2-3-2等差数列习题课
高中数学:人教A版 2.3.2 等差数列(习题课)学案
2.3.3 等差数列(习题课)-----学案 一、学习目标 1.掌握a n 与S n 的关系并会应用.(难点)2.掌握等差数列前n 项和的性质及应用.(重点)3.会求等差数列前n 项和的最值.(重点、易错点)二、自主学习教材整理 等差数列前n 项和的性质阅读教材P 44例3~P 45,完成下列问题.1.S n 与a n 的关系a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1.n ≥2 2.等差数列前n 项和的性质(1)等差数列{a n }中,其前n 项和为S n ,则{a n }中连续的n 项和构成的数列S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…构成等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数).3.等差数列前n 项和S n 的最值(1)若a 1<0,d >0,则数列的前面若干项为负数项(或0),所以将这些项相加即得{S n }的最小值.(2)若a 1>0,d <0,则数列的前面若干项为正数项(或0),所以将这些项相加即得{S n }的最大值.特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值. 做一做:1.下列说法中正确的有________(填序号).(1)若S n 为等差数列{a n } 的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列. (2)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1.(3)若a 1>0,d <0,则等差数列中所有正项之和最大.(4)在等差数列中,S n 是其前n 项和,则有S 2n -1=(2n -1)a n .【解析】 (1)正确.因为由等差数列前n 项和公式知S n n =d 2n +a 1-12d ,所以数列S n n为等差数列.(2)错误.当项数m 为偶数2n 时,则S 偶-S 奇=nd .(3)正确.由实数的运算可知该说法正确.(4)正确.因为S 2n -1=a 1+a 2n -12n -12=2n -12[a n +(1-n )d +a n +(n -1)d ]=(2n -1)a n .【★答案★】 (1)(3)(4)三、合作探究探究1:由数列的前n 项和S n 求a n例1. 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?【精彩点拨】【自主解答】 根据S n =a 1+a 2+…+a n -1+a n 与S n -1=a 1+a 2+…+a n -1(n >1),可知,当n >1时,a n =S n -S n -1=n 2+12n -(n -1)2+12(n -1)=2n -12,① 当n =1时,a 1=S 1=12+12×1=32,也满足①式. ∴数列{a n }的通项公式为a n =2n -12. 由此可知:数列{a n }是以32为首项,以2为公差的等差数列. 归纳总结1.已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.2.由数列的前n 项和S n 求a n 的方法,不仅适用于等差数列,它也适用于其他数列.探究2:等差数列前n 项和的性质应用例2. (1)在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为( )A .9B .12C .16D .17(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________. 【精彩点拨】 (1)解决本题关键是能发现S 4,S 8-S 4,S 12-S 8,S 16-S 12,a 17+a 18+a 19+a 20能构成等差数列.(2)利用等差数列奇偶项和的性质求解,或利用“基本量法”求解.(3)解决本题关键是如何将a n 转化为用等差数列的前(2n -1)项的和表示.【自主解答】 (1)由题意知:S 4=1,S 8-S 4=3,而S 4,S 8-S 4,S 12-S 8,S 16-S 12,S 20-S 16成等差数列.即1,3,5,7,9,a 17+a 18+a 19+a 20=S 20-S 16=9.(2)法一:(巧用性质)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1即132-120=132+1202n +1,解得n =10. 法二:(基本量思想)可设等差数列的首项为a 1,公差为d .依题意可列方程组⎩⎨⎧ n +1a 1+n n+12×2d =132,na 2+n -1n 2×2d =120,即⎩⎪⎨⎪⎧n +1a 1+nd =132,n a 1+nd =120,所以n +1n =132120,即n =10. (3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. 【★答案★】 (1)A (2)10 (3)53探究3:等差数列前n 项和S n 的函数特征探究1 将首项为a 1=2,公差d =3的等差数列的前n 项和看作关于n 的函数,那么这个函数有什么结构特征?如果一个数列的前n 项和为S n =3n 2+n ,那么这个数列是等差数列吗?上述结论推广到一般情况成立吗?【提示】 首项为2,公差为3的等差数列的前n 项和为S n =2n +n n -1×32=32n 2+12n , 显然S n 是关于n 的二次型函数. 且常数项为0,二次项系数为d 2,一次项系数为a 1-d 2;如果一个数列的前n 项和为S n =3n 2+n ,那么当n =1时,S 1=a 1=4.当n ≥2时,a n =S n -S n -1=6n -2,则该数列的通项公式为a n =6n -2,所以该数列为等差数列,事实上对于任何一个等差数列的前n 项和都是关于n 的二次型函数,且常数项为0,反之,一个数列的前n 项和具备上述特征,该数列一定是等差数列.探究2 已知一个数列{a n }的前n 项和为S n =n 2-5n ,试画出S n 关于n 的函数图象.你能说明数列{a n }的单调性吗?该数列前n 项和有最值吗?【提示】 S n =n 2-5n =⎝⎛⎭⎫n -522-254,它的图象是分布在函数y =x 2-5x 的图象上的离散的点,由图象的开口方向可知该数列是递增数列,图象开始下降说明了{a n }前n 项为负数.由S n 的图象可知,S n 有最小值且当n =2或3时,S n 最小,最小值为-6,即数列{a n }前2项或前3项和最小.例3. 数列{a n }的前n 项和S n =33n -n 2,(1)求{a n }的通项公式;(2)问{a n }的前多少项和最大;(3)设b n =|a n |,求数列{b n }的前n 项和S ′n .【精彩点拨】 (1)利用S n 与a n 的关系求通项,也可由S n 的结构特征求a 1,d ,从而求出通项.(2)利用S n 的函数特征求最值,也可以用通项公式找到通项的变号点求解.(3)利用a n 判断哪些项是正数,哪些项是负数,再求解,也可以利用S n 的函数特征判断项的正负求解.【自主解答】 (1)法一:当n ≥2时,a n =S n -S n -1=34-2n ,又当n =1时,a 1=S 1=32=34-2×1满足a n =34-2n .故{a n }的通项公式为a n =34-2n .法二:由S n =-n 2+33n 知S n 是关于n 的缺常数项的二次型函数,所以{a n }是等差数列,由S n 的结构特征知⎩⎨⎧ d 2=-1,a 1-d 2=33,解得a 1=32,d =-2,所以a n =34-2n .(2)法一:令a n ≥0,得34-2n ≥0,所以n ≤17,故数列{a n }的前17项大于或等于零.又a 17=0,故数列{a n }的前16项或前17项的和最大.法二:由y =-x 2+33x 的对称轴为x =332. 距离332最近的整数为16,17.由S n =-n 2+33n 的 图象可知:当n ≤17时,a n ≥0,当n ≥18时,a n <0,故数列{a n }的前16项或前17项的和最大.(3)由(2)知,当n ≤17时,a n ≥0;当n ≥18时,a n <0.所以当n ≤17时,S n ′=b 1+b 2+…+b n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =33n -n 2.当n ≥18时,S n ′=|a 1|+|a 2|+…+|a 17|+|a 18|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n )=S 17-(S n -S 17)=2S 17-S n =n 2-33n +544.故S n ′=⎩⎪⎨⎪⎧ 33n -n 2n ≤17,n 2-33n +544n ≥18. 归纳总结1.在等差数列中,求S n 的最小(大)值的方法:(1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的各项和为最大(小).(2)借助二次函数的图象及性质求最值.2.寻求正、负项分界点的方法:(1)寻找正、负项的分界点,可利用等差数列性质或利用⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0或⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来寻找. (2)利用到y =ax 2+bx (a ≠0)的对称轴距离最近的左侧的一个正数或离对称轴最近且关于对称轴对称的两个整数对应项即为正、负项的分界点.3.