内容的数据要求: 1.目镜放大率10(即焦距25) 2.目镜最后一面到物面距离110 3.对准精度1.2微米 按照实验步骤,先计算好外形尺寸。然后根据数据要求选取目镜与物镜。 我先做物镜。因为这个镜片比较少。按物镜放大率选好物镜后,将参数输入。简单优化,得到比较接近自己要求的物镜。 然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。将曲率半径设为可变量,调入默认的优化函数进行优化。发现“优化不了”,所有参数均没有变化。而且发现把光源放在“焦点”位置,目镜出射的不是平行光。我百思不得其解。开始认为镜头库的参数可能有问题。最后我问老师,老师解释,那个所谓的“焦点”其实不是焦点,我错误的把“焦点”到目镜第一个面的距离当成了焦距。这个目镜是有一定厚度的,不能简单等效成薄透镜。焦点到节点的距离才是焦距。经过老师指点后,我尝试调节光源到目镜第一面的距离,想得到出射平行光,从而找到焦点。但这个寻找是很费力气的,事倍功半。老师建议我把目镜的参数倒着顺序输入参数。然后用平行光入射,然后可以轻松找到焦点。 但是,按照这个方法,倒着输入参数,把光源放在无限

远的地方(平行光入射),发现光线是发散的。不解。还是按照原来的方法。把光源放在目镜焦点上,尽量使之出射平行光。然后把它与优化好的物镜拼接起来。后来,加入理想透镜(会聚平行光线),加以优化。 还有一个问题,就是选物镜的时候,发现放大倍率符合了自己的需求,但工作距离与共轭距,不符合自己的要求。这个问题在课堂上问过老师,后来经老师指点,通过总体缩放解决。 物镜参数及优化函数

文物分析技术实践-西北大学文化遗产学院

《文物分析技术实践》 一、课程名称:文物分析技术实践 二、课程类型:专业选修课程 三、适用对象:文物保护技术专业三年级本科生 四、计划课时:36 五、学分:2 六、任课教师:凌雪孙凤 七、课程简介: 本门课程主要是在学生了解文物分析技术理论课程的基础上,利用学院实验教学示范中心现有的仪器设备,首先介绍超景深三维视频显微系统、偏光显微镜、金相显微镜、扫描电子显微镜、X射线荧光光谱仪、显微红外光谱仪、X射线衍射光谱仪、便携式拉曼光谱仪、热重示差同步分析仪、气相色质谱联用仪、离子色谱仪的仪器构造及使用注意事项以及测试前样品的准备与处理,然后上机进行操作性实践。 通过本门课程的学习,培养学生如何规范使用和操作仪器,加深学生对理论内容的理解,并提高学生实际动手的实验技能。 考核形式:实践课程论文 八、课程的主要内容 实践一超景深三维显微系统的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践二偏光显微镜的使用(2课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练

实践三金相显微镜的使用(2课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践四扫描电子显微镜的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践五X射线荧光光谱仪的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践六显微红外光谱仪的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践七X射线衍射光谱仪的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践八便携式拉曼光谱仪的使用(4课时) 一、仪器构造及使用注意事项 二、样品准备及处理 三、实际操作训练 实践九热重示差同步分析仪的使用(2课时)

40倍显微物镜光学系统的设计

目录 摘要 I Abstract II 第一章绪论 1 1.1显微镜国内外发展情况 1 1.2 ZEMAX简介及原理 1 第二章物镜设计方案 2 2.1 物镜的种类 2 2.2高倍物镜的设计方案 9 第三章物镜设计参数及镜片选择 10 3.1物镜的数值孔径 10 3.2物镜的鉴别率 11 3.3物镜的有效放大倍数 11 3.4垂直鉴别率 12 3.5显微镜的视场 12 3.6 显微镜物镜设计中应校正的像差 13 3.7实际参数确定 13 第四章40×显微镜物镜光学系统仿真过程 16 4.1选择初始结构并设置参数 16 4.2自动优化 16 4.3 物镜的光线像差(Ray Aberration)分析 18 4.4 物镜的波像均方差(OPD)分析 18 4.5 物镜的光学传递函数(MTF)分析 19 4.6最终仿真参数分析 20 第五章心得体会 21 第六章参考文献 21 摘要 物镜是显微镜的结构组成中最为重要的光学元器件之一,它的原理则是利用光的折射成像原理,使被检测得物体通过光迹被物镜折射成像再传入人眼中,所以如何衡量一台显微镜质量的好坏,物镜的各项光学技术参数就成为了最为直接和影响成像质量的最重要的标准。物镜筒内是由分开一段距离并被固定的,一组或多组胶

