深圳市宝安区宝安中学2017-2018学年度第二学期八年级数学第四周周测试卷(无答案)

合集下载

深圳市宝安中学2018-2019学年下期期末复习测试北师大版八年级数学试卷(有答案)

深圳市宝安中学2018-2019学年下期期末复习测试北师大版八年级数学试卷(有答案)

深圳市宝安中学2018-2019学年下期期末复习测试八年级数学试题卷注意:本试卷分试题卷和答题卡两部分.考试时间90分钟,满分100分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.一、选择题(本大题共8小题,每小题3分,共24分)下列各小题均有四个选项,其中只有一个是正确的.1.下列图案既是轴对称图形又是中心对称图形的是A .B .C .D .2.如果a b >,那么下列不等式中一定成立的是A .22a b >B .11a b ->-C .11a b+>-D .11a b +>-3.如图,在ABCD 中,3AB =,5AD =,BCD ∠的平分线交BA 的延长线于点E ,则AE 的长为A .3B .2.5C .2D .1.54.不等式组301x x +>⎧⎨≤⎩的解集在数轴上表示正确的是A .B .C .D .(第3题图)(第5题图)(第7题图)5.如图,已知在Rt ABC 中,90ABC ∠= ,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径画弧,两弧在直线BC 上方的交点为点P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED BC ⊥;②A EBA ∠=∠;③EB 平分AED ∠;④12ED AB =中,一定正确的是A .①②③B .①②④C .①③④D .②③④6.将下列多项式分解因式,结果中不含因式1x -的是A .21x -B .221x x ++C .221x x -+D .(2)(2)x x x -+-7.如图,已知长方形ABCD ,一条直线将该长方形ABCD 分割成两个多边形,则所得任一多边形內角和度数不可能是A .720B .540C .360D .1808.若不等式组30x a x >⎧⎨-≤⎩,只有三个正整数解,则a 的取值范围为A .01a ≤<B .01a <<C .01a <≤D .01a ≤≤二、填空题(每小题3分,共21分)9.x 的2倍与y 的差大于1,可列不等式:.10.若分式242x x --的值为0,则x 的值为.11.用反证法证明“一个三角形不能有两个角是直角”时应首先假设.12.当0y ≠时,22b by x xy =,这种变形的依据是.13.小明同学在社团活动中给发明的机器人设置程序:(a ,n ).机器人执行步骤是:向正前方走a 米后向左转n ,再依次执行相同程序,直至回到原点.现输入3a =,60n = ,那么机器人回到原出发点共走了米.14.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若24AC BD +=厘米,△OAB 的周长是18厘米,则EF =厘米.15.小明想从一张长为8cm,宽为6cm 的长方形纸片上剪下一个腰为5cm 的等腰三角形,要求等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上,则剪下的等腰三角形的底边长为.(第13题图)(第14题图)三、解答题(本大题共7个小题,共55分)16.(6分)给出三个分式:11a -、11a +、222a a -,请你把这三个分式(次序自定)填入下列横线上(—)÷,并化简.17.(6分)在△ABC 中,=AB AC ,请你用两个与△ABC 全等的三角形拼成一个四边形,并说明在你拼的图形中,其中一个三角形经过怎样的运动变化就可得到另一个三角形.18.(5分)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:一次函数与不等式的关系(1)请根据以上方框中的内容在下面数学序号后边的横线上写出相应的结论.①;②;③;④;(2)如果点C的坐标为(1,3),那么不等式11kx b k x b +≤+的解集是.19.(9分)在下列分式方程解应用题时:(1)主要步骤有:①审清题意;②设未知数;③根据题意找关系,列出分式方程;④解方程,并;⑤写出答案.(2)请你联系实际设计一道关于分式方程4800500020x x =+的应用题,要求表述完整,条件充分,并写出解答过程.20.(9分)如图,已知在△ABC 中,BAC ∠的平分线与线段BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,求证:BN=CM.一次函数与方程的关系21.(9分)2019年5月20日是第30个中国学生营养日,某校社会实践小组在这天开展活动菁优网,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.22.(11分)在△ABC 中,=AB AC ,=30A ∠ ,将线段BC 绕点B 逆时针旋转60得到线段BD ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上.(1)如图1,直接写出ABD ∠和CFE ∠的度数;(2)在图1中:AE 和CF 有什么数量关系?请说明理由;(3)如图2,连接CE ,判断△CEF 的形状并加说明理由.八年级数学试卷答案一、选择题(每小题3分,共24分)1.D ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ;7.A;8.A..二、填空题(每小题3分,共21分)9.2x -y >1;10.-2;11.这个三角形中有两个角是直角;12.分式的基本性质;13.18;14.3;15.或或三、解答题(本大题共7个小题,共55分)16.(6分)答案不唯一,例如:2111122a a a a -¸-+-………………………………………………………………1分222122a a a =¸--……………………………………………………3分222221a a a -=×-……………………………………………………5分4.a =………………………………………………………………6分17.(6分)答案不唯一,正确画出图形3分,图形变化描述准确3分.如图,在下面所拼成的四边形中,把△ABC 以BC 为对称轴,经过轴对就可以得到△BDC .18.(5分)每空1分.11,(1)0,0,0;,(2) 1.=+⎧+=+>+<⎨=+⎩≥y k x b k x b k x b k x b y k x b x 19.(9分)(1)等量,检验.………………………………………………………………2分(2)答案不唯一为了帮助早收自然灾害的地区重建家园,某学校号召同学们自愿捐款。

宝安中学2017-2018学年第二学期八年级开学考数学试卷

宝安中学2017-2018学年第二学期八年级开学考数学试卷

宝安中学2017-2018学年第二学期八年级开学考数学试卷一.选择题(每题3分,共36分)1 ) A .±3 B .±9 C .3 D .92.如果a <0,则下列式子错误的是( ) A .5+a >3+a B .5-a >3-a C .5a >3a D .5a >3a3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25B .312,412,512C .3,4,5D .8,15,174.坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离为3.若A 点在第二象限,则A 点坐标为( ) A .(-3,3)B .(3,-3)C .(3,3)D .(-2,3)5.如图所示,则不等式的解集为( )A .1<x <2B .1≤x <2C .1<x ≤2D .1≤x ≤26.如图∠AOP =∠BOP =15°,PC ∥OA ,PD ⊥OA ,若PC =4,则PD =( )A .4B .2C .D .7.如图,直线y =2x -4和直线y =-3x +1交于一点,则方程组2431x y x y ⎧⎨⎩-=+=的解是( )A .01x y ⎧⎨⎩== B .02x y ⎧⎨⎩==- C .12x y ⎧⎨⎩==-D .20x y ⎧⎨⎩==8.某地连续九天的最高气温统计如下表:A .24,25B .24.5,25C .25,24D .23.5,249.不等式组9511x x x m ⎧⎨⎩+<+>+的解集是x >2,则m 的取值范围是( )A .m ≤2B .m <1C .m ≤1D .m ≥110.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,那么销售时最低可打() A .6折 B .7折 C .8折D .9折11.如图,在平面直角坐标系中,点A 为直线y =x 上一点,过点A 作AB ⊥x 轴于点B ,若OB =4,点E 是OB 边上的一点,且OE =3,点P 为线段AO 上的动点,则△BEP 周长的最小值为( ) A . B .6 C .4 D .512.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 2A 3B 2,…,依此规律,则点A 7的坐标是( ) A.(-8,0) B .(-8,8) C .(8,-8) D .(0,16)二.填空题(每题3分,共12分)13.不等式组482203x x x ⎧⎪⎨⎪⎩-≤-+>的最小整数解为 .14.如图,在△ABC中,点D在BC上,AB=AD=DC,∠BAD=16°,则∠C=.15.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x的解集为.16.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三.解答题(共52分)17.(8分)计算:(1;(2)27325x yx y⎧⎨⎩+=-=.18.(8分)解不等式组组,并把其解集在数轴上表示出来.(1)110332(1)3xx x⎧⎪⎨⎪⎩--≥--<;(2)2151132513(1)x xx x⎧⎪⎨⎪⎩-+-≤-<+.19.(6分)如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.20.(6分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD的延长线于点E.求证:CE=12 BD.21.(7分)租用若干辆载重量为8吨的甲乙汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.(1)请问:一共需要租用多少辆汽车?(2)若租用甲汽车的数量少于乙汽车的数量,甲汽车的租金为400元/辆,乙汽车的租金为500元/辆,请你给出一种费用最省的租用方案,并求出该方案所需费用.22.(7分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图所示:(1)根据图象,求y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.23.(10分)如图,已知直线AD:y=43x+8与直线BC:y=-2x-2相交于点C.(1)直接写出坐标:A________、B________;(2)求△ABC的面积;(3)设点P是直线y=-2x-2上一点,当S△ABP=S△ABC时,求出点P的坐标;(4)如图2,若∠ADO的平分线与y轴交于点E,求直线DE的关系式.图2图1参考答案与试题解析一.选择题1.选:C.2.选:C.3.选:B.4.选:A.5.选:B.6.选:B.7.选:C.8.选:A.9.选:C.10.选:B.11.【解答】解:在y轴的正半轴上截取OF=OE=3,连接EF,∵A点为直线y=x上一点,∴OA垂直平分EF,∴E、F是直线y=x的对称点,连接BF交OA于P,根据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB;∵OF=3,OB=4,∴BF==5,∵EB=4-3=1,△BEP周长最小值为BF+EB=5+1=6.故选:B.12.【解答】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:B.二.填空题13.答案为0.14.答案为:31°.15.答案为x<-1.16.【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).三.解答题17.【解答】解:(1)原式=34;(2)32xy⎧⎨⎩==.18.【解答】解:(1)不等式组的解集为1<x≤4,画图略;(2),由①得:x≥-1;由②得:x<2,∴不等式组的解集为-1≤x<2,表示在数轴上,如图所示:.19.【解答】解:(1)∵AB=AC∴∠B=∠ACB=(180°-∠A)=70°,∵MN垂直平分线AC,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB-∠ACD=70°-40°=30°;(2)∵MN是AC的垂直平分线∴AD=DC,AC=2AE=10,∴AB=AC=10,∵△BCD的周长=BC+CD+BD=AB+BC=17,∴△ABC的周长=AB+BC+AC=17+10=27.20.【解答】解:延长CE、BA相交于点F.∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF.在△ABD和△ACF中,∴△ABD≌△ACF(ASA),∴BD=CF,∵BD平分∠ABC,∴∠CBE=∠FBE,∴在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∴.21.【解答】解:(1)设有x辆车,则有(4x+20)吨货物.由题意,得0<(4x+20)-8(x-1)<8,解得:5<x<7.∵x为正整数,∴x=6.答:共有6辆汽车.(2)方案一为:甲1辆,乙5辆,费用:2900元;方案二为:甲2辆,乙4辆,费用:2800元;故选用方案二.22.【解答】解:(1)设y1=kx,则将(10,600)代入得出:600=10k,解得:k=60,∴y1=60x(0≤x≤10),设y2=ax+b,则将(0,600),(6,0)代入得出:,解得:,∴y2=-100x+600 (0≤x≤6);(2)当两车相遇时,y1=y2,即60x=-100x+600,解得:x=,∴当两车相遇时,求此时客车行驶了小时;(3)若相遇前两车相距200千米,则y2-y1=200,∴-100x+600-60x=200,解得:x=,若相遇后相距200千米,则y1-y2=200,即60x+100x-600=200,解得:x=5∴两车相距200千米时,客车行驶的时间为小时或5小时.23.【解答】解:(1)A(0,8),B(0,-2);(2)联立得:C(-3,4),∵A(0,8),B(0,-2),∴AB=6,则S△ABC=×6×3=9;(3)P(6,-14)或(-6,10);(4)DE:y=12x+3.。

广东省深圳市宝安中学(集团)初中部2019-2020学年第二学期八年级第 10 周周测试卷(PDF版无答案)

广东省深圳市宝安中学(集团)初中部2019-2020学年第二学期八年级第 10 周周测试卷(PDF版无答案)

点 A 的对应点 A 坐标为(4,1),则点 B 坐标为 ( )
A. (4, 2)
B. (4,3)
C. (6, 2)
D. ( 6, 3)
5.顺次连接平面上 A , B , C , D 四点得到一个四边形,从① AD / /BC ,② AB CD ,③ A C ,④ B D 四个条件中任取其中两个,可以得出“四边形 ABCD 是平行四边形”的情况共有 ( )
第 2页(共 4 页)
19.(6
分)先化简,再求值
3 m -1
m
1
m2
m
2 2m
1
,其中
m

2
m
3
的整数.
20.(8 分)如图,在平面直角坐标系中,每个小正方形的边长为 1, ABC 各顶点都在格点上,点 A , C
的坐标分别为 1, 2 , 0, 1 ,结合所给的平面直角坐标系解答下列问题:
D.28
12.如图, O 是等边 ABC 内一点, OA 3, OB 4 , OC 5 ,将线段 BO 以点 B 为旋转中心逆时针旋转 60 得到线段 BO ,下列结论:
①△ BOA 可以由 BOC 绕点 B 逆时针旋转 60 得到;
②点 O 与 O 的距离为 4 ;③ AOB 150 ;④ S四边形AOBO 6 3 3 ; 其中正确的结论是 ( )
B.若 a b ,则 a 3 b 3 D.若 a b ,则 2a 3 2b 3
3.将下列多项式因式分解,结果中不含因式 x-1 的是( )
A. x2-1 B. x2+2x+1
C. x2-2x+1 D. x(x-2)+(2-x)
4.在平面直角坐标系中,点 A , B 坐标分别为 (1, 0) , (3, 2) ,连接 AB ,将线段 AB 平移后得到线段 AB ,

[精品]2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷(解析版)

[精品]2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷(解析版)