求解数列{|a n |}的前n 项和,应先判断{a n }的各项的正负,然后去掉绝对值号,转化为等差数列的求和问题. 四、学以致用1.已知下面各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式.(1)S n =2n 2-3n ;(2)S n =3n -2.【解】 (1)当n =1时,a 1=S 1=2×12-3×1=-1;当n ≥2时,S n -1=2(n -1)2-3(n -1)=2n 2-7n +5,则a n =S n -S n -1=(2n 2-3n )-(2n 2-7n +5)=2n 2-3n -2n 2+7n -5=4n -5.此时若n =1,a n =4n -5=4×1-5=-1=a 1,故a n =4n -5.(2)当n =1时,a 1=S 1=31-2=1;当n ≥2时,S n -1=3n -1-2,则a n =S n -S n -1=(3n -2)-(3n -1-2)=3n -3n -1=3·3n -1-3n -1=2·3n -1.此时若n =1,a n =2·3n -1=2·31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧1,n =1,2·3n -1,n ≥2. 2.(1)等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.(2)等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________. 【解析】 (1)由a 2+a 7+a 12=24,得a 7=8,所以S 13=a 1+a 132×13=a 7·13=104. (2)因为a n =2n +1,所以a 1=3.所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2, 所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75. 【★答案★】 (1)104 (2)753.在等差数列中,a 10=23,a 25=-22.(1)该数列第几项开始为负;(2)求数列{|a n |}的前n 项和.【解】 设等差数列{a n }中,公差为d ,由题意得⎩⎪⎨⎪⎧ a 25-a 10=15d =-45,23=a 1+10-1×d ,∴⎩⎪⎨⎪⎧ a 1=50,d =-3. (1)设第n 项开始为负,a n =50-3(n -1)=53-3n <0,∴n >533,∴从第18项开始为负. (2)|a n |=|53-3n |=⎩⎪⎨⎪⎧ 53-3n 1<n ≤17,3n -53n >17.当n ≤17时,S n ′=-32n 2+1032n ;当n >17时, S n ′=|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n ),S n ′=-⎝⎛⎭⎫-32n 2+1032n +2S 17=32n 2-1032n +884,∴S n ′=⎩⎨⎧ -32n 2+1032n n ≤17,32n 2-1032n +884n >17.五、自主小测1.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .242.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .23.已知数列{a n }的前n 项和S n =n 2,则a n =________.4.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值为________.5.已知数列{a n }的前n 项和公式为S n =2n 2-30n .(1)求数列 {a n }的通项a n ;(2)求S n 的最小值及对应的n 值.参考★答案★1.【解析】 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.【★答案★】 B2.【解析】 由题意得S 偶-S 奇=5d =15,∴d =3.或由解方程组⎩⎪⎨⎪⎧5a 1+20d =15,5a 1+25d =30,求得d =3,故选C. 【★答案★】 C3.【解析】 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又因为a 1=1适合a n =2n -1.所以a n =2n -1.【★答案★】 2n -14.【解析】 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.【★答案★】 -15.【解】 (1)∵S n =2n 2-30n ,∴当n =1时,a 1=S 1=-28. 当n ≥2时,a n =S n -S n -1=(2n 2-30n )-[2(n -1)2-30(n -1)]=4n -32. ∵n =1也适合,∴a n =4n -32,n ∈N *.(2)法一:S n =2n 2-30n =2⎝⎛⎭⎫n -1522-2252∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112. 法二:∵a n =4n -32,∴a 1<a 2<…<a 7<0,a 8=0,当n ≥9时,a n >0. ∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112.。
2-3第2课时等差数列前n项和的性质
的通项公式 an 时,要分两步进行;先求当 n≥2 时,an=Sn
-Sn-1,此时令 n=1,求 a1.
若 a1=S1,则 an 即为所求,若 a1≠S1,
则
an=SS1n-Sn-1
n=1, n≥2,
即表示为分段函数形式.
工具
第二章 数列
2.等差数列前 n 项和公式的性质 Sn=na1+nn-2 1d=d2n2+a1-d2n. 可以写成自变量 n∈N*的函数式,其图象是分布在抛物线上
的一系列点,d2 为二次项系数,a1-d2 为一次项系数,常数项 为 0 .所以当 d≠0 时,其 Sn 是关于 n 的无常数项的 二次 函数.
工具
第二章 数列
1 . 数 列 {an} 的 前 n 项 和 Sn = 2n2 + n(n∈N*) , 则 数 列 {an} 为 ()
A.首项为1,公差为2的等差数列 B.首项为3,公差为2的等差数列 C.首项为3,公差为4的等差数列 D.首项为5,公差为3的等差数列
由已知得11000a1a+1+101× 2009× 2d=991d0=010
②
①
①×10-②,整理得 d=-5110. 代入①,得 a1=1100909,
工具
第二章 数列
∴S110=110a1+110×2 109d
=110×1100909+110×2 109×-5110
=110×1
工具
第二章 数列
(2)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=2·3n-1. ∵a1=1 不符合 an=2·3n-1,
∴an=12·3n-1
n=1 n≥2 .
工具
第二章 数列
[题后感悟] 已知数列{an}的前 n 项和 Sn 或 Sn 与 an 的关
高中数学 第二章 数列 2.2 习题课——等差数列习题课练习(含解析)新人教B版必修5-新人教B版高
习题课——等差数列习题课课时过关·能力提升1在等差数列{a n }中,已知a 1=13,a 1+a 6=4,a n =37,则n 等于() A.50B.49C.56D.51d ,因为a 1+a 6=2a 1+5d=4,a 1=13,所以d=23,所以a n =13+(n-1)×23=37,所以n=56.2在数列{a n }中,已知a 1=15,3a n+1=3a n -2,则该数列中相邻两项的乘积为负值的项是() A.a 21和a 22 B.a 22和a 23 C.a 23和a 24D.a 24和a 25a n+1=a n -23,所以数列{a n }是公差为-23的等差数列.所以a n =15+(n-1)×(-23).因为a 23=13,a 24=-13,所以a 23a 24<0.3已知在等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使数列{a n }的前n 项和S n 取得最大值的自然数n 是()A .4或5B .5或6C .6或7D .不存在d<0,∴a 9<a 3,∵|a 3|=|a 9|,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6=0,∴a 5>0.即前5项或前6项的和最大.4若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大正整数n 是() A.4 005B.4 006C.4 007D.4 008a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且数列{a n }为等差数列,所以数列{a n }是首项为正数,公差为负数的递减的等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最小的负数(第一个负数),且|a 2003|>|a 2004|.因为在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,所以S 4006=4006(a 1+a 4006)2>0.