高等数学-上 期末复习资料大全
《高等数学》(上)期末复习知识要点
1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。
高等数学上册复习资料
高等数学(上册)复习资料一:函数的两个要素: 定义域 对应法则1 两个函数相同: (1)定义域相同 (2)对应法则相同 至于自变量与因变量用什么符合来表示无所谓。
例如:sin y x x =-∞<<+∞ 与sin u t t =-∞<<+∞是同一个函数。
2 函数的几种特性(1)有界性 ()y f x x D =∈如果存在实数1k ,使得1()f x k ≤ ,则称()f x 在D 上有上界 如果存在实数2k ,使得1()f x k ≥ ,则称()f x 在D 上有下界。
有界:既有上界 ,又有下界 。
即存在实数1k ,2k 使得21()k f x k ≤≤ 等价于存在0k > ,使得()f x k x D ≤∈(2)单调性若对区间I 内任意两点12x x < ,都有12()()()f x f x ≤≥ ,则称()y f x =在I 内单调增加(减少)。
若将“()≤≥ ”改成“()<>”称为严格单调增加(减少)。
(3)奇偶性设函数()y f x =的定义域关于原点对称 如果 ()()f x f x -= ,则称 ()f x 为偶函数 如果()()f x f x -=- ,则称 ()f x 为奇函数 (4) 周期性若()()f x l f x += 则称()f x 是以l 为周期的函数 注:周期通常指的是它的最小正周期 3复合函数设()y f u =的定义域为1D ,又()u g x =的定义域为D ,且1()g D D ⊂ ,则函数[]()y f g x x D =∈称为由函数()u g x =和 函数 ()y f u =构成的复合函数。
u 称为中间变量,记为:[]()()()f g x f g x = 4 基本初等函数:(1)幂函数 y x μ= (2)指数函数 (0,1)xy a a a =>≠(3)对数函数log a y x = 特例,ln a e y x == (4)三角函数 sin ,cos y x y x == 等 (5)反三角函数 arcsin ,arccos y x y x ==等5 初等函数:由常数和基本初等函数经过有限次四则运算和有限次复合运算得到的并可以用一个式子表示的函数。
高等数学上册总复习
高等数学第一学期总复习资料(工科)《高等数学》上册总复习 〈一〉 内容提要第一章 函数与极限一、函数1. 知道集合、映射的概念2. 理解函数的定义,并会求函数的定义域、函数值 (注:求定义域时注意:1°:分母不为0;2°:真数大于0;3°:开偶次方数不小于0;4°:u arcsin 、u arccos 中||u ≤1)3. 会判断(证明)函数的特性(单调性、有界性、奇偶性、周期性)4. 理解反函数的定义,知道直接函数与其反函数的关系,会求函数的反函数。
5. 熟练掌握基本初等函数的形式、定义域、特性等。
(基本初等函数是指幂函数、指数函数、对数函数、三角函数、反三角函数)6. 理解复合函数的定义,能熟练分解复合函数为基本初等函数链7. 理解初等函数的定义,并知道基本初等函数、分段函数与初等函数的区别与联系 二、极限1. 知道并理解数列的极限、函数极限的三个分析定义⎪⎩⎪⎨⎧∞→-→-∞→-)()()(0x X x x n N εδεε,且能作几何解释2. 知道左、右极限定义和极限存在定理3. 知道并会应用极限运算法则求极限(主要和、差、积、商及复合函数的极限)4. 理解无穷小定义,知道无穷小与无穷大的关系,并会作无穷小的比较、无穷小运算(注意有极限函数与无穷小的关系) 5. 熟记极限存在准则和两个重要极限(1sin lim 0=→x x x 及1)()(sin lim 0)(=→x x x ϕϕϕ;e x xx =⎪⎭⎫ ⎝⎛+∞→11lim 及e x x x =⎪⎪⎭⎫ ⎝⎛+∞→)()()(11lim ϕϕϕ;()e x xx =+→11lim 及[]e x x x =+→)(10)()(1lim ϕϕϕ)6. 