人教版九年级中考模拟试卷(一)【附答案】

合集下载

2022年人教版九年级物理中考模拟试题(带答案)

2022年人教版九年级物理中考模拟试题(带答案)

2022年九年级中考模拟考试物理试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共30小题,满分100分,考试用时100分钟;2.答题前,考生务必将自己的学校、班级、姓名、考试号、座位号,填写在答题卷相应位置上,并认真核对;3.答选择题时必须用2B铅笔把答题卷上对应题目的答案标号涂黑;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其它笔答题;4.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

第Ⅰ卷选择题(共24分)一、选择题(本题共12小题,每小题2分,共24分。

每小题给出的选项中只有一个选项符合题意)1.以下估测与实际情况相符的是( )A.人正常步行的平均速度是36km/hB.家用电饭煲正常工作时电流约为4AC.将一本九年级物理书从地面捡到课桌上对其做功大约为20JD.适宜的洗澡水的温度是60 ℃2.下列现象中与“杯弓蛇影”原理相同的是( )A.露珠下的“叶脉”B.水中倒影”C.空中的“彩虹”D.日环食3.古诗词是中华传统文化的精髓之一,我们在欣赏的时候,经常发现与物理知识息息相关。

诗人胡令能的《小儿垂钓》全文如下:“蓬头稚子学垂纶,侧坐莓苔草映身。

路人借问遥招手,怕得鱼惊不应人。

”下列说法错误..的是( )A.“蓬头稚子”是根据响度辨别“路人”是陌生人B.“遥招手”——是在声源处减弱“噪声”C.“怕得鱼惊不应人”——说明声音可以在液体中传播D.“借问”——是“路人”的声带振动产生的声音4.缺电地方的人们发明了一种陶制的罐中罐“冰箱”,内外罐之间填有沙子,如图所示,盛夏季节里,有利于给“冰箱”中食物降温的做法是( )A.换用铁质材料制作内外罐B.经常给两罐间的沙子浇水C.把“冰箱”放在密闭房间内D.把“冰箱”放在湿热环境中5.下列说法正确的是( )A.现有核电站是利用核聚变来发电的B.温度相同的物体,内能不一定相同C.原子由质子和电子组成D.扩散现象中,分子一定从高温物体运动到低温物体6.如图所示为“静电章鱼”实验,用比塑料易失去电子的毛皮分别摩擦塑料丝和塑料管,然后把塑料丝往空中抛出后将塑料管放在下面,此时塑料丝静止在空中,形状像章鱼。

人教版九年级英语下册中考模拟学情评估 附答案 (1)

人教版九年级英语下册中考模拟学情评估 附答案 (1)

中考模拟学情评估(一)英语九年级下册时间:120分钟满分:120分第一部分(听力30分)Ⅰ. 听选答案(共15小题,计20分)第一节:听下面10段对话,每段对话后有一个问题,读两遍。

请根据每段对话的内容和后面的问题,从所给的三个选项中选出最恰当的一项。

(共10小题,计10分)()1. A. Saying hello. B. Saying thanks.C. Saying goodbye.()2. A. An eraser. B. A pen. C. A ruler.()3. A. He has a stomachache.B. He has a headache.C. He has a toothache.()4. A. Japanese. B. French. C. English.()5. A. In a bank. B. At a zoo.C. At a restaurant.()6. A. She'll take a taxi. B. She'll go by bus.C. She'll walk there.()7. A. Go to the cinema. B. Go to the birthday party.C. Go to the supermarket.()8. A. In Germany. B. In China.C. In Japan.()9. A. Lisa. B. Sarah. C. Nancy.()10. A. At 7:50. B. At 8:00.C. At 8:10.第二节:听下面两段对话,每段对话后有几道小题,请根据对话的内容,从题目所给的三个选项中选出所给问题的最佳答案。

每段对话读两遍。

(共5小题,计10分)听第11段对话,回答第11、12小题。

()11. When will Nancy go to the movies?A. On Friday.B. On Saturday.C. On Sunday.()12. How will Nancy go there?A. On foot.B. By bike.C. By car.听第12段对话,回答第13至15小题。

