金属晶体(1)0PPT
合集下载
化学:3.2.1《金属晶体》课件(鲁科版选修4)
二.金属晶体的原子堆积模型 金属晶体的原子堆积模型 思考: 行列对齐 四球一空 行列相错 三球一空 思考 (非最紧密排列 非密置层 非最紧密排列) (最紧密排列 密置层 最紧密排列) 非最紧密排列 最紧密排列 1.如果把金属晶体中的原子看成直径相等的 如果把金属晶体中的原子看成直径相等的 球体,把他们放置在平面上 有几种方式? 把他们放置在平面上,有几种方式 球体 把他们放置在平面上 有几种方式
联想·质疑 金属晶体有哪些共同的性质?为什么?
•导电导热性强;不透明.有金属光泽;延展性好; 导电导热性强;不透明.有金属光泽;延展性好; 导电导热性强 •合金为何比纯金属的性质优越? 合金为何比纯金属的性质优越? 合金为何比纯金属的性质优越
思考1.合金的概念? 思考 合金的概念? 合金的概念 2.合金的特点? 合金的特点? 合金的特点 3.合金的类型及其性质特点? 合金的类型及其性质特点? 合金的类型及其性质特点
课堂小结: 课堂小结 决定
结构
金属内部的特 殊结构
性质 金属键
金属的物理共性
原子化热 金属阳离子 自由电子 原子半径 自由电子数 导电性 导热性 延展性
熔沸点高低 硬度大小
试一试
1、金属晶体的形成是因为晶体中存在 ( C ) A.金属离子间的相互作用 A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
第2节金属晶体与离子晶体(1) 节金属晶体与离子晶体(
复习思考: 复习思考: 1.如何用金属键解释金属的导热性 导电 如何用金属键解释金属的导热性.导电 如何用金属键解释金属的导热性 性和延展性? 性和延展性? 2.哪些因素会影响金属键的强弱呢? 哪些因素会影响金属键的强弱呢? 哪些因素会影响金属键的强弱呢
第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
金属键金属晶体ppt课件.ppt
熔点/℃
Na 3s1 186 108.4 97.5
Mg 3s2 160 146.4 650
Al 3s23p1 143.1 326.4
660
Cr 3d54s1 124.9 397.5 1900
金属的熔点、硬度与金属键的强弱有关,金属键的强弱 又可以用原子化热来衡量。
原子化热是指1mol金属固体完全气化成相互远离的 气态原子时吸收的能量。
⑷金属晶体结构具有金属光泽和颜色
• 由于自由电子可吸收所有频率的光,然 后很快释放出各种频率的光,因此绝大 多数金属具有银白色或钢灰色光泽。而 某些金属(如铜、金、铯、铅等)由于 较易吸收某些频率的光而呈现较为特殊 的颜色。
• 当金属成粉末状时,金属晶体的晶面取
向杂乱、晶格排列不规则,吸收可见光
后辐射不出去,所以成黑色。
a
ρ= m = 4 M/NA V 2 2 d3
解此类题的关键! 37
已知铜晶胞是面心立方晶胞,该晶胞的边长为 3.6210-10m,每一个铜原子的质量为1.0551025kg ,试回答下列问题:
(1)一个晶胞中“实际”拥有的铜原子数是多少?
(2)该晶胞的体积是多大?
(3)利用以上结果计算金属铜的密度。
2. 晶胞中微粒数个晶胞共享,处于体心的 金属原子全部属于该晶胞。 微粒数为:8×1/8 + 1 = 2 (2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的为2 个晶胞共有。 微粒数为:8×1/8 + 6×1/2 = 4 (3)六方棱柱:
在六方体顶点的微粒为6个晶胞共有,在面心的为2 个棱柱共有,在体内的微粒全属于该棱柱。 微粒数为:12×1/6 + 2×1/2 + 3 = 6
(1)欲计算一个晶胞的体积,除假定金原子是钢 性小球外,还应假定 各面对角线上。的三个球两两相切
Na 3s1 186 108.4 97.5
Mg 3s2 160 146.4 650
Al 3s23p1 143.1 326.4
660
Cr 3d54s1 124.9 397.5 1900
金属的熔点、硬度与金属键的强弱有关,金属键的强弱 又可以用原子化热来衡量。
原子化热是指1mol金属固体完全气化成相互远离的 气态原子时吸收的能量。
⑷金属晶体结构具有金属光泽和颜色
• 由于自由电子可吸收所有频率的光,然 后很快释放出各种频率的光,因此绝大 多数金属具有银白色或钢灰色光泽。而 某些金属(如铜、金、铯、铅等)由于 较易吸收某些频率的光而呈现较为特殊 的颜色。
• 当金属成粉末状时,金属晶体的晶面取
向杂乱、晶格排列不规则,吸收可见光
后辐射不出去,所以成黑色。
a
ρ= m = 4 M/NA V 2 2 d3
解此类题的关键! 37
已知铜晶胞是面心立方晶胞,该晶胞的边长为 3.6210-10m,每一个铜原子的质量为1.0551025kg ,试回答下列问题:
(1)一个晶胞中“实际”拥有的铜原子数是多少?