合透镜组组装而成,目的是为了对像差和对像差公差的校正。物镜有许多具体的要求,比如透镜组的合轴或齐焦,因此物镜的结构极为复杂,需要具备精密的制作工艺。由于现代物镜的数值孔径(研究物镜的非常重要的一个参考数据)已经接近极限,物镜成像的视场中心的分辨率与研究的理论值几乎没有出入,也就意味着现代显微物镜已经达到了高度完善的地步,因此视场边缘的细致化与视场的增大化就成为我们现如今的研究工作。本次课设主要目的是设计出一个40×显微镜物镜光学系统。为了设计出相对完整的物镜光学系统,使得成像光斑(也就是误差)达到衍射极限,并能够完美的解决系统像差,主要的应用光学设计软件是ZEMAX,随后我们会详细介绍ZEMAX的发展历史和功能。设计显微物镜光学系统的过程就是个反复优化的过程,需要先经过计算机初步优化,系统分析,计算机调整参数,更改参数变量,再次进行优化,最终靠分析波前均方差和波像均方差等重要参数,评价模拟结果的点列图,设计出符合要求的显微物镜 关键词:显微物镜;ZEMAX;优化;光学系统 Abstract The most important objective is microscope optical components, use light was the first object, so direct relation with little influence imaging quality and technical parameters of the optical microscope, is the primary measure a quality standard. The structure is complex, objective, because of poor precision calibration, metal objects from the telescope in a certain distance apart and fixed lens groups. There are many specific objective requirements, such as close to axis. Modern microscope objectives, it has already reached the height already nearing their limits numerical aperture, view of theoretical resolution of the center with little difference has a narrow-sized microscope objectives. The view and improve the quality of imaging edge view, this study is still possible, still in the works. This class is mainly applied set ZEMAX optical design software, design and x microscope optical system accurately. Through computer optimization, system analysis - fine-tuning parameters - changing parameters optimized variables - again after repeated process, designed to eliminate system as the objectives and poor aspheric optics system, make whole disk image reached diffraction limit. The simulated results

光学设计显微镜物镜设计

第十六章显微镜物镜设计 显微镜是用来帮助人眼观察近距离细小目标的一种目视光学仪器,它由物镜和目镜组合而成。显微镜物镜的作用是把被观察的物体放大为一个实像、位在目镜的焦面上,然后通 过目镜成像在无限远,供人眼观察。 在一架显微镜上,通常都配有若干个不同倍率的物镜目镜供互换使用。为了保证物镜的互换性,要求不同倍率的显微镜物镜的共轭距离(物平面到像平面的距离)相等。各国生 产的通用显微镜物镜的共轭距离大约为190m m左右,我国规定为195mm。如图16- 1所 示。可见,显微镜物镜的倍率越高,焦距越短。 还有一种被称为“无限筒长”的显微镜物镜,被观察物体通过物镜以后,成像在无限远,在物镜的后面,另有一个固定不变的筒镜透镜,再把像成在目镜的焦面上,如图16-2所示。筒镜透镜的焦距,我国规定为250mm。物镜的倍率按与筒镜透镜的组合倍率计算为: 250 图16 — 2无限筒长显微镜系统