河南省中考数学仿真试卷(1)(含解析)-人教版初中九年级全册数学试题

河南省中考数学仿真试卷(1)(含解析)-人教版初中九年级全册数学试题

2017年某某省中考数学仿真试卷(1)一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=24.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.507.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形二、填空题(每小题3分,共21分)9.分解因式:x2﹣4=.10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行m才能停下来.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为cm.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是,组中值为110次一组的频率为;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.2017年某某省中考数学仿真试卷(1)参考答案与试题解析一、选择题(每小题3分,共24分)1.一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.【考点】绝对值.【分析】根据绝对值的定义即可求解.【解答】解:因为|3|=3,|﹣3|=3,∴绝对值等于3的数是±3.故选C.2.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20° B.25° C.30° D.35°【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1=25°,∵∠ABC=45°,∴∠3=∠ABC﹣∠4=45°﹣25°=20°,∴∠2=∠3=20°.故选A.3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.5a﹣3a=2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂、积的乘方与幂的乘方的性质,完全平方公式以及合并同类项的知识,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、a3•a2=a5,故本选项错误;B、(ab3)2=a2b6,故本选项正确;C、(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、5a﹣3a=2a,故本选项错误.故选B.4.某校九年级(一)班学生在男子50米跑测试中,第一小组8名同学的测试成绩如下(单位:秒):7.0,7.2,7.5,7.0,7.4,7.5,7.0,7.8,则下列说法正确的是()【考点】极差;算术平均数;中位数;众数.【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.【解答】解:A、中位数是7.3,故A错误;B、众数是7.0,故B错误;C、平均数是7.3,故C正确;D、极差是0.8,故D错误.故选C.5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.【考点】简单几何体的三视图.【分析】看哪个几何体的三视图中有长方形,圆,及三角形即可.【解答】解:A、三视图分别为正方形,三角形,圆,故A选项符合题意;B、三视图分别为三角形,三角形,圆及圆心,故B选项不符合题意;C、三视图分别为正方形,正方形,正方形,故C选项不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,故D选项不符合题意;故选:A.6.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.50【考点】全等三角形的判定与性质;三角形的面积;等腰直角三角形.【分析】求出∠ABD=∠ACF,根据ASA证△ABD≌△ACF,推出AD=AF,得出AB=AC=2AD=2AF,求出AF长,求出AB、AC长,根据三角形的面积公式得出△FBC的面积等于BF×AC,代入求出即可.【解答】解:∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,∵在△ABD和△ACF中,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴△FBC的面积是×BF×AC=×12×8=48,故选C.7.如图所示,在平面直角坐标系中,直线OM是正比例函数y=﹣x的图象,点A的坐标为(1,0),在直线OM上找点N,使△ONA是等腰三角形,符合条件的点N的个数是()A.2个B.3个C.4个D.5个【考点】一次函数综合题.【分析】本题应该分情况讨论.以OA为腰或底分别讨论.当A是顶角顶点时,AN=OA=1,共有2个,AO=ON=1时,有一个点,若OA是底边时,N是OA的中垂线与x轴的交点,有1个,再利用直线OM是正比例函数y=﹣x的图象,得出∠AON2=60°,即可得出答案.【解答】解:∵直线OM是正比例函数y=﹣x的图象,∴图形经过(1,﹣),∴tan∠AON2=.∴∠AON2=60°,若AO作为腰时,有两种情况,当A是顶角顶点时,N是以A为圆心,以OA为半径的圆与OM的交点,共有1个,当O是顶角顶点时,N是以O为圆心,以OA为半径的圆与MO的交点,有2个;此时2个点重合,若OA是底边时,N是OA的中垂线与直线MO的交点有1个.以上4个交点有2个点重合.故符合条件的点有2个.故选:A.8.已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF.则下列结论不正确的是()A.CP平分∠BCDB.四边形ABED为平行四边形C.CQ将直角梯形分为面积相等的两部分D.△ABF为等腰三角形【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE(SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【解答】解:易证△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED;∴△BPE≌△DPF(AAS),∴BP=DP,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即A正确;又∵AD=BE且AD∥BE,∴四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;综上,选项A、B、D正确.故选:C.二、填空题(每小题3分,共21分)9.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).10.若圆锥的底面半径为2cm,母线长为5cm,则此圆锥的表面积为14πcm2.【考点】圆锥的计算.【分析】先求得圆锥的底面周长,再根据圆锥的侧面积等于lr,l表示圆锥的底面周长,r表示圆锥的母线长或侧面展开扇形的半径.【解答】解:圆锥的底面周长=4πcm,圆锥的侧面积=lr=×4π×5=10πcm2,底面积为4πcm2,表面积为10π+4π=14πcm2,故答案为:14πcm2.11.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.【考点】概率公式;根的判别式.【分析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有12种结果,且每种结果出现的机会相同,关于x的一元二次方程x2﹣2mx+n2=0有实数根的条件是:4(m2﹣n2)≥0,在上面得到的数对中共有9个满足.【解答】解:从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有:4×3=12种结果,∵满足关于x的一元二次方程x2﹣2mx+n2=0有实数根,则△=(﹣2m)2﹣4n2=4(m2﹣n2)≥0,符合的有9个,∴关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.2+60x,该型号飞机着陆后滑行600 m才能停下来.【考点】二次函数的应用.【分析】2+60x的最大函数值,将函数解析式化为顶点式即可解答本题.【解答】解:∵2+60x=﹣1.5(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来,故答案为:600.13.如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=8 .【考点】反比例函数综合题.【分析】首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=6﹣x 交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=6﹣x交x轴、y轴于A、B两点,∴A(6,0),B(0,6),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数y=(x>0)图象上的一点,∴PN•PM=4,∴CE•DF=4,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,则AF•BE=CE•DF=2CE•DF=8.故答案为:8.14.如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD 上的F点,若△FDE的周长为8 cm,△FCB的周长为20cm,则FC的长为 6 cm.【考点】翻折变换(折叠问题);平行四边形的性质.【分析】根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解答】解:AE=EF,AB=BF;△FDE的周长为DE+FE+DF=AD+DF=8cm,△FCB的周长为FC+AD+AB=20 cm,分析可得:FC=[FC+AD+AB﹣(AD+DF)]=(2FC)=(△FCB的周长﹣△FDE的周长)=(20﹣8)=6cm.故答案为6.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.【考点】二次函数综合题.【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x,即=,=,解得:BF=x,CM=﹣x,∴BF+CM=.故答案为:三、解答题(本大题共8小题,满分75分)16.先化简,再求值:,其中x=2sin60°﹣()﹣2.【考点】分式的化简求值;负整数指数幂;特殊角的三角函数值.【分析】将原式第二项中被除式的分子利用完全平方公式分解因式,除式的分子利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后再利用同分母分式的减法运算计算,得到最简结果,接着利用特殊角的三角函数值及负指数公式化简,求出x的值,将x的值代入化简后的式子中计算,即可得到原式的值.【解答】解:﹣÷=﹣÷=﹣•=﹣=﹣,当x=2sin60°﹣()﹣2=2×﹣4=﹣4时,原式=﹣=﹣.17.