曲线运动知识点与考点归纳
高中物理曲线运动知识点总结
高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。
在这种运动过程中,物体的速度和加速度都是随时间变化的。
因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。
2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。
通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。
3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。
这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。
二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。
它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。
参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。
2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。
它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。
通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。
三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。
通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。
切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的速度规律。
2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。
在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。
切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。
高中物理必修二曲线运动知识点归纳
必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。
曲线运动相关的知识点总结
曲线运动相关的知识点总结一、曲线运动的概念和特点曲线运动是指物体在空间中不沿直线运动,而是沿着一定的轨迹运动的运动。
曲线运动的特点有以下几个方面:1. 随着时间的推移,物体在空间中的位置不断变化,形成一定的轨迹;2. 曲线运动的速度和加速度可能随着时间和位置的变化而变化;3. 曲线运动通常受到外界力的作用,这些外界力会影响物体的速度和加速度;4. 曲线运动的轨迹可以是圆形、椭圆形、抛物线形等不同形状。
二、曲线运动的基本参数1. 位移(s):物体在曲线运动过程中,由于位置的变化而产生的矢量,表示物体在空间中的移动距离和方向。
位移通常用矢量来表示,其大小等于物体起始位置和终点位置之间的直线距离,方向与曲线轨迹的切线方向一致。
2. 速度(v):物体在曲线运动中的平均速度和瞬时速度分别表示物体在一段时间内的位移与时间的比值和物体在某一瞬时的位置变化率。
曲线运动中的速度通常也是矢量,其大小等于位移与时间的比值,方向与曲线轨迹的切线方向一致。
3. 加速度(a):物体在曲线运动中的平均加速度和瞬时加速度分别表示物体在一段时间内速度的变化率和物体在某一瞬时的速度变化率。
曲线运动中的加速度也是矢量,其大小等于速度与时间的比值,方向与速度变化的方向一致。
三、曲线运动的数学描述1. 位移-时间图:曲线运动的位移-时间图用来描述物体在不同时间段内的位移变化情况,通过位移-时间图可以了解物体的运动方向、速度和运动过程中的各个阶段。
2. 速度-时间图:曲线运动的速度-时间图用来描述物体在不同时间段内的速度变化情况,通过速度-时间图可以了解物体的加速度、减速度和速度达到最大值和最小值的时间点。
3. 加速度-时间图:曲线运动的加速度-时间图用来描述物体在不同时间段内的加速度变化情况,通过加速度-时间图可以了解物体的变速情况和加速度的大小和方向变化情况。
四、曲线运动的相关定理和公式1. 物体的位移与速度关系:曲线运动中,物体的位移与速度之间存在着一定的关系,如在匀变速直线运动中,位移与速度之间的关系可以表示为s=v0t+1/2at^2或v^2=v0^2+2as 等。
曲线运动知识归纳
曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。
曲线运动知识点详细归纳
第四章曲线运动第一模块:曲线运动、运动的合成和分解『夯实基础知识』■考点一、曲线运动1、定义:运动轨迹为曲线的运动。
2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。