所以使S n >0成立的最大正整数n 是4006.5已知数列{a n }的通项a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 10|=() A.25 B.50 C.52 D.1006已知f (n+1)=f (n )-14(n ∈N +),且f (2)=2,则f (101)=.a n =f (n ),则a n+1-a n =-14,∴数列{a n }为等差数列,且a 2=2.∴a n =a 2-14(n-2)=10-a 4.∴f (101)=a 101=-914. -9147设f (x )+f (1-x )=6,则f (-5)+f (-4)+…+f (0)+f (1)+…+f (6)=.S=f (-5)+f (-4)+…+f (0)+f (1)+…+f (6),①即S=f (6)+f (5)+…+f (1)+f (0)+…+f (-5).②则①+②得2S=[f (-5)+f (6)]+[f (-4)+f (5)]+…+[f (0)+f (1)]+[f (1)+f (0)]+…+[f (6)+f (-5)]=12×6=72.故S=36.8“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18的值为.,可得a n +a n+1=5,所以a n+1+a n+2=5.所以a n+2-a n =0.因为a 1=2,所以a 2=5-a 1=3.所以当n 为偶数时,a n =3;当n 为奇数时,a n =2.所以a 18=3.9在等差数列{a n }中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为.,知S n =100,S 3n -S n =500,又S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列,且公差为100.故S 6n -S 3n =(S 6n -S 5n )+(S 5n -S 4n )+(S 4n -S 3n )=600+500+400=1500.10在等差数列{a n }中,a 16+a 17+a 18=a 9=-18,其前n 项和为S n , (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求T n =|a 1|+|a 2|+…+|a n |.因为a 16+a 17+a 18=a 9=-18,所以a 17=-6.又a 9=-18, 所以d=a 17-a 917-9=32.首项a 1=a 9-8d=-30.所以a n =32n-632. 若前n 项和S n 最小,则{a a ≤0,a a +1≥0,即{3a2-632≤0,32(a +1)-632≥0,所以n=20或n=21.故当n=20或n=21时,S n 取最小值. 最小值为S 20=S 21=-315. (2)由a n =32n-632≤0,得n ≤21.所以当n ≤21时,T n =-S n =34(41n-n 2), 当n>21时,T n =-a 1-a 2-…-a 21+a 22+…+a n=S n -2S 21=34(n 2-41n )+630.★11设数列{a n}的前n项和为S n,a1=1,a n=a aa+2(n-1)(n∈N+).(1)求数列{a n}的通项公式a n;(2)是否存在正整数n,使得a11+a22+…+a aa-(n-1)2=2 015?若存在,求出n的值;若不存在,说明理由.S n=na n-2(n-1)n.n≥2时,a n=S n-S n-1=na n-2(n-1)n-(n-1)·a n-1+2(n-2)(n-1).∴a n-a n-1=4.∴数列{a n}为a1=1,d=4的等差数列.∴a n=1+(n-1)4=4n-3.(2)由(1),得S n=n(4n-3)-2(n-1)n=(2n-1)n.∴a aa=2n-1.故a11+a22+…+a aa=n2,∴n2-(n-1)2=2015,解得n=1008.故存在n=1008满足题意.★12设数列{a n}的前n项和为S n,点(a,a aa)(n∈N+)均在函数y=3x-2的图象上, (1)求证:数列{a n}为等差数列;(2)T n是数列{3a a a a+1}的前n项和,求证:37≤T n<12.由题意得,a aa=3n-2,即S n=3n2-2n,当n≥2时,a n=S n-S n-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=1.所以a n=6n-5(n∈N+).又a n-a n-1=6n-5-[6(n-1)-5]=6,故{a n}是等差数列.(2)由(1)知,设b n=3a a a a+1,则b n=3a a a a+1=3(6a-5)[6(a+1)-5]=1 2(16a-5-16a+1),故T n =12[(1-17)+(17-113)+…+(16a -5-16a +1)]=12(1-16a +1),又n ∈N +,所以0<16a +1≤17,故37≤T n <12.。
高中数学必修5课件:第2章2-3-1等差数列的前n项和
数学 必修5
第二章 数列
与前n项和有关的最值问题
已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当n为何值时,数列{an}的前n项和取得最大值. [思路点拨]
数学 必修5
第二章 数列
[规范解答] (1)由a1=9,a4+a7=0,
得a1+3d+a1+6d=0,
数学 必修5
第二章 数列
等差数列的前n项和公式
已知量 首项、末项与项数
求和
na1+an
公式 Sn=_____2________
首项、公差与项数 Sn=__n_a_1+__n__n_2-__1__d___
数学 必修5
第二章 数列
对等差数列前n项和公式的理解 (1)等差数列的前n项和公式有两种形式,涉及a1,an,Sn, n,d五个量,通常已知其中三个量,可求另外两个量,解答方 法就是解方程组.
数学 必修5
第二章 数列
如图,某仓库堆放的一堆钢管,最上面的一层有4根钢 管,下面的每一层都比上一层多一根,最下面的一层有9根.
[问题1] 共有几层?图形的横截面是什么形状? [提示] 六层 等腰梯形
数学 必修5
第二章 数列
[问题2] 假设在这堆钢管旁边再倒放上同样一堆钢管,如 图所示,则这样共有多少钢管?
数学 必修5
第二章 数列
由an≤0解得n≤4,即数列{an}前3项为负数,第4项为0, 从第5项开始为正数.
∴当n≤4时,Tn=-Sn=n(7-n), 当n>4时,Tn=Sn-S4+(-S4) =Sn-2S4=n(n-7)-2×4×(4-7) =n2-7n+24
∴Tn=nn2-7-7nn+,2n4≤,4n,>4.
2-3-1等差数列的前n项和 79张
第二章
2.3
第1课时
成才之路 ·数学 ·人教A版 · 必修5
nn-1 d 如果{an}是等差数列,公差为 d,则 Sn=na1+ d= 2 2 d d d n +(a1- )n,令 A= ,B=a1- ,则 Sn=An2+Bn.反之,若 2 2 2
2
{an}前 n 项和 Sn=An2+Bn,则 n≥2 时,an=Sn-Sn-1=(An2+ Bn)-[A(n-1)2+B(n-1)]=2A+(B-A),a1=S1=A+B 也满 足,∴an=2An+(B-A),显然{an}为等差数列.
第二章
2.3
第1课时
成才之路 ·数学 ·人教A版 · 必修5
思路方法技巧
第二章
2.3
第1课时
成才之路 ·数学 ·人教A版 · 必修5
命题方向
数列{an}的前 n 项和与通项的关系
[例 1]
Sn 是数列{an}的前 n 项和,据条件求 an.
(1)Sn=2n2+3n; (2)Sn=3n-2. [分析]
S 1 Sn-Sn-1
一 般 地 , 已 知 Sn 求 an , 可 利 用 an =
n=1 求解. n≥2
第二章
2.3
第1课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
(1)a1=S1=5,当 n≥2 时,an=Sn-Sn-1=(2n2+
3n)-[2(n-1)2+3(n-1)]=4n+1,当 n=1 时也适合,∴an= 4n+1. (2)a1=S1=1,当 n≥2 时,an=Sn-Sn-1=(3n-2)-(3n-1 -2)=2×3n 1,显然 a1 不适合,
第二章
2.3
第1课时
成才之路 ·数学 ·人教A版 · 必修5
等差数列通项公式、求和练习