某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明:组中值为190次的组别为180≤次数<200)请结合统计图完成下列问题:(1)八(1)班的人数是50 ,组中值为110次一组的频率为0.16 ;(2)请把频数分布直方图补充完整;(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?【考点】频数(率)分布直方图;一元一次不等式的应用;扇形统计图.【分析】(1)用频数除以所占的频率可得八(1)班的人数,由频数分布直方图知,组中值为110次一组的频数是8,再由频率=频数÷数据总和计算;(2)先计算组中值为130次一组的频数为50﹣8﹣10﹣14﹣6=12人,再补充完整频数分布直方图即可;(3)根据八年级同学一分钟跳绳的达标率不低于90%,列不等式求解.【解答】解:(1)八(1)班的人数是6÷0.12=50人,由频数分布直方图知,组中值为110次一组的频数是8,所以它对应的频率是8÷50=0.16;(2)组中值为130次一组的频数为12人,(3)设八年级同学人数有x人,达标的人数为12+10+14+6=42,根据一分钟跳绳次数不低于120次的同学视为达标,达标所占比例为:1﹣9%=91%=0.91,则可得不等式:42+0.91(x﹣50)≥0.9x,解得:x≥350,答:八年级同学人数至少有350人.18.如图,在梯形ABCD中,AD∥BC,E是BC上的一点,且CE=8,BC=12,CD=4,∠C=30°,∠B=60°.点P是线段BC边上一动点(包括B、C两点),设PB的长是x.(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形.(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形.(3)P在BC上运动时,以点P、A、D、E为顶点的四边形能否为菱形.【考点】梯形;平行四边形的性质;菱形的性质;直角梯形.【分析】(1)如图,分别过A、D作BC的垂线,垂足分别为F、G,容易得到AF=DG,AD=FG,而CD=4,∠C=30°,由此可以求出CG=6,DG=AF=2,又∠B=60°,BF=2,若点P、A、D、E为顶点的四边形为直角梯形,则∠APC=90°或∠DPC=90°,那么P与F重合或P与G 重合,根据前面求出的长度即可求出此时的x的值;(2)若以点P、A、D、E为顶点的四边形为平行四边形,由于AD=BE=4,且AD∥BE,有两种情况:①当点P与B重合时,利用已知条件可以求出BP的长度;②当点P在CE中点时,利用已知条件也可求出BP的长度;(3)以点P、A、D、E为顶点的四边形能构成菱形.由(1)(2)知,当BP=0或8时,以点P、A、D、E为顶点的四边形是平行四边形,根据已知条件分别计算一组邻边证明它们相等即可证明它是菱形.【解答】解:(1)分别过点A、D作BC的垂线,垂足分别为F、G.∵∠C=30°,且CD=,∴DG=2,CG=6,∴DG=AF=2,∵∠B=60°,∴BF=2.∵BC=12,∴FG=AD=4,显然,当P点与F或点G重合时,以点P、A、D、E为顶点的四边形为直角梯形.所以x=2或x=6;(2)∵AD=BE=4,且AD∥BE,∴当点P与B重合时,即x=0时.点P、A、D、E为顶点的四边形为平行四边形,又∵当点P在CE中点时,EP=AD=4,且EP∥AD,∴x=8时,点P、A、D、E为顶点的四边形为平行四边形;(3)由(1)(2)知,∵∠BAF=30°,∴AB=2BF=4,∴x=0时,且PA=AD,即以点P、A、D、E为顶点的四边形为菱形.∵AB=BE,且∠B=60°,∴△ABE为正三角形.∴AE=AD=4.即当x=8时,即以点P、A、D、E为顶点的四边形为菱形,∴当BP=0或8时,以点P、A、D、E为顶点的四边形是菱形.19.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值X围.【考点】反比例函数综合题.【分析】(1)作⊥x轴于点N,根据HL证明Rt△CAN≌Rt△AOB,求出NO的长度,进而求出d;(2)设△ABC沿x轴的正方向平移c个单位,用c表示出C′和B′,根据两点都在反比例函数图象上,求出k的值,进而求出c的值,即可求出反比例函数和直线B′C′的解析式;(3)直接从图象上找出y1<y2时,x的取值X围.【解答】解:(1)作⊥x轴于点N,∵A(﹣2,0)B(0,1).∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(HL),∴AN=BO=1,=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1)又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1=,(3)此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3;由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.20.如图所示,某幼儿园为加强安全管理,决定将园内滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方有3米长的空地就能保证安全,已知原滑滑板的前方有5米长的空地,则这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449,以上结果均保留到小数点后两位)【考点】二次根式的应用.【分析】(1)先在Rt△ABC中利用45°的正切计算出AC=2,再在Rt△ADC中利用含30度的直角三角形三边的关系得到AD≈5.656(m),然后计算AD﹣AB即可;(2)利用等腰直角三角形的性质得到BC=AC=2,再在Rt△ADC中利用30度的正切计算出CD=2,则BD≈<3,由于滑滑板的正前方有3米长的空地就能保证安全,则可判定这样改造不可行.【解答】解:(1)在Rt△ABC中,∵tan∠ABC=,∴AC=4tan45°=2,在Rt△ADC中,∵∠D=30°,∴AD=2AC=4≈5.656(m),∵AD﹣AB=5.656﹣4≈1.66(m),∴改善后滑滑板会加长1.66米;(2)不可行,理由如下:∵△ABC为等腰直角三角形,∴BC=AC=2,在Rt△ADC中,∵tanD=,∴CD===2,∴BD=CD﹣BC=2﹣2≈2.060,<3,∴这样改造不可行.21.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)超过30平方米不超过m(平方米)部分(45≤m≤60)超过m平方米部分根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米左右,缴纳房款为y万元,且57<y≤60 时,求m的取值X围该.【考点】一次函数的应用.【分析】(1)根据房款=房屋单价×购房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】×90+×30=42(万元).(2)由题意,得①当0≤x≤×3x=0.9x;②当30<x≤×3×30+×3×(x﹣30)=1.5x﹣18;③当x>×3×30+×3(m﹣30)+×3×(x﹣m)=2.1x﹣0.6m﹣18.∴y=;(3)由题意,得①当50≤m≤×50﹣18=57(舍);②当45≤m<×50﹣0.6m﹣18=87﹣0.6m.∵57<y≤60,∴57<≤60,∴45≤m<50.综合①②得45≤m<50.22.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.【考点】四边形综合题.【分析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.【解答】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.23.如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y 轴交于点C,顶点为D.(1)求顶点D的坐标.(用含a的代数式表示);(2)若△ACD的面积为3.①求抛物线的解析式;②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两交点的横坐标分别是﹣3和1,设抛物线解析式的交点式y=a(x+3)(x﹣1),再配方为顶点式,可确定顶点坐标;(2)①设AC与抛物线对称轴的交点为E,先运用待定系数法求出直线AC的解析式,求出点E的坐标,即可得到DE的长,然后由S△ACD=×DE×OA列出方程,解方程求出a的值,即可确定抛物线的解析式;②先运用勾股定理的逆定理判断出在△ACD中∠ACD=90°,利用三角函数求出tan∠DAC=.设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.根据正切函数的定义求出OF=1.分两种情况进行讨论:(Ⅰ)如图2①,F点的坐标为(0,1),(Ⅱ)如图2②,F点的坐标为(0,﹣1).针对这两种情况,都可以先求出点P的坐标,再得出m的值,进而求出平移后抛物线的解析式.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),∴抛物线解析式为y=a(x+3)(x﹣1)=ax2+2ax﹣3a,∵y=a(x+3)(x﹣1)=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点D的坐标为(﹣1,﹣4a);(2)如图1,①设AC与抛物线对称轴的交点为E.∵抛物线y=ax2+2ax﹣3a与y轴交于点C,∴C点坐标为(0,﹣3a).设直线AC的解析式为:y=kx+t,则:,解得:,∴直线AC的解析式为:y=﹣ax﹣3a,∴点E的坐标为:(﹣1,﹣2a),∴DE=﹣4a﹣(﹣2a)=﹣2a,∴S△ACD=S△CDE+S△ADE=×DE×OA=×(﹣2a)×3=﹣3a,∴﹣3a=3,解得a=﹣1,∴抛物线的解析式为y=﹣x2﹣2x+3;②∵y=﹣x2﹣2x+3,∴顶点D的坐标为(﹣1,4),C(0,3),∵A(﹣3,0),∴AD2=(﹣1+3)2+(4﹣0)2=20,CD2=(﹣1﹣0)2+(4﹣3)2=2,AC2=(0+3)2+(3﹣0)2=18,∴AD2=CD2+AC2,∴∠ACD=90°,∴tan∠DAC===,∵∠PAB=∠DAC,∴tan∠PAB=tan∠DAC=.如图2,设y=﹣x2﹣2x+3=﹣(x+1)2+4向右平移后的抛物线解析式为y=﹣(x+m)2+4,两条抛物线交于点P,直线AP与y轴交于点F.∵tan∠PAB===,∴OF=1,则F点的坐标为(0,1)或(0,﹣1).分两种情况:(Ⅰ)如图2①,当F点的坐标为(0,1)时,易求直线AF的解析式为y=x+1,由,解得,(舍去),∴P点坐标为(,),将P点坐标(,)代入y=﹣(x+m)2+4,得=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;(Ⅱ)如图2②,当F点的坐标为(0,﹣1)时,易求直线AF的解析式为y=﹣x﹣1,由,解得,(舍去),∴P点坐标为(,﹣),将P点坐标(,﹣)代入y=﹣(x+m)2+4,得﹣=﹣(+m)2+4,解得m1=﹣,m2=1(舍去),∴平移后抛物线的解析式为y=﹣(x﹣)2+4;综上可知,平移后抛物线的解析式为y=﹣(x﹣)2+4或y=﹣(x﹣)2+4.。