3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。
4、物体做曲线运动的条件(1)物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
(2)物体做平抛运动的条件物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。
(3)物体做圆周运动的条件物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
⑴非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。
■考点二、运动的合成与分解1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。
运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。
2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
3、合运动与分运动的关系:■运动的等效性(合运动和分运动是等效替代关系,不能并存);■等时性:合运动所需时间和对应的每个分运动时间相等■独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。
第五章 曲线运动知识点
第五章 曲线运动知识点总结曲线运动基本知识1、速度v 、合外力F 、轨迹三者的位置关系:(1)速度与轨迹相切(2)合外力F 与速度v 不在同一条直线,合外力F 指向轨迹内侧(3)轨迹与速度v 相切,在合外力F 与速度v 之间另外:合外力F 与v 夹角小于90°,则物体做加速运动(速度增大),合外力F 与v 夹角大于90°,则物体做减速运动(速度减小)。
2、合运动性质的判断:(1)根据两个方向初速度,求出合运动的初速度大小和方向(2)根据两个方向加速度,求出合运动的加速度大小和方向加速度a 恒定,则物体做匀变速运动 加速度a 变化,则物体做非匀变速运动(3)根据和初速度与合加速度的方向关系,确定合运动的性质合加速度a 与合初速度v 0在同一条直线,物体做直线运动合加速度a 与合初速度v 0不在同一条直线,物体做曲线运动3、关联速度问题:(1)分析物体实际速度的方向即合速度的方向(如果不会分析就记住,不沿绳的速度就是合速度)(2)将物体的速度分解到沿绳和垂直于绳两个方向(3)由几何关系列方程,两物体沿绳方向的速度相等4、小船过河问题河宽为d ,船在静水中的速度为v 船,水流速度为v 水(1)以最短时间过河:船头垂直河岸,所用时间最短:船v d t min =(2)以最短位移过河:要求v 船>v 水,合速度垂直河岸,船的位移最短:d x min =5、平抛运动:初速度水平,物体只受重力运动性质:平抛运动是匀变速曲线运动水平方向分运动:(匀速直线运动)t x 0v =竖直方向分运动:(自由落体运动)2gt 21h =; gt v =y6、平抛运动斜面问题(1)位移夹角: t x 0v = 2gt 21h =xh 73tan =︒(2)速度夹角:(小球做平抛运动,垂直打在斜面上)gt v =yy0v v tan =θ 7、平抛运动的临界问题:临界问题常见“刚好”、“恰好”等字眼。
(完整版)曲线运动知识点总结
曲线运动知识点总结一、曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4.质点运动性质的判断方法:根据加速度是否变化判断质点是做匀变速运动还是非匀变速运动;由加速度(合外力)的方向与速度的方向是否在同一直线上判断是直线运动还是曲线运动.质点做曲线运动时,加速度的效果是:在切线方向的分加速度改变速度的大小;在垂直于切线方向的分加速度改变速度的方向.(1)a(或F)跟v 在同一直线上→直线运动: a 恒定→匀变速直线运动; a 变化→变加速直线运动.(2)a(或F)跟v 不在同一直线上→曲线运动: a 恒定→匀变速曲线运动; a 变化→变加速曲线运动.5.曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)二、抛体运动1.抛体运动的定义:将物体以一定的初速度向空中抛出,仅在重力的作用下物体所做的运动叫做抛体运动.2.抛体运动的条件:(1)有一定的初速度(v0≠0);(2)仅受重力的作用(F 合=G,不受其他力的作用).3.常见的抛体运动:(1)竖直上抛运动:初速度 v0 与重力 G 方向相反.(2)竖直下抛运动:初速度 v0 与重力 G 方向相同.(3)平抛运动:初速度 v0 与重力 G 方向垂直.(4)斜抛运动:初速度 v0 与重力 G 方向既不平行也不垂直,有一定的夹角.4.抛体运动属于理想化运动模型,实际上物体总要受到空气阻力的作用;抛体运动的初速度方向可以是任意的,所以抛体运动既可以是直线运动也可以是曲线运动.三、运动的合成与分解1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动都是分运动,物体的实际运动就是合运动.2.运动的合成:已知分运动求合运动,叫做运动的合成.(1)同一条直线上的两个分运动的合成:同向相加,反向相减。