(2)该晶胞的体积是多大?
(3)利用以上结果计算金属铜的密度。
2. 晶胞中微粒数个晶胞共享,处于体心的 金属原子全部属于该晶胞。 微粒数为:8×1/8 + 1 = 2 (2)面心立方:
在立方体顶点的微粒为8个晶胞共有,在面心的为2 个晶胞共有。 微粒数为:8×1/8 + 6×1/2 = 4 (3)六方棱柱:
在六方体顶点的微粒为6个晶胞共有,在面心的为2 个棱柱共有,在体内的微粒全属于该棱柱。 微粒数为:12×1/6 + 2×1/2 + 3 = 6
(1)欲计算一个晶胞的体积,除假定金原子是钢 性小球外,还应假定 各面对角线上。的三个球两两相切
第三节金属晶体结构ppt课件
=4
则:
16
V球 =
πr3 3
C B
B
C CC C A
A BBB B C
立方F
8个顶角
n1
=
8×
1 8
=1
6个面心
n2
=
6×
1 2
=3
⑵立方面心晶胞的体积
V晶 = a3
c
C B
B
C CC C A
b a A BBB B C
立方F
每层采取最紧 密堆积
a
A
B
a
D
C
(100)晶面
∵⊿ABC是直角三角形。根据勾股定律得有:
……
第4层 A 第2层 C 第2层 B 第1层 A
A1型最紧密堆积
2.A1型堆积的晶胞类型
根据晶胞划分的规则,我们可从金属的 A1 型最紧密堆积中抽取出立方 面心晶胞。
第4层 A 第2层 C 第2层 B 第1层 A
抽取出
A1型最紧密堆积
BCCC A
B
CC
A BB B堆积 C C堆积
B 堆积和 C 堆积——(111)晶面 c
b a
3.立方面心晶胞的正八面体空隙
立方面心晶胞
立方面心晶胞内 的正八面体空隙
3个晶胞共有的正八面 体空隙
即,立方面心晶胞有两种八
面体空隙。
3个晶胞共用 顶点
⑴6各面心“点”构成的晶
晶胞1、3的 面心
胞内八面体空隙。 ⑵3个晶胞共同拥有的八面
体空隙(共用1条棱边) 。
二、A3型最紧密堆积及其晶胞
The A3 type is most close to pile up and its crystal lattice
金属的晶体结构PPT课件
2.2 金属的晶体结构
主要内容
金属晶体结构类型 合金相结构
固溶体 金属间化合物
一、金属的晶体结构
金属中常见的晶体结构类型
体心立方(BCC)
a=b=c, ===90°
铁(-Fe)、钨(W) 、铬(Cr)、 钼(Mo)、钒(V)等
面心立方(FCC)
a=b=c, ===90°
铝(Al)、铜(Cu)、 银(Ag)、 金(Au)、镍(Ni)、铅(Pb)、 铁(-Fe)等
间隙固溶体
如陶瓷材料中的 MgO-CoO、MgO-CaO、
PbTiO3-PbZrO3、Al2O3-Cr2O3 Cu-Zn系 和 固溶体
在合金中较为常见,的是金属和 H、B、C、N等元素形成的固溶 体
按固溶浓度不同
无限固溶体
溶质和溶剂可以按任意比例 相互固溶所生成的固溶体
A sse sse d A l-M g p h a se d ia g r a m .
a, c (c/a=1.633)
a 1 a2 c2
(
)
22 3 4
6
12
0.74 12 0.225R 6
0.414R
其它类型结构
A4结构
结构特点:由于共价键的饱和性和方向性的特点,使得共价键晶
体中原子的配位数要比离子型晶体和金属型晶体的小。
常见结构:典型的共价晶体有金刚石(单质型)、石墨、Ge、Si、
二、合金中的相结构
金属元素 非金属元素
添加
主体金属
添加
制
备
新型合金
新型合金 中的合金相
固溶体 金属间化合物
Hale Waihona Puke 相的分类结构固溶体:晶体结构与其某一组元相同的相。溶剂-溶质。 中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相
主要内容
金属晶体结构类型 合金相结构
固溶体 金属间化合物
一、金属的晶体结构
金属中常见的晶体结构类型
体心立方(BCC)
a=b=c, ===90°
铁(-Fe)、钨(W) 、铬(Cr)、 钼(Mo)、钒(V)等
面心立方(FCC)
a=b=c, ===90°
铝(Al)、铜(Cu)、 银(Ag)、 金(Au)、镍(Ni)、铅(Pb)、 铁(-Fe)等
间隙固溶体
如陶瓷材料中的 MgO-CoO、MgO-CaO、
PbTiO3-PbZrO3、Al2O3-Cr2O3 Cu-Zn系 和 固溶体
在合金中较为常见,的是金属和 H、B、C、N等元素形成的固溶 体
按固溶浓度不同
无限固溶体
溶质和溶剂可以按任意比例 相互固溶所生成的固溶体
A sse sse d A l-M g p h a se d ia g r a m .