人教版九年级中考化学模拟试卷(含答案)

人教版九年级中考化学模拟试卷(含答案)

九年级中考化学学科模拟试卷可能用到的相对原子质量:H1 C12 O16 Mg24 Si28 S32 C135.5 Ca 40Fe 56 Ag 108 Ba 137选择题部分(共50分)一、单项选择题(本题包括10小题,每小题2分,共20分,每小题只有一个正确答案)1.物质世界是不断运动和变化的。

下列变化中,没有发生化学变化的是()A.钢铁治炼B.冰雪融化C.陶瓷烧制D.面包发霉2.2022年北京冬奥会秉持“科技冬奥”,使用多种“黑科技”。

下列说法不正确的是()A.“水立方”巧变“冰立方”:在水结冰的过程中,水分子的种类没有发生变化B.“冰丝带”:采用CO2直冷制冰技术,使碳排放值趋近于零,可有效减缓温室效应C.“飞扬”火炬:火炬将使用氢气做燃料,氢气燃烧的过程中化学能转化为热能和光能D.天然“冰壶”:制作冰壶的花岗岩主要由石英、长石等矿物组成,花岗岩属于纯净物3.生活离不开化学,化学服务于生活。

下列相关解释和判断中正确的是()A.氢氧化铜和氢氧化钠都含有氢氧根离子,所以他们都能使无色酚酞试液变红B.欲配制成溶质质量分数为0.9%的生理盐水,需要0.9克氯化钠和100克水C.金刚石和石墨都由碳元素组成,所以他们的性质完全相同D.口罩中的熔喷布是由聚丙烯【(CH2CHCH3)n】超细纤维制成,属于有机高分子材料4.具备基本的化学实验技能是进行科学探究活动的基础和保证。

下列实验操作正确的是()A.用胶头滴管向试管中滴加液体时,把滴管伸入试管内B.为加快过滤速度,用玻璃棒对漏斗中的液体进行搅拌C.稀释浓硫酸时,将浓硫酸沿着烧杯内壁缓缓注入水中D.测定溶液的pH时,将试纸先润湿再放入待测液中5.我国空间站己开启有人长期驻留时代。

为空间站提供所需电力的是硅太阳能电池帆板,太阳能电池帆板的材料最主要的是晶体硅材料。

硅元素在元素周期表中的信息和原子结构示意图如图所示。

下列有关硅的说法中,不正确的是()A.该元素的原子的质子数和核外电子数均为14B.原子结构示意图中X的值为8C.SiO2中硅元素的化合价为+4价D.一个硅原子的实际质量为28.09g(第5题图)6.食盐(NaCl)是我们生活中的必需品。

人教版九年级化学中考模拟试题及参考答案

人教版九年级化学中考模拟试题及参考答案

人教版九年级化学中考模拟试题(考试时间:60分钟 满分:60分)请注意:1.本试卷分选择题和非选择题两部分。

2.所有试题的答案均须填写在答题纸上,答案写在试卷上无效。

可能用到的相对原子质量:H-1 C-12 O-16 Na-23 Mg-24 S-32 Fe-56 Cu-64 Zn-65第一部分 选择题(共20分)第1~10题,每小题只有一个选项符合题意。

每小题1分,共10分。

1.2019年3月,姜堰区中小学开展了“打赢蓝天保卫战”活动。

下列行动不利于“保卫蓝天”的是A .尽量低碳出行B .露天焚烧垃圾C .使用清洁能源D .积极植树造林2.下列属于化学变化的是A .工业制氧气B .盐酸挥发C .石油分馏D .粮食酿醋 3.下图为“中国节能”标志的是A B C D4.下列物质的用途利用其物理性质的是 A .干冰用于人工降雨 B .铁粉用作食品吸氧剂C .氧气用于医疗供氧D .小苏打治疗胃酸过多5.下列实验操作正确的是A .移走蒸发皿B .溶解固体C .加入大理石D .检查装置的气密性 6.下列物质属于纯净物的是A .酒精B .不锈钢C .矿泉水D .加碘盐 7.下列说法正确的是A .铜绿加热后颜色变红,并生成有刺激性气味的气体B .空气中二氧化碳含量增加,导致了酸雨的形成C .洗洁精有乳化作用,可用于洗去碗筷上的油污D .活性炭可将硬水软化 8.下列有关化学用语表示正确的是液柱上升A .两个亚铁离子:2Fe 3+B .氧分子:OC .保持二氧化碳化学性质的最小微粒:CO 2D .钠原子的结构示意图: 9A .2O 3FeCl 2B .Na 2CO 3 NaCl NaNO 3C . C CO CO 2D . H 2O 2 O 2 SO 310.下列对主题知识的归纳,完全正确的一组是第11~15题,每题有一个或两个选项符合题意。

多选、错选均不得分,少选得1分。

每小题2分,共10分。

11.氨催化氧化是制硝酸的主要反应之一。

人教版九年级英语中考模拟卷(附答案) (1)

人教版九年级英语中考模拟卷(附答案) (1)