2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列各数中,能使不等式x﹣1>0成立的是()A.1 B.2 C.0 D.﹣22.(3分)使分式有意义的x的取值范围为()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x≠03.(3分)下列四个高校校徽主体图案是中心对称图形的是()A. B.C. D.4.(3分)若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.65.(3分)下列变形是因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣3x﹣4=(x﹣4)(x+1)D.x2+2x﹣3=(x+1)2﹣46.(3分)如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE 于点F,若BC=6,则DF的长是()A.3 B.4 C.5 D.67.(3分)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.118.(3分)下列分式计算正确的是()A.=﹣B.=C.=x﹣1 D.﹣=19.(3分)下列命题正确的是()A.三角形三条角平分线的交点到三角形三个顶点的距离都相等B.两条对角线相等的四边形是平行四边形C.如果a>b,ac2>bc2D.分式的值不能为零10.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.6 B.6 C.4 D.411.(3分)如图,一次函数y=kx+b的图象交y轴于点A (0,2),则不等式kx+b <2的解集为()A.x>0 B.x<0 C.x>﹣1 D.x<﹣112.(3分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则BC的长度为()A.12 B.C.6 D.2二、填空题(每小题3分,共12分)13.(3分)因式分解:4m2﹣16=.14.(3分)如图,在周长为32的平行四边形ABCD中,AC、BD交于点O,OE ⊥BD交AD于点E,则△ABE的周长为.15.(3分)小颖准备用100元去购买笔记本和钢笔共15件,已知笔记本每本5元,每支钢笔9元,则小颖最多能买支钢笔.16.(3分)如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E,F、G处,且点B、E、D、F在一直线上,若CD=4,BC=2,则平行四边形ABCD的面积为.三、解答题(共52分)17.(8分)(1)解不等式,3(x﹣1)﹣5x≤1,并把解集表示在数轴上.(2)解不等式组并写出它的整数解.18.(6分)先化简,再求值×(1﹣),其中x=2﹣2.19.(5分)解方程:=2﹣.20.(7分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.21.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,连接BE、ED、DF、FB,若∠ADF=∠CBE=90°.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=30°,∠BEC=45°,请判断AB与CE有什么数量关系,并说明理由.22.(9分)某商店五月份销售A型电脑的总利润为4320元,销售B型电脑的总利润为3060元,且销售A型电脑数量是销售B型电脑的2倍,已知销售一台B 型电脑比销售一台A型电脑多获利50元.(1)求每台A型电脑和B型电脑的利润;(2)该商店计划一次购进两种型号的电脑共100台且全部售出,其中B型电脑的进货量不超过A型电脑的2倍,该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(9分)如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列各数中,能使不等式x﹣1>0成立的是()A.1 B.2 C.0 D.﹣2【分析】根据不等式的解集的概念即可求出答案.【解答】解:不等式的解集为:x>1,故选:B.【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解的概念,本题属于基础题型.2.(3分)使分式有意义的x的取值范围为()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x≠0【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x﹣2≠0,解得x≠2.故选:A.【点评】本题考查的是分式有意义的条件,即分式的分母不为0.3.(3分)下列四个高校校徽主体图案是中心对称图形的是()A. B.C. D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形定义.4.(3分)若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6【分析】根据多边形的外角和定理作答.【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选:C.【点评】本题主要考查了多边形的外角和定理:任何一个多边形的外角和都为360°.5.(3分)下列变形是因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣3x﹣4=(x﹣4)(x+1)D.x2+2x﹣3=(x+1)2﹣4【分析】本题可根据因式分解的概念,将复杂的多项式分解成多个单项式相乘的形式,依据此对各个选项进行判断,即可求出答案.【解答】解:A:等式左边为单项式相乘,右边为多项式相加,不符合概念,故本项错误;B:等式右边既有相乘,又有相加,不符合概念,故本项错误;C:等式左边为多项式相加,左边为单项式相乘,符合概念,故本项正确;D:等式右边既有相乘,又有相减,不符合概念,故本项错误.故选:C.【点评】本题考查因式分解的基本概念,将多项式相加的写成单项式相乘的形式,根据概念,对各项进行分析,即可求出答案.6.(3分)如图,△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.3 B.4 C.5 D.6【分析】根据三角形中位线定理得到DE∥AB,根据平行线的性质、角平分线的定义解答即可.【解答】解:∵D,E分别是BC,AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵BF平分∠ABC,∴∠DBF=∠ABF,∴∠BFD=∠DBF,∴DF=DB=BC=3,故选:A.【点评】本题考查的是三角形中位线定理、平行线的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7.(3分)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC方向平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.(3分)下列分式计算正确的是()A.=﹣B.=C.=x﹣1 D.﹣=1【分析】根据分式的运算法则即可求出答案.【解答】解:(A)原式==﹣1,故A错误;(B)原式=,故B错误;(C)原式==x+1,故C错误故选:D.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.9.(3分)下列命题正确的是()A.三角形三条角平分线的交点到三角形三个顶点的距离都相等B.两条对角线相等的四边形是平行四边形C.如果a>b,ac2>bc2D.分式的值不能为零【分析】直接利用三角形内心的定义以及不等式的性质、分式有意义的条件、矩形的判定方法分别分析得出答案.【解答】解:A、三角形三条角平分线的交点到三角形的三边的距离都相等,故此选项错误;B、两条对角线相等的平行四边形是平行四边形,故此选项错误;C、如果a>b,ac2≥bc2,故此选项错误;D、分式的值不能为零,正确.故选:D.【点评】此题主要考查了命题与定理,正确掌握相关性质与定理是解题关键.10.(3分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.6 B.6 C.4 D.4【分析】根据角平分线的定义求出∠PAE,根据直角三角形的性质求出PE、AE,根据角平分线的性质、三角形面积公式计算即可.【解答】解:作PH⊥AB于H,∵点P是∠BAC的平分线AD上一点,∠BAC=60°,∴∠PAE=30°,∴PE=AP=,AE=3,∵点P是∠BAC的平分线AD上一点,PE⊥AC,PH⊥AB,∴PH=PE=,又△FAP面积恰好是△EAP面积的2倍,∴AF=2AE=6,故选:A.【点评】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.11.(3分)如图,一次函数y=kx+b的图象交y轴于点A (0,2),则不等式kx+b <2的解集为()A.x>0 B.x<0 C.x>﹣1 D.x<﹣1【分析】利用函数图象,写出函数图象在y轴左侧所对应的自变量的范围即可.【解答】解:根据图象得,当x<0时,kx+b<2,所以不等式kx+b<2的解集为x<0.故选:B.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.(3分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则BC的长度为()A.12 B.C.6 D.2【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,再利用勾股定理求出BD即可解决问题;【解答】证明:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,∴BD===,∴BC=2BD=2故选:D.【点评】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形,题目的设计很新颖,是一道不错的中考题.二、填空题(每小题3分,共12分)13.(3分)因式分解:4m2﹣16=4(m+2)(m﹣2).【分析】此题应先提公因式4,再利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4m2﹣16,=4(m2﹣4),=4(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)如图,在周长为32的平行四边形ABCD中,AC、BD交于点O,OE ⊥BD交AD于点E,则△ABE的周长为16.【分析】由平行四边形的性质结合条件可求得OE为线段BD的垂直平分线,可求得BE=DE,则可求得△ABE的面积.【解答】解:∵平行四边形ABCD的周长为32,∴AB+AD=16,O为BD的中点,∵OE⊥BD,∴OE为线段BD的垂直平分线,∴BE=DE,∴AB+AE+BE=AB+AE+DE=AB+AD=16,即△ABE的周长为16,故答案为:16.【点评】本题主要考查平行四边形的性质,掌握平行四边形对边相等、对角线互相平分是解题的关键.15.(3分)小颖准备用100元去购买笔记本和钢笔共15件,已知笔记本每本5元,每支钢笔9元,则小颖最多能买6支钢笔.【分析】设小颖买了x支钢笔,则买了(15﹣x)本笔记本,根据总价=单价×数量结合总钱数不超过100元,即可得出关于x的一元一次不等式,解之取最大的正整数即可得出结论.【解答】解:设小颖买了x支钢笔,则买了(15﹣x)本笔记本,根据题意得:9x+5(15﹣x)≤100,解得:x≤.则小颖最多能买6支钢笔;故答案为:6.【点评】本题考查了一元一次不等式的应用,根据总价=单价×数量结合总钱数不超过100元列出关于x的一元一次不等式是解题的关键.16.(3分)如图,将平行四边形ABCD绕点A顺时针旋转,其中B、C、D分别落在点E,F、G处,且点B、E、D、F在一直线上,若CD=4,BC=2,则平行四边形ABCD的面积为8.【分析】先利用旋转的性质得∠1=∠2,AB=AE,再证明∠1=∠3,则可判断△BAE ∽△BDA,得到∠AEB=∠DAB,然后证明AD=BD,由勾股定理求得CD边上的高,,即可求得结论.求得S△BCD【解答】解:∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,点E 恰好是对角线BD的中点,∴∠1=∠2,AB=AE,∵EF∥AG,∴∠2=∠3,∴∠1=∠3,∵∠ABE=∠DBA,∴△BAE∽△BDA,∴∠AEB=∠DAB,∵AE=AB,∴∠AEB=∠ABD,∴∠ABD=∠DAB,∴DB=DA=BC=2,过B作BH⊥CD于H,则CH=DH=2,∴BH===2,=CD•BH=4,∴S△BCD∴平行四边形ABCD的面积=2S=8.△BCD故答案为:8.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是证明△BAE∽△BDA,三、解答题(共52分)17.(8分)(1)解不等式,3(x﹣1)﹣5x≤1,并把解集表示在数轴上.(2)解不等式组并写出它的整数解.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去括号,得:3x﹣3﹣5x≤1,移项,得:3x﹣5x≤1+3,合并同类项,得:﹣2x≤4,系数化为1,得:x≥﹣2,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,∴不等式组的整数解为2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值×(1﹣),其中x=2﹣2.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:×(1﹣)=×(﹣)=×=,当x=2﹣2时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.19.(5分)解方程:=2﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2x﹣6+2,移项合并得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(7分)如图,在△ABC中,∠C=90°.(1)用尺规作图,在AC边上找一点D,使DB+DC=AC(保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若AC=6,AB=8,求DC的长.【分析】(1)作AB的垂直平分线交AC于点D,则点D满足条件;(2)先利用勾股定理计算出BC,再设CD=x,则BD=AD=AC﹣CD=6﹣x,再利用勾股定理列方程得(6﹣x)2=(2)2+x2,然后解方程即可.【解答】解:(1)如图,点D为所作;(2)∵AC=6,AB=8,∴BC==2,设CD=x,则BD=AD=AC﹣CD=6﹣x,在Rt△BCD中,∵BD2=BC2+CD2,∴(6﹣x)2=(2)2+x2,解得x=,即CD的长为.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质和勾股定理.21.(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,连接BE、ED、DF、FB,若∠ADF=∠CBE=90°.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=30°,∠BEC=45°,请判断AB与CE有什么数量关系,并说明理由.【分析】(1)只要证明△BCE≌△DAF,推出BE=DF,∠BEC=∠DFA,推出BE∥DF,由此即可证明;(2)结论:AB=EC.作BH⊥AC于H.只要证明AB=2BH,EC=2BH即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BCE=∠DAF,在△BCE和△DAF中,,∴△BCE≌△DAF,∴BE=DF,∠BEC=∠DFA,∴BE∥DF,∴四边形BEDF是平行四边形.(2)结论:AB=EC.理由:作BH⊥AC于H.在Rt△ABH中,∵∠AHB=90°,∠BAH=30°,∴AB=2BH,在Rt△BEC中,∵∠EBC=90°,∠BEC=45°,BH⊥CE,∴EH=HC,∴EC=2BH,∴AB=EC.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质、直角三角形30度角性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(9分)某商店五月份销售A型电脑的总利润为4320元,销售B型电脑的总利润为3060元,且销售A型电脑数量是销售B型电脑的2倍,已知销售一台B 型电脑比销售一台A型电脑多获利50元.(1)求每台A型电脑和B型电脑的利润;(2)该商店计划一次购进两种型号的电脑共100台且全部售出,其中B型电脑的进货量不超过A型电脑的2倍,该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?【分析】(1)设每台A型电脑的利润为x元,则每台B型电脑的利润为(x+50)元,然后根据销售A型电脑数量是销售B型电脑的2倍列出方程,然后求解即可;(2)设购进A型电脑a台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;根据B型电脑的进货量不超过A型电脑的2倍列不等式求出a的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【解答】解:(1)设每台A型电脑的利润为x元,则每台B型电脑的利润为(x+50)元,根据题意得=×2,解得x=120.经检验,x=120是原方程的解,则x+50=170.答:每台A型电脑的利润为120元,每台B型电脑的利润为170元;(2)设购进A型电脑a台,这100台电脑的销售总利润为y元,据题意得,y=120a+170(100﹣a),即y=﹣50a+17000,100﹣a≤2a,解得a≥33,∵y=﹣50a+17000,∴y随a的增大而减小,∵a为正整数,∴当a=34时,y取最大值,此时y=﹣50×34+17000=15300.即商店购进34台A型电脑和66台B型电脑,才能使销售总利润最大,最大利润是15300元.【点评】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.23.(9分)如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.【分析】(1)根据AAS或ASA即可证明;(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ 是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标;【解答】(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,∵BC=CD,∴△BOC≌△CED.(2)∵△BOC≌△CED,∴OC=DE=m,BO=CE=3,∴D(m+3,m),把D(m+3,m)代入y=﹣x+3得到,m=﹣(m+3)+3,∴2m=﹣m﹣3+6,∴m=1,∴D(4,1),∵B(0,3),C(1,0),∴直线BC的解析式为y=﹣3x+3,设直线B′C′的解析式为y=﹣3x+b,把D(4,1)代入得到b=13,∴直线B′C′的解析式为y=﹣3x+13,∴C′(,0),∴CC′=,∴△BCD平移的距离是个单位.(3)解:如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,易知直线PC的解析式为y=﹣x+,∴P(0,),∵点C向左平移1个单位,向上平移个单位得到P,∴点D向左平移1个单位,向上平移个单位得到Q,∴Q(3,),当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″(5,),当四边形CDP′Q′为平行四边形时,可得Q′(﹣3,),综上所述,满足条件的点Q的坐标为(3,)或(5,)或(﹣3,).【点评】本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.。