a, c (c/a=1.633)
a 1 a2 c2
(
)
22 3 4
6
12
0.74 12 0.225R 6
0.414R
其它类型结构
A4结构
结构特点:由于共价键的饱和性和方向性的特点,使得共价键晶
体中原子的配位数要比离子型晶体和金属型晶体的小。
常见结构:典型的共价晶体有金刚石(单质型)、石墨、Ge、Si、
二、合金中的相结构
金属元素 非金属元素
添加
主体金属
添加
制
备
新型合金
新型合金 中的合金相
固溶体 金属间化合物
Hale Waihona Puke 相的分类结构固溶体:晶体结构与其某一组元相同的相。溶剂-溶质。 中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相
第二章纯金属的结晶ppt课件
分开,没有过渡层。 光学显微镜下,光滑界面由了若
干曲折的小平面构成,所以又称小平面界面。
b. 粗糙界面 (Rough interface):原子尺度下,界面两侧有几
个原子层厚度的过渡层,固液原子犬牙交错排列。光学
显微镜下,这类界面是平直的,所以又称非小平面界面。
42
2.5 晶核的长大
界面结构
光滑界面
液态金属中不仅存在结构起伏,而且存在能量起伏,也即
液态金属不同区域内的自由能也并不相同,因此形核功可
通过体系的能量起伏来提供。当体系中某一区域的高能原
子附着在临界晶核上,将释放一部分能量,一个稳定的晶
核即可形成。
34
2.4 晶核的形成
形核率 (Nucleation rate)
单位时间在单位体积液体内形成晶核的数目称为形核率。
22
2.3 金属结晶的结构条件
液态金属相起伏的特点
23
2.4 晶核的形成
前面谈到了结晶的热力学条件和结构条件。但事实上,
许多过冷液体并不立即发生凝固结晶。如液态高纯Sn过
冷5~20℃时,经很长时间还不会凝固。说明凝固过程还
存在某种障碍。
因此,还必须进一步研究凝固过程究竟如
何进行的(机理问题)?进行的速度如何
靠液态金属的能量变化,由晶胚直接形核的过程。
非均匀形核:又称异质形核或非自发形核。是指依附液体中现有固
体杂质或容器表面形成晶核的过程。实际液态金属中,总有或多或
少的杂质,晶胚总是依附于这些杂质质点上形成晶核,实际的结晶
过程主要是按非均匀形核方式进行。
25
2.4 晶核的形成
均匀形核 (Homogeneous nucleation)
作用。
干曲折的小平面构成,所以又称小平面界面。
b. 粗糙界面 (Rough interface):原子尺度下,界面两侧有几
个原子层厚度的过渡层,固液原子犬牙交错排列。光学
显微镜下,这类界面是平直的,所以又称非小平面界面。
42
2.5 晶核的长大
界面结构
光滑界面
液态金属中不仅存在结构起伏,而且存在能量起伏,也即
液态金属不同区域内的自由能也并不相同,因此形核功可
通过体系的能量起伏来提供。当体系中某一区域的高能原
子附着在临界晶核上,将释放一部分能量,一个稳定的晶
核即可形成。
34
2.4 晶核的形成
形核率 (Nucleation rate)
单位时间在单位体积液体内形成晶核的数目称为形核率。
22
2.3 金属结晶的结构条件
液态金属相起伏的特点
23
2.4 晶核的形成
前面谈到了结晶的热力学条件和结构条件。但事实上,
许多过冷液体并不立即发生凝固结晶。如液态高纯Sn过
冷5~20℃时,经很长时间还不会凝固。说明凝固过程还
存在某种障碍。
因此,还必须进一步研究凝固过程究竟如
何进行的(机理问题)?进行的速度如何
靠液态金属的能量变化,由晶胚直接形核的过程。
非均匀形核:又称异质形核或非自发形核。是指依附液体中现有固
体杂质或容器表面形成晶核的过程。实际液态金属中,总有或多或
少的杂质,晶胚总是依附于这些杂质质点上形成晶核,实际的结晶
过程主要是按非均匀形核方式进行。
25
2.4 晶核的形成
均匀形核 (Homogeneous nucleation)
作用。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【讨论4】为什么整块金属有金属光泽, 而金属粉末是黑色的?