人教版九年级英语中招模拟卷(一)时间:100分钟满分:120分一、听力理解(20小题, 每小题1分, 共20分)第一节听下面5段对话。

每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳答案。

每段对话读两遍。

1. Who will be the owner of the book?A. The boy.B. The boy's mother.C. Tom.2. What did Jane do yesterday?A. She went to the Disneyland.B. She looked after her mom.C. She went shopping.3. When will the woman get her order of milk?A. On Thursday.B. On Friday.C. On Saturday.4. How much does a ticket cost?A. $10.B. $20.C. $40.5. What does the man want to buy?A. B. C.第二节听下面几段对话或独白。

每段对话或独白后有几个小题, 从题中所给的A、B、C 三个选项中选出最佳答案。

每段对话或独白读两遍。

听下面一段对话, 回答第6至第7两个小题。

6. What was the speech about?A. The science.B. The health.C. The environment.7. Who did Marie come here with?A. Mike.B. Mike's brother.C. Her brother. 听下面一段对话, 回答第8至第9两个小题。

8. What did Mary do at the party?A. She sang a song.B. She danced.C. She played the violin.9. When did Daniel leave the party?A. At 11:00.B. At 11:30.C. At 12:00. 听下面一段独白, 回答第10至第12三个小题。

人教版中考语文模拟试卷及答案(一)

人教版中考语文模拟试卷及答案(一)

人教版中考语文模拟试卷及答案(一)研究必备,人教版中考语文模拟试题(一)及答案一、积累及运用(每题3分,共18分)1.下列各项中字形和加点字字音全都正确的一项是()B、仄歪(zè)嶙峋(xún)干涸(gù)唯妙唯肖(xiào)2.下列词语中,没有错别字的一项是()D.亵赌鸿鹄睥睨独具XXX3.下列各句中,加点的成语使用恰当的一项是()D.近年来,在种种灾害面前,各级政府防患未然,及时启动应急预案,力争把人民的生命财产损失降到最低限度。

4.下列句子中没有语病的一项是()A.参加第二十一届冬奥会的中国体育代表团载誉归来,勇夺五金实现历史突破。

5.填入下面横线上的句子,排列恰当的一项是()要取得成功,首先要学会低头。

因此,你再优秀,再有名,也没有人愿意与你合作。

②这恰如演奏一支高昂的曲子,起首往往是低调的。

④低头,既是正确,也是对他人的一种尊重。

③什么时候都高昂着头,实际上是抬高自己,看低别人。

①你瞧不起别人,人家干吗要瞧得起你呢?B.②③④①6.下列关于名著中人物的表述,不正确的一项是()(文章中没有这道题目)研究必备,人教版中考语文模拟试题(一)及答案一、积累及运用(每题3分,共18分)1.下列各项中,字形和加点字的字音全都正确的一项是()B、仄歪(zè)嶙峋(xún)干涸(gù)唯妙唯肖(xiào)2.下列词语中,没有错别字的一项是()D.亵赌鸿鹄睥睨独具XXX3.下列各句中,加点的成语使用恰当的一项是()D.近年来,在种种灾害面前,各级政府防患未然,及时启动应急预案,力争把人民的生命财产损失降到最低限度。

4.下列句子中没有语病的一项是()A.参加第二十一届冬奥会的中国体育代表团载誉归来,勇夺五金实现历史突破。

5.填入下面横线上的句子,排列恰当的一项是()要取得成功,首先要学会低头。

因此,你再优秀,再有名,也没有人愿意与你合作。

中考化学模拟试卷(一)(含解析)-人教版初中九年级全册化学试题

中考化学模拟试卷(一)(含解析)-人教版初中九年级全册化学试题

2016年中考化学模拟试卷(一)说明:1.考试时间为80分钟,满分为100分;2.可能用到的相对原子质量:N-14、O-16、H-1、Na-23、Cl-35.5、K-39。

一、选择题(本大题包括14小题,每小题2分,共28分,在每小题列出的四个选项中,只有一个是正确的)1.对物质的性质进行比较归纳,有利于更好的学习化学。

下列对物质性质的归纳中,正确的是()A.H2、O2、CH4都具有可燃性B.H2、C、CO都能和CuO发生置换反应C.石墨、木炭、活性炭都具有吸附性D.Fe、Al、Cu都能和AgNO3溶液发生置换反应2.下列安全措施不正确的是()A.燃放烟花爆竹时,远离人群和可燃物B.天然气泄漏,立即关闭阀门并开窗通风C.正在使用的家用电器着火,立即用水浇灭D.燃着的酒精灯不慎碰倒,洒出的酒精在桌面上燃烧起来,立即用湿布盖灭3.某班同学用下图装置测定空气里氧气的含量。

先用弹簧夹夹住乳胶管。

点燃红磷伸入瓶中并塞上瓶塞。

待红磷熄灭并冷却后,打开弹簧夹,观察广口瓶内水面变化情况。

实验完毕,甲同学的广口瓶内水面上升明显小于瓶内空气体积的1/5,乙同学的广口瓶内水面上升明显大于瓶内空气体积的1/5。

下列对这两种现象解释合理的是()①甲同学可能使用的红磷燃烧没有消耗完瓶内的氧气②甲同学可能没夹紧弹簧夹,红磷燃烧时瓶内空气受热从导管逸出③乙同学可能未塞紧瓶塞,红磷熄灭冷却时外界空气进入瓶内④乙同学可能插入燃烧匙太慢,塞紧瓶塞之前,瓶内空气受热逸出A.只有①③B.只有①④C.只有①②③D.①②④4.下列各种物质中,由分子构成的是()A.铝B.金刚石C.氯化钠D.水5.猪肉的新鲜度可以通过测试pH来判断。

有资料显示,pH与肉类新鲜度的关系如下表所示。

新鲜肉在变质过程中酸性强弱的变化为()名称新鲜肉次鲜肉变质肉pH5.8~6.26.3~6.6>6.7A.变强B.变弱C.不变D.无法确定6.生活中的下列现象,可用分子的知识加以解释,其中正确的是()A.墙内开花墙外香是因为分子在不断运动B.热胀冷缩是因为分子大小随温度而改变C.蔗糖溶解是因为分子很小D.气体易被压缩是因为气体分子间间隔很小7.化学兴趣小组同学设计如下四组实验,在相同条件下,比较两种物质催化效果,其中观察效果较差是()A.第一组同时实验,观察比较过程中两个气球体积变化B.第二组同时实验,观察比较过程中两者产生气泡快慢C.第三组分两次实验,看木条是否能复燃D.第四组分两次实验,比较收集一定体积气体所需要时间8.甲、乙两组同学分别做常见酸、碱与指示剂反应的实验,使用的试剂均从稀盐酸、稀硫酸、氢氧化钠溶液、酚酞试液中选取。

人教版中考模拟考试化学试卷与答案(共五套)