【名师一号】15-16高一数学(人教)必修5双基练:2-2-1等差数列.1.下列数列不是等差数列的是( ) A .0,0,0,…,0,…B .-2,-1,0,…,n -3,…C .1,3,5,…,2n -1,…D .0,1,3,…,n 2-n2,…2.已知等差数列{a n }的通项公式为a n =2009-7n ,则使a n <0的最小n 的值为( ) A .286 B .287 C .288D .2893.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A .15 B .30 C .31D .644.等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为( ) A .5x +5 B .2x +1 C .5D .45.若{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q )D.p +q 26.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( ) A .2 B .3 C .6D .97.在等差数列{a n }中,已知a 5=10,a 12=31,则首项a 1=________,公差d =________. 8.已知f (n +1)=f (n )-14(n ∈N *),且f (2)=2,则f (101)=________.9.已知数列{a n }满足a n -1+a n +1=2a n (n ∈N *,n ≥2)且a 1=1,a 2=3,则数列{a n }的通项公式为________.10.在等差数列{a n }中,已知a 5=10,a 15=25,求a 25. 11.(1)求等差数列3,7,11,…的第4项与第10项.12.假设某市2008年新建住房400万平方米,预计在今后的若干年内,该市每年新建住房面积平均比上一年增加50万平方米.那么从哪一年年底开始,该市每年新建住房的面积开始大于820万平方米?【名师一号】15-16高一数学(人教)必修5双基练:2-2-2等差数列的性质1.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-122.已知等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2=( ) A .3 B .-3 C.32D .-323.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( ) A .40 B .42 C .43D .454.在等差数列{a n }中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3等于( ) A .4 B .5 C .6D .75.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 100<0 C .a 3+a 99=0D .a 51=516.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A .0 B .37 C .100D .-377.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d =________. 8.已知等差数列{a n }中,a 2+a 3+a 10+a 11=36,则a 5+a 8=________.9.已知数列{a n }满足a 1=1,若点⎝⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.10.已知{a n }是等差数列,a 1=15,a n =17-2n ,则过(3,a 2)、(4,a 4)两点的直线的斜率为________. 11.已知数列{a n },a n =2n -1,b n =a 2n -1. (1)求{b n }的通项公式;(2)数列{b n }是否为等差数列?说明理由.12.已知f (x )=x 2-2x -3,等差数列{a n }中,a 1=f (x -1),a 2=-32,a 3=f (x ).求:(1)x 的值; (2)通项a n .∙【名师一号】15-16高一数学(人教)必修5双基练:2-3-1等差数列的前n 项和 1.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9B .10精品系列资料 传播先进教育理念 提供最佳教学方法C .11D .122.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6D .53.设数列{a n }是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4D .84.若数列{a n }为等差数列,公差为12,且S 100=145,则a 2+a 4+…+a 100的值为( )A .60B .85 C.1452D .其他值5.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A .2 B .3 C .6D .76.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C . 763D .6637.在数列{a n }中,a n =4n -52,a 1+a 2+…+a n =an 2+bn ,(n ∈N *),其中a ,b 为常数,则ab =8.在等差数列{a n }中,S 4=6,S 8=20,则S 16=________.9.在数列{a n }中,a n +1=2a n 2+a n (n ∈N *),且a 5=12,则a 3=________.10.等差数列{a n }的前n 项和记为S n ,已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .11.已知{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }的前n 项和S n 的最大值.12.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N +),求数列{b n }的前n 项和T n .【名师一号】15-16高一数学(人教)必修5双基练:2-3-2等差数列(习题课) 1.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .nB .n (n +1)精品系列资料 传播先进教育理念 提供最佳教学方法C .n (n -1) D.n (n +1)22.设S n 是等差数列{a n }的前n 项和且a 3=-6,a 7=6,则( ) A .S 4=S 5 B .S 5=S 6 C .S 4>S 6D .S 5>S 63.数列{a n }的通项公式a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项D .第7项5.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则数列的通项公式为__________;数列{na n }中数值最小的项是第__________项.6.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则a 1-a 2b 1-b 2=________.7.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若S n T n =7n +2n +3,则a 5b 5=________.8.在等差数列{a n }中,a 2+a 9=2,则它的前10项和S 10=________. 9.已知数列{a n }的前n 项和S n 满足S n =14(a n +1)2,且a n >0.(1)求a 1,a 2; (2)求{a n }的通项公式;(3)令b n =20-a n ,求数列{b n }的前n 项和T n 的最大值.。
高二数学必修5第二章 数列2-3课件(共22张PPT)
2.3 等差数列前n项和公式
第一页,编辑于星期一:一点 二十分。
本节主要学习等差数列前n项和公式及其简单应用。以泰姬陵中的 宝石数为引子,研究求和公式。用高斯小时候的故事来讲解求和公式。 问题探究一:用倒序相加法得出公式并总结变形公式。用例1加以巩 固。问题探究二:公式的灵活应用,知三求二,用变式2、3加以巩固。
第十一页,编辑于星期一:一点 二十分。
第十二页,编辑于星期一:一点 二十分。
(II)在等差数列 an中,已知: d 4 , n 20 , sn 460
求
a1
及
a 20
.
解: 利用 公式2
Sn
na1
n(n 1) 2
d
a1= -15
再根据
a20= 61
第十三页,编辑于星期一:一点 二十分。
例2 2000年11月14日教育部下发了《关于在中小学实施“校校 通”工程的通知》。某市据此提出了实施“校校通”工程的总目 标:从2001年起用10年的时间,在全市中小学建成不同标准的 校园网。据测算,2001年该市用于“校校通”工程的经费为500 万元。为了保证工程的顺利实施,计划每年投入的资金都比上一 年增加50万元。那么从2001年起的未来10年内,该市在“校校
通”工程中的总投入是多少?
第十四页,编辑于星期一:一点 二十分。
解:根据题意,从2001~2010年,该市每年投入“校校通”工程的经 费都比上一年增加50万元。所以,可以建立一个等差数列{an},表示从 2001年起各年投入的资金,其中 那么,到2010年(n=10),投入的资金总额为
答:从2001~2010年,该市在“校校通”工程中的总投入是7250万元。
问题1:图案中,第1层到第21层一共有多少颗宝石?
2015年新课标A版高中数学必修五课件:2-3-等差数列的前n项和1
(2)若项数为2n,则 S偶-S奇=a2+a4+a6+…+a2n-a1-a3-a5-…-a2n-1=d+ d+…+d=nd, SS奇 偶=n2n2aa1+2+aa2n2-n1=22aan+n 1=aan+n 1.
第十一页,编辑于星期五:十点 三十八分。
(3)若项数为2n-1,则
第二十五页,编辑于星期五:十点 三十八分。
解得AB= =- 15473. , ∴S28=-73S12+154S20=1092.
第二十六页,编辑于星期五:十点 三十八分。
解法4:∵{an}为等差数列, ∴Sn=na1+nn-2 1d. ∴Snn=a1-d2+d2n. ∴{Snn}是等差数列. ∵12,20,28成等差数列, ∴S1122,S2200,S2288成等差数列. ∴2×S2200=S1122+S2288,解得S28=1092.
规律技巧 应用基本量法求出a1和d是解决此类问题的基本 方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开 阔思路,有时可以简化计算.