能熟练求出所给函数(或数列)在某趋势下的极限 注:常用求极限的方法:1°:利用极限运算法则求极限(注意分式函数在∞→x 时的求法); 2°:利用左、右极限求极限(即:用极限存在定理求极限); 3°:利用无穷小与无穷大的关系求极限; 4°:利用极限存在准则求极限; 5°:利用重要极限求极限;6°:利用无穷小等价代换求极限; 7°:利用初等函数的连续性求极限;8°:利用洛必塔法则求极限 三、函数的连续性1. 理解函数的连续性定义,并会判断函数的连续性 2. 会求函数的间断点,并能判断间断点的类3. 知道连续函数的运算(即连续函数的和、差、积、商以及复合函数、初等函数的连续性) 4. 熟记闭区间上连续函数的性质,并会利用这些性质解决有关问题这里是指:最大最小值定理、有界性定理、零点定理、介值定理及其推论。
(完整版)高等数学复习资料大全
《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学上期末复习资料大全共54页文档
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
高等数学复习资料大全
高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
高数(上)期末复习重点
高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。
〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。
高数第一学期期末考试复习提纲
高数第一学期期末考试复习提纲第一篇:高数第一学期期末考试复习提纲第一学期《工科数学》期末考试复习提纲一、基本概念要求(1)理解并熟练掌握函数的四种特性,即单调性、奇偶性、有界性和周期性;(2)熟悉分段定义函数;(3)理解极限的ε-N,ε-δ,ε-X定义,理解极限的唯一性、有界性、保号性;(4)理解无穷小的概念、等价无穷小的性质;(5)理解极限存在的两个准则并会应用这两个准则证明极限的存在性;(6)理解并熟练掌握函数的连续性定义、间断点的分类;(7)熟悉闭区间上连续函数的性质(8)理解导数、左右导数的定义;(9)理解函数微分的定义及其近似公式;(10)理解微分中值定理并熟悉三个定理的条件、结论;(11)熟练掌握函数的单调性与极值、凹凸性与拐点的判定定理和方法;(12)理解并掌握原函数与不定积分的概念和性质;(13)理解定积分的定义、定积分存在的必要条件和充分条件;(14)理解并掌握定积分的性质特别是估值定理和积分中值定理;(15)理解并掌握变限积分的定义和性质,理解并掌握牛顿—莱布尼兹公式;(16)理解并掌握定积分应用的元素法;(17)理解两类广义积分的定义及其敛散性。
二、基本运算和论证能力要求价无穷小代换、洛比达法则等;(1)熟练掌握求极限的基本方法,如四则运算法则、极限存在法则、两个重要极限、等(2)熟练掌握求导的基本方法,如复合函数求导、隐函数求导、参数方程确定的函数的求导、对数求导法、高阶导数等;(3)熟练掌握分段定义函数在分段点可导性的讨论方法;(4)能够运用微分中值定理和函数的单调性证明某些不等式,运用微分中值定理证明某些方程的根的存在性和唯一性;(5)能够运用导数的知识对函数的性态进行分析,熟练掌握函数图形的描绘;(6)熟练掌握函数的极值、最大值、最小值问题的求解方法;(7)熟练掌握不定积分的基本求解方法,特别是第一、二类换元积分法、分部积分法等;(8)熟练掌握定积分的基本求解方法,熟练掌握变限积分有关问题的求解方法;(9)熟练掌握定积分的几何应用,特别是在直角坐标系下的面积、体积的计算。
(完整word版)高等数学复习资料大全(word文档良心出品)
《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学上册期末复习纲要(6学时)
(3)分部积分法
类型Ⅰ x sin xdx
n x 类型Ⅱ ln xdx
x cos xdx
x xe dx
x arctan xdx arcsin xdx
类型Ⅲ
e
x
sin mxdx
以类型Ⅰ和Ⅱ为主.