人教版中考模拟考试化学试卷与答案(共五套)
A.X、Y、ZB.Y、X、ZC.Z、Y、XD.X、Z、Y
12.下列总结的化学知识不完全正确的是
A.生活常识
B.安全常识
活性炭净水——吸附作用
洗洁精去油污——乳化作用
油锅着火——用锅盖盖灭
甲醛溶液浸泡海产品——保鲜
C.化学与健康
D.物质的分类
缺维生素A——引起夜盲症
缺钙元素——骨质疏松
淀粉和蛋白质——有机物
(3)CO2与水反应有碳酸生成,酸可以使紫色石蕊溶液变红
三、计算题(共4分)
20.解:设100g该废液中残余硫酸的质量为x
H2SO4+2NaOH==Na2SO4+2H2O
98 80
x40 g×80%
x=4.9g
该废液中残余硫酸的质量分数是
答:该废液中残余硫酸的质量分数是4.9%。
四、实验探究题(每空1分,化学方程式2分,共8分)
(2)B中的现象是______________,写出反应的化学方程式______________。
(3)C装置中干石蕊纸花不变色,湿石蕊纸花由紫色变红色的原因是__________________________________________。
三、计算题(共4分)
20.某化验室为了测定工厂废液中残余硫酸的含量,取该废液产品100g,向其中滴加10%的氢氧化钠溶液40g后,溶液恰好呈中性。则该废液中残余硫酸的质量分数是多少?(废液中除硫酸外其他成分不与氢氧化钠反应)
4.考试结束,请将本试卷和答题卡一并交回。
可能用到的相对原子质量:
H-1O-16C-12Zn-65C1-35.5。
一、单项选择题(本题共14小题,1-8题每题1分,9-14题每题2分,共得分|
20分。请把正确的选项序号填入下面相应题号的表格内)

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

人教版中考第一次模拟测试《数学试卷》含答案解析

人教版中考第一次模拟测试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。

人教版2023年中考模拟(一)语文试题

人教版2023年中考模拟(一)语文试题

2022~2023学年度九年级学业水平测试卷(一)语文注意事项:1.全卷满分100分,答题时间为150分钟。

2.请将各题答案填写在答题卡上。

一、积累与运用(1~5题,每题2分,第6题6分,共16分)校学生会举办“不负春光”综合性学习活动,下面是小云同学的朗诵稿,请根据要求完成1~4题。

到了惊蛰,春天总算坐稳了它的江山。

当第一声响彻长空....的惊雷乍(zhà)起,沉睡一冬的春天醒了。

从此,它将以王者的姿态,号令自然界那些“欣欣然张开了眼”的“臣民”。

最先闻雷而动的是在泥土中冬眠的小生灵。

听到春雷的召唤,它们一个个懵懵懂懂地睁开惺忪..的睡眼,然后俏皮地伸伸懒腰,蠕(lú)动着瘦弱的身体离开曾经酣睡的洞穴,贪婪地汲取天地的 ,尽情地享受和暖的春光。

小生灵都闻令而行了,积蓄了一个冬天力量的花当然也不甘示弱,它们按捺不住沐浴融融暖意的迫切心情,竞相生长。

你瞧,小草悄悄地从地面、石缝冒出来,惊奇地打量着春天。

竹笋拔出利剑,顶破松软如膏(gāo)的土层。

枝上的桃花被春雷吓得一抖,一个个花苞儿舒展开来挤挤挨挨露出甜蜜的笑容。

而各种虫儿蝶儿的蹁跹加入,更让和煦的大地焕发了。

雷声惊醒的何止是惊蛰的花草树木、鸟兽虫鱼,连“猫冬”的人们也被惊醒了。

人们赶紧脱下厚重的棉衣,欢滕..地走进田野,奔向春天。

“一鼓轻雷惊蛰后,细筛微雨落梅天。

”惊蛰铿锵有力....的雷声,是春天发出的一个号令。

对我们而言,唯有以的姿态去耕(gēng)耘,才能不负最美春光和大好年华。

1.文中注音不正确的一项是()A.乍.(zhà)B.蠕.(lú)C.膏.(gāo)D.耕.(gēng)2.文中加点词语有错别字的一项是()A.响彻长空B.惺忪C.欢滕D.铿锵有力3文中横线上应填入的词语,最恰当的一项是()A.露珠绽放生机勃勃奋斗者B.露珠绽开蓬勃生机胜利者C.雨露绽开生机勃勃胜利者D.雨露绽放蓬勃生机奋斗者4.对文中画线句子的修改,最恰当的一项是()A.雷声惊醒的何止是花草树木、鸟兽虫鱼的惊蛰B.惊蛰的雷声惊醒的何止是花草树木、鸟兽虫鱼C.雷声惊醒的惊蛰何止是花草树木、鸟兽虫鱼D.惊蛰的雷声惊醒的不只是花草树木、鸟兽虫鱼吗5.下列句子的排序,与上下文衔接最恰当一项是()什么是大数据? ,。

中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题

中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题

某某市铜梁区巴川中学2016届中考数学模拟试卷一一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠15.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠211.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29212.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为(结果保留π).17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=, =, =;(2)2x2﹣7x+2=0(x≠0),求的值.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年某某市铜梁区巴川中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵ =2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值X围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对某某“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100X该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【考点】切线的性质.【专题】计算题.【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理的运用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分【考点】函数的图象.【专题】探究型.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项A错误;前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项B正确;由图可知,5分钟时两人都跑了500米,故选项C正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;故选A.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值X围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值X围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【专题】规律型.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 6.02×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:602 000 000 000=6.02×1011,故答案为:6.02×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥B C,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为8﹣2π(结果保留π).【考点】扇形面积的计算.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故答案为:8﹣2π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【考点】概率公式;根的判别式;解一元一次不等式组.【分析】首先解不等式组,即可求得a的取值X围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.【点评】此题考查了概率公式的应用、不等式组的解集以及一元二次方程的解法.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值X围,再利用w与x之间的函数关系式,求出函数最值即可.【解答】解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 , = 14 , = 194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【考点】一元二次方程的解.【专题】阅读型.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用;解直角三角形的应用-仰角俯角问题.【分析】(1)延长FE交AB于M,设ME=x,根据直角三角形函数得出AM=tanα•x,BM=tanβ•x,然后根据tanα•x+tanβ•x=36,即可求得EM的长,然后通过余弦函数即可求得AE;(2)根据BM=NG=DN,得到DN的长,然后解直角三角形函数求得EN和FN,进而求得EF和DF的长,然后根据题意列出方程,解方程即可求得.【解答】解:(1)延长FE交AB于M,∵EF∥BC,∴MN⊥AB,MN⊥DG,设ME=x,∴AM=tanα•x,BM=tanβ•x,∵AB=36,∴tanα•x+tanβ•x=36,∴tan37°x+tan24°x=36,0.75x+0.45x=36,解得x=30,∴AE==≈37.5(米);(2)延长EF交DG于N,∵GN=BM=tan24°•30=13.5,DE=CE,EF∥BC,∴DN=GN=13.5(米),∵∠DCG=30°,∴∠DEN=30°,∴EN=DN•cot30°=13.5×,∵=,∴∠DFN=60°,∴∠EDF=30°,FN=DN•cot60°=13.5×,∴DF=EF=EN﹣FN=13.5×,∴EF+DF=27×=18,设施工队原计划平均每天修建y米,根据题意得, =+2,解得x=3(米),经检验,是方程的根,答:施工队原计划平均每天修建3米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,。