§ 1显微镜物镜的光学特性 一显微镜物镜的倍率 显微镜物镜的倍率是指物镜的垂轴放大率。由于显微镜是实物成实像,因此为负值,但一般用的绝对值代表物镜的倍率。在共轭距L一定的条件下,与物镜的焦距存 在以下关系: 物 2 L (1 ) 对于无限筒长的显微镜的物镜,其焦距与倍率之间的关系为: 250 物 式中,为负值。 无论是有限筒长,还是无限筒长的显微镜的物镜,倍率的绝对值越大,焦距f物越短。 所以,实际上,物镜的倍率决定了物镜的焦距。因此,显微镜物镜的焦距一般比望远镜物镜的焦距短得多。焦距短是显微镜物镜光学特性的一个特点。 二显微镜物镜的数值孔径 数值孔径NA n sinU,是显微镜物镜最主要的光学特性,它决定了物镜的衍射分辨率,根据显微镜物镜衍射分辨率的计算公式: 0.61 NA 公式中,代表显微镜物镜能分辨的最小物点间隔;为光的波长,对目视光学仪器来说, 取平均波长0.0005mm 500nm ;NA为物镜的数值孔径。因此要提高显微镜物镜的 分辨率,必须增大数值孔径NA。 显微镜物镜的倍率、数值孔径NA、显微镜目镜的焦距f目与系统出射光瞳直径D/之 间满足以下关系: / NA NA 250 D f s = 目 式中,目为目镜的视放大率。为了保证人眼观察的主观亮度,出射光瞳直径最好不小于 1mm。在一定的数值孔径下,如果目镜的倍率目越小,就要求物镜有更高的倍率,但是物镜的倍率越高,工作距离越短,这给显微镜的使用造成不方便,因此一般希望尽量提高目 镜的倍率,但目镜由于受到出射光瞳距离的限制,焦距不能太小,通常目镜的最高倍率为 15 ,因此物镜倍率越高,要求物镜的数值孔径越大。数值孔径NA与相对孔径之间近似符合以下关系:

表面形貌学非接触式测量方法比较及浅析变焦显微测量技术

表面形貌学非接触式测量方法比较及浅析变焦显微测量技术 综述 齐济13.4.30 相比于接触式的表面形貌学测量方法易于损伤被测工件表面的缺点,非接触式的表面形貌学测量方法在测量领域中扮演着越来越重要的角色,正向着速度更快、分辨率更高、测量范围更高、适用范围更广的方向发展。以下为所找到的主要的几种此类的测量方法:

虽然测量方法较多,但不同方法各有特点和优缺点,适用于不同场合。以下为各种方法的分辨力、测量范围、优缺点、工作环境要求、测量速度等参数汇总和比较(鉴于资料局限,有部分关于工作环境和测量速度的描述缺失):

Focus Variation Microscopy的国内外研究现状分析 技术比较成熟的产品: ●奥地利Alicona公司的“自动变焦三维表面测量仪”、“Infinite无限变焦刀具形貌测量 仪”; (https://www.360docs.net/doc/3e7314479.html,/home/products/InfiniteFocus/InfiniteFocus-Standard-System.en.php)(https://www.360docs.net/doc/3e7314479.html,/home/products/EdgeMaster/EdgeMaster.en.php) ●英国Scantron公司“光学式表面粗糙度轮廓形貌仪Proscan 2000”(原理类似); (https://www.360docs.net/doc/3e7314479.html,/view/a35fc100eff9aef8941e066b.html) ●日本基恩士公司植保学院中心实验室的“超景深三维显微系统”(VHX系列产品) (主要技术指标:1、镜头组能实现无级变焦,可涵盖0-1000倍的放大要求,镜头工作距离不低于25mm。2、系统具有快速抑制眩光功能,消除观察物体的强反光。3、可支持实时2维和3维图片拼接,具有三维合成功能,弥补景深不足时图象不清晰。 4、CCD物理像素不低于211万,且具有高清晰观察模式;3CCD清晰模式以及5400万高清晰模式。 5、配动态分析软件、环形照明以及扩散照明适配器(暗场照明和除强光)。 主要功能特色:1、能够从多视角观察物体,整个系统具有观察、保存、测量一体化设计。2、二维测量:具有高分辨率尺寸测量功能,可测量距离、角度等几何参数;具有自动校正、边缘检测、计数、对焦功能以及自动识别当前的放大倍率和标尺自动更新。3、3D轮廓测量:可支持三维建模与测量、截面轮廓测量、3D体积测量等,具有3D照明模拟功能。4、可实现最快24000帧/秒的高速录像功能,支持定时拍摄和长时间录制,最长时间能达到50小时以上。)(https://www.360docs.net/doc/3e7314479.html,/p-511250986.html) ●德国LEICA(徕卡)公司的“超景深三维视频显微镜”(DVM5000系列产品) 同时发现,国内的该类产品需求较大:如重庆大学、哈尔滨工业大学、、天津理工大学、四川博物院等单位都公开招标,购买该类产品。说明市场前景比较广阔。