2017-2018学年广东省深圳市八年级(下)期中数学试卷含答案

2017-2018学年广东省深圳市八年级(下)期中数学试卷含答案

2017-2018学年广东省深圳市八年级(下)期中数学试卷含答案一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣13.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣28.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A .3B .6C .12D .249.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量( )A .20kgB .25kgC .28kgD .30kg10.如图,反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点.A 、B 两点的横坐标分别为2,﹣3.通过观察图象,若y 1>y 2,则x 的取值范围是( )A .0<x <2B .﹣3<x <0或x >2C .0<x <2或x <﹣3D .﹣3<x <0 二、填空题(每小题3分,共15分)11.计算()﹣1+()0= 12.如图,在▱ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.13.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组的解是.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.20.(10分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?23.(11分)已知反比例函数y 1=的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出y 1>y 2时自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在所列代数式中,分式有、、﹣这3个,故选:C.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式是解答此题的关键.2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣1【分析】A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式=,错误;D、原式===﹣1,正确;故选:D.【点评】此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.3.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.【点评】本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题.4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 05=5×10﹣11,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个【分析】根据题意可得出点P在第三象限,从而列出不等式组求解即可.【解答】解:∵点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,∴,由①得,a>﹣,由②得,a<2,∴a=1或0.故选:B.【点评】本题考查了关于原点对称的点的坐标,以及一元一次不等式组的整数解,是基础知识要熟练掌握.6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣2【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(x+1),得x2﹣(m+1)=(x+1)2∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1,当x=0时,m=﹣2,当x=﹣1时,m=0,故m的值可能是﹣2或0.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3 B.6 C.12 D.24【分析】由于在平行四边形中,对边分别平行且相等,对角线相互平分,图中的线条把平行四边形分成5组全等三角形,通过仔细观察分析图中阴影部分,可得出每组全等三角形中有一个带阴影,所以阴影部分的面积是平行四边形的面积的一半.=×6×4=12.【解答】解:通过观察结合平行四边形性质得:S阴影故选:C.【点评】本题考查的是平行四边形的性质,平行四边形的对角线相互平分.9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg【分析】根据图中数据,用待定系数法求出直线解析式,然后求y =0时,x 对应的值即可.【解答】解:设y 与x 的函数关系式为y =kx +b , 由题意可知,所以k =30,b =﹣600,所以函数关系式为y =30x ﹣600, 当y =0时,即30x ﹣600=0,所以x =20.故选:A .【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.10.如图,反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点.A 、B 两点的横坐标分别为2,﹣3.通过观察图象,若y 1>y 2,则x 的取值范围是( )A .0<x <2B .﹣3<x <0或x >2C .0<x <2或x <﹣3D .﹣3<x <0 【分析】根据两函数的交点A 、B 的横坐标和图象得出答案即可.【解答】解:∵反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点,A 、B 两点的横坐标分别为2,﹣3,∴通过观察图象,当y 1>y 2时x 的取值范围是0<x <2或x <﹣3,故选:C .【点评】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图形的能力,用了数形结合思想.二、填空题(每小题3分,共15分)11.计算()﹣1+()0= 3【分析】根据负整数指数幂和零指数幂的意义计算.【解答】解:原式=2+1=3.故答案为3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,在▱ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE=35 °.【分析】根据平行四边形性质及直角三角形的角的关系,即可求解.【解答】解:∵四边形平ABCD是平行四边形,∴AD∥BC,∴∠B=180°﹣∠A=55°,又∵CE⊥AB,∴∠BCE=35°.故答案为:35.【点评】本题考查了平行四边形的性质,用的知识点有:平行四边形的对边互相平行、平行线的性质以及直角三角形的两个锐角互余.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3 .【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为 6 .【分析】设B点坐标为(a,b),根据等腰直角三角形的性质得OA=AC,AB=AD,OC=AC,AD=BD,则OA2﹣AB2=12变形为AC2﹣AD2=6,利用平方差公式得到(AC+AD)(AC﹣AD)=6,所以(OC+BD)•CD=6,则有a•b=6,根据反比例函数图象上点的坐标特征易得k=6.【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.【分析】根据分式的除法和减法可以化简题目中的式子,再根据|x﹣2|+(3﹣y)2=0可以求得x、y的值,然后代入化简后的式子即可解答本题.【解答】解:1﹣=1﹣=1﹣==,∵|x﹣2|+(3﹣y)2=0,∴x﹣2=0,3﹣y=0,解得,x=2,y=3,∴原式=﹣=﹣3.【点评】本题考查分式的化简求值、非负数的性质,解答本题的关键是明确分式化简求值的方法.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据分式除法和减法可以解答本题.【解答】解:(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)=a﹣2b2•2﹣2a﹣4b4÷(a﹣4b2)=;(2)===0.【点评】本题考查分式的混合运算、整式的混合运算、负整数指数幂,解答本题的关键是明确它们各自的计算方法.18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.【分析】由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG.【解答】证明:∵四边形ABCD是平行四边形(已知),∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)∴∠GBC=∠BGA,∠BCE=∠CED(两直线平行,内错角相等)又∵BG平分∠ABC,CE平分∠BCD(已知),∴∠ABG=∠GBC,∠BCE=∠ECD(角平分线定义)∴∠ABG=∠AGB,∠ECD=∠CED.∴AB=AG,CD=DE(在同一个三角形中,等角对等边)∴AG=DE,∴AG﹣EG=DE﹣EG,即AE=DG.【点评】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC 的面积是解题的关键.20.(10分)如图,直线y =2x +3与x 轴交于点A ,与y 轴于点B .(1)求A ,B 两点的坐标;(2)过点B 过直线BP 与x 轴交于点P ,且OP =2OA ,求△ABP 的面积.【分析】(1)由函数解析式y =2x +3,令y =0求得A 点坐标,x =0求得B 点坐标;(2)有两种情况,若BP 与x 轴正方向相交于P 点,则AP =3OA ;若BP 与x 轴负方向相交于P 点,则AP =OA ,由此求得△ABP 的面积.【解答】解:(1)令y =0,得x =﹣1.5,∴A 点坐标为(﹣1.5,0),令x =0,得y =3,∴B 点坐标为(0,3);(2)设P 点坐标为(x ,0),∵OP =2OA ,A (﹣1.5,0),∴x =±3,∴P 点坐标分别为P 1(3,0)或P 2(﹣3,0).∴S △ABP 1=×(1.5+3)×3=6.75,S △ABP 2=×(3﹣1.5)×3=2.25,∴△ABP 的面积为6.75或2.25.【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积,关键是能求出符合条件的两种情况.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB 所表示的函数关系式为:y =kx +b ,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB 所表示的函数关系式为:y =kx +b , 依题意有, 解得. 故线段AB 所表示的函数关系式为:y =﹣96x +192(0≤x ≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.23.(11分)已知反比例函数y 1=的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出y 1>y 2时自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.【分析】(1)由A 在反比例函数图象上,把A 的坐标代入反比例解析式,确定出k 的值,从而得出反比例函数解析式,又B 也在反比例函数图象上,把B 的坐标代入确定出的反比例解析式即可确定出m 的值,从而得到B 的坐标,由A 和B 都在一次函数图象上,故把A 和B 都代入到一次函数解析式中,得到关于a 与b 的方程组,求出方程组的解得到a 与b 的值,从而确定出一次函数解析式;(2)根据图象结合交点坐标即可求得;(3)由点C 与点A 关于x 轴对称可得AC ,AC 边上的高为A ,B 两点横坐标绝对值的和,代入三角形的面积公式即可.【解答】解:(1)∵函数y =的图象过点A (1,4),即4=,∴k =4,即y 1=, 又∵点B (m ,﹣2)在y 1=上,∴m =﹣2,∴B (﹣2,﹣2),又∵一次函数y 2=ax +b 过A 、B 两点, 即,解得.∴y 2=2x +2,综上可得y 1=,y 2=2x +2;(2)要使y 1>y 2,即函数y 1的图象总在函数y 2的图象上方,∴0<x <1;(3)过B 作BD ⊥AC 于D ,由图形及题意可得:AC =4+4=8,BD =|﹣2|+1=3,∴s △ABC =AC •BD =×8×3=12.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.。

2017-2018学年广东省深圳市宝安区八年级(上)期末数学试卷

2017-2018学年广东省深圳市宝安区八年级(上)期末数学试卷

2017-2018学年广东省深圳市宝安区八年级(上)期末数学试卷一、选择题:(每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应位置上,每小题3分,共36分)1.(3分)8的立方根是()A.2B.±2C.D.2.(3分)下列各数中,不是无理数的是()A.B.C.πD.0。

909009…(每两个9之增加l个0)3.(3分)将下列长度的三根木棒首位顺次连接,能构成直角三角形的是()A.4,5,6B.5,12,15C.1,,2D.,,5 4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)在2017年的初中数学竞赛中,我校有5位同学获奖,他们的成绩分别是88,86,91,88,92.则由这组数据得到的以下结论,错误的是()A.极差为6B.平均数为89C.众数为88D.中位数为91 6.(3分)如图,已知AC∥DE,∠B=24°,∠D=58°,则∠C=()A.24°B.34°C.58°D.82°7.(3分)如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D为底边BC的中点)的长是()A.6米B.5米C.3米D.2.5米8.(3分)已知一次函数y=kx﹣3和y=mx﹣1,且k>0,m<0,则这两个一次函数图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A.B.C.D.10.(3分)下列命题中,真命题的是()A.三角形的最大角不小于60°B.三角形的一个外角等于它的两个内角的和C.同位角相等D.经过一点有且只有一条直线与已知直线平行11.(3分)为了鼓励居民节约用水,某市决定实行两级收费制度,水费y(元)与用水量x(吨)之间的函数关系如图所示.若每月用水量不超过20吨(含20吨),按政府优惠价收费;若每月用水量超过20吨,超过部分按市场价3。

广东省深圳宝安中学 宝安实验中学2017-2018 学年度第二学期八年级期中联考数学科试卷(PDF版附答案)

广东省深圳宝安中学 宝安实验中学2017-2018  学年度第二学期八年级期中联考数学科试卷(PDF版附答案)

∴h1+h2=h.
(2)h1﹣h2=h.
(3)在 y= 3 x+3 中,令 x=0 得 y=3;令 y=0 得 x=﹣4,则:
4
A(﹣4,0),B(0,3)同理求得 C(1,0),
AB= OA2 OB2 =5,AC=5,
所以 AB=AC,即△ABC 为等腰三角形.
① 当点 M 在 BC 边上时,由 h1+h2=h 得:
l1
:
y
3 4
x
3
、l1
:
y
3x
3
,若l2Biblioteka 上的一点M到 l1 的距离是1 ,请运用⑴、⑵的结论求出点 M 的坐标.(9 分)
第 12 页 共 6 页
第 11 页 共 6 页
一、 选择题
参考答案
题目
1
2
3
4
5
6
答案
B
B
B
B
C
B
题目
7
8
9
10
11
12
答案
A
C
B
A
C
C
二、 填空题
题目
13
14
15
16
答案 (a+b)(a-3b) 2
-4
3
三、 解答题
17、(1)原式 2(x 1)2
(2)原式 (a2 b2 2ab)(a2 b2 2ab)
(a b)2 (a b)2
18、(1)原式 a(a 3) a 3
(a 3)(a 3) a
(2)原式 m 2 m(m 1)
m 1 (m 2)(m 2) m
m 2
第 15 页 共 6 页
22、解:(1)∵△ABC 为等腰直角三角形,

新人教版本20172018学年初中八年级的下期初中中考试数学试卷试题包括答案2018.4.docx

新人教版本20172018学年初中八年级的下期初中中考试数学试卷试题包括答案2018.4.docx

新人教版 2017-2018 学年八年级下期中考试数学试题含答案2018.4(考试时间:120 分钟总分150分)一、选择题(每小题 4 分,共 48 分)1.如图,下列哪组条件能判别四边形ABCD是平行四边形?()A.AB ∥ CD,AD= BCB.AB = CD, AD= BCC. ∠ A=∠ B,∠ C=∠ DD.AB= AD, CB= CD2. 三角形的三边为 a、b、 c,由下列条件不能判断它是直角三角形的是()A . a:b:c =13∶ 5∶12B. a 2-b 2=c22D. a:b:c=8 ∶16∶ 17C . a =(b+c )(b-c)3.在△ ABC中,∠ C=90°,周长为 60,斜边与一直角边比是13: 5,?则这个三角形三边分别是()A . 5, 4,3B . 13, 12, 5C . 10, 8, 6D . 26, 24,104.已知:如图,在矩形 ABCD中, E、 F、G、 H 分别为边 AB、BC、 CD、DA的中点.若 AB= 2,AD = 4,则图中阴影部分的面积为( )A.5B.4.5C.4D.3.5A DB C第 1题第4题第5题5.如图 ABCD是平行四边形,下列条件不一定使四边形ABCD是矩形的是()。

A.AC ⊥ BDB.∠ABC=90°C.OA=OB=OC=ODD.AC=BD6.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH 四条线段,其中能构成一个直角三角形三边的线段是()A . CD,EF,GH B.AB,EF,GH C.AB,CD,GH D.AB,CD,EF7.若a 2 b24b 4c2c10 ,则 b2a c =()4A . 4B. 2C. -2D. 111则ab(a b)8.若a1, bb) 的值为(2 2 1aA. 2B.-2C.2D.229.如图, D 是△ ABC内一点, BD⊥ CD,AD=6, BD=4,CD=3, E,F,G,H 分别是 AB,AC,CD,BD的中点,则四边形EFGH的周长是 ( )A . 7 B.9 C.10 D.1110.如图,边长为 6 的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则 S +S 值为()12A . 16 B.17 C.18 D.19[来源 : 学科网 ZXXK]第 11 题第 12 题11.如图,在 Rt△ ABC中,∠ BAC=90°, D、E 分别是 AB、BC的中点, F 在 CA延长线上,∠ FDA=∠ B,AC=6, AB=8,则四边形 AEDF的周长为()A. 14 B.15 C.16 D.1812. 已知如图,矩形ABCD中, BD=5cm, BC=4cm, E 是边 AD上一点,且BE = ED, P是对角线上任意一点, PF⊥ BE, PG⊥ AD,垂足分别为F、 G。

2017-2018学年广东省深圳市宝安名校八年级(下)期中数学试卷

2017-2018学年广东省深圳市宝安名校八年级(下)期中数学试卷
A.15°B.30°C.45°D.60°
10.若(x+2)是多项式4x2+5x+m的一个因式,则m等于( )
A.﹣6B.6C.﹣9D.9
11.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2B.x>0C.x>1D.x<1
5.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15B.30C.45D.
6.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值( )
A.大于零B.小于零C.等于零D.不能确定
7.对于非零实数a、b,规定a⊗b= .若2⊗(2x﹣1)=1,则x的值为( )
A. B. C. D.﹣
8.已知实数x,y满足 ,则以x,y的值为两边长的等腰三角形的周长是( )
A.30或39B.30
C.39D.以上答案均不对
9.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为( )
【解答】解:用3x和3y代替式子中的x和y得: ,
则分式的值缩小成原来的 ,即缩小3倍.
故选:B.
【点评】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.
3.下列式子中,从左到右的变形是因式分解的是( )