人教版中考第一次模拟检测《数学试卷》含答案解析

人教版中考第一次模拟检测《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.122. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×1063. 下列各运算中,计算正确的是()A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a24.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.6.下面是扬帆中学九年八班43名同学家庭人口统计表:这43个家庭人口的众数和中位数分别是( )家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,67.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b 绕点A 逆时针旋转( )A. 15°B. 30°C. 45°D. 60°8. 圆心角为120°,弧长为12π的扇形半径为( )A 6 B. 9 C. 18 D. 369.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 二.填空题(共10小题)11.计算:6826)=_____.12.在函数y=34xx--中,自变量x取值范围是___________.13.在平面直角坐标系中,已知一次函数y=2x+1图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.15.分式方程12x xx x-=+的解为x=_______.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.三.解答题(共7小题)21.先化简,再求代数式(1﹣25 4a-)223aa a+⋅-的值,其中a=2tan45°﹣cos60°.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=83,求⊙O的半径.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.答案与解析一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×106【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:28000=2.8×104,故选B.考点:科学记数法——表示较大的数.3. 下列各运算中,计算正确的是( )A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a2【答案】C【解析】【详解】试题分析:A、合并同类项,系数相加字母部分不变,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选C.考点:1、幂的乘方与积的乘方;2、合并同类项;3、同底数幂的乘法.4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形,是中心对称图形,故错误;B选项:不是轴对称图形,是中心对称图形.故错误;C选项:是轴对称图形,也是中心对称图形.故正确;D选项:不是轴对称图形,是中心对称图形.故错误;故选C.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.【答案】B【解析】【详解】试题分析:根据立方体的组成,结合三视图的观察角度,可得出:A、是几何体的左视图,故此选项错误;B、不是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此选项错误.故选B.考点:简单组合体的三视图.6.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是( ) 家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,6【答案】B【解析】【分析】根据众数和中位数的概念求解可得.【详解】解:这43个家庭人口的众数3,将家庭人口数从小到大排列后,第22个数为4,即中位数为4,故选:B.【点睛】此题考查的是求众数和中位数,掌握众数和中位数的概念是解决此题的关键.7.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A. 15°B. 30°C. 45°D. 60°【答案】A【解析】试题分析:先根据邻补角的定义得到∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°﹣45°=15°.解:∵∠1=120°,∴∠3=60°,∵∠2=45°,∴当∠3=∠2=45°时,b ∥c ,∴直线b 绕点A 逆时针旋转60°﹣45°=15°.故选A .点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.8. 圆心角为120°,弧长为12π的扇形半径为( )A. 6B. 9C. 18D. 36 【答案】C【解析】 试题分析:直接根据弧长的公式180n r l π=列式求解: 设该扇形的半径是r , ∵n=120°,l=12π,∴1201218180r r ππ=⇒= .故选C .考点:弧长的计算.9.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.【答案】D【解析】【分析】先根据一次函数图象与系数的关系得到k 的范围,然后根据k 的范围判断反比例函数图象的位置,逐一判断即可.【详解】解:A 、对于y =kx +1经过第一、三象限,则k >0,﹣k <0,所以反比例函数图象应该分布在第二、四象限,所以A 选项错误;B 、一次函数y =kx +1与y 轴的交点在x 轴上方,所以B 选项错误;C 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以C 选项错误;D 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以D 选项正确.故选:D .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握一次函数的图象及性质和反比例函数的图象及性质是解决此题的关键.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 【答案】C【解析】【分析】根据平行线分线段成比例定理分别对每一项进行判断即可.【详解】解:A .∵EF ∥AB ,∴AE BF EC FC=,故本选项正确; B .∵DE ∥BC ,∴AD DE AB BC=,∵EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,∴AD BF AB BC=,∴AD ABBF BC=,故本选项正确;C.∵EF∥AB,∴EF CF AB BC=,∵CF和DE的大小关系不能确定,∴EF DEAB BC≠,故本选项错误;D.∵EF∥AB,∴CE CF EA BF=,∴CE EACF BF=,故本选项正确,故选:C.【点睛】此题主要考查平行线分线段成比例定理,关键是根据平行线分线段成比例定理列出比例式并能进行灵活变形.二.填空题(共10小题)11.计算:)=_____.【答案】-2【解析】【分析】利用平方差公式和二次根式的乘法公式计算.【详解】解:原式=﹣2)=6﹣8=﹣2.故答案为﹣2.【点睛】此题考查的是二次根式的运算,掌握平方差公式和二次根式的乘法公式是解决此题的关键.12.在函数y=34xx--中,自变量x的取值范围是___________.【答案】x≥3且x≠4.【解析】【详解】试题解析:根据题意知:30 {40 xx-≥-≠解得:x≥3且x≠4故答案为:x≥3且x≠4.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)【答案】<【解析】【分析】根据一次函数的性质,当k>0时,y随x的增大而增大,然后根据横坐标的大小关系即可求出结论.【详解】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.【点睛】此题考查的是一次函数增减性的应用,掌握一次函数增减性与k的符号关系是解决此题的关键.14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【答案】14.【解析】分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】如图,根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为14.15.分式方程12x xx x-=+的解为x=_______.【答案】2.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点睛】本题考查解分式方程.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.【答案】3【解析】【分析】连接OC,BC.只要证明∠A=30°,根据AC=AB•cos30°计算即可.【详解】解:连接OC,BC.∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=120°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=60°,∴∠A=12∠BOC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB•cos30°=33故答案为:33.