第二十九页,编辑于星期五:十点 三十八分。
三 求数列{|an|}的前n项 【例3】 在等差数列{an}中,已知a1=-60,a11=-30,
求数列{|an|}的前n项和. 【分析】 本题实际上是求数列{an}各项绝对值的和.由
第二十四页,编辑于星期五:十点 三十八分。
解法3:设S28=AS12+BS20,其中A,B∈R. ∵28a1+28×2 27d=A(12a1+12×2 11d)+ B·20a1+20×2 19d, ∴28a1+14×27d=(12A+20B)a1+(66A+190B)d. 比较两边对应项的系数,得1626AA++2109B0B==283,78,
2022年高中数学第二章数列3-2等差数列前n项和的性质与应用练习含解析新人教A版必修
课时训练10 等差数列前n 项和的性质与应用一、等差数列前n 项和性质的应用1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .42答案:C解析:S 2,S 4-S 2,S 6-S 4成等差数列,即2,8,S 6-10成等差数列,S 6=24.2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A .5B .4C .3D .2答案:C解析:由题意得S 偶-S 奇=5d=15,∴d=3.或由解方程组{5a 1+20d =15,5a 1+25d =30求得d=3,故选C .3.等差数列{a n }的前n 项和为S n ,a 1=-2 015,S 20152015−S 20132013=2,则S 2 015=( )A.2 015B.-2 015C.0D.1答案:B解析:由等差数列前n 项和性质可知,数列{S nn }是等差数列,设公差为d ,则S 20152015−S 20132013=2d=2,所以d=1.所以S 20152015=S 11+2014d=-2015+2014=-1,所以S 2015=-2015.二、等差数列前n 项和中的最值问题4.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题中错误的是( )A.若d<0,则数列{S n }有最大项B.若数列{S n }有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列答案:C解析:由等差数列的前n项和公式S n=na1+12n(n-1)d=d2n2+(a1-d2)n知,S n对应的二次函数有最大值时d<0.故若d<0,则S n有最大值,A,B正确.又若对任意n∈N*,S n>0,则a1>0,d>0,{S n}必为递增数列,D正确.而对于C项,令S n=n2-2n,则数列{S n}递增,但S1=-1<0.C不正确.5.(2015河南南阳高二期中,10)已知数列{a n}为等差数列,若a11a10<-1,且它们的前n项和S n有最大值,则使得S n>0的n的最大值为( )A.21B.20C.19D.18答案:C解析:由a11a10<-1,可得a11+a10a10<0,由它们的前n项和S n有最大值可得数列的公差d<0,∴a10>0,a11+a10<0,a11<0,∴a1+a19=2a10>0,a1+a20=a11+a10<0.∴使得S n>0的n的最大值n=19.故选C.6.设数列{a n}为等差数列,其前n项和为S n,已知a1+a4+a7=99,a2+a5+a8=93,若对任意n∈N*,都有S n≤S k成立,则k的值为( )A.22B.21C.20D.19答案:C解析:对任意n∈N*,都有S n≤S k成立,即S k为S n的最大值.因为a1+a4+a7=99,a2+a5+a8=93,所以a4=33,a5=31,故公差d=-2,a n=a4+(n-4)d=41-2n,则n=1时,a1=39,所以S n=d2n2+(a1-d2)n=-n2+40n=-(n-20)2+400,即当n=20时S n取得最大值,从而满足对任意n∈N*,都有S n≤S k成立的k的值为20.7.设等差数列{a n}的前n项和为S n,且S2 014>0,S2 015<0,则当n= 时,S n最大. 答案:1 007解析:由等差数列的性质知,S2015=2015a1008<0,所以a1008<0.又S2014=2014(a1+a2014)2=1007(a1007+a1008)>0,所以a1007+a1008>0,而a1008<0,故a1007>0.因此当n=1007时,S n最大.8.已知数列{a n},a n∈N*,前n项和S n=18(a n+2)2.(1)求证:{a n}是等差数列;(2)设b n=12a n-30,求数列{b n}的前n项和的最小值.(1)证明:由已知得8S n=(a n+2)2,则8S n-1=(a n-1+2)2(n≥2),两式相减,得8a n=(a n+2)2-(a n-1+2)2,即(a n+a n-1)(a n-a n-1-4)=0.因为a n∈N*,所以a n+a n-1>0,所以a n-a n-1=4(n≥2),故数列{a n}是以4为公差的等差数列.(2)解:令n=1,得S1=a1=18(a1+2)2,解得a1=2.由(1)知a n=2+(n-1)×4=4n-2,所以b n=12a n-30=2n-31.由b n=2n-31<0,得n<312,即数列{b n}的前15项为负值,n≥16时b n>0.设数列{b n}的前n项和为T n,则T15最小,其值为T15=15×(-29)+15×142×2=-225.三、与数列{|a n|}前n项和有关的问题9.已知数列{a n}的通项公式a n=5-n,则当|a1|+|a2|+…+|a n|=16时,n= .答案:8解析:由a n=5-n,可得n<5时,a n>0;n=5时,a5=0;n>5时,a n<0,而a1+a2+…+a5=10,∴|a1|+|a2|+…+|a n|=(a1+a2+…+a5)-(a6+a7+…+a n)=16.∴20+n2-9n2=16,解得n=8.10.在公差为d的等差数列{a n}中,已知a1=10,且5a3·a1=(2a2+2)2.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.解:(1)因为5a3·a1=(2a2+2)2,所以d2-3d-4=0,解得d=-1或d=4.故a n=-n+11或a n=4n+6.(2)设数列{a n}的前n项和为S n.因为d<0,所以由(1)得d=-1,a n=-n+11.则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-12n2+212n;当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=12n2-212n+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |={-12n 2+212n ,n≤11,12n 2-212n +110,n ≥12.(建议用时:30分钟)1.若等差数列{a n }的前3项和S 3=9,则a 2等于( )A.3B.4C.5D.6答案:A解析:S 3=3(a 1+a 3)2=9,∴a 1+a 3=2a 2=6.∴a 2=3.故选A .2.设{a n }是公差为-2的等差数列,如果a 1+a 4+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A.-182B.-78C.-148D.-82答案:D解析:由a 1+a 4+a 7+…+a 97=50,①令a 3+a 6+a 9+…+a 99=x ,②②-①得2d×33=x-50,而d=-2,∴x=-132+50=-82.故选D .3.等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值为确定的常数,则下列各数中也是常数的是()A.S 7B.S 8C.S 13D.S 15答案:C解析:a 2+a 4+a 15=a 1+d+a 1+3d+a 1+14d=3(a 1+6d )=3a 7=3×a 1+a 132=313×13(a 1+a 13)2=313S 13.于是可知S13是常数.4.设{a n}为等差数列,a1>0,a6+a7>0,a6·a7<0,则使其前n项和S n>0成立的最大自然数n是( )A.11B.12C.13D.14答案:B解析:∵a6+a7=a1+a12,∴S12=12(a1+a12)2=6(a6+a7)>0.由已知得a6>0,a7<0,又S13=13a7<0,∴使S n>0成立的最大自然数n为12,故选B.5.已知等差数列{a n}的前n项和为S n,若S n=1,S3n-S n=5,则S4n=( )A.4B.6C.10D.15答案:C解析:由S n,S2n-S n,S3n-S2n,S4n-S3n成等差数列,设公差为d,则S2n-S n=S n+d,S3n-S2n=S n+2d.∴S3n-S n=2S n+3d=5.又∵S n=1,∴d=1.∴S4n=S n+(S2n-S n)+(S3n-S2n)+(S4n-S3n)=1+2+3+4=10.6.等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k= .答案:10解析:S9=S4,∴a5+a6+a7+a8+a9=0,∴a7=0,从而a4+a10=2a7=0,∴k=10.7.等差数列前12项和为354,在前12项中的偶数项的和与奇数项的和之比为32∶27,则公差d= .答案:5解析:由已知{S 奇+S 偶=354,S 偶S 奇=3227,解得{S 偶=192,S 奇=162.又∵此等差数列共12项,∴S 偶-S 奇=6d=30.∴d=5.8.等差数列{a n }与{b n },它们的前n 项和分别为A n ,B n ,若A n B n =2n -2n +3,则a 5b 5= . 答案:43解析:a 5b 5=9a 59b 5=A 9B 9=2×9-29+3=43.9.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d ,∵a 1=20,S 10=S 15,∴10a 1+10×92d=15a 1+15×142d.解得d=-53.解法一:由以上得a n =20-53(n-1)=-53n+653.由a n ≥0得-53n+653≥0,∴n ≤13.所以数列前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d=130.解法二:由以上得S n =20n+n (n -1)2×(-53)=-56n 2+56n+20n=-56n 2+1256n=-56(n 2-25n )=-56(n -252)2+312524.∴当n=12或13时,S n 最大,最大值为S 12=S 13=130.10.等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和.解:等差数列{a n }的公差d=a 17-a 117-1=-12-(-60)16=3,∴a n =a 1+(n-1)d=-60+(n-1)×3=3n-63.由a n <0,得3n-63<0,即n<21.∴数列{a n }的前20项是负数,第20项以后的项都为非负数.设S n ,S n '分别表示数列{a n },{|a n |}的前n 项和,当n ≤20时,S n '=-S n=-[-60n +n (n -1)2×3]=-32n 2+1232n ;当n>20时,S n '=-S 20+(S n -S 20)=S n -2S 20=-60n+n (n -1)2×3-2×(-60×20+20×192×3)=32n 2-1232n+1260.∴数列{|a n |}的前n 项和为S n '={-32n 2+1232n (n≤20),32n 2-1232n +1260(n >20).。
高中数学人教版必修5课时练习:第二章 数列2-3 等差数列的前n项和
=-1,所以当 n=20 时 Sn 最大.故选 B.
3.3×1 5+5×1 7+7×1 9+…+13×1 15=(
)
A.145
B.125
C.1145
D.175
[答案] B
[解析] 原式=12(31-15)+12(51-17)+…+12(113-115)=12(13-115)=125,故选 B.