广东省深圳市宝安区八年级下期末数学试卷

广东省深圳市宝安区八年级下期末数学试卷

2017-2018学年广东省深圳市宝安区八年级(下)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)如果分式有意义,则x的取值范围是()A.x=﹣3 B.x>﹣3 C.x≠﹣3 D.x<﹣32.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a+6>b+6 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.4.(3分)将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)5.(3分)若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.106.(3分)下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2﹣y2D.x2+2xy+y27.(3分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.248.(3分)下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C..三角形的中线将三角形分成面积相等的两部分D..一组对边平行另一组对边相等的四边形是平行四边形9.(3分)如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于()A.B.C.D.10.(3分)某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70 C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>7011.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣0.5,0)、B (2,0),则不等式(kx+b)(mx+n)<0的解集为()A.x>2 B.﹣0.5<x<2 C.0<x<2 D.x<﹣0.5或x>212.(3分)如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①②B.②③C.①②④D.①②③④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)因式分解:3a2﹣27=.14.(3分)已知=,则+=.15.(3分)请观察一列分式:﹣,,﹣,,…则第11个分式为.16.(3分)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE绕着点A旋转,∠DAE=90°,AD=AE=6,连接BD、CD、CE,点M、P、N分别为DE、DC、BC的中点,连接MP、PN、MN,则△PMN的面积最大值为.三、解答题(本题共7小题,其中第17题6分、第18题7分、19题题6分,第20、21、22题每题8分,第23题9分,共52分)17.(6分)解不等式组,并写出它的整数解.18.(7分)先化简,再求值:( +)÷,其中m=4.19.(6分)解方程:=2﹣20.(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)将△A1B1C1绕原点O逆时针旋转90°得到△A2B2C2,请画出旋转后的△A2B2C2,并写出点C2的坐标.21.(8分)如图,AC是平行四边形ABCD的对角线,E、H分别为边BA和边BC延长线上的点,连接EH交AD、CD于点F、G,且EH∥AC.(1)求证:EG=FH;(2)若△ACD是等腰直角三角形,∠ACD=90°,F是AD的中点,AD=6,连接BF,求BF的长.22.(8分)为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?23.(9分)如图1,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,QC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A的坐标为,点B的坐标为;(2)当BP+PM+ME′的长度最小时,请直接写出此时点P的坐标为;(3)如图2,点N为线段BC上的动点且CM=CN,连接MN,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的EP的值;若不存在,请说明理由.2017-2018学年广东省深圳市宝安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)如果分式有意义,则x的取值范围是()A.x=﹣3 B.x>﹣3 C.x≠﹣3 D.x<﹣3【分析】根据分母不能为零分式有意义,可得答案.【解答】解:由题意,得x+3≠0,解得x≠﹣3,故选:C.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a+6>b+6 B.a﹣2>b﹣2 C.﹣2a>﹣2b D.【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加6,不等号的方向不变,故A正确;B、两边都减2,不等号的方向不变,故B正确;C、两边都乘﹣2,不等号的方向改变,故C错误;D、两边都除以3,不等号的方向不变,故D正确;故选:C.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.4.(3分)将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1﹣3=﹣2;纵坐标为﹣1+2=1,∴点B的坐标是(﹣2,1).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.5.(3分)若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.(3分)下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2﹣y2D.x2+2xy+y2【分析】直接利用提取公因式法分解因式的步骤分析得出答案.【解答】解:A、ab+cd,没有公因式,故此选项错误;B、mn+m2=m(n+m),故此选项正确;C、x2﹣y2,没有公因式,故此选项错误;D、x2+2xy+y2,没有公因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7.(3分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A.16 B.14 C.26 D.24【分析】首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,∴▱ABCD的周长是:2(AD+CD)=26.故选:C.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CED是等腰三角形是解此题的关键.8.(3分)下列命题中,错误的是()A.过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形B.三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C..三角形的中线将三角形分成面积相等的两部分D..一组对边平行另一组对边相等的四边形是平行四边形【分析】根据多边形对角线的定义对A进行判断;根据三角形外心的性质对B 进行判断;根据三角形中线定义和三角形面积公式对C进行判断;根据平行四边形的判定方法对D进行判断.【解答】解:A、过n边形一个顶点的所有对角线,将这个多边形分成(n﹣2)个三角形,所以A选项为真命题;B、三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点,所以B选项为真命题;C、三角形的中线将三角形分成面积相等的两部分,所以C选项为真命题;D、一组对边平行且相等的四边形是平行四边形,所以D选项为假命题.故选:D.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.(3分)如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于()A.B.C.D.【分析】连接AE,根据勾股定理求出AB,根据线段垂直平分线的性质得到AE=BE,根据勾股定理求出AE即可.【解答】解:连接AE,∵∠ACB=90°,∴AB==5,由题意得,MN是线段AB的垂直平分线,∴AE=BE,在Rt△ACE中,AE2=AC2+CE2,即AE2=32+(4﹣AE)2,解得,AE=,∴BE=AE=故选:D.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.(3分)某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70 C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>70【分析】小明答对题的得分:5x;小明答错题的得分:﹣3(30﹣x).不等关系:小明得分要超过70分.【解答】解:根据题意,得5x﹣3(30﹣x)>70.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.11.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣0.5,0)、B (2,0),则不等式(kx+b)(mx+n)<0的解集为()A.x>2 B.﹣0.5<x<2 C.0<x<2 D.x<﹣0.5或x>2【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵直线y=kx+b与直线y=mx+n分别交x轴于点A(﹣0.5,0)、B (2,0),∴不等式(kx+b)(mx+n)<0的解集为x<﹣0.5或x>2,故选:D.【点评】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.12.(3分)如图,平行四边形ABCD中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接BD,将△BCD绕点B旋转,当BD(即BD′)与AD交于一点E,BC(即BC′)同时与CD交于一点F时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF的周长的最小值是4+2A.①②B.②③C.①②④D.①②③④【分析】根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【解答】解:∵AB=BC=CD=AD=4,∠A=∠C=60°∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°∵将△BCD绕点B旋转到△BC'D'位置∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC'∴△ABE≌△BFD∴AE=DF,BE=BF,∠AEB=∠BFD∴∠BED+∠BFD=180°故①正确,③错误∵∠ABD=60°,∠ABE=∠DBF∴∠EBF=60°故②正确∵△DEF的周长=DE+DF+EF=AD+EF=4+EF∴当EF最小时,∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形∴EF=BE∴当BE⊥AD时,BE长度最小,即EF长度最小∵AB=4,∠A=60°,BE⊥AD∴EB=2∴△DEF的周长最小值为4+2故④正确,故选:C.【点评】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)因式分解:3a2﹣27=3(a+3)(a﹣3).【分析】直接提取公因式3,进而利用平方差公式分解因式即可.【解答】解:3a2﹣27=3(a2﹣9)=3(a+3)(a﹣3).故答案为:3(a+3)(a﹣3).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.14.(3分)已知=,则+=.【分析】根据=设xy=3k,x+y=5k,通分后代入求出即可.【解答】解:∵=,∴设xy=3k,x+y=5k,∴+===,故答案为:.【点评】本题考查了分式的加减,能够整体代入是解此题的关键.15.(3分)请观察一列分式:﹣,,﹣,,…则第11个分式为﹣.【分析】分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题【解答】解:根据规律可知:则第11个分式为﹣.故答案为﹣.【点评】此题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.16.(3分)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE绕着点A旋转,∠DAE=90°,AD=AE=6,连接BD、CD、CE,点M、P、N分别为DE、DC、BC的中点,连接MP、PN、MN,则△PMN的面积最大值为32.【分析】由题意可证△ADB≌△EAC,可得BD=CE,∠ABD=∠ACE,由三角形中位=PN2=BD2.可得BD最大时,线定理可证△MPN是等腰直角三角形,则S△PMN△PMN的面积最大,由等腰直角三角形ADE绕着点A旋转,可得D是以A为圆心,AD=6为半径的圆上一点,可求BD最大值,即可求△PMN的面积最大值.【解答】解∵△ABC,△ADE是等腰直角三角形∴AD=AE,AB=AC,∠BAC=∠DAE=90°∴∠BAC﹣∠DAC=∠DAE﹣∠DAC∴∠BAD=∠CAE且AB=AC,AD=AE∴△ADB≌△AEC∴DB=EC,∠ABD=∠ACE∵M,N,P分别是DE,DC,BC的中点∴MP∥EC,MP=EC,NP=DB,NP∥BD∴MP=NP,∠DPM=∠DCE,∠PNC=∠DBC设∠ACE=x°,∠ACD=y°∴∠ABD=x°,∠DBC=45°﹣x°=∠PNC,∠DCB=45°﹣y°∴∠DP=x°+y°,∠DPN=∠DCB+∠PNC=90°﹣x°﹣y°∴∠MPN=90°且PN=PM∴△PMN是等腰直角三角形.=PN2=BD2.∴S△PMN∴当BD最大时,△PMN的面积最大.∵D是以A点为圆心,AD=6为半径的圆上一点∴A,B,D共线且D在BA的延长线时,BD最大此时BD=AB+AD=16∴,△PMN的面积最大值为32故答案为32【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解题的关键是灵活运用所学知识解决问题.三、解答题(本题共7小题,其中第17题6分、第18题7分、19题题6分,第20、21、22题每题8分,第23题9分,共52分)17.(6分)解不等式组,并写出它的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,从而得出答案.【解答】解:解不等式x+4>1﹣x,得:x>﹣,解不等式x≤(x+1),得:x≤2,则不等式组的解集为﹣<x≤2,所以不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)先化简,再求值:( +)÷,其中m=4.【分析】先根据分式混合运算顺序与运算法则化简原式,再将m 的值代入计算可得.【解答】解:原式=[+]÷=•=, 当m=4时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.19.(6分)解方程: =2﹣【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:=2+,去分母得:3x=6﹣2x +3,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)作出△ABC 向左平移4个单位长度后得到的△A 1B 1C1,并写出点C 1的坐标;(2)将△A 1B 1C 1绕原点O 逆时针旋转90°得到△A 2B 2C 2,请画出旋转后的△A 2B 2C 2,并写出点C 2的坐标.【分析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据△A1B1C1绕原点O逆时针旋转90°得到△A2B2C2,得到点A2、B2、C2的位置,然后描点即可.【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标为(﹣3,3);(2)如图,△A2B2C2即为所求,点C2的坐标为(﹣3,﹣3).【点评】本题考查了作图﹣旋转变换依据平移变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.(8分)如图,AC是平行四边形ABCD的对角线,E、H分别为边BA和边BC延长线上的点,连接EH交AD、CD于点F、G,且EH∥AC.(1)求证:EG=FH;(2)若△ACD是等腰直角三角形,∠ACD=90°,F是AD的中点,AD=6,连接BF,求BF的长.【分析】(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,可得AC=HF=EG,即可推出EF=GH.(2)首先证明∠BCF=90°,在Rt△BCF中,利用勾股定理即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵AC∥EH,∴四边形ACHF是平行四边形,四边形ACGE是平行四边形,∴AC=HF,AC=EG,∴FH=EG,∴EG=FH.(2)解:连接CF.∵CA=CD,∠ACD=90°,AF=DF,∴CF⊥AD,∵AD∥BC,∴CF⊥BC,∴∠BCF=90°,∵BC=AD=6,CF=AD=3,∴BF==3.【点评】本题考查平行四边形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(8分)为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的.(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?【分析】(1)设甲队每天完成x千米,则乙队每天完成(x﹣0.4)千米,然后依据甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的列方程求解即可;(2)设甲队改造a米,则乙队改造(24﹣a)米,然后依据两个工程队施工的总费用不超过7万元列不等式求得a的范围,从而可求得甲工程队至多施工的天数.【解答】解:(1)设甲队每天完成x千米,则乙队每天完成(x﹣0.4)千米.根据题意得:=×,解得:x=2.4.经检验,x=2.4是原方程的解.2.4﹣0.4=2.答:甲队每天修2.4千米,乙队每天修2千米.(2)设甲队改造a米,则乙队改造(24﹣a)米.根据题意得×0.8+×0.5≤7,解得:a≤12.=5,答:甲工程队至多施工5天.【点评】本题主要考查的是分式方程、一元一次不等式的应用,依据题意列出方程或不等式是解题的关键.23.(9分)如图1,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=2,QC=6,∠A=60°,线段EF所在的直线为OD的垂直平分线,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E′关于x轴对称,连接BP、E′M.(1)请直接写出点A的坐标为(﹣2,2),点B的坐标为(4,2);(2)当BP+PM+ME′的长度最小时,请直接写出此时点P的坐标为(2,);(3)如图2,点N为线段BC上的动点且CM=CN,连接MN,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的EP的值;若不存在,请说明理由.【分析】(1)解直角三角形求出OD,BD的长即可解决问题;(2)首先证明四边形OPME′是平行四边形,可得OP=EM,因为PM是定值,推出PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小;(3)分三种情形画出图形分别求解即可解决问题;【解答】解:(1)如图1中,在Rt△ADO中,∵∠A=60°,AD=2,∴OD=2•tan60°=2,∴A(﹣2,2),∵四边形ABCO是平行四边形,∴AB=OC=6,∴DB=6﹣2=4,∴B(4,2)(2)如图1中,连接OP.∵EF垂直平分线段OD,PM⊥OC,∴∠PEO=∠EOM=∠PMO=90°,∴四边形OMPE是矩形,∴PM=OE=,∵OE=OE′,∴PM=OE′,PM∥OE′,∴四边形OPME′是平行四边形,∴OP=EM,∵PM是定值,∴PB+ME′=OP+PB的值最小时,BP+PM+ME′的长度最小,∴当O、P、B共线时,BP+PM+ME′的长度最小,∵直线OB的解析式为y=x,∴P(2,).故答案为(2,)(3)如图2中,当PM=PN=时,∵△MNC是等边三角形,∴∠CMN=∠CNM=60°,∵PM⊥OC,∴∠PMN=∠PNM=30°,∴∠PNF=30°+60°=90°,∵∠PFN=∠BCO=60°,∴PF=PN÷cos30°=2,∵EF==5,∴PE=5﹣2=3.如图3中,当PM=MN时,∵PM=MN=CM=,∴EP=OM=6﹣.如图4中,当点P与F重合时,NP=NM,此时PE=EF=5.综上所述,满足条件的EP的值为3或6﹣或5.【点评】本题考查四边形综合题、平行四边形的性质、等腰三角形的判定和性质、最短问题、锐角三角函数等知识,解题的关键是学会利用两点之间线段最短,解决最短问题,学会用分类讨论的首先思考问题,属于中考压轴题.。

广东省深圳市宝安区2017-2018学年第二学期宝安区期末调研测试卷含答案

广东省深圳市宝安区2017-2018学年第二学期宝安区期末调研测试卷含答案

2017-2018学年第二学期宝安区期末调研测试卷高一 数学2018.6一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线tan203x y π++=的倾斜角α等于( )A.3πB.6π C.23π D.56π 2.下图是某公司10个销售店某月销售某产品数量(单位:台) 的茎叶图,则数据落在区间[22,30)内的概率为( )A.25B.13C. 12D. 143.两直线320ax y --=和(21)510a x ay -+-=分别过定点A 、B ,则||AB 等于( )A.895 B.175 C.135 D.1154 某班级有50名学生,现要利用系统抽样在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为13的学生,则在第八组中抽得号码为( )的学生. A.36 B.37 C.38 D.391 8 92 1 2 2 7 9 33题(2)图5.直线y ax b =+和y bx a =+在同一直角坐标系中的图形可能是( )6.端午节吃粽子是我国的传统习俗,设一盘中装有5个粽子,其中豆沙粽2个,肉粽2个,白粽1个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个概率是( )A.12 B.13 C.25 D.3107.已知m ,n 是互不垂直的异面直线,平面α,β分别经过直线m ,n ,则下列关系中不可能成立的是( ) A .m β B .αβ C .m β⊥ D .αβ⊥8. 右图是计算应纳税所得额的算法流程框图。

x 表示某人工资,y 是某人应交税款。

某人工资为4300元时,请计算此人应交税款为( ) A .100 B .160 C .300 D .3259. 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y bx a =+,其中0.76b =,a y bx =-. 据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元10. 在正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( )A.6πB.4π C.3π D.2π 11.从直线30x y -+=上的点向圆224470x y x y +--+=引切线,则切线长的最小值为( )A B 1- 12. 做一个游戏:让大家各自随意写下两个小于1的正数,然后请他们各自检查一下,所写的两个数与1是否构成一个锐角三角形的三边,最后把结论告诉你,作为主角的你,只需将每个人的结论记录下来就行了。

_广东省深圳市宝安区2017-2018学年八年级下学期数学期末考试试卷(含答案解析)

_广东省深圳市宝安区2017-2018学年八年级下学期数学期末考试试卷(含答案解析)