工程光学习题参考答案第七章典型光学系统

第七章 典型光学系统 1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离; (3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。 解: ① 21 -== r l R )/1(m ∴ m l r 5.0-= ② P R A -= D A 8= D R 2-= ∴ D A R P 1082-=--=-= m P l p 1.010 1 1-=-== ③f D '= 1 ∴m f 1-=' ④D D R R 1-=-=' m l R 1-=' ⑤P R A '-'= D A 8= D R 1-=' D A R P 9-=-'=' m l P 11.09 1 -=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。 eye

已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-' %50=K 求:① Γ ② 2y ③l 解: ① f D P '-'- =Γ1 25 501252501250-+=''-+'= f P f 92110=-+= ②由%50=K 可得: 18.050 *218 2=='= 'P D tg 放ω ωωtg tg '= Γ ∴02.09 18 .0==ωtg D y tg = ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二: 18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm f e 250=' mm l 2.22-= y y l l X '==='= 92.22200βΘ mm y 102= ③ l P D '-'= mm D P l 20025050-=-=-'=' f l l '=-'11125 112001=--l mm l 22.22-= 3.一显微镜物镜的垂轴放大率为x 3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

Vision体视显微镜

Vision体视显微镜 产品简介: 1.无目镜光学系统解放了操作者 2.标准配置放大范围7-40倍,最大可以放大到160倍 3.变焦比6:1,缩短物镜可以增大工作距离 4.升降支架和万能支架,卤素灯光源,光纤传播 5.可配置视频,数码和35mm相机,及可移动载物台和测量载物台 产品详细介绍: 英国的Vision公司是专业化生产创新性显微镜的厂家,是新的显微技术领跑者。公司创建于1958年,最初从事军工、航空航天和赛车等行业的显微无损检测服务,后来成功开发了独有的视野扩展技术(Expand Pupil),一跃成为最具有创新精神和活力的显微设备制造商,获得了大量荣誉和奖章,目前全球有六家工厂。Vision产品被广泛应用于电子、仪器仪表、纺织、印刷、机械、临床和生命科学领域。 视野扩展技术的核心是高速旋转的圆盘,350万个70微米的单透镜组成,具有投射和反射功能,结构类似于昆虫“复眼”。目前Vision公司的产品包括下面几类: 实体显微镜(体视显微镜):LYNX,Mantis无目镜显微镜;Alpha,Beta的ISIS扩瞳实体显微镜;Vs8专用于PCB检测的无目镜显微镜。 测量显微镜:二维测量显微镜:Kerstel,Hawk; 三维测量显微镜 :Hawk(包括半自动,全自动三维测量显微镜)。 生物显微镜:DX40:三目观察头,高眼点38mm,屈光度校正双目镜(ISIS目镜),平场明视野消色差物镜,柯勒照明,可接照像设备。 Dx60:(倒置显微镜)双目镜,高眼点38mm,平场明视野消色差物镜,可配相衬物镜,可接相机,标准配置10倍ISIS目镜。 ISIS目镜:38mm的眼距使有视力缺陷的操作者方便带眼镜操作;解决视觉漂移问题;在径向和轴向的自由度方面比常规目镜提高8倍;可以与不同品牌搭配:Olympus,Nikon,Zeiss,Leica,Motic等。

光学显微镜的发展历史

杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 ' 1 f

'2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1 '120202β?=≤f y 显微镜的分辨率和有效放大率 光学仪器分辨率 瑞利判据:两个相邻的“点”光源所成的像是两个衍射斑,若两个等光强的非相干点像之间的间隔等于艾里圆的半径,即一个像斑的中心恰好落在另一个像斑的第一暗环处,则这两个点就是可分辨的点。当物面在无穷远时,以两点对光学系统的张角可表示两分辨点的距离,其值为:

相关文档
最新文档