4.定积分的计算
(1)分段函数的积分要分区间,再用可加性. (2)积分区间是对称区间,用奇函数或偶函数 简化积分. 2 a a 2 2 (3)定积分的几何含义: 0 a x dx 4 . 5.反常积分 两个重要结论
f ( x)
g( x )
4.利用洛必达法则求不定式的极限
0 (1) 型, 型(基本型) 0
(2) 型
先通分或有理化,化为上述两种基本型 再使用洛必达法则. 变成分式函数,化为两种基本型
ln f ( x ) g ( x )
0 型:
(3):e
1 (1) dx ,(a 0),当p 1时收敛. p a x 1 1 (2) q dx ,( a 0),当q 1时收敛. 0 x
五、定积分的应用
1.面积
y
y f ( x)
y
y f2 ( x)
y f1 ( x )
o
a
x
x dx
b x
o
a
x
x b x dx
曲边梯形的面积
5. 利用二阶导数判断曲线凹凸性、拐点. 6. 极值点的判断定理(必要性,第一充分,第二充分条件).
f ( x )在x0处取极值
7.会求水平、垂直渐近线.
f ( x 0 ) 0
2016/4/10
四、不定积分、定积分
高等数学(上)期末复习
高等数学(上)复习目录第一章极限与函数 (3)第二章导数与微分 (8)第三章微分中值定理与导数应用 (11)第四章不定积分 (13)第五章定积分 (17)第六章定积分的应用 (19)高等数学(上)期末复习第一章 极限与函数一、重点概念 1.数列{X n }有界是数列{X n }收敛的必要条件。
数列{X n }收敛是数列{X n }有界的充分条件。
即:数列{X n }收敛 ⇒数列{X n }有界(以上说明收敛的数列一定有界,有界的数列不一定收敛。
另外,如果数列不仅有界,并且是单调的,那么这数列的极限必定存在。
)2.ƒ(x)在x 0的某一去心临域内有界是)(lim 0x f x x →存在的必要条件。
)(lim 0x f x x →存在是ƒ(x)在x 0的某一去心邻域内有界的充分条件。
即:)(lim 0x f x x →存在⇒ƒ(x)在x 0的某一去心临域内有界3. ƒ(x)当0x x →时的右极限ƒ(x 0+)及左极限ƒ(x 0-)都存在且相等是)(lim 0x f x x →存在的充分必要条件。
4.有界函数与无穷小的乘积是无穷小。
(※)如出现sin ∞或者cos ∞。
做题时要配有说明。
(注:y=arctanx 为有界函数)5.复合函数的极限运算法则:[]A u f x g f u u x x ==→→)()(lim lim 006.β与α是等价无穷小的充分必要条件为β=α+o(α)7.间断点的类型:第一类间断点为左右极限都存在的间断点;第二类间断点为左右极限至少有一个不存在的点。
(注:找间断点找没有意义的点)8.有界性与最大值最小值定理:在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值。
9.零点定理:设函数ƒ(x)在闭区间[a,b]上连续,且ƒ(a )与ƒ(b)异号,那么在开区间至少存在一点ξ,使ƒ(ξ)=010.介值定理:设函数y= ƒ(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,ƒ(a)=A 及ƒ(b)=B 。
高数大一上期末知识点
高数大一上期末知识点一、函数与极限1. 函数的定义与性质a. 函数的定义及常见表示方法b. 函数的定义域、值域和图像c. 函数的奇偶性、周期性及单调性2. 极限的概念与性质a. 极限的定义及常见表示方法b. 极限存在的条件c. 极限的性质(唯一性、局部有界性等)d. 无穷大与无穷小的概念3. 函数的连续性与间断点a. 函数的连续性概念b. 连续函数的性质与判定条件c. 函数的间断点与分类(可去间断点、跳跃间断点、第一类间断点、第二类间断点)二、导数与微分1. 导数的定义与计算a. 导数的几何意义与物理意义b. 导数的定义及常见表示方法c. 导函数的概念与计算方法d. 高阶导数的定义与计算2. 微分的概念与计算a. 微分的定义及常见表示方法b. 高阶微分的概念与计算3. 函数的凸凹性与拐点a. 凸凹性的概念与判定条件b. 拐点的概念与判定条件三、基本函数与常用公式1. 常用初等函数a. 幂函数、指数函数与对数函数b. 