○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………广东省深圳市宝安区2017-2018学年八年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 若一个多边形的内角和为1080°,则这个多边形的边数为()A . 6B . 7C . 8D . 92. 如果分式有意义,则x 的取值范围是( )A . x =﹣3B . x >﹣3C . x≠﹣3D . x <﹣33. 下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4. 已知实数a ,b ,若a >b ,则下列结论错误的是( ) A . a+6>b+6 B . a ﹣2>b ﹣2 C . ﹣2a >﹣2b D .5. 将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( ) A . (﹣2,1) B . (﹣2,﹣1) C . (2,1) D . (2,﹣1)6. 下列多项式中,可以提取公因式的是( )答案第2页,总18页……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A . ab +cdB . mn +m 2C . x 2-y 2D . x 2+2xy +y 27. 如图,在平行四边形ABCD 中,DE 平分∠ADC , AD =8,BE =3,则平行四边形ABCD 的周长是( )A . 16B . 14C . 26D . 248. 下列命题中,错误的是( )A . 过n 边形一个顶点的所有对角线,将这个多边形分成(n ﹣2)个三角形B . 三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点C . 三角形的中线将三角形分成面积相等的两部分D . 一组对边平行另一组对边相等的四边形是平行四边形9. 如图,在∠ABC 中,∠ACB=90°,分别以点A 和点B 为圆心以相同的长(大于 AB )为半径作弧,两弧相交于点M 和N 点,作直线MN 交AB 于点D ,交BC 于点E ,若AC=3,BC=4,则BE 等于( )A .B .C .D .10. 某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x 道题,根据题意列式得( )A . 5x ﹣3(30﹣x )>70B . 5x+3(30﹣x )≤70C . 5x ﹣3(30+x )≥70D . 5x+3(30﹣x )>7011. 如图,直线y=kx+b 与y=mx+n 分别交x 轴于点A (﹣0.5,0)、B (2,0),则不等式(kx+b )(mx+n )<0的解集为( )○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………A . x >2B . ﹣0.5<x <2C . 0<x <2D . x <﹣0.5或x >212. 如图,平行四边形 ABCD 中,AD∠BC ,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD ,将∠BCD 绕点 B 旋转,当 BD (即 BD′)与 AD 交于一点 E ,BC (即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是( )①AE=DF ;②∠BEF=60°;③∠DEB=∠DFB ;④∠DEF 的周长的最小值是4+2A . ①②B . ②③C . ①②④D . ①②③④第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共4题)1. 因式分解:3a 2﹣27= .2. 已知,则= . 3. 请观察一列分式:﹣,﹣,…则第11个分式为 .4. 如图,等腰Rt∠ABC 中,∠BAC=90°,AB=AC=10,等腰直角三角形ADE 绕着点A 旋转,∠DAE=90°,AD=AE=6,连接BD 、CD 、CE ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MP 、PN 、MN ,则∠PMN 的面积最大值为 .答案第4页,总18页……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共3题)5. 解不等式组 ,并写出它的整数解.6. 先化简,再求值: ,其中m=4.7. 解方程: =2﹣评卷人得分三、综合题(共4题)8. 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系, 的顶点都在格点上,请解答下列问题:(1)作出 向左平移4个单位长度后得到的 ,并写出点 的坐标;○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)将 绕原点 逆时针旋转 得到 ,请画出旋转后的 ,并写出点 的坐标.9. 如图,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且EH∠AC .(1)求证:EG=FH ;(2)若∠ACD 是等腰直角三角形,∠ACD=90°,F 是AD 的中点,AD=6,连接BF ,求BF 的长.10. 为迎接全国文明城市的评选,市政府决定对春风路进行市政化改造,经过市场招标,决定聘请甲、乙两个工程队合作施工,已知春风路全长24千米,甲工程队每天施工的长度比乙工程队每天施工长度的多施工0.4千米,由甲工程队单独施工完成任务所需要的天数是乙工程队单独完成任务所需天数的 .(1)求甲、乙两个工程队每天各施工多少千米?(2)若甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.5万元,要使两个工程队施工的总费用不超过7万元,则甲工程队至多施工多少天?11. 如图1,已知平行四边形ABCO ,以点O 为原点,OC 所在的直线为x 轴,建立直角坐标系,AB 交y 轴于点D ,AD=2,OC=6,∠A=60°,线段EF 所在的直线为OD 的垂直平分线,点P 为线段EF 上的动点,PM∠x 轴于点M 点,点E 与E′关于x 轴对称,连接BP 、E′M .。

2017-2018年广东省深圳市宝安中学八年级(下)期中数学试卷(解析版)

2017-2018年广东省深圳市宝安中学八年级(下)期中数学试卷(解析版)

D.﹣
8.(3 分)已知实数 x,y 满足
,则以 x,y 的值为两边长的等腰
三角形的周长是( )
A.30 或 39
B.30
CBC 绕点 A 按逆时针方向旋转 120°得到△AB′C′(点
B 的对应点是点 B',点 C 的对应点是点 C'),连接 BB′,若 AC′∥BB′,
图形的是( )
A.
B.
C.
D.
5.(3 分)如图,在 Rt△ABC 中,∠C=90°,以顶点 A 为圆心,适当长为半径
画弧,分别交 AC,AB 于点 M,N,再分别以点 M,N 为圆心,大于 MN 的
长为半径画弧,两弧交于点 P,作射线 AP 交边 BC 于点 D,若 CD=4,AB =15,则△ABD 的面积是( )
则∠C'AB′的度数为( )
A.15°
B.30°
C.45°
D.60°
10.(3 分)若(x+2)是多项式 4x2+5x+m 的一个因式,则 m 等于( )
A.﹣6
B.6
C.﹣9
D.9
11.(3 分)如图,一次函数 y1=x+b 与一次函数 y2=kx+4 的图象交于点 P(1,3), 则关于 x 的不等式 x+b>kx+4 的解集是( )
B、在不等式 x>y 的两边同时乘以﹣3,不等号方向发生改变,即﹣3x<﹣3y, 故本选项符合题意;
C、在不等式 x>y 的两边同时加上 1,不等式仍成立,即 x+1>y+1,故本选项不 符合题意;
D、在不等式 x>y 的两边同时除以 3,不等式仍成立,即 > ,故本选项不符
合题意; 故选:B. 2.(3 分)若把分式 中的 x 和 y 都扩大到原来的 3 倍,那么分式的值( )

广东省深圳市宝安区宝安中学2023-2024学年八年级下学期期中数学试题(原卷版)

广东省深圳市宝安区宝安中学2023-2024学年八年级下学期期中数学试题(原卷版)

2023-2024学年第二学期期中学情调查问卷八年级数学第一部分选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.若分式有意义,则的取值范围是()A. B. C. D.2. 下列手机手势解锁图案中,是中心对称图形的是()A. B. C. D.3. 下列各式从左到右的变形,因式分解正确的是()A. B.C. D.4. 已知点在第二象限,则取值范围在数轴上表示正确的是()A. B.C. D.5. 如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb角的大小,需将转化为与它相等的角,则图中与相等的角是()A. B. C. D.6. 如图:有、、三户家用电路接入电表,相邻电路的接点距离相等,相邻电表的距离相等,且相邻的25xx-+x5x≠-5x=2x≠2x=()2231234ab a a b-=-22()2a ab a a b+-=+-1313a aa⎛⎫+=+⎪⎝⎭228(2)(4)a a a a--=+-()3,1P m m--mO∠O∠O∠BEA∠DEB∠ECA∠ADO∠a b c电路的接点距离等于相邻电表接入点的距离,电线对应平行排列,则三户所用电线( )A. 户最长B. 户最长C. 户最长D. 三户一样长7. 下列说法,错误的是( )A. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等B. 有两个角都是的三角形是等边三角形C. 三角形的三边分别为a 、b 、c ,若满足,那么该三角形是直角三角形D. 用反证法证明“三角形的三个内角中最多有一个直角”应假设“三角形的三个内角中没有直角”8. 宝安凤凰山森林公园位于“宝安第一山”凤凰山脚下,公园树木丰茂,景色优美,所以小青想带她初三的表姐去游玩放松释放压力,计划15点10分从学校出发,已知两地相距5.1千米,她们跑步的平均速度为190米/分钟,步行的平均速度为80米/分钟,若她们要在16点之前到达,那么她们至少需要跑步多少分钟?设他跑步的时间为分钟,则列出的不等式为( )A. B. C. D. 9. 如图,为上一点,连接,平分交于点,且,,,,则的长为( )A. B. C. 2 D. 310. 如图,在等腰直角三角形中,,,将边绕点逆时针旋转至,连接,,若,,则线段的长度为()a b c 60︒222a c b -=x 19080(50)5100x x +-≥19080(50)5100x x +-≤19080(50) 5.1x x +-≥19080(50) 5.1x x +-≤E AC BE CD ACB ∠BE D BE CD ⊥A ABE ∠=∠10AC =6BC =BD 1.2 1.5ABC AB BC =90CBA ∠=︒AB A AB 'BB 'CB '90CB B '∠=︒5AB =B B 'A. B. 4 C. D. 5第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 一个多项式,把它因式分解后有一个因式为,请你写出一个符合条件的多项式:______.12. 已知点与关于原点对称,则___________.13. 如图,在中,,的垂直平分线交于点E ,垂足为平分,若,则的长为____________.14. 2024年春晚,刘谦表演的扑克牌魔术“约瑟夫环”,是数学与神奇的完美结合,通过一定指令的操作,会得到一个数学规律.请依照下列定义,若,则的取值范围为______.15. 如图,在长方形中,点E 、F 分别在边、上,将四边形沿翻折,点的对应点点恰好落在上,点的对应点是点.请从A 、B 两题中任选一题作答.A .若,则的最小值为__________;B .若,,则的最小值为__________.三、解答题(本题共7小题,共55分)16. 解不等式组.17.按下列程序计算,把答案填写在表格内,并观察有什么规律,想想为什么有这样的规律?(1)x -()2,A b -(),3B a a b +=ABC 30B ∠=︒BC AB D CE ,ACB ∠4BE =AE (,)2b a f a b a+=-(2,)1f x ≥x ABCD BC AD ABEF EF B G CD A H 4AB BC CD DA ====BH EF +3AB CD ==6AD BC ==2BH EF +()4168643x x x x ⎧+≤+⎪⎨--<⎪⎩①②(1)填写表内空格:填写表内空格:输入32…输出答案11…(2)你发现了什么规律,并说明理由.18. 阅读与思考:在现今信息化时代,智能手机几乎人手必备,应用到了生活的各个领域,锁屏密码为保护我们个人隐私起到了不可或缺的作用,而诸如“1234”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为或,取个人年龄作为的值,当时,,,此时可以得到数字密码1214或1412.(1)根据上述方法,若多项式为,请你结合个人年龄设置一个锁屏密码,当______时,锁屏密码为______;(2)若王老师选取的多项式为,已知王老师手机的锁屏密码是6位数字353334,请尝试分析王老师当前年龄是多少岁,并说明理由.19. 某校八年级为了丰富同学们的课余生活,决定举行一场校园义卖活动,小深和小圳都参加了这次活动,他们分别售卖类物品和类物品,若类卖了10件和类卖了20件一共可卖220元;若类卖了16件和类卖了30件一共可卖336元.(1)请求出类物品和类物品每件售价分别是多少元?(2)为了鼓励更多同学参与,能筹到更多善款,学校决定设立奖励机制,如果两人合作筹集到善款总额不少于500元,则可获得电影票一张作为奖励.假设类和类一共卖了70件,则类至少要卖多少件,小深和小圳才能获得奖励?20 如图,已知,,请结合下述要求完成作图并回答相应问题:的.x2-3-21x -(1)(1)x x -+(1)(1)x x +-x 13x =112x -=114x +=221x x ++x =3x x -A B A B A B A B A B B Rt ACB △90ACB ∠=︒(1)如图1,点在线段延长线上且,请使用不含刻度的直尺与圆规过点作射线,使得(不写作法,保留作图痕迹并书写相应结论);(2)如图2,将线段水平向右进行平移个单位得到线段,请使用不含刻度的直尺与圆规过点作射线的垂线,与交于点(不写作法,保留作图痕迹并书写相应结论),若点在点的左侧,,,则______.21. 如图,是边长为6的等边三角形,动点E 、F 分别以每秒1个单位长度的速度从出发,点沿折线运动,点沿运动(点到达点时停止运动),当点到达点后,点的运动速度变为每秒2个单位长度运动直至到点后停止运动,设运动时间为秒,点、的距离为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中,两出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出当时取值范围.22. 在一节数学探究课中,同学们遇到这样的几何问题:如图1,等腰直角三角形和共顶点A ,且三点共线,,连接,点G 为的中点,连接和,请思的的P AC CP CA =P PQ PQ AB ∥AB m ED E CD EF CD F F B 12CD = 5.5FB =m =ABC B E B A C →→F B C →F C E A E C x E F y y x x 3y ≥x ABC ADE ,,A C D 90ACB ADE ∠=∠=︒BE BE CG DG考与具有怎样的数量和位置关系?【模型构建】小颖提出且并给出了自己思考,以G 是中点入手,如图2,通过延长与相交于点F ,证明,得到,随后通过得即,又,所以且.(1)请结合小颖的证明思路利用结论填空:当时,_____;______.【类比探究】(2)如图3,若将绕点A 逆时针旋转α度(),请分析此时上述结论是否成立?如果成立,如果不成立,请说明理由.【拓展延伸】(3)若将E 绕点A 逆时针旋转β度(),当时,请直接写出旋转角β的度数为_______.CG DG CG DG =CG DG ⊥BE CG DE BGC EGF ≌BC EF =AD BC DE EF -=-AD AC DE EF -=-CD FD =CG FG =CG DG ⊥CG DG =63AD BC ==,CG =BE =ADE V 045a <<°ADE V 0360β<<︒BG CG =。