曲线运动知识点与考点总结
曲线运动知识点总结考点梳理: 一.曲线运动1.运动性质————变速运动,具有加速度2.速度方向————沿曲线一点的切线方向3.质点做曲线运动的条件 (1)从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧。
(2)从运动学看,物体加速度方向跟物体的速度方向不共线 二.运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解(1)已知分运动(速度v 、加速度a 、位移s)求合运动(速度v 、加速度a 、位移s),叫做运动的合成.(2)已知合运动(速度v 、加速度a 、位移s)求分运动(速度v 、加速度a 、位移s),叫做运动的分解.(3)运动的合成与分解遵循平行四边形定则. 3.合运动与分运动的关系(1)等时性:合运动和分运动进行的时间相等.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果. (3)等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动. 三.平抛运动 1.定义:水平抛出的物体只在重力作用下的运动. 2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛3.平抛运动的研究方法 (1)平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动.(2)平抛运动的速度 水平方向:0v v x = ; 竖直方向:gt v y =合速度:22y x v v v +=,方向:xy v v tg =θ(3)平抛运动的位移水平方向水平位移:s x =v 0t 竖直位移:s y =21gt 2合位移:22yx ss s +=,方向:tg φ=xy s ss 图5-2-24.平抛运动的轨迹:抛物线;轨迹方程:2202x v g y =5.几个有用的结论(1)运行时间和水平射程:水平方向和竖直方向的两个分运动既有独立性,又有等时性,所以运动时间为ght 2=,即运行时间由高度h 决定,与初速度v 0无关.水平射程ghv x 20=,即由v 0和h 共同决定. (2)相同时间内速度改变量相等,即△v =g △t, △v 的方向竖直向下.【例题】1.证明:(一个有用的推论)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.四.匀速圆周运动1.匀速圆周运动(1)定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,叫做匀速圆周运动.(2)运动学特征: v 大小不变,T 不变,ω不变,a 向大小不变; v 和a 向的方向时刻在变.匀速圆周运动是变加速运动.(3)动力学特征:合外力大小恒定,方向始终指向圆心. 2.描述圆周运动的物理量 (1)线速度①物理意义:描述质点沿圆周运动的快慢.②方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向.③大小:tsv =(s 是t 时间内通过的弧长). (2)角速度①物理意义:描述质点绕圆心转动快慢. ②大小:tφω=(单位rad/s),其中φ是连结质点和圆心的半径在t 时间内转过的角度.(3)周期T 、频率f做圆周运动的物体运动一周所用的时间叫做周期.单位:s.做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.单位:Hz.0 1 v 2v 1y v v图5-2-3v t v x 图5-2-4(4) v 、ω、T 、f 的关系f T 1=,f T ππ22==ω,ωr vr v ==π2 (5)向心加速度①物理意义:描述线速度方向改变的快慢.②大小: 22222222444v a w r r f r n rr T πππ=====③方向:总是指向圆心.所以不论a 的大小是否变化,它都是个变化的量.3.向心力F 向①作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,不改变速度的大小.②大小: 22222222444v F m mw r m r m f r m n rr T πππ=====③来源:向心力是按效果命名的力.可以由某个力提供,也可由几个力的合力提供,或由某个力的分力提供.如同步卫星的向心力由万有引力提供,圆锥摆摆球的向心力由重力和绳上拉力提供(或由绳上拉力的水平分力提供).④匀速圆周运动的向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的分力,而合外力沿切线方向的分力改变线速度的大小.4.质点做匀速圆周运动的条件: (1)质点具有初速度;(2)质点受到的合外力始终与速度方向垂直;(3)合外力F 的大小保持不变,且r m rv m F 22ω== 若r m r v m F 22ω=<,质点做离心运动;若r m rv m F 22ω=>,质点做向心运动; 若F =0,质点沿切线做直线运动.F< mr ω,图5-3-1二.小船过河问题1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