4.已知等差数列{an}的前 n 项和为 Sn,a5=5,S5=15,则数列{ana1n+1}的前 100 项和为(
∴数列{Snn}是等差数列,其首项为-2,公差为21,
∴Tn=14n2-94n.
第 2 课时
一、选择题
1.记等差数列{an}的前 n 项和为 Sn.若 d=3,S4=20,则 S6=( )
A.16
B.24
C.36
D.48
[答案] D
[解析] 由 S4=20,4a1+6d=20,解得 a1=12⇒S6=6a1+6×2 5×3=48.
7.设 Sn 是等差数列{an}(n∈N*)的前 n 项和,且 a1=1,a4=7,则 S5=________. [答案] 25
[解析]
由a1=1 得a1=1 , a4=7 d=2
∴S5=5a1+5×2 4×d=25.
8.(2014·北京理,12)若等差数列{an}满足 a7+a8+a9>0,a7+a10<0,则当 n=________
高中数学人教版必修 5 课时练习 第二章 2.3 等差数列的前 n 项和
一、选择题
1.设 Sn 为等差数列{an}的前 n 项和,S8=4a3,a7=-2,则 a9=( )
A.-6
B.-4
C.-2
D.2
[答案] A
高中数学必修5课件:第2章2-3-2等差数列前n项和习题课
第二章 数列
温故知新
等差数列{an}的前 n 项和 Sn=na1+nn-2 1d=d2n2+(a1-d2)n,令d2=A,a1-d2=B,则得 Sn=________.[答案] An2+Bn数 Nhomakorabea 必修5
第二章 数列
新课引入
用分期付款的方式购买家用电器需 11 500 元,购买当天先付 1 500 元,以后每月交付 500 元,并加付利息,月利率为 0.5%, 若从交付 1 500 元后的第 1 个月开始算分期付款的第 1 个月,问:
所以S3m=3ma1+3m3m2 -1d=210.
数学 必修5
第二章 数列
方法二:利用公式 Sn=na1+2 an,以及等差数列的性质 p
+q=m+n⇒ap+aq=am+an.
ma1+am=60,
①
由已知有m3ma1a+1+a2am3m==1020S,3m,
② ③
2a2m=am+a3m,
④
由①②③④可得 S3m=210.
【错解】 an=Sn-Sn-1=(n2+n-1)-[(n-1)2+(n-1)- 1]=2n,又an-an-1=2n-2(n-1)=2,即数列每一项与前一项 的差是同一个常数,
∴{an}是等差数列. 【错因】 已知数列的前n项和Sn,求数列的通项an时,需 分类讨论,即分n≥2与n=1两种情况.
数学 必修5
解得a=m202, b=1m0.
所以 S3m=9am2+3bm=210.
数学 必修5
第二章 数列
等差数列前n项和的性质应用
一个等差数列的前12项的和为354,前12项中偶 数项的和与奇数项的和的比为32∶27,求该数列的公差d.
[思路点拨] 可以利用列方程组方法求解,也可以利用等 差数列前n项和的性质求解.
高二数学人教A版必修5教学教案2-2等差数列(3)
普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。
等差数列习题课
等差数列习题课一、学习目标:1、进一步了解等差数列的定义,通项公式以及前n 项和公式;2、理解等差数列的性质,等差数列前n 项和公式的性质应用;3、等差数列通项公式、前n 项和公式的应用。
二、重难点:对等差数列通项公式、前n 项和公式的考查是本课时的重点和难点。
三、课内探究:1、已知S n ,求a n 类型。
例1、已知数列{n a }的前n 项和为2320522n S n n =-+,求数列{n a }的通项公式a n .变式训练:已知数列{n a }的前n 项和为S n ,当n N +时,满足S n =-3n 2+6n, 求数列{n a }的通项公式a n .2、求数列{|a n |}的前n 项和问题。
例2、在等差数列{n a }中,a 1=-60,a 17=-12, 求数列{|a n |}的前n 项和.变式训练:在等差数列{n a }中,S 2=16,S 4=24,求数列{|a n |}的前n 项和A n .3、两个等差数列前n 项和之比问题。
例3、有两个等差数列{a n }、{b n },其前n 项和分别为S n , T n ,若n n S T =723n n ++,求55a b 。
4、等差数列的应用。
例4、从4月1日开始,有一新款服装投入某商场销售。
4月一日该款服装售出10件,第二天售出25件,第三天售出40件,以后每天售出的件数分别递增15件,直到4月12号销售量达到最大,然后,每天售出的件数分别递减10件,(1)记从4月1日起该款服装日销售量为a n ,销售天数为n(1≤n ≤30),求a n 与n 的关系;(2)求4月份该款服装的总销售量;(3)按规律,当该商场销售此服装超过1200件时,社会上就开始流行,当此服装的销售量连续下降,且日销售量低于100件时,则此服装在社会上不再流行,试问,该款服装在社会上流行是否会超过10天?说明理由。
变式训练:甲乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m,以后每分钟比前1分钟多走1m ,乙每分钟走5m,(1) 甲乙开始运动后几分钟第一次相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m,那么开始运动后几分钟第二次相遇?。
等差数列习题课教案
课题:6.2.2 等差数列的前n项和【学习目标】1、掌握等差数列前n项和公式及其获取思路;2、会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题. 学习重点:等差数列的前n项和公式.学习难点:等差数列前n项和的两个公式的应用.【预习案】【使用说明和学法指导】,的一个通项公式为B.4-已知等差数列{}n a,则na= .52,27(k+1.认真阅读教材P13-16,对照学习目标,有困难或疑问请用红笔标注,并完成预习案;2.将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. (1) 相关知识: 1、等差数列的定义: 2、等差数列的通项公式: 3、等差数列的性质: 二、教材助读:1、等差数列前n 项和的公式一: ;2、等差数列前n 项和的公式二: ;3、等差数列前n 项和的公式一、二分别在什么时候可以用? 三、预习自测:1、根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S :⑴184188a a n =-=-=,,; ⑵114.50.715a d n ===,,⑶1423321=-==n a a n ,,; ⑷10152-===n a n d ,,.2、已知数列{}n a 是等差数列,且15S =90,则51a a += ;3、在等差数列-4,1,6,11,…中,前多少项的和是77?【我的疑惑】【探究案】一、质疑探究探究点一:等差数列前n 项和公式的推导问题:某工厂的仓库里堆放着一批钢管,最上一层4根,以下每层比上层多一根,共堆放了7层,求钢管总数.思考: ① 如何求首项为1a ,第n 项为n a 的等差数列{}n a 的前n 项的和?② 如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?规律方法总结:倒序求和法探究点二:等差数列前n 项和公式的应用例1、一个堆放铅笔的V 形架的最下面一层防一支铅笔,往上每一层都比下面一层多放一支,最上面放有120支,这个V 形架上共放有多少支铅笔? 方法一: 方法二:规律方法总结:1. 用1()2n n n a a S +=,必须已知三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .变式:在等差数列-5,-1,3,7,…中,前多少项的和是345?规律方法总结:在等差数列前n 项和公式中有四个量,知道其中三个可以求出第四个. 二、归纳梳理、整合内化【训练案】一、当堂检测1. 在等差数列{}n a 中,10120S =,那么110a a +=( ). A. 12 B. 24 C. 36 D. 482. 在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663.在等差数列{}n a 中,12a =,1d =-,则8S = .4.在等差数列{}n a 中,125a =,533a =,则6S = .5.有多少个三位正整数是6的倍数?求它们的和.二、作业:教材P17习题3、4、5 【我的收获】(反思静悟、体验成功)。
成才之路人教B数学必修5课后强化作业:2-3-2《等比数列的性质》.DOC
基 础 巩 固一、选择题1.在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( )A .90B .30C .70D .40[答案] D[解析] ∵q 2=a 6+a 7a 4+a 5=2,∴a 8+a 9=(a 6+a 7)q 2=20q 2=40.2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8[答案] A[解析] ∵a 2 010=8a 2 007,∴q 3=a 2 010a 2 007=8,∴q =2.3.等比数列{a n }各项为正数,且3是a 5和a 6的等比中项,则a 1·a 2·…·a 10=( )A .39B .310C .311D .312[答案] B[解析] 由已知,得a 5a 6=9,∴a 1·a 10=a 2·a 9=a 3·a 8=a 4·a 7=a 5·a 6=9, ∴a 1·a 2·…·a 10=95=310.4.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3[答案] D[解析] a 3a 5a 7a 9a 11=a 51q 30=243,∴a 29a 11=(a 1q 8)2a 1q 10=a 1q 6=5243=3. 5.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )A .2B .4C .8D .16[答案] C[解析] ∵a 3a 11=a 27=4a 7,∵a 7≠0, ∴a 7=4,∴b 7=4,∵{b n }为等差数列, ∴b 5+b 9=2b 7=8.6.