2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷

2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷

2016-2017 学年广东省深圳市宝安区八年级(下)期末数学试卷一、选择题(每题 3 分,共 36 分)1(.3 分)( 2017 春?宝安区期末)以下各数中,能使不等式 x﹣ 1> 0 建立的是()A.1B.2C.0D.﹣ 22.( 3 分)(2016?江夏区校级模拟)使分式存心义的x的取值范围为()A.x≠2B.x≠﹣ 2 C.x≠﹣ 1 D.x≠03.( 3 分)( 2017 春?宝安区期末)以下四个高校校徽主体图案是中心对称图形的是()A.B.C.D.4.(3 分)(2017?广东模拟)若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.65.(3 分)(2017 春?宝安区期末)以下变形是因式分解的是()A.(x+2)(x﹣ 2) =x2﹣ 4 B.x2﹣ 4+3x=(x+2)(x﹣2)+3x.x 2﹣ 3x﹣4=( x﹣ 4)(x+1)D. x2 +2x﹣3=( x+1)2﹣ 4C6.( 3 分)(2017 春?宝安区期末)如图,△ ABC中,D,E 分别是 BC,AC 的中点,BF均分∠ ABC,交 DE 于点 F,若 BC=6,则 DF 的长是()A.3B.4C.5D.67.(3 分)(2017 春 ?宝安区期末)如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位获得△ DEF,则四边形 ABFD的周长为()A.8B.9C.10D.118.(3 分)(2017 春?宝安区期末)以下分式计算正确的选项是()A.=﹣B.=C.=x﹣1 D.﹣=19.(3 分)(2017 春?宝安区期末)以下命题正确的选项是()A.三角形三条角均分线的交点到三角形三个极点的距离都相等B.两条对角线相等的四边形是平行四边形C.假如 a>b,ac2>bc2D.分式的值不可以为零10.( 3 分)(2017 春?宝安区期末)如图,点 P 是∠ BAC的均分线 AD 上一点,PE⊥AC于点 E,且 AP=2 ,∠ BAC=60°,有一点 F 在边 AB 上运动,当运动到某一地点时△ FAP面积恰巧是△ EAP面积的 2 倍,则此时 AF的长是()A.6B.6C.4D.411.( 3 分)(2017 春?宝安区期末)如图,一次函数y=kx+b 的图象交 y 轴于点 A ( 0, 2),则不等式 kx+b< 2 的解集为()A.x>0B.x<0 C. x>﹣ 1D. x<﹣ 112.( 3 分)(2017 春?宝安区期末)如图,在△ABC中, AB=5, AC=13,BC边上的中线 AD=6,则 BC的长度为()A.12 B.C.6D.2二、填空题(每题 3 分,共 12 分)13.( 3 分)(2018?隆回县一模)因式分解:4m2﹣16=.14.( 3 分)(2017 春?宝安区期末)如图,在周长为32 的平行四边形 ABCD中,AC、BD 交于点 O,OE⊥BD 交 AD 于点 E,则△ ABE的周长为.15.( 3 分)( 2017 春?宝安区期末)小颖准备用100 元去购置笔录本和钢笔共15件,已知笔录本每本 5 元,每支钢笔 9 元,则小颖最多能买支钢笔.16.( 3 分)(2017 春?宝安区期末)如图,将平行四边形ABCD绕点 A 顺时针旋转,此中 B、C、D 分别落在点E,F、G 处,且点 B、E、D、F 在向来线上,若CD=4,BC=2,则平行四边形ABCD的面积为.三、解答题(共52 分)17.( 8 分)(2017 春 ?宝安区期末)( 1)解不等式, 3(x﹣1)﹣ 5x≤ 1,并把解集表示在数轴上.( 2)解不等式组并写出它的整数解.18.(6 分)(2017 春?宝安区期末)先化简,再求值×(1﹣),此中x=2﹣2.19.( 5 分)(2017 春?宝安区期末)解方程:=2﹣.20.( 7 分)(2017 春?宝安区期末)如图,在△ABC中,∠ C=90°.(1)用尺规作图,在 AC边上找一点 D,使 DB+DC=AC(保存作图印迹,不要求写作法和证明);(2)在( 1)的条件下若 AC=6,AB=8,求 DC的长.21.( 8 分)(2017 春?宝安区期末)如图,四边形 ABCD是平行四边形, E、F 是对角线 AC上的两点,连结 BE、 ED、DF、FB,若∠ ADF=∠CBE=90°.(1)求证:四边形 BEDF是平行四边形;(2)若∠ BAC=30°,∠BEC=45°,请判断 AB 与 CE有什么数目关系,并说明原因.22.(9 分)( 2017 春?宝安区期末)某商铺五月份销售 A 型电脑的总收益为 4320 元,销售 B 型电脑的总收益为 3060 元,且销售 A 型电脑数目是销售 B 型电脑的 2 倍,已知销售一台 B 型电脑比销售一台 A 型电脑多赢利 50 元.(1)求每台 A 型电脑和 B 型电脑的收益;(2)该商铺计划一次购进两种型号的电脑共 100 台且所有售出,此中 B 型电脑的进货量不超出 A 型电脑的 2 倍,该商铺购进 A 型、B 型电脑各多少台,才能使销售总收益最大?最大收益是多少?23.(9 分)(2017 春 ?宝安区期末)如图 1,在平面直角坐标系中.直线 y=﹣x+3与 x 轴、 y 轴订交于 A、B 两点,动点 C 在线段 OA 上,将线段 CB绕着点 C 顺时针旋转 90°获得 CD,此时点 D 恰巧落在直线 AB 上时,过点 D 作 DE⊥x 轴于点E.( 1)求证:△ BOC≌△ CED;( 2)如图 2,将△ BCD沿 x 轴正方向平移得△ B′C′,D当′直线 B′C经′过点 D 时,求点 D 的坐标及△ BCD平移的距离;( 3)若点 P 在 y 轴上,点 Q 在直线 AB 上.能否存在以C、D、P、Q 为极点的四边形是平行四边形?若存在,直接写出所有知足条件的Q 点坐;若不存在,请说明原因.2016-2017 学年广东省深圳市宝安区八年级(下)期末数学试卷参照答案与试题分析一、选择题(每题 3 分,共 36 分)1.【考点】 C3:不等式的解集.【剖析】依据不等式的解集的观点即可求出答案.【解答】解:不等式的解集为: x>1,应选: B.【评论】本题考察不等式的解集,解题的重点是正确理解不等式的解的观点,本题属于基础题型.2.【考点】 62:分式存心义的条件.【专题】 2C :存在型.【剖析】先依据分式存心义的条件列出对于x 的不等式,求出 x 的取值范围即可.【解答】解:∵分式存心义,∴x﹣2≠0,解得x≠2.应选: A.【评论】本题考察的是分式存心义的条件,即分式的分母不为0.3.【考点】 R5:中心对称图形.【剖析】依据把一个图形绕某一点旋转180°,假如旋转后的图形可以与本来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行剖析即可.【解答】解: A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;应选: B.【评论】本题主要考察了中心对称图形,重点是掌握中心对称图形定义.4.【考点】 L3:多边形内角与外角.【剖析】依据多边形的外角和定理作答.【解答】解:∵多边形外角和 =360°,∴这个正多边形的边数是360°÷45°=8.应选: C.【评论】本题主要考察了多边形的外角和定理:任何一个多边形的外角和都为360°.5.【考点】 51:因式分解的意义.【剖析】本题可依据因式分解的观点,将复杂的多项式分解成多个单项式相乘的形式,依照此对各个选项进行判断,即可求出答案.【解答】解: A:等式左边为单项式相乘,右侧为多项式相加,不切合观点,故本项错误;B:等式右侧既有相乘,又有相加,不切合观点,故本项错误;C:等式左边为多项式相加,左边为单项式相乘,切合观点,故本项正确;D:等式右侧既有相乘,又有相减,不切合观点,故本项错误.应选: C.【评论】本题考察因式分解的基本观点,将多项式相加的写成单项式相乘的形式,依据观点,对各项进行剖析,即可求出答案.【考点】 KX:三角形中位线定理.【剖析】依据三角形中位线定理获得 DE∥AB,依据平行线的性质、角均分线的定义解答即可.【解答】解:∵ D, E 分别是 BC, AC的中点,∴DE∥AB,∴∠BFD=∠ABF,∵ BF均分∠ ABC,∴∠DBF=∠ABF,∴∠ BFD=∠DBF,∴DF=DB= BC=3,应选: A.【评论】本题考察的是三角形中位线定理、平行线的性质,掌握三角形的中位线平行于第三边,而且等于第三边的一半是解题的重点.7.【考点】 Q2:平移的性质.【剖析】依据平移的基天性质,得出四边形 ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:依据题意,将周长为 8 个单位的△ ABC沿边 BC方向平移 1 个单位获得△ DEF,∴AD=1, BF=BC+CF=BC+1,DF=AC;又∵ AB+BC+AC=8,∴四边形 ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.应选: C.【评论】本题考察平移的基天性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.获得CF=AD,DF=AC是解题的重点.【考点】 6B:分式的加减法; 65:分式的基天性质.【剖析】依据分式的运算法例即可求出答案.【解答】解:(A)原式 ==﹣1,故 A 错误;( B)原式 =,故B错误;( C)原式 ==x+1,故 C 错误应选: D.【评论】本题考察分式的运算,解题的重点是娴熟运用分式的运算法例,本题属于基础题型.9.【考点】 O1:命题与定理.【剖析】直接利用三角形心里的定义以及不等式的性质、分式存心义的条件、矩形的判断方法分别剖析得出答案.【解答】解: A、三角形三条角均分线的交点到三角形的三边的距离都相等,故此选项错误;B、两条对角线相等的平行四边形是平行四边形,故此选项错误;C、假如 a>b,ac2≥bc2,故此选项错误;D、分式的值不可以为零,正确.应选: D.【评论】本题主要考察了命题与定理,正确掌握有关性质与定理是解题重点.10.【考点】 KF:角均分线的性质.【剖析】依据角均分线的定义求出∠PAE,依据直角三角形的性质求出PE、AE,依据角均分线的性质、三角形面积公式计算即可.【解答】解:作 PH⊥ AB于 H,∵点 P 是∠ BAC的均分线 AD 上一点,∠ BAC=60°,∴∠ PAE=30°,∴PE= AP= , AE=3,∵点 P 是∠ BAC的均分线 AD 上一点, PE⊥ AC,PH⊥AB,∴PH=PE= ,又△ FAP面积恰巧是△ EAP面积的 2 倍,∴AF=2AE=6,应选: A.【评论】本题考察的是角均分线的性质、直角三角形的性质,掌握角的均分线上的点到角的两边的距离相等是解题的重点.11.【考点】 FD:一次函数与一元一次不等式.【专题】 31 :数形联合.【剖析】利用函数图象,写出函数图象在 y 轴左边所对应的自变量的范围即可.【解答】解:依据图象得,当 x< 0 时, kx+b<2,因此不等式 kx+b<2 的解集为 x<0.应选: B.【评论】本题考察了一次函数与一元一次不等式:从函数的角度看,就是追求使一次函数 y=kx+b 的值大于(或小于) 0 的自变量 x 的取值范围;从函数图象的角度看,就是确立直线 y=kx+b 在 x 轴上(或下)方部分所有的点的横坐标所组成的会合.12.【考点】 KD:全等三角形的判断与性质.【专题】 11 :计算题; 552:三角形.【剖析】延伸 AD 到点 E,使 DE=AD=6,连结 CE,可证明△ ABD≌△ CED,因此CE=AB,再利用勾股定理的逆定理证明△ CDE是直角三角形,再利用勾股定理求出 BD 即可解决问题;【解答】证明:延伸 AD 到点 E,使 DE=AD=6,连结 CE,∵AD 是 BC边上的中线,∴ BD=CD,在△ ABD和△ CED中,,∴△ ABD≌△ CED(SAS),∴CE=AB=5,∠ BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴222,CE+AE =AC∴∠ E=90°,∴∠ BAD=90°,∴BD===,∴BC=2BD=2应选: D.【评论】本题考察了全等三角形的判断和性质、勾股定理的逆定理的运用,解题的重点是增添协助线,结构全等三角形,题目的设计很新奇,是一道不错的中考题.二、填空题(每题 3 分,共 12 分)13.【考点】 55:提公因式法与公式法的综合运用.【剖析】本题应先提公因式4,再利用平方差公式持续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解: 4m2﹣ 16,=4(m2﹣ 4),=4(m+2)(m﹣ 2).【评论】本题考察了用提公因式法和公式法进行因式分解,一个多项式有公因式第一提取公因式,而后再用其余方法进行因式分解,同时因式分解要完全,直到不可以分解为止.14.【考点】 L5:平行四边形的性质.【剖析】由平行四边形的性质联合条件可求得OE 为线段 BD 的垂直均分线,可求得 BE=DE,则可求得△ ABE的面积.【解答】解:∵平行四边形 ABCD的周长为 32,∴AB+AD=16, O 为 BD 的中点,∵ OE⊥BD,∴OE为线段 BD 的垂直均分线,∴BE=DE,∴AB+AE+BE=AB+AE+DE=AB+AD=16,即△ ABE的周长为16,故答案为: 16.【评论】本题主要考察平行四边形的性质,掌握平行四边形对边相等、对角线相互均分是解题的重点.15.【考点】 C9:一元一次不等式的应用.【剖析】设小颖买了 x 支钢笔,则买了( 15﹣x)本笔录本,依据总价 =单价×数量联合总钱数不超出100 元,即可得出对于 x 的一元一次不等式,解之取最大的正整数即可得出结论.【解答】解:设小颖买了 x 支钢笔,则买了( 15﹣x)本笔录本,依据题意得: 9x+5(15﹣ x)≤ 100,解得: x≤.则小颖最多能买 6 支钢笔;故答案为: 6.【评论】本题考察了一元一次不等式的应用,依据总价 =单价×数目联合总钱数不超出 100 元列出对于 x 的一元一次不等式是解题的重点.16.【考点】 R2:旋转的性质; L5:平行四边形的性质.【剖析】先利用旋转的性质得∠ 1=∠2,AB=AE,再证明∠ 1=∠3,则可判断△ BAE∽△ BDA,获得∠ AEB=∠DAB,而后证明 AD=BD,由勾股定理求得CD 边上的高,求得 S△BCD,即可求得结论.【解答】解:∵平行四边形ABCD绕点 A 旋转到平行四边形AEFG的地点,点 E 恰巧是对角线 BD 的中点,∴∠ 1=∠ 2, AB=AE,∵EF∥AG,∴∠ 2=∠ 3,∴∠ 1=∠ 3,∵∠ ABE=∠DBA,∴△ BAE∽△ BDA,∴∠ AEB=∠DAB,∵AE=AB,∴∠ AEB=∠ABD,∴∠ ABD=∠DAB,∴DB=DA=BC=2 ,过 B 作 BH⊥CD于H,则 CH=DH=2,∴BH===2,∴S△BCD= CD?BH=4 ,∴平行四边形 ABCD的面积 =2S△BCD=8.故答案为: 8.【评论】本题考察了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的重点是证明△ BAE∽△ BDA,三、解答题(共52 分)17.【考点】 CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;C6:解一元一次不等式; CB:解一元一次不等式组.【剖析】(1)依据解一元一次不等式基本步骤:去括号、移项、归并同类项、系数化为 1 可得.(2)分别求出每一个不等式的解集,依据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确立不等式组的解集.【解答】解:(1)去括号,得: 3x﹣3﹣5x≤ 1,移项,得: 3x﹣5x≤1+3,归并同类项,得:﹣ 2x≤ 4,系数化为 1,得: x≥﹣ 2,将解集表示在数轴上以下:( 2)解不等式 3x﹣( x﹣2)≥ 6,得: x≥ 2,解不等式 x+1>,得:x<4,则不等式组的解集为2≤x<4,∴不等式组的整数解为2、 3.【评论】本题考察的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.18.【考点】 6D:分式的化简求值.【剖析】依据分式的混淆运算法例把原式化简,代入计算即可.【解答】解:×(1﹣)=×(﹣)=×=,当 x=2﹣2时,原式==.【评论】本题考察的是分式的化简求值,掌握分式的混淆运算法例是解题的重点.19.【考点】 B3:解分式方程.【专题】 11 :计算题; 522:分式方程及应用.【剖析】分式方程去分母转变为整式方程,求出整式方程的解获得x 的值,经检验即可获得分式方程的解.【解答】解:去分母得: x﹣ 1=2x﹣6+2,移项归并得: x=3,经查验 x=3 是增根,分式方程无解.【评论】本题考察认识分式方程,利用了转变的思想,解分式方程注意要查验.20.【考点】 N3:作图—复杂作图.【专题】 13 :作图题.【剖析】(1)作 AB 的垂直均分线交 AC 于点 D,则点 D 知足条件;(2)先利用勾股定理计算出 BC,再设 CD=x,则 BD=AD=AC﹣ CD=6﹣x,再利用勾股定理列方程得( 6﹣x)2=(2 )2+x2,而后解方程即可.【解答】解:(1)如图,点 D 为所作;(2)∵ AC=6,AB=8,∴ BC= =2 ,设 CD=x,则 BD=AD=AC﹣ CD=6﹣x,在 Rt△BCD中,∵BD2 2+CD2, =BC∴( 6﹣x)2=(2)2+x2,解得x=,即 CD的长为.【评论】本题考察了作图﹣复杂作图:复杂作图是在五种基本作图的基础长进行作图,一般是联合了几何图形的性质和基本作图方法.解决此类题目的重点是熟习基本几何图形的性质,联合几何图形的基天性质把复杂作图拆解成基本作图,逐渐操作.也考察了线段的垂直均分线的性质和勾股定理.21.【考点】 L7:平行四边形的判断与性质.【剖析】(1)只需证明△ BCE≌△ DAF,推出BE=DF,∠BEC=∠DFA,推出BE∥DF,由此即可证明;( 2)结论: AB=EC.作 BH⊥AC 于 H.只需证明 AB=2BH,EC=2BH即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ BCE=∠DAF,在△ BCE和△ DAF中,,∴△ BCE≌△ DAF,∴BE=DF,∠ BEC=∠ DFA,∴BE∥DF,∴四边形 BEDF是平行四边形.(2)结论: AB=EC.原因:作 BH⊥ AC于 H.在 Rt△ABH 中,∵∠ AHB=90°,∠ BAH=30°,∴AB=2BH,在 Rt△BEC中,∵∠ EBC=90°,∠ BEC=45°,BH⊥ CE,∴ EH=HC,∴ EC=2BH,∴ AB=EC.【评论】本题考察平行四边形的判断和性质、全等三角形的判断和性质、直角三角形 30 度角性质、等腰直角三角形的性质等知识,解题的重点是学会增添常用协助线,结构直角三角形解决问题,属于中考常考题型.22.【考点】 B7:分式方程的应用; CE:一元一次不等式组的应用.【专题】 1:惯例题型.【剖析】(1)设每台 A 型电脑的收益为 x 元,则每台 B 型电脑的收益为( x+50)元,而后依据销售 A 型电脑数目是销售 B 型电脑的 2 倍列出方程,而后求解即可;( 2)设购进 A 型电脑 a 台,这 100 台电脑的销售总收益为 y 元.依据总收益等于两种电脑的收益之和列式整理即可得解;依据 B 型电脑的进货量不超出 A 型电脑的2 倍列不等式求出 a 的取值范围,而后依据一次函数的增减性求出收益的最大值即可.【解答】解:(1)设每台 A 型电脑的收益为 x 元,则每台 B 型电脑的收益为( x+50)元,依据题意得= ×2,解得 x=120.经查验, x=120是原方程的解,则 x+50=170.答:每台 A 型电脑的收益为120 元,每台 B 型电脑的收益为170 元;(2)设购进 A 型电脑 a 台,这 100 台电脑的销售总收益为 y 元,据题意得, y=120a+170( 100﹣a),即 y=﹣50a+17000,100﹣ a≤ 2a,解得 a≥33,∵y=﹣50a+17000,∴ y 随 a 的增大而减小,∵a 为正整数,∴当 a=34 时, y 取最大值,此时 y=﹣ 50×34+17000=15300.即商铺购进 34 台 A 型电脑和 66 台 B 型电脑,才能使销售总收益最大,最大收益是 15300 元.【评论】本题考察了一次函数的应用,分式方程的应用,一元一次不等式的应用,读懂题目信息,正确找出等量关系列出方程是解题的重点,利用一次函数的增减性求最值是常用的方法,需娴熟掌握.23.【考点】 FI:一次函数综合题.【剖析】(1)依据 AAS或 ASA即可证明;(2)第一求出点 D 的坐标,再求出直线 B′C的′分析式,求出点 C′的坐标即可解决问题;(3)如图 3 中,作 CP∥AB 交 y 轴于 P,作 PQ∥CD交 AB 于 Q,则四边形 PCDQ 是平行四边形,求出直线 PC的分析式,可得点 P 坐标,点 C 向左平移 1 个单位,向上平移个单位获得 P,推出点 D 向左平移 1 个单位,向上平移个单位获得Q,再依据对称性可得Q′、 Q″的坐标;【解答】(1)证明:∵∠ BOC=∠BCD=∠CED=90°,∴∠ OCB+∠DCE=90°,∠ DCE+∠CDE=90°,∴∠ BCO=∠CDE,∵BC=CD,∴△ BOC≌△ CED.(2)∵△ BOC≌△ CED,∴OC=DE=m,BO=CE=3,∴D( m+3,m),把 D(m+3, m)代入 y=﹣ x+3 获得, m=﹣(m+3)+3,∴2m=﹣m﹣ 3+6,∴m=1,∴D(4,1),∵B(0,3),C(1,0),∴直线 BC的分析式为 y=﹣ 3x+3,设直线 B′C的′分析式为 y=﹣3x+b,把 D( 4, 1)代入获得b=13,∴直线 B′C的′分析式为 y=﹣3x+13,∴C′(,0),∴CC′=,∴△ BCD平移的距离是个单位.( 3)解:如图 3 中,作 CP∥AB 交 y 轴于 P,作 PQ∥CD 交 AB 于 Q,则四边形PCDQ是平行四边形,易知直线 PC的分析式为 y=﹣x+,∴P(0,),∵点 C 向左平移 1 个单位,向上平移个单位获得P,∴点 D 向左平移 1 个单位,向上平移个单位获得Q,∴Q(3,),当 CD为对角线时,四边形 PCQ″D是平行四边形,可得 Q″( 5,),当四边形 CDP′Q为′平行四边形时,可得 Q′(﹣3,),综上所述,知足条件的点Q 的坐标为( 3,)或(5,)或(﹣3,).【评论】本题考察一次函数综合题、平行四边形的判断和性质、全等三角形的判断和性质、待定系数法等知识,解题的重点是灵巧运用待定系数法解决问题,学会用分类议论的思想思虑问题,学会用平移、对称等性质解决问题,属于中考压轴题.2016-2017学年广东省深圳市宝安区八年级(下)期末数学试卷20/2021 / 21。