物理必修二曲线运动
物理必修二曲线运动
曲线运动是物理学中的一个重要概念。
物体运动轨迹是曲线的运动被称为曲线运动。
以下是关于曲线运动的一些关键知识点:
1. 条件:物体做曲线运动的条件是其所受合外力(加速度)的方向与速度方向不在同一条直线上。
如果合外力(加速度)的方向与速度方向相同,则物体做直线运动;反之,则物体做曲线运动。
2. 速度方向:做曲线运动的物体,其速度方向始终在轨迹的切线方向上,且方向不断变化。
因此,曲线运动是变速运动。
3. 加减速判断:当合外力(加速度)与速度方向夹角为锐角时,物体做加速运动;当夹角为钝角时,物体做减速运动。
4. 曲线运动的性质:由于曲线运动中速度方向不断变化,所以曲线运动一定是变速运动。
做曲线运动的物体的加速度和合外力均不为零。
5. 分类:根据合外力(加速度)是否恒定,曲线运动可分为匀变速曲线运
动和非匀变速曲线运动。
匀变速曲线运动中,合外力(加速度)大小和方向均保持不变;而非匀变速曲线运动中,合外力(加速度)的大小或方向发生变化。
在学习曲线运动时,可以结合实际生活中的例子,如平抛运动、圆周运动等,来加深对概念的理解。
同时,通过实验观察和理论分析相结合的方法,更有助于深入理解曲线运动的规律和特点。
高中物理必修2第五章曲线运动知识点总结
精品文档第五章曲线运动知识点总结§ 5-1 曲线运动 & 运动的合成与分解一、曲线运动1. 定义:物体运动轨迹是曲线的运动。
2. 条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。
3. 特点: ①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。
②运动类型:变速运动(速度方向不断变化) 。
③F 合 ≠0,一定有加速度 a 。
④F 合 方向一定指向曲线凹侧。
⑤F 合 可以分解成水平和竖直的两个力。
4. 运动描述——蜡块运动涉及的公式:vvyv v x 2v y 2v xv yPtan蜡块的位置v xθ二、运动的合成与分解1. 合运动与分运动的关系: 等时性、独立性、等效性、矢量性。
2. 互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。
②速度方向不在同一直线上的两个分运动, 一个是匀速直线运动, 一个是匀变速直线运动,其合运动是匀变速 曲线运动, a 合为分运动的加速度。
③两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。
当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。
三、有关“曲线运动”的两大题型(一)小船过河问题模型一: 过河时间 t 最短:模型二: 直接位移 x 最短:v 船vvv船ddθv 水θ v 水当 v 水<v 船 时, x min =d ,tm ind d td,v 船, xv 船 sinsintanv 船cosv 水v 水v 船.精品文档模型三:间接位移x 最短:v 船v船dθAθv 水当 v 水>v 船时,x min dcostd,cos v 船 sinsmin(v水 - v船cos )Lv船sin v水L,v船v 船v 水(二)绳杆问题 ( 连带运动问题 )1、实质:合运动的识别与合运动的分解。
物理必修二曲线运动知识点
物理必修二曲线运动知识点1.曲线运动⑴物体作曲线运动的条件:①初速度和合外力不为零。
②两者不在一直线上。
⑵速度:①合外力的作用是改变速度(大小、方向)。
②任一点的速度方向在该点曲线的切线方向上。
③运动中速度不断改变,是一种变速运动,如果合外力是恒定的,属匀变速运动。
2.运动的合成和分解⑴两类基本运动:匀速直线运动和初速度为零的匀加速直线运动是最常见的两类基本运动;⑵运动合成:①几个同类运动的合运动仍是同类运动。
②合速度或合加速度按力的合成方法求。
③不同类运动的合运动可能是直线运动(V0与a在同一直线上),也可能是曲线运动(V0与a不在同一直线上)。
⑶运动分解:一个复杂的运动也可分解成几个较简单的分运动(一般用正交分解),各个分运动可独立求解,其相互关系是它们具有等时性。
⑷船渡河和拖船问题:①船渡河:它是船在静水中的运动和水的运动的合运动,它是两种匀速直线运动的合成,合运动也是匀速直线运动。
船渡河的时间由河宽和船垂直河岸的分速度决定,与水的流速度无关,船渡河沿河岸的位移与渡河时间和水的流速有关。
当船的静水速度大于水的流速时,可以使它们的合速度方向垂直河岸,此时渡河最小位移等于河宽,当船的静水速度小于水的流速时,无法使它们的合速度方向垂直河岸,此时要通过画圆弧方法求解。
②岸上拖船:包括汽车通过滑轮提升重物问题,存在两个不同的运动,一般岸上的运动是匀速直线运动,而比岸低的水中船的运动是一种变速运动,船在水中的速度是合速度(实际效果),连接绳的速度是船的分速度(它的大小等于岸上拉绳力的速度大小),船的移动距离要通过绳被拖过的长度计算。