三角函数与反三角函数c. 双曲函数与反双曲函数2. 基本运算法则a. 指数运算法则b. 对数运算法则c. 三角函数运算法则3. 常用极限、导数与微分公式a. 常用极限公式与极限运算法则b. 常用导数公式与导数运算法则c. 常用微分公式与微分运算法则四、应用题与综合运用1. 函数的应用题a. 函数在自然科学与社会科学中的应用b. 函数建模与问题求解的思路与方法2. 极限、导数与微分的综合应用a. 极限在函数性质研究中的应用b. 导数与微分在函数图像与曲线斜率研究中的应用c. 极限、导数与微分在最优化问题中的应用以上是高数大一上期末考试的知识点概述,希望对你的复习有所帮助。
每个知识点都需要深入理解和熟练掌握,通过大量的习题训练来提高解题能力。
祝你考试顺利!。
[高等教育]高数上期末总复习
sin x x2 1
,
x
0
0
的连续性,并且指出间断点的类型。
解:lim x( x 3) lim ( 3) x3 sinx 0 sin ( 3)
lim ( 3) lim ( 3) 3 x 3为可去间断点。
0 sin 0
1 (ln y 1) (ln x 1) 1 y
y x
y (1 ln y)2
y(ln y 1)2 x(ln x 1)2
xy(ln y 1)3
例5 设 x ln 1 t 2 , 求有参数方程所确定函数的
y arctan t
导数
dy dx
x(sin x)cosx ( 1 sin x ln sin x cos2 x)
x
sin x
例7
设y
4x2 1 x2 1
,
求
y(n) .
解:
y
4x2 1 x2 1
4x2 4 x2 1
3
44
322(( xx111
xx1111))
( 1 )(n) x1
0型 0 型
Lagrange 中值定理
f (a) f (b)
Rolle 定理
00 ,1 , 0 型
令y f g 取对数
0型
f g f 1g
n0
Taylor 中值定理
常用的 泰勒公式
典型例题
例1 求极限 lim
x2
.
x0 5 1 5 x (1 x)
解 分子关于 x 的次数为 2.
y (1 1 )x 在(0,)上单调增加. x
高等数学(上)复习资料
高等数学(上)复习资料一、选择题1、2、下列函数为奇函数的是()3、二、填空题1、2、3、4、5、三、计算1、2、3、4、5、6、某公司规定货物的吨公里运价为:在a公里内,每公里k元,超过a 公里,超过部分每公里4k/5元,求运价m和里程s之间的函数关系。
7、现在要求设计一张单栏的竖向张贴的海报,它的印刷面积为128平方分米,上下各2分米,两边空白各1分米,如何确定海报尺寸可使四周空白面积为最小?8、证明题:高等数学(上)参考答案一、选择题1、D2、D3、D二、填空题1、A2、k=-33、a=1 b=14、a=4/95、y=0三、计算题1、f (x )=-f(-x) 奇函数2、11x 11-x 1-lnx lim lim 1x 1x ==→→ 3、xx ,2x x ,,22x x ,e )e (f e )e (f e)e (f +==x d yd dx dy4、⎰⎰⎰--=-=xdx e x x e x xd e e x e x x x x x sin )cos (sin cos sinx dx sin )cos (sin 21dx sin x x e x e x x -=⎰四、应用题1、运价m 与里程s 之间的函数关系为a s ka ks k as ks m ≥+=⨯+=≤= 515454a)-(s ak m2、设海报的长为x 宽则为128/x印刷宽为x-2 宽则为128/x-4实际海报的印刷面积y= (x-2)(128/x-4)最大,则空白最小 y= (x-2)(128/x-4)=136-256/x-4x当x=8时空白处最先,即上下为16、水平为8空白最小五、证明题2)2)(1(lim limf(x)1x 1x __=-+=++→→x x 2)3((lim limf(x)1x 1x __=-=--→→x 连续1)2)(1(,,1x 1x lim (x)limf __-=-+=++→→x x 1)3((,lim (x)limf 1x 1x __-=-=--→→x左右极限相等,故f ,(1)=-1。
高等数学上期末复习资料大全
例17. 求圆柱螺旋线
在
的切线方程和法平面方程.