• 由于自由电子可吸收所有频率的光,然后很快 释放出各种频率的光,因此绝大多数金属具有 银白色或钢灰色光泽。而某些金属(如铜、金、 铯、铅等)由于较易吸收某些频率的光而呈现 较为特殊的颜色。 当金属成粉末状时,金属晶体的晶面取向杂乱、 晶格排列不规则,吸收可见光后辐射不出去, 所以成黑色。
三、电子气理论解释金属晶体的导电性、 导热性、延展性及其金属光泽。
【讨论1】 金属为什么易导电? 在金属晶体中,无固定方向运动的自由电子, 在外加电场作用下发生定向运动形成电流,所 以金属容易导电且导电性随温度升高而降低。 典例2、金属能导电的原因是( B ) A.金属阳离子与自由电子间的相互作用较弱 B.自由电子在外加电场作用下可发生定向移动 C.金属阳离子在外加电场作用下可发生定向移动 D.金属晶体在外加电场作用下可失去电子
【讨论2】金属为什么易导热?
金属容易导热,是由于自由电子运动时与 金属阳离子
金属的导热率随温度的升高而降低
【讨论3】金属为什么具有良好的延展性?
当金属受到外力作用时,晶体中的各原子层 就会发生相对滑动,但不会改变原来的排列方 式,弥漫在金属原子间的电子气可以起到类似 轴承中滚珠之间润滑剂的作用,所以金属有良 好的延展性。
第三节
金属晶体
第一课时
自主预习检测:
1、金属共同的物理性质有哪些? 容易导电、导热、有延展性、有金属光泽等。
2、下列物质中含有金属键的是 ( AB ) A、金属铝 B、合金 C、NaOH D、NH4Cl
3、金属晶体的形成是因为晶体中存在( C) A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
课程设计-----要解决的问题
一、金属键概念、特征及本质(电子气理论) 二、金属晶体熔点的变化规律 三、电子气理论解释金属晶体的导电性、
导热性、延展性及其金属光泽。
一、金属键概念、特征及本质(电子气理论)
金属键的本质:“电子气理论”(自由电子理论) 金属原子脱落下来的价电子 形成遍布整个晶体的“电子气”,
金属之最 资 熔点最低的金属是---- 汞 液态 料
熔点最高的金属是---- 钨 3410℃ 密度最小的金属是---锂 锇 密度最大的金属是---铯 硬度最小的金属是---硬度最大的金属是---铬 铂 延性最好的金属是---金 展性最好的金属是---铯 结论:金属键的 最活泼的金属是-----最稳定的金属是------ 金 强度差别很大
典例3:下列生活中的问题,不能用金属键知识 解释的是( D ) A、用铁制品做炊具 B、用金属铝制成导线 C、用铂金做首饰 D、铁易生锈 典例4、下列有关金属晶体叙述正确的是( B )
A、常温下金属单质都以金属晶体形式存在
B、金属离子与自由电子之间的强烈作用,在一 定外力作用下,不因形变而消失 C、钙的熔、沸点低于钾
被所有原子所共用,从而把所有
的原子维系在一起。
备注: 金属键的组成粒子-----金属阳离子和自由电子 金属单质中不存在单个分子或原子(巨分子)。
“有阳离子而无阴离子”是金属独有的特性。
(2)金属键的成键条件: 存在于金属单质和合金中。 (3)金属键的特征: 自由电子可以在整块金属中自由移动, 因此金属键没有方向性和饱和性。 典例1:下列有关金属及金属键的说法,正确的是 ( AB ) A、金属键具有方向性与饱和性 B、金属键是金属阳离子与自由电子间的相互作用 C、金属键是金属阳离子与阴离子的吸引力 D、金属键是自由电子与金属原子之间的相互作用
二、金属晶体熔点的变化规律 1、金属晶体概念 : 通过金属键作用形成的单质晶体 常温下,绝大多数金属单质和合金都是金属晶 体,但汞除外,因汞在常温下呈液态。金属晶 体的熔沸点差别较大。 2、金属熔化时破坏的作用力:金属键 金属阳离子半径越小,所带电荷越多价电子数越 多),自由电子越多,金属键越强,熔点就相应越高 ,硬度也越大,但金属性越弱 如:K ﹤ Na ﹤ Mg ﹤ Al Li › Na › K › Rb › Cs
D、温度越高,金属的导电性越好
【总结】金属晶体的结构与性质的关系
组成 导电性 导热性 自由电子 与金属离 延展性 晶体中各 原子层相
金属离 自由电子在 子和自 外加电场的
由电子 作用下发生
定向移动
子碰撞传
递热量
对滑动仍
保持相互
作用