如果是河中的船(匀速)拖动岸上物体,则船速也是合速度。
对于汽车通过滑轮提升重物,汽车速度也是合速度。
3.平抛运动⑴性质:初速度与重力垂直,是匀变速运动,加速度=g。
⑵分运动:①水平方向X=V0t;竖直方向Y=gt2/2。
②平抛运动的空中运动时间由h决定,水平位移由h和V0联合决定。
曲线运动知识点归纳
《曲线运动》知识归纳一、曲线运动1. 定义:运动轨迹是曲线的运动叫做曲线运动。
2. 曲线运动的速度方向:质点在某一点(或某一时刻)的瞬时速度方向是在曲线的这一点的切线方向。
曲线的切线方向和物体的走向有关,如图1所示,若物体从A运动到B,则a为切线方向;若物体从B运动到A,则b为切线方向。
注意:曲线运动的轨迹不表示质点的运动方向。
3. 物体做曲线运动的条件:初速度v0和合外力F(或加速度a)不在同一条直线上。
4. 曲线运动的特点:曲线运动一定是变速运动,速度一定改变,一定会产生加速度,加速度不一定改变。
由于做曲线运动必须有合外力,由牛顿第二定律得,物体必有加速度,因此物体不可能做匀速运动只可能做变速运动。
若合外力为恒力,则物体做匀变速曲线运动;若合外力为变力,则物体做加速度变化的变速曲线运动。
注意:曲线运动一定是变速运动,但变速运动不一定是曲线运动。
比如:自由落体运动,速度在不断增加,但仍为直线运动。
二、运动的合成与分解2. 运动的合成与分解如果某物体同时参与几个运动,那么这个物体实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动,已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。
运动的合成与分解是解决曲线运动问题的基本方法,即较复杂的运动都可以看作几个较简单的运动的合成。
必须明确:①运动的合成与分解遵循平行四边形定则;②合运动一定是物体的实际运动;③一般情况下,根据运动的实际效果进行分解。
3. 合运动与分运动的几个性质①等效性:各分运动的规律叠加起来与合运动规律有完全相同的效果;②等时性:合运动和分运动所经历的时间相等。
即同时开始,同时进行,同时停止。
③独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他分运动的影响。
4. 合运动的性质和轨迹两直线运动的合运动的性质和轨迹由各分运动的性质及初速度与合加速度的方向关系决定:①两个匀速直线运动的合运动仍是匀速直线运动。
高一物理曲线运动知识点总结
第五章曲线运动知识构建:一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。
2、曲线运动的产生条件:合外力方向与速度方向不共线〔≠0°,≠180°〕性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。
4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。
假设合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。
5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。
6、关于运动的合成与分解〔1〕合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。
那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。
〔2〕运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。
②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。
③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。
二、小船过河问题1、位移最小:①假设v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ=水船,最小位移为min l d=。
②假设v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ=船水,过河最小位移为min cos v dl d v θ==水船。
2、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min dt v =船,合速度方向沿v 合的方向。
物理必修二第二章知识点总结
物理必修二第二章知识点总结一、曲线运动。
1. 曲线运动的条件。
- 当物体所受合外力的方向跟它的速度方向不在同一条直线上时,物体做曲线运动。
- 例如,平抛运动中,物体只受重力,重力方向竖直向下,而物体的初速度是水平方向的,合外力与初速度方向不在同一直线上,所以做曲线运动。
2. 曲线运动的特点。
- 曲线运动中速度的方向时刻在改变,所以曲线运动是变速运动。