解:
由于
对应的切向量为
切线方程 x R
T
y
(R, 0, R z 0
k )2 k
,
k
故
即
k y
x Rz R0
2
R
k
0
法平面方程
即 Rx
R
x
k
z
k (2zk22k0)
0
M
0
(0
,
R
,
2
k
)
z
o
x
y
例18计算由椭圆
所围图形绕 x 轴旋转而
,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,
即
(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
2 3
(极大)
(拐点)
(极小)
极大值;
极小值:
拐点:
例15 计算两条抛物线 所围图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
1
AdA0
x x2 dx
1 3
在第一象限所围
y y2 x (1,1) y x2
o x x d x1 x
平面图形的面积
平面直角坐标下图形的面积
y
z Fy
xz
.
导时,将方程 F(x,y,z)=0中x,y,z
大学高数复习资料大全
高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。
高等数学-上__期末复习资料大全
所确定的函数y=y(x)的导数
x f (t ), dy 例 8 设 设f (t )存在且不为零,求 . 2 dx y f (t ),
dy dy a sin t t dt cot dx a(1 cost ) dx 2 dt
(t 2n , n为整数)
解
dy x e cost 练习:设函数 y y ( x)由参数方程 给出,求 . t dx y e sin x
d dx
( x)
( x)
f (t )dt f [ ( x)] ( x) f [ ( x)] ( x)
例4 求极限 解 则
例5 求极限 解
ln( 1 xy) lim . x 0 tan 2( x y ) y 0
则
ln( 1 xy) 1 u ln( 1 u ) lim . lim lim x 0 tan 2( x y ) u 0 2u u 0 tan 2u 2 y 0
如果f(x)在[a,b] 上连续,则积分上限的函数的导数 d x ( x) f (t ) dt f ( x). dx a
d ( dx
0 0
b
x
d f (t )dt dx
x
b
f (t )dt f ( x))
推广:当积分上、下限都是的函数时,有以下的求导公式
d ( x) f (t ) dt f [ ( x)] ( x) dx a d b f (t ) dt f [ (t )] ( x). dx ( x )
例 12 设 u=f(xy,yz,zx,),其中f是具有二阶偏导数的函数,求
2u . xz
解
u f1 y f 2 0 f 3 z x
关于高等数学上册复习归纳
关于高等数学上册复习归纳标准化管理部编码-[99968T-6889628-J68568-1689N]高等数学(上册)复习资料一:函数的两个要素: 定义域 对应法则1 两个函数相同: (1)定义域相同 (2)对应法则相同 至于自变量与因变量用什么符合来表示无所谓。
例如:sin y x x =-∞<<+∞ 与sin u tt =-∞<<+∞是同一个函数。
2 函数的几种特性(1)有界性 ()y f x x D =∈如果存在实数1k ,使得1()f x k ≤ ,则称()f x 在D 上有上界 如果存在实数2k ,使得1()f x k ≥ ,则称()f x 在D 上有下界。
有界:既有上界 ,又有下界 。
即存在实数1k ,2k 使得21()k f x k ≤≤ 等价于存在0k > ,使得()f x k x D ≤∈(2)单调性若对区间I 内任意两点12x x < ,都有12()()()f x f x ≤≥ ,则称()y f x =在I 内单调增加(减少)。
若将“()≤≥ ”改成“()<>”称为严格单调增加(减少)。
(3)奇偶性设函数()y f x =的定义域关于原点对称 如果 ()()f x f x -= ,则称 ()f x 为偶函数 如果()()f x f x -=- ,则称 ()f x 为奇函数 (4) 周期性若()()f x l f x += 则称()f x 是以l 为周期的函数 注:周期通常指的是它的最小正周期 3复合函数设()y f u =的定义域为1D ,又()u g x =的定义域为D ,且1()g D D ⊂ ,则函数[]()y f g x x D =∈称为由函数()u g x =和 函数 ()y f u =构成的复合函数。
u 称为中间变量,记为:[]()()()f g x f g x = 4 基本初等函数:(1)幂函数 y x μ= (2)指数函数 (0,1)x y a a a =>≠(3)对数函数log a y x = 特例,ln a e y x == (4)三角函数 sin ,cos y x y x == 等 (5)反三角函数 arcsin ,arccos y x y x ==等5 初等函数:由常数和基本初等函数经过有限次四则运算和有限次复合运算得到的并可以用一个式子表示的函数。