在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16等于( )A.32B.23C.16D .6[答案] A [解析]∵⎩⎨⎧a 7·a 11=a 4·a 14=6a 4+a 14=5,解得⎩⎨⎧a 4=3a 14=2或⎩⎨⎧a 4=2a 14=3.又∵a n >a n +1,∴a 4=3,a 14=2.∴a 6a 16=a 4a 14=32.二、填空题7.等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5等于________.[答案] 27[解析] 由题意,得a 1+a 2=1,a 3+a 4=(a 1+a 2)q 2=9, ∴q 2=9,又a n >0,∴q =3. 故a 4+a 5=(a 3+a 4)q =9×3=27.8.已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8等于________.[答案] -3[解析] a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8=a 1+a 3+a 5+a 7a 1q +a 3q +a 5q +a 7q=1q =-3. 三、解答题9.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . [解析] (1)∵a 1a 2a 3=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·(12)n -1. (2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72, ∴q 4=4,∴q =±2.能 力 提 升一、选择题1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215[答案] B[解析] 设A =a 1a 4a 7…a 28,B =a 2a 5a 8…a 29, C =a 3a 6a 9…a 30,则A 、B 、C 成等比数列, 公比为q 10=210,由条件得A ·B ·C =230,∴B =210, ∴C =B ·210=220.2.如果数列{a n }是等比数列,那么( ) A .数列{a 2n }是等比数列 B .数列{2a n }是等比数列 C .数列{lg a n }是等比数列 D .数列{na n }是等比数列 [答案] A[解析] 设b n =a 2n ,则b n +1b n =a 2n +1a 2n =(a n +1a n)2=q 2,∴{b n }成等比数列;2a n +12a n =2a n +1-a n ≠常数;当a n <0时lg a n 无意义;设c n =na n , 则c n +1c n=(n +1)a n +1na n =(n +1)q n ≠常数. 3.在等比数列{a n }中,a 5a 7=6,a 2+a 10=5,则a 18a 10等于( )A .-23或-32 B.23 C.32 D.23或32[答案] D[解析] a 2a 10=a 5a 7=6.由⎩⎨⎧a 2a 10=6a 2+a 10=5,得⎩⎨⎧a 2=2a 10=3或⎩⎨⎧a 2=3a 10=2.∴a 18a 10=a 10a 2=32或23.故选D. 4.已知2a =3,2b =6,2c =12,则a ,b ,c ( )A .成等差数列不成等比数列B .成等比数列不成等差数列C .成等差数列又成等比数列D .既不成等差数列又不成等比数列 [答案] A[解析] 解法一:a =log 23,b =log 26=log 2 3+1, c =log 2 12=log 2 3+2. ∴b -a =c -b .解法二:∵2a ·2c =36=(2b )2,∴a +c =2b ,∴选A. 二、填空题5.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.[答案] 16[解析] ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27 =4a 7-a 27=0,∵b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 27=16.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6则成等比数列,则此未知数是__________.[答案] 3或27 [解析]设此三数为3、a 、b ,则⎩⎨⎧2a =3+b(a -6)2=3b,解得⎩⎨⎧a =3b =3或⎩⎨⎧a =15b =27.∴这个未知数为3或27. 三、解答题7.{a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11. [解析] ∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64,又a 3+a 7=20, ∴a 3,a 7是方程t 2-20t +64=0的两个根. ∴a 3=4,a 7=16或a 3=16,a 7=4, 当a 3=4时,a 3+a 7=a 3+a 3q 4=20, ∴1+q 4=5,∴q 4=4.当a 3=16时,a 3+a 7=a 3(1+q 4)=20, ∴1+q 4=54,∴q 4=14.∴a 11=a 1q 10=a 3q 8=64或1.8.设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .[解析] 由b 1+b 2+b 3=3, 得log 2(a 1· a 2·a 3)=3, ∴a 1·a 2·a 3=23=8,∵a 22=a 1·a 3,∴a 2=2,又b 1·b 2·b 3=-3,设等比数列{a n }的公比为q ,得log 2(2q )·log 2(2q )=-3. 解得q =4或14,∴所求等比数列{a n }的通项公式为 a n =a 2·q n -2=22n -3或a n =25-2n .9.(2013·全国大纲理,17)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.[解析] 设{a n }的公差为d .由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得S 22=S 1S 4.又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。
数学学案:等差数列习题课——等差数列习题课
数学人教B必修5第二章2.2 等差数列习题课——等差数列习题课1.进一步了解等差数列的定义,通项公式以及前n项和公式.2.理解等差数列的性质,等差数列前n项和公式的性质的应用.3.掌握等差数列前n项和之比的问题,及其实际应用.题型一已知S n求a n【例1】已知数列{a n}的前n项和S n=-错误!n2+错误!n,求数列{a n}的通项公式a n.分析:求a1→错误!→错误!→错误!反思:数列{a n}的前n项和S n与通项a n的关系已知数列{a n}的通项就可以求数列{a n}的前n项和S n;反过来,若已知前n项和S n也可以求数列{a n}的通项公式a n。
∵S n=a1+a2+a3+…+a n,∴S n-1=a1+a2+a3+…+a n-1(n≥2).在n≥2的条件下,把上面两式相减可得:a n=S n-S n-1(n≥2),当n=1时,a1=S1,所以a n与S n有如下关系:a n=错误!注意:a n=S n-S n-1并非对所有的n∈N+都成立,而只对n≥2的正整数成立.由S n求通项公式a n时,要分n=1和n≥2两种情况,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.题型二数列{|a n|}的求和问题【例2】在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.分析:先分清哪些项是负的,然后再分段求出前n项的绝对值之和.反思:等差数列各项取绝对值后组成的数列{|a n|}的前n项和,可分为以下情形:(1)等差数列{a n}的各项都为非负数,这种情形中数列{|a n|}就等于数列{a n},可以直接求解.(2)在等差数列{a n}中,a1>0,d<0,这种数列只有前边有限项为非负数,从某项开始其余所有项都为负数,可把数列{a n}分成两段处理.(3)在等差数列{a n}中,a1<0,d>0,这种数列只有前边有限项为负数,其余都为非负数,同样可以把数列{a n}分成两段处理.总之,解决此类问题的关键是找到数列{a n}的正负分界点.题型三等差数列前n项和的比值问题【例3】等差数列{a n},{b n}的前n项和分别为S n,T n,若错误!=错误!,求错误!.分析:本题可把“项比”转化成“和比",也可把“和比”转化为“项比”.反思:本题的关键是建立通项和前n项和的内在联系,解法一侧重于待定系数法,而解法二应用整体代换思想.1已知在等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( ).A.15 B.30 C.31 D.642等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6等于( ).A.12 B.18 C.24 D.423若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ).A.13项B.12项C.11项D.10项4设2a=3,2b=x,2c=12,且a,b,c成等差数列,则x的值为________.5设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.答案:典型例题·领悟【例1】解:a1=S1=-错误!×12+错误!×1=101。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
∵a1<0,∴d>0, 解得 10≤n≤11. ∴n 取 10 或 11 时,Sn 取最小值.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
解法 3:∵S9=S12,∴a10+a11+a12=0,∴3a11=0, ∴a11=0.∵a1<0,∴前 10 项或前 11 项和最小.