深圳宝安区精华学校八年级数学下册第四单元《一次函数》测试卷(包含答案解析)

深圳宝安区精华学校八年级数学下册第四单元《一次函数》测试卷(包含答案解析)

一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x分别交x轴、y轴于A、B两点.若C是x轴上的动点,则2BC AC+的最小值()A.236+B.6 C.33+D.42.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP⊥AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与△AOB全等,则OD的长为()A.2或5+1 B.3或5C.2或5D.3或5+13.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩4.如图,A 、M 、N 三点坐标分别为A (0,1),M (3,4),N (5,6),动点P 从点A 出发,沿y 轴以每秒一个单位长度的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒,若点M 、N 分别位于l 的异侧,则t 的取值范围是( )A .611t <<B .510t <<C .610t <<D .511t <<5.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,106.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .57.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-8.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定9.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <10.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6B .6C .6或3D .6或-611.如图,直线y=kx(k≠0)与y=23x+2在第二象限交于A,y=23x+2交x轴,y轴分别于B、C两点.3S△ABO=S△BOC,则方程组236kx yx y-=⎧⎨-=-⎩的解为()A.143xy=-⎧⎪⎨=⎪⎩B.321xy⎧=-⎪⎨⎪=⎩C.223xy=-⎧⎪⎨=⎪⎩D.3432xy⎧=-⎪⎪⎨⎪=⎪⎩12.甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的距离分别为()y km甲、()y km乙,甲车行驶的时间为(h)x,y甲、y乙与x之间的函数图象如图所示,结合图象下列说法不正确的是()A.甲车的速度是80/km h B.乙车休息前的速度为100/km hC.甲走到200km时用时2.5h D.乙车休息了1小时二、填空题13.如图,直线y=kx+1经过点A(-2,0)交y轴于点B,以线段AB为一边,向上作等腰Rt ABC,将ABC向右平移,当点C落在直线y=kx+1上的点F处时,则平移的距离是_________.14.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.15.在平面直角坐标系中,一次函数4y x =+的图象分别与x 轴,y 轴交于点A ,B ,点P 在一次函数 y x =的图象上,则当ABP ∆为直角三角形时,点P 的坐标是___________.16.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.17.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象,则关于x 、y 的二元一次方程组12y k xy k x b =⎧⎨=+⎩的解是___________.18.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.19.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.20.如图,在ABC 中90ACB ∠=︒,AC BC =,BC 与y 轴交于D 点,点C 的坐标为()2,0-,点A 的坐标为()6,3-,则D 点的坐标是__________.三、解答题21.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.24.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?25.已知在平面直角坐标系中,直线()11140y k x k =+≠与直线()2220y k x k =≠交于点()6,12C ,直线1y 分别与x 轴,y 轴交于点A 和点B .(1)求直线1y 与2y 的表达式及点A ,点B 的坐标;(2)x 轴上是否存在点P ,使ACP ∆的面积为30,若存在,求出点P 的坐标;若不存在,说明理由;(3)x 轴上是否存在点Q ,使OCQ ∆为等腰三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.26.甲、乙两车分别从,A B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示.(1)求甲车从A 地到达B 地所用的时间; (2)求甲车到达B 地时乙车距A 地的路程;(3)求甲车返回前甲、乙两车相距50千米时,甲车行驶的时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值. 【详解】解:∵一次函数333=-y x 分别交x 轴、y 轴于A 、B 两点, ∴()3,0A ,(3B ,3,3OA OB ∴==∴()223323AB =+=,∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ , ∴在Rt ABE △中,30ABE ∠=︒,1123322AE AB ∴==⨯=,()()22222333BE AB AE ∴=-=-=又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.D解析:D 【分析】利用一次函数与坐标轴的交点求出△AOB 的两条直角边,并运用勾股定理求出AB .根据已知可得∠CAD =∠OBA ,分别从∠ACD =90°或∠ADC =90°时,即当△ACD ≌△BOA 时,AD =AB ,或△ACD ≌△BAO 时,AD =OB ,分别求得AD 的值,即可得出结论. 【详解】解:∵直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,∴A(1,0),B(0,2).∴OA=1,OB=2.∴AB=2222+=+=.OA OB125∵AP⊥AB,点C是射线AP上,∴∠BAC=90°,即∠OAB+∠CAD=90°,∵∠OAB+∠OBA=90°,∴∠CAD=∠OBA,若以C、D、A为顶点的三角形与△AOB全等,则∠ACD=90°或∠ADC=90°,即△ACD≌△BOA或△ACD≌△BAO.如图1所示,当△ACD≌△BOA时,∠ACD=∠AOB=90°,AD=AB,∴OD=AD+OA=5+1;如图2所示,当△ACD≌△BAO时,∠ADC=∠AOB=90°,AD=OB=2,∴OD=OA+AD=1+2=3.综上所述,OD 的长为31.故选:D .【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.3.B解析:B【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0).将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0).将(0,2)、(-1,1)两点代入解析式中,解得 12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.4.C解析:C【分析】分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围.【详解】解:当直线y=-x+b 过点M (3,4)时,得4=-3+b ,解得:b=7,则7=1+t ,解得t=6.当直线y=-x+b过点N(5,6)时,得6=-5+b,解得:b=11,则11=1+t,解得t=10.故若点M,N位于l的异侧,t的取值范围是:6<t<10.故选:C.【点睛】本题考查了坐标平面内一次函数的图象与性质,得出直线l经过点M、点N时的t值是解题关键.5.A解析:A【分析】求出B点的坐标,再求出直线BC的解析式,从而可得CO的长度,进一步得出CD的长度,即可求解.【详解】解:∵A(1,0)∴OA=1当y=1时,112x=,即x=2,∴B(2,1)∵BC⊥l∴设直线BC的解析式为y=-2x+b,把B(2,1)代入得,b=5,∴CO=5,当y=5时,152x=,解得,x=10,∴点D的坐标为(10,5)故选:A【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,解题时要注意相关知识的综合应用.6.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.A解析:A【分析】根据一次函数的性质得出 y 随 x 的增大而减小,当 x >-1时,y <0,即可求出答案.【详解】直线 y kx b =+ 与 x 轴交于点(-1,0),与y 轴交于点()0,2-∴ 根据图形可得 k <0,∴y 随 x 的增大而减小,当 x >-1时,y <0,即0kx b +<.故答案为: A【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.8.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.D解析:D【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可.【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确; B 、∵x 2>0,∴21x >0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D .【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.10.B解析:B【分析】先用待定系数法求出直线AB 的解析式,然后将点C 的坐标代入即可确定a 的值.【详解】解:设点()2,3A -、()4,3B 所在的直线解析式为y=kx+b则3234k b k b -=+⎧⎨=+⎩,解得39k b =⎧⎨=-⎩ 则直线y=3x-9将点C 的坐标代入得:a=3×5-9=6.故选:B .【点睛】本题主要考查了一次函数的应用,确定直线AB 的解析式是解答本题的关键.11.C解析:C【分析】先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答.【详解】 解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2,∵3S △ABO =S △BOC , ∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限,∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩. 故答案为C .【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.12.D解析:D【分析】根据题意和函数图象可以判断题目中的各个选项是否正确,从而可以解答本题;【详解】解:由图象可得,甲车的速度为:400580/km h ÷=,故A 正确;乙车休息前行驶的速度为:2002100/km h ÷=,故B 正确;甲车与乙车相遇时,甲车行驶的时间为:(400200)80 2.5h -÷=,故C 正确;乙车休息的时间为2.520.5h -=,故D 错误.故选:D .【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答;二、填空题13.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x+1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质和平移的性质.14.y=-2x【分析】由题意可设y=kx(k≠0)把xy的值代入该函数解析式通过方程来求k的值【详解】解:由题意可设y=kx(k≠0)则2=-k解得k=-2所以y关于x的函数解析式是y=-2x故答案为:解析:y=-2x【分析】由题意可设y=kx(k≠0).把x、y的值代入该函数解析式,通过方程来求k的值.【详解】解:由题意可设y=kx(k≠0).则2=-k,解得,k=-2,所以y关于x的函数解析式是y=-2x,故答案为:y=-2x.【点睛】本题考查了待定系数法求正比例函数解析式,利用待定系数法求得解析式是关键.15.(00)或(22)或(-2-2)【分析】作出图形分别以ABP为直角顶点三种情况讨论利用勾股定理即可求解【详解】令则令则∴A(0)B(4)∵点P在一次函数的图象上∴设点的坐标为(xx)==①当∠ABP解析:(0,0)或(2,2)或(-2,-2)【分析】作出图形,分别以A 、B 、P 为直角顶点三种情况讨论,利用勾股定理即可求解.【详解】令0x =,则4y =,令0y =,则4x =-,∴A(4-,0),B(0,4),∵点P 在一次函数 y x =的图象上,∴设点P 的坐标为(x ,x),2AB =224432+=,()222242816PB x x x x =+-=-+,2PA =()22242816x x x x ++=++, ①当∠ABP=90︒时,根据勾股定理得:222AB PB PA +=,即223228162816x x x x +-+=++, 解得:2x =∴点P 的坐标为(2,2);②当∠BAP=90︒时,根据勾股定理得:222AB PA PB +=,即223228162816x x x x +++=-+, 解得:2x =-∴点P 的坐标为(-2,-2);③当∠APB=90︒时,此时点P 与点O 重合,∴点P 的坐标为(0,0);综上,点P 的坐标为(0,0)或(2,2)或(-2,-2).【点睛】本题考查了一次函数与坐标轴的交点,勾股定理,采用了分类讨论的思想,与方程相结合是解决问题的关键.16.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点 解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.17.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题【详解】解:∵一次函数y1=k1x 与y=k2x+b 的图象的交点坐标为(12)∴二元一次方程组的解为故答案是:【点睛】本题考查了一次函解析:12x y =⎧⎨=⎩ 【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:∵一次函数y 1=k 1x 与y=k 2x+b 的图象的交点坐标为(1,2),∴二元一次方程组12y k x y k x b =⎧⎨=+⎩的解为12x y =⎧⎨=⎩. 