- 曲线运动的速度方向是曲线上该点的切线方向。
二、平抛运动。
1. 平抛运动的概念。
- 以一定的初速度沿水平方向抛出的物体只在重力作用下的运动。
2. 平抛运动的分解。
- 水平方向:做匀速直线运动,速度v_x = v_0(v_0为初速度),位移x = v_0t。
- 竖直方向:做自由落体运动,速度v_y=gt,位移y=(1)/(2)gt^2。
3. 平抛运动的速度和位移。
- 合速度:v = √(v_x)^2+v_{y^2}=√(v_0)^2+(gt)^2,方向tanθ=(v_y)/(v_x)=(gt)/(v_0)(θ为合速度与水平方向的夹角)。
- 合位移:s=√(x^2)+y^{2}=√((v_0t)^2)+((1)/(2)gt^{2)^2},方向tanα=(y)/(x)=(frac{1)/(2)gt^2}{v_0t}=(gt)/(2v_0)(α为合位移与水平方向的夹角)。
三、圆周运动。
1. 描述圆周运动的物理量。
- 线速度。
- 定义:物体做圆周运动通过的弧长Δ s与所用时间Δ t的比值,v=(Δ s)/(Δ t)。
- 单位:m/s。
- 方向:沿圆周的切线方向。
- 角速度。
- 定义:连接物体与圆心的半径转过的角度Δθ(弧度制)与所用时间Δ t的比值,ω=(Δθ)/(Δ t)。
- 单位:rad/s。
- 周期。
- 定义:做圆周运动的物体运动一周所用的时间,T=(2π r)/(v)(r为圆周运动的半径),也可表示为T = (2π)/(ω)。
- 单位:s。
- 频率。
曲线运动知识点总结如下
曲线运动知识点总结如下曲线运动知识点总结如下:一、基本概念1.定义:曲线运动是指物体运动轨迹是曲线的运动。
当物体所受的合外力和它速度方向不在同一直线上时,物体做曲线运动。
2.种类:曲线运动可分为平面曲线运动和空间曲线运动两种。
平面曲线运动包括圆周运动、椭圆运动、抛物线运动等;空间曲线运动包括螺旋线运动、球面运动、圆锥曲线运动等。
二、特点1.速度方向:曲线运动中质点在某一点的速度方向就是曲线上这一点的切线方向。
2.轨迹:曲线永远在合外力和速度方向的夹角里,曲线相对合外力(F合)上凸,相对速度方向(V)下凹。
3.加速度:由牛顿第二定律可知,加速度的方向始终与合外力的方向相同。
当合外力是恒力时,物体做匀变速曲线运动;当合外力为变力时,物体做非匀变速曲线运动。
三、公式总结1.2.位移公式:o匀速曲线运动:s = v × t,其中s为位移,v为速度,t为时间。
o非匀速曲线运动:s = ∫ v dt,即位移等于速度随时间的积分。
3.4.速度公式:o匀速曲线运动:v = s / t,即速度等于位移除以时间。
o非匀速曲线运动:v = ds / dt,即速度等于位移对时间的导数。
5.6.加速度公式:o匀加速曲线运动:a = (v - u) / t,其中a为加速度,v为末速度,u为初速度,t为时间。
o非匀加速曲线运动:a = dv / dt,即加速度等于速度对时间的导数。
四、种类举例1.自由落体运动:物体在重力作用下垂直下落的运动,轨迹为抛物线。
2.空中飞行运动:包括风筝悬停、滑翔和飞行器飞行等,空气阻力和推力的作用导致曲线运动的产生。
3.星体运动:太阳系中的行星和卫星运动,如地球绕太阳公转、月球绕地球公转等。
4.弹道运动:在重力和空气阻力的作用下,物体进行的自由飞行运动,如炮弹、导弹等的飞行轨迹。
五、应用1.自然界中的曲线运动:地球绕太阳公转、月球绕地球公转等。
2.体育竞技中的曲线运动:乒乓球、网球、高尔夫等项目中的球类运动。
高一物理曲线运动知识点总结归纳
高一物理曲线运动知识点总结归纳一、曲线运动的基本概念曲线运动是指物体在平面上不沿直线路径运动,而是沿曲线路径运动的运动方式。
曲线运动涉及到物体的速度、加速度与位移等概念。
二、曲线运动的基本特征1. 曲线运动的速度方向在运动过程中不断变化,速度的大小也可能随时间改变。
2. 曲线运动的加速度与速度方向可能不一致,因此速度的变化可能是由于大小的改变或者方向的改变,甚至是同时发生。
3. 曲线运动中,物体的位移一般是弯曲的路径,其起点和终点之间的直线距离称为弧长。
三、曲线运动的几种常见类型1. 曲线运动中的圆周运动圆周运动是物体沿着一个固定半径的圆形路径运动,如摆线运动、卫星绕地球运动等。
在圆周运动中,物体的速度大小保持不变,但是速度的方向不断改变,因而产生向心加速度。
2. 曲线运动中的抛体运动抛体运动是指物体在重力作用下沿自由曲线运动的运动方式。
抛体运动可以分为垂直抛体运动和斜抛体运动两种情况。
在垂直抛体运动中,物体的速度只在竖直方向上变化,而在斜抛体运动中,物体的速度同时在水平和竖直方向上变化。
3. 曲线运动中的圆锥曲线运动圆锥曲线运动是指物体在重力作用下,沿着椭圆、抛物线或者双曲线等轨迹运动的运动方式。
这种运动是由于有一个中心力作用在物体上,使其运动轨迹成为一个圆锥曲线。
四、曲线运动的重要公式1. 速度公式曲线运动中的速度公式一般写作v = ds/dt,表示物体在某一时刻的瞬时速度。
2. 加速度公式曲线运动中的加速度公式一般写作a = dv/dt,表示物体在某一时刻的瞬时加速度。
3. 圆周运动的加速度公式圆周运动中,物体受到向心力的作用,加速度公式为a = v^2/r,其中v为速度的大小,r为圆周半径。