第二章
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
合作探究 已知在正整数数列{an}中,前 n 项和 Sn 满足: 1 Sn= (an+2)2. 8 (1)求证:{an}是等差数列; 1 (2)若 bn= an-30,求数列{bn}的前 n 项和的最小值. 2
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[分析]
Sn 是等差数列前 n 项的和,故 Sn 是 n 的不含常数
2
1 项的二次函数,即 Sn=an +bn 形式,从而 可拆项,从而相 Sn 加相消可得 S.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
kk-1 ∵Sk=3k+ ×2=k2+2k=k(k+2), 2
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[点评]
解法 1 利用等差数列前 n 项和 Sn 是 n 的二次函数
(公差 d≠0 时),通过二次函数求最值的方法求解;解法 2 利用 等差数列的性质由 a1<0 及 S9=S12 知 d>0,从而数列中必存在 一项 an≤0 且 an+1>0 以找出正负项的分界点;解法 3 利用 S9 =S12 及等差数列的性质.要注意体会各种解法的着眼点,总结 规律.
[解析]
1 (1)证明:∵Sn= (an+2)2,① 8 (n≥2).
1 ∴Sn-1=8(an-1+2)2
当 n≥2 时,an=Sn-Sn-1 1 1 2 =8(an+2) -8(an-1+2)2, 整理得(an+an-1)(an-an-1-4)=0. ∴an-an-1=4,即{an}为等差数列.
第二章
.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[点评]
解决此类问题要认真阅读理解所给出的定义,并
将其与所学知识相联系,寻求解题方法.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
设 m∈N*,log2m 的整数部分用 F(m)表示,则 F(1)+F(2) +F(3)+„+F(1024)的值是( A.8204 C.9218 ) B.8192 D.8021
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
1 1 2 (2)解:∵S1=8(a1+2) .∴a1=8(a1+2)2. 解得 a1=2.∴an=2+4(n-1)=4n-2, 1 1 ∴bn=2an-30=2(4n-2)-30=2n-31. 31 令 bn<0 得 n< 2 , ∴S15 为前 n 项和的最小值. 故 S15=b1+b2+„+b15=2(1+2+„+15)-15×31 =-225.
天入院治疗流感的人数共有________人.
[答案] 255
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
∵an+2-an=1+(-1)n
(n∈N*),∴n 为奇数时,
an+2=an,n 为偶数时,an+2-an=2,即数列{an}的奇数项为 常数列,偶数项构成以 2 为首项,2 为公差的等差数列. 15×14 故这 30 天入院治疗流感人数共有 15+(15×2+ 2 ×2)=255 人.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
命题方向
信息给予题
[例 2]
定义“等和数列”:在一个数列中,如果任意相
邻两项的和都等于同一个常数, 那么这个数列叫做等和数列, 这个常数叫做数列的公和.已知数列{an}是等和数列,且 a1 =2,公和为 5,求 a18 和这个数列的前 n 项和 Sn. [分析] 本题是信息题,正确理解“新定义”,既要和
[解析]
解法 1:设等差数列{an}的公差为 d,则由题意得
1 1 9a1+ ×9×8· d=12a1+ ×12×11· d 2 2 ∴a1=-10d, ∵a1<0,∴d>0, 1 1 2 21 ∴Sn=na1+ n(n-1)d= dn - dn 2 2 2 212 441 d = n- 2 - d. 2 8
[解析]
(1)∵对任意的正整数 n,2 Sn=an+1①
恒成立, 当 n=1 时,2 a1=a1+1,即( a1-1)2=0, ∴a1=1. 当 n≥2 时,有 2 Sn-1=an-1+1.②
2 ①2-②2 得 4an=a2-an-1+2an-2an-1, n
即(an+an-1)(an-an-1-2)=0.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
nx1+xn ∴ =24n,∴x1+xn=48, 2 又∵xn=5x1, ∴6x1=48,∴x1=8. ∴xn=40 (min). 故最后关闭的水龙头放水 40min.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
(2011· 湖北荆门调研)秋末冬初, 流感盛行, 荆门市某医院 近 30 天每天入院治疗流感的人数依次构成数列{an},已知 a1 =1,a2=2,且 an+2-an=1+(-1)n (n∈N*),则该医院 30
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
n n 5 ∴Sn= · · n. 2+ 3= 2 2 2 n-1 n+1 当 n 是奇数时,有 个 3, 个 2, 2 2 n-1 n+1 5n-1 ∴Sn= 2 · 3+ 2 · 2= 2 . 5 n n=2k,k∈N* 2 ∴Sn= 5n-1 n=2k+1,k∈N* 2
1 1 1 11 ∴S = =2 k-k+2, kk+2 k 1 1 1 1 1 1 ∴S= 1-3+2-4+3-5+„+ 2
1 1 1 1 - +n-n+2 n-1 n+1
[答案] A
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
当 2n≤m<2n 1 时,n≤log2m<n+1,
+
此时 F(m)=n,这样的值共 2n 个, 又 1024=210,∴F(1024)=10. ∴F(1)+F(2)+F(3)+„+F(1024) =0+21×1+22×2+23×3+„+29×9+10=8204.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[点评]
准确理解 F(m)的含义是解答本题的关键,可先计
算部分项,如 F(1)=0,F(2)=1,F(3)=1,F(4)=2,F(5)=2, F(6)=2,F(7)=2,F(8)=3,观察其规律,从中发现 2n≤m<2n
+1
时,F(m)=n.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
∵d>0,∴Sn 有最小值. 又∵n∈N*,∴n=10 或 n=11 时,Sn 取最小值.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
解法 2:同解法 1,由 S9=S12 得 a1=-10d,
a =a +n-1d≤0 n 1 设 an+1=a1+nd≥0 -10d+n-1d≤0 ,∴ -10d+nd≥0
成才之路· 数学
人教A版 ·必修5
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修5
第二章
数 列
第二章
数
列
成才之路 ·数学 ·人教A版 · 必修5
第二章
2.3 等差数列的前 n 项和
第二章
数
列
成才之路 ·数学 ·人教A版 · 必修5
第二章
第 2 课时 等差数列习题课
第二章
数
1 1 1 1 =21+2-n+1-n+2 2n+3 3 = - 4 2n+1n+2
第二章 2.3 第2课时
成才之路 ·数学 ·人教A版 · 必修5
[点评]
1 A 形如: 的式子, 若可拆分为 - an+bcn+d an+b
B 的形式,一般可用此法进行求解. cn+d
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
设共有 n 个水龙头, 每个水龙头放水时间依次为
x1,x2,„,xn,由已知可知 x2-x1=x3-x2=„=xn-xn-1, ∴数列{xn}成等差数列. 1 每个水龙头 1min 放水24n,(这里不妨设水池的容积为 1) 1 ∴ · +x +„+xn)=1,即 Sn=24n, (x 24n 1 2
相关知识联系又要考虑其特点.
第二章
2.3
第2课时
成才之路 ·数学 ·人教A版 · 必修5
[解析]
由题设 a1+a2=a2+a3=„=a17+a18=„=a2k-1
+a2k=a2k+a2k+1=5. ∵a1=2,∴a2=3,a3=2,a4=3,„, 当 n 是奇数时 an=2,当 n 是偶数时,an=3. ∴a18=3. n n 当 n 是偶数时,有2个 2,2个 3,