故答案是:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.18.【分析】由mx <kx+b 可得函数图像上的点在函数的图像上的点的上方由kx+b <0函数图像上的点在轴的下方再结合与函数图像可得答案【详解】解:mx <kx+b 函数图像上的点在函数的图像上的点的上方结合图解析:4 2.x -<<-【分析】由mx <kx +b ,可得函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,由 kx+b <0,函数y kx b =+图像上的点在x 轴的下方,再结合()()2,4,4,0A B ---与函数图像可得答案.【详解】 解: mx <kx +b ,∴ 函数y kx b =+图像上的点在函数y mx =的图像上的点的上方,()24A --,,∴ 结合图像可得:x <2,-kx+b <0,∴ 函数y kx b =+图像上的点在x 轴的下方,()40B -,,∴ 结合函数图像可得:x >4,-从而可得关于x 不等式mx <kx +b <0的解集为4 2.x -<<-故答案为:4 2.x -<<-【点睛】本题考查的是一次函数的图像与不等式组的联系,掌握利用图像法求不等式组的解集是解题的关键.19.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.20.(0)【分析】过A 和B 分别作AF ⊥OC 于FBE ⊥OC 于E 利用已知条件可证明△AFC ≌△CEB 再有全等三角形的性质和已知数据即可求出B 点的坐标然后求出直线BC 的解析式即可得到结论【详解】解:过A 和B 分解析:(0,83) 【分析】过A 和B 分别作AF ⊥OC 于F ,BE ⊥OC 于E ,利用已知条件可证明△AFC ≌△CEB ,再有全等三角形的性质和已知数据即可求出B 点的坐标,然后求出直线BC 的解析式,即可得到结论.【详解】解:过A和B分别作AF⊥OC于F,BE⊥OC于E,∵∠ACB=90°,∴∠ACF+∠CAF=90°∠ACF+∠BCE=90°,∴∠CAF=∠BCE,在△AFC和△CEB中,90AFC CBECAF BCEAC AC︒⎧∠=∠=⎪∠∠⎨⎪=⎩=,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF﹣OC=4,OE=CE﹣OC=2﹣1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b,则420k bk b+=⎧⎨-+=⎩,∴4383 kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的解析式为:y=43x+83,当x=0时,y=83,∴D(0,83).故答案为:(0,83).【点睛】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题21.解:(1)k=13,b=1;(2)5;(3)(-5,2)或(-3,4)或(-3,2). 【分析】(1)利用待定系数法即可求出k 和b 的值;(2)根据题意得到点A 、B 、E 、C 的坐标,再利用S 四边形AOBE =S △ACE +S 四边形OBEC 即可表示出结果;(3)分点A 为直角顶点,点E 为直角顶点,点P 为直角顶点三种情况分别求出点P 的坐标即可.【详解】解:(1)∵直线y kx b =+过点A (-3,0),B (0,1),则031k b b=-+⎧⎨=⎩, 解得:131k b ⎧=⎪⎨⎪=⎩,∴k=13,b=1; (2)∵A (-3,0),B (0,1),E (-1,m ),C (-1,0),∴S 四边形AOBE =S △ACE +S 四边形OBEC =()1121122m m ⨯⨯+⨯+⨯ =3122m +; 当3m =时,S 四边形AOBE =313=522⨯+ (3)∵m=2,∴E (-1,2),∴CE=AC=2,∴△ACE 为等腰直角三角形,当直角顶点为点A 时,AP=AE ,∠PAE=90°,∴∠AEP=∠CAE=45°,∴PE ∥AC ,过P 作PF ⊥x 轴于F∴∠PAF=180º-∠PAE-∠CAE=180°-90°-45=45°∴△PAF ≌△EAC (AAS )∴PF=FA=AC=CE=2∴OF=AF+AC+OC=2+2+1=5∴点P(-5,2);当直角顶点为点E时,EP=EA,∠AEP=90°,∠EAP=45°,∴∠PAC=90°,过E作EG⊥AP于G,PG=AG=GE=AC=CE=2AO=AC+OC=2+1=3,AP=2AG=4∴P(-3,4);当点P为直角顶点时,PA=PE,∠APE=90°,可得四边形APEC为正方形,∴AP=AC=PE=EC,∴AO=AC+OC=2+1=3,∴P(-3,2),综上:点P的坐标为(-5,2)或(-3,4)或(-3,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,分类考虑以点A 、E 、P 为直角,正确的作出图形是解题的关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)332y x =-+,点B 的坐标是()0,3;(2)一次函数的图象如图所示;见解析;(3)ABP ∆的面积为3或9.【分析】(1)利用待定系数法求出解析式,令y=0求出x 的值得到点B 的坐标;(2)利用描点法画出函数图象;(3)根据2OP OA =,得到A 1P 1=2或A 1P 2=6,再利用三角形的面积公式计算得出答案.【详解】(1)把点()2,0A 的坐标代入3y kx =+中,得230k +=,解得32k =-, 所以,一次函数表达式为332y x =-+, 当0x =,y=3,所以,点B 的坐标是()0,3;(2)一次函数的图象如图所示;(3)因为点A 的坐标是()2,0A ,所以2OA =,因为点P 在x 轴上,且2OP OA =,所以OP=2OA=4,∴AP 1=2或AP 2=6, ∴111123322ABP S AP OB ∆=⨯⨯=⨯⨯=; 221163922ABP S AP OB ∆=⨯⨯=⨯⨯=, 所以,ABP ∆的面积为3或9.【点睛】此题考查待定系数法求函数的解析式,一次函数与坐标轴的交点坐标,描点法画一次函数的图象,分类思想求一次函数图象构成的三角形的面积.24.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.25.(1)1443y x =+,22y x =,()30A -,,()0,4B ;(2)存在,()12,0P ,()28,0P -;(3)存在,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q【分析】(1)把()6,12C 代入直线表达式即求出1y 与2y 的表达式,从而可求得B 的坐标; (2)由三角形面积可得到AP 的长,要注意P 点可能在A 点的左侧或右侧;(3)分OC=OQ ,OC=CQ ,CQ=OQ 三种情况讨论即可.【详解】解:(1)把()6,12C 代入114y k x =+中,得11264k =+, 解,得143k =,1443y x ∴=+. 把()6,12C 代入22y k x =,得2126k =,解,得22k =,22y x ∴=.把0y =代入1443y x =+,得3x =-, ()3,0A ∴-, 把0x =代入1443y x =+,得4y =, ()0,4B ∴.(2)存在. P 在x 轴上,30ACP S ∆=,点C 的纵坐标为12,12302ACP AP S ∆⋅∴==, 解得5AP =,点P 可以在A 点的左边,也可以在A 点的右边,()12,0P ∴,()28,0P -.(3)存在1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .若OC=OQ 时,OC =,∴OQ =∴1Q ,2(Q -,若OC=CQ 时,根据等腰三角形“三线合一”可知OQ=12,∴3(12,0)Q ,若OQ=CQ 时,()2222612OQ CQ OQ -+==,解得OQ=15,∴4(15,0)Q ,综上所述,1Q ,2(Q -,3(12,0)Q ,4(15,0)Q .【点睛】本题考查了一次函数的解析式,等腰三角形的性质,注意分类讨论是解题的关键. 26.(1)甲车从A 地到达B 地所用的时间为2.5小时;(2)此时乙车距A 地的路程为100 千米;(3)甲车行驶的时间为54小时或74小时. 【分析】(1)利用待定系数法求出甲车匀速前往B 地的函数表达式,再代入求值即可;(2)利用待定系数法求出乙车从B 地开往A 地的函数表达式,再将m 值代入求解即可; (3)分两种情况:甲车与乙车相遇前和甲车与乙车相遇后,根据函数关系式建立方程计算即可.【详解】解:(1)设甲车匀速前往B 地的函数表达式为1y k x =甲,把()1.5,180代入得:1180 1.5k =,解得1120k =,所以120y x =甲,把(),300m 代入得300120m =,解得 2.5m =,故甲车从A 地到达B 地所用的时间为2.5小时;(2)设乙车从B 地开往A 地的函数表达式为2y k x b =+乙,把()()0,300,1.5,180代入得:23001.5180b k b =⎧⎨+=⎩, 解得:230080b k =⎧⎨=-⎩, 所以80300y x =-+乙,由(1)知,甲车到达B 地所用时间为2.5小时,即此时乙车行驶了2.5小时,所以此时乙车距A 地的路程为:80 2.5300100-⨯+=(千米);(3)①甲,乙两车相遇前相距50千米:8030012050x x -+-=, 解得:54x =, ②甲,乙两车相遇后相距50千米:()1208030050x x --+=, 解得:74x =, 故甲车返回前甲、乙两车相距50千米时,甲车行驶的时间为54小时或74小时. 【点睛】本题考查了一次函数的应用,熟练运用待定系数法求出表达式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第二学期八年级数学第4周周三测试
命题:曾伟茂审盟,武检萍
班级: 姓名: 座号: 评分: 一选择题(每小题3分,共36分)
1、不等式53>-x 的解集是( )
(A).3
5-
>x
(B).5
3-
>x
(C).3
5-<x
(D).5
3-<x
2、不等式⎩⎨
⎧≤-<-9
32
1x x 的解类在数轴上表示出来是( )
3、不等式组⎩⎨⎧>>m
x x 4
的解樂是4>x ,那么m 的取值范围是( )
(A).4≤m
(B).4<m
(C).4≥m
(D).4>m
4、下列各式从左到右的变形,属于因式分解的是( ) (A)9)3)(3(2
-=-+a a a
(B))2)(2(42
-+=-m m m
(C)1))((12
2
+-+=+-b a b a b a
(D)ay ax y x a +=+)(
5、若))(3(152
n x x mx x ++=-+,则m 的值为( )
(A)-5
(B)5
(C)-2
(D)2.
6、下列多项式的分解因式,正确的是( )
(A))34(391222
xyz yxz y x xyz -=-
(B))2(36332
2+-=+-a a y y ay y a
(C))(2
2z y x x xz xy x -+-=-+-
(D))5(52
2a a b b ab b a +=-+
7、下列多项式中,能用公式法进行因式分解的是( )
(A)2
2y xy x +-;
(B)2
22y xy x -+;
(C)222y xy x -+-; (D)2
2y xy x ++8、
8、多项式1162
+x 加上一个单项式后是完全平方式,则加上的单项式不可以是( )
A 、x 8
B 、x 8-
C 、4
64x
D 、4
64x -
9、下列说法错误的有( )
①图形在平移过程中,图形上的每一点都移动了相同的距离;
②图形在旋转过程中,图形上的每一点都绕旋转中心转过了同样长的路程; ③中心对称图形的对称中心只有1个,而轴对称图形的对称轴可能不止一条; ④等边三角形既是轴对称图形,又是旋转对称图形
(A)、1个
(B)、2个
(C)、3 个
(D)、4个
10、把点A (-2,-3) 平移到点A' (1,-5),则下列平移路线正确的是( ) A.先向左平移3 个单位,再向下平移2 个单位;
B.先向上平移2 个单位,再向右平移3个单位;
C.先向右平移2 个单位,再向下平移3个单位;
D.先向下平移2 个单位,再向右平移3 个单位;
11、如图,将等边三角形AB C ∆沿BC 方向平移得到
111C B A ∆,若BC=6, 34=∆PBC S ,则=1BB ( )
(A)、2 (B)、4 (C)、326- (D)、36-
12、把一副三角板如图甲放置,其中 90=∠=∠DEC ACB ,
30,45=∠=∠D A ,斜边AB = 6,DC = 7,把三角板DCE 绕着点C 顺时针旋转
15得到11CE D ∆(如图乙),此时AB 与CD 交于点O ,则线段1AD 的长度为( ) A.23
B.5
C.4
D.31
二、填空题(本题共4小题,每小题3分共12分)
13.322236129xy y x y x -+中各项的公因式是 14.分解因式(直接写出结果):=--1242x x 15、若224y mxy x ++是一个完全平方式,则m 的值为
16.如图1,直线b kx y +=经过点A(-1,-2)和点B(-2,0),直线OA 经过原点, 则直接观察图象得出不等式02<+<b kx x 的解集为
三、解答题(共52分)
17、(本题5分) 解不等式组:⎪⎩⎪
⎨⎧-≤-+<-522115)1(3x x x x
18、(本题5分)先因式分解,再求值:22)2()2(b a b a --+,其中2,8
1
=-=b a
19、因式分解(每小题3分,共24分) (1)a a -5
(2)xy y x y x -+-223
(3)1)2(2)2(222+-+-x x x x
(4)22)()(9y x y x --+
(5)2224)1(x x -+
(6)32)(6)(15x y y x x ---
(6)181624+-a a (8)5432--x x
21、(本题8分)如图,在△ABC 中,AC=BC,
90C =∠,AD 平分∠CAB,交CB 于点D,过点D 作DE ⊥AB 于点E. (1)求证:AB=AC+CD;
(2)若CD=4cm,求AC 的长.
21.(本题10分)(1)如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,求证:AF=BD;
(2)如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?说明理由.
(3)如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC 为边在BC上方、下方分别作等边△DCF和等边△DCF’,连接AF、BF’,探究AF、BF'与AB 有何数量关系?并证明你探究的结论.
(3)如图④,当动点D在等边△边BA延长线上运动时,其他作法与图③相同,(3)中的结论是否成立?若不成立,是否有新的结论?不用证明直接写你得出的结论。

相关文档
最新文档