4. 弧长公式曲线运动中,物体从起点到终点的弧长公式一般写作s = ∫v*dt,表示物体的位移。
五、曲线运动的应用曲线运动的知识在日常生活中有很多应用,比如卫星绕地球运动、自行车转弯时的运动轨迹、跳伞运动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动考点梳理:一.曲线运动1.运动性质————变速运动,具有加速度2.速度方向————沿曲线一点的切线方向3.质点做曲线运动的条件(1)从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧。
(2)从运动学看,物体加速度方向跟物体的速度方向不共线例题:如图5-1-5在恒力F作用下沿曲线从A运动到B,这时突然使它受的力反向,而大小不变,即由F变为-F,在此力作用下,关于物体以后的运动情况的下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线由B返回A2、图5-1-6簇未标明方向的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点。
若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的符号;B.带电粒子在a、b两点的受力方向;C.带电粒子在a、b两点的速度何处较大;D.带电粒子在a、b两点的电势能何处较大。
图5-1-5ab二.运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解(1)已知分运动(速度v 、加速度a 、位移s)求合运动(速度v 、加速度a 、位移s),叫做运动的合成.(2)已知合运动(速度v 、加速度a 、位移s)求分运动(速度v 、加速度a 、位移s),叫做运动的分解.(3)运动的合成与分解遵循平行四边形定则. 3.合运动与分运动的关系(1)等时性:合运动和分运动进行的时间相等.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果. (3)等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动. 三.平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.3.平抛运动的研究方法(1)平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动. (2)平抛运动的速度 水平方向:0v v x = ; 竖直方向:gt v y =合速度:22y x v v v +=,方向:xy v v tg =θ0 s ysφyxvv 0v yθs x 图5-2-2(3)平抛运动的位移 水平方向水平位移:s x =v 0t 竖直位移:s y =21gt 2 合位移:22yx ss s +=,方向:tg φ=xy s s4.平抛运动的轨迹:抛物线;轨迹方程:2202x v g y =5.几个有用的结论(1)运行时间和水平射程:水平方向和竖直方向的两个分运动既有独立性,又有等时性,所以运动时间为g ht 2=,即运行时间由高度h 决定,与初速度v 0无关.水平射程ghv x 20=,即由v 0和h 共同决定. (2)相同时间内速度改变量相等,即△v=g △t, △v 的方向竖直向下.【例题】1.证明:(一个有用的推论)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半.2. 一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。
小球在竖直方向下v 0 v 1v 2v 1yv 2y △v 图5-2-3v 0 v tv xv y hsαα s /图5-2-4落的距离与在水平方向通过的距离之比为 A .1tan θ B .12tan θC .tan θD .2tan θ 四.匀速圆周运动1.匀速圆周运动(1)定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,叫做匀速圆周运动. (2)运动学特征: v 大小不变,T 不变,ω不变,a 向大小不变; v 和a 向的方向时刻在变.匀速圆周运动是变加速运动.(3)动力学特征:合外力大小恒定,方向始终指向圆心. 2.描述圆周运动的物理量 (1)线速度①物理意义:描述质点沿圆周运动的快慢.②方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向. ③大小:tsv =(s 是t 时间内通过的弧长). (2)角速度①物理意义:描述质点绕圆心转动快慢. ②大小:tφω=(单位rad/s),其中φ是连结质点和圆心的半径在t 时间内转过的角度.(3)周期T 、频率f做圆周运动的物体运动一周所用的时间叫做周期.单位:s.做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.单位:Hz. (4) v 、ω、T 、f 的关系f T 1=,f T ππ22==ω,ωr vr v ==π2(5)向心加速度①物理意义:描述线速度方向改变的快慢.②大小: 22222222444v a w r r f r n rr T πππ=====③方向:总是指向圆心.所以不论a 的大小是否变化,它都是个变化的量. 3.向心力F 向①作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,不改变速度的大小.②大小: 22222222444v F m mw r m r m f r m n rr T πππ=====③来源:向心力是按效果命名的力.可以由某个力提供,也可由几个力的合力提供,或由某个力的分力提供.如同步卫星的向心力由万有引力提供,圆锥摆摆球的向心力由重力和绳上拉力提供(或由绳上拉力的水平分力提供).④匀速圆周运动的向心力就是合外力,而在非匀速圆周运动中,半径方向的分力,而合外力沿切线方向的分力改变线速度的大小.4.质点做匀速圆周运动的条件: (1)质点具有初速度;(2)质点受到的合外力始终与速度方向垂直;(3)合外力F 的大小保持不变,且r m rv m F 22ω== 若r m r v m F 22ω=<,质点做离心运动;若r m rv m F 22ω=>,质点做向心运动; 若F =0,质点沿切线做直线运动.F=0 F< mr ω2,F= mr ω2, F> mr ω2, 图5-3-1一.绳子与杆末端速度的分解方法绳与杆问题的要点,物体运动为合运动,分解为沿绳或杆方向和垂直于绳或杆方向的分运动例题:1.如图5-1-7岸上用绳拉船,拉绳的速度是v ,当绳与水平方向夹角为θ时,船的速度为多大?2.如图5-1-3车甲以速度v 1拉汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,求v 1∶v 2二.小船过河问题1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小图5-1-7θv甲乙 α v 1 v 2 图5-1-3水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 问题:有没有船速等于水速时,渡河最短位移的情况【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:v 水v 船θvv 水θ v αA E v 船(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
可由几何方法求得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
设航程最短时,船头应偏向上游河岸与河岸成θ角,则2163cos 12===υυθ, 60=θ 最短行程,m m d s 1202660cos ===θ小船的船头与上游河岸成600角时,渡河的最短航程为120m 。
问题三:绳杆模型竖直平面内的圆周运动 (1)绳子模型没有物体支持的小球,在竖直平面内做圆周运动过最高点: ①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力充当圆周运动所需的向心力,设v 临是小球能通过最高点 的最小速度,则:mg =rv m 2,v 临=gr②能过最高点的条件:v ≥v 临③不能通过最高点的条件:v < v 临,实际上物体在到达最高点之前就脱离了圆轨道. (2)轻杆模型.有物体支持的小球在竖直平面内做圆周运动情况 ①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度v 临=0,轻杆或轨道对小球的支持力:N =mg②当最高点的速度v =gr 时,杆对小球的弹力为零. ③当0<v <gr 时,杆对小球有支持力:N =mg -rvm2,而且:v ↑→N ↓ ④当v>gr 时,杆对小球有拉力(或管的外壁对小球有竖直向下的压力):F =rv m 2-mg ,而且:v ↑→N ↑vmv图5-3-4v mv m图5-3-5例题:如下图所示,光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同的速度υ通过轨道的最低点,且当小球a在最低点时,小球b在最高点.以下说法正确的是( )A.速度υ至少为,才能使小球在管内做圆运动B.当υ=,小球b在轨道最高点对轨道无压力C.当小球b在轨道最高点对轨道无压力时,小球a比小球b所需向心力大4mgD.只要υ>,小球a对轨道最低点的压力比小球b对轨道最高点压力都大6mg问题四:水平面内做圆周运动的临界问题在水平面上做圆周运动的物体,当角速度w变化时,物体有远离或向着圆心运动的趋势,这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪,特别是一些静摩擦力,绳子的拉力等例题:1.如图所示,细绳一端系着质量为M=0.6kg的物体,静止在水平面上,另一端通过光滑小孔吊着质量为m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N。