【点睛】此题考查的是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数,掌握是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数是解决此题的关键.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.【答案】21007.【解析】【分析】根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.【详解】解:∵点M0的坐标为(1,0),∴OM0=1.∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形.∴OM1=2OM0=2,同理,OM2=2OM1=(2)2,OM3=2OM2=(2)3,…,OM2014=2OM2013=(2)2014=21007.故答案为:21007.【点睛】本题考查探索规律题(图形的变化类);点的坐标;旋转的性质;等腰直角三角形的判定和性质.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.【答案】1或2.【解析】【详解】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=DEAD,即3cm,根据勾股定理得:223(3)23cm,∵M为AE的中点,∴3cm在Rt△ADE和Rt△PNQ中,AD=PN,AE=PQ,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=AM AP,∴AP=2cm;由对称性得到AP′=DP=AD-AP=3-2=1cm,综上,AP等于1cm或2cm.故答案为:1或2【点睛】本题考查全等三角形的判定与性质;正方形的性质;锐角三角函数.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.【答案】2 3【解析】【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE =∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE=FG,得出四边形AFGE是菱形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BF AF=23,即可得出结果.【详解】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BFAF=23xx=23,∴cos∠EGF=23,故答案为:23.【点睛】此题考查的是矩形与折叠问题、菱形的判定及性质、等腰三角形的性质和锐角三角函数,掌握矩形的性质、折叠的性质、菱形的判定及性质、等角对等边和等角的锐角三角函数值相等是解决此题的关键.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.【答案】10【解析】分析】以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2,设CF=x,则EL=CK=x,分别用含x的式子表示出Rt△ABC中的三边长,根据勾股定理列方程,解得x值,则可得答案.【详解】解:如图,以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2∵∠ACB=90°,DE⊥AB∴∠BCE+∠DCE=90°,∠BEC+∠DEC=90°∵CD=DE∴∠DCE=∠DEC∴∠BCE=∠BEC∴BC=BE∵BF=BL=2∴EL=CF设CF=x,则EL=CK=x∴BK=2x+2,BC=BE=x+2设∠B=2∠CAF=2α则∠CAK=α,∠K=90°﹣α∴∠KAB=180°﹣2α﹣(90°﹣α)=90°﹣α∴∠K=∠KAB∴BA=BK=2x+2在△CBL和△EBF中CB EB B B BL BF =⎧⎪∠=∠⎨⎪=⎩∴△CBL ≌△EBF (SAS )∴∠BCL =∠BEF又∵∠CEF =45°,∠BCE =∠BEC∴∠ECL =∠CEF =45°∴∠ALC =180°﹣45°﹣45°﹣∠BEF =90°﹣∠BEF∵∠ACL =90°﹣∠BCL ,∠BCL =∠BEF∴∠ALC =∠ACL∴AC =AL =2x在Rt △ABC 中,由勾股定理得:(x +2)2+(2x )2=(2x +2)2解得x =4或x =0(舍)∴AB =10故答案为:10.【点睛】此题考查的是等腰三角形的判定及性质、全等三角形的判定及性质和勾股定理,掌握等角对等边、等边对等角、全等三角形的判定及性质和勾股定理是解决此题的关键.三.解答题(共7小题)21.先化简,再求代数式(1﹣254a -)223a a a+⋅-的值,其中a =2tan45°﹣cos60°. 【答案】3(2)a a a +-,-6 【解析】【分析】 根据特殊角的锐角三角函数值求出a 的值,然后根据分式的运算法则化简,代入即可求出答案.【详解】解:a =2×1﹣12=32∴原式=22924(3)-+•--a a a a a =(3)(3)2(2)(2)(3)+-+•-+-a a a a a a a=3 (2) aa a+-将32a=代入,得原式=33233222+⎛⎫⨯-⎪⎝⎭=﹣6.【点睛】此题考查的是分式的化简求值题和特殊角的锐角三角函数值,掌握分式的各个运算法则和特殊角的锐角三角函数值是解决此题的关键.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.【答案】(1)画图见解析;(2)面积为254π.【解析】试题分析:(1)根据旋转性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.考点:作图-旋转变换;扇形面积的计算.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.【答案】(1)见解析;(2)72°;(3)1 5【解析】【分析】(1)根据军人的人数与所占的百分比求出调查总人数,再分别求出教师、医生的人数,补全统计图即可;(2)根据公务员的人数占总人数的比例再乘360°即可得出结论;(3)根据教师的人数占总人数的比例即可得出结论.【详解】解:(1)∵军人的人数为20,百分比为10%,∴学生总人数为20÷10%=200(人);∵医生的人数占15%,∴医生的人数为:200×15%=30(人),∴教师的人数为:200﹣30﹣40﹣20﹣70=40(人),∴折线统计图如图所示;(2)∵由扇形统计图可知,公务员占20%,∴20%×360°=72°;(3)∵最喜欢的职业是”教师”的人数是40人,∴从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是”教师”的概率=40200=15.【点睛】此题考查的是折线统计图、扇形统计图和求概率问题,结合折线统计图、扇形统计图得出有用信息和掌握概率公式是解决此题的关键.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).【答案】(1)见解析;(2)与△ACD面积相等的三角形有:△ABD,△ACF,△AFB【解析】【分析】(1)首先由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC =90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF 是菱形;(2)根据平行线之间的距离处处相等、等高模型和菱形的性质即可解决问题;【详解】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE =DE ,BD =CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );∴AF =DB .∵DB =DC ,∴AF =CD ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;(2)∵BD=CD ,而△ABD 的边BD 上的高即为△ACD 的边CD 上的高∴S △ACD =S △ABD ;∵四边形ADCF 是菱形∴S △ACD =S △ACF ;∵AF ∥CD∴△ACD 的边CD 上的高等于△BAF 的边AF 上的高∵AF=CD∴S △ACD =S △AFB综上:与△ACD 面积相等的三角形有:△ABD ,△ACF ,△AFB .【点睛】此题考查的是全等三角形的判定及性质、菱形的判定及性质、直角三角形的性质和三角形的面积,掌握全等三角形的判定及性质、菱形的判定及性质、直角三角形斜边上的中线等于斜边的一半和平行线之间的距离处处相等是解决此题的关键.25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?【答案】(1)每箱30元;(2)至少为50元【解析】【分析】(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,根据关键语句”每个进价多了5元”可得方程140060052-=x x,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【详解】解:(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,可得:14006005 2-=x x,解得:x=20,经检验:x=20是原分式方程的解,6003020=元,答:该商贩第一批购进水果每箱30元;(2)这两批水果共有20+2×20=60箱设水果的售价为y元,根据题意得:60y﹣(600+1400)﹣2×20×10%y≥800,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=3,求⊙O的半径.【答案】(1)见解析;(2)见解析;(3)13【解析】【分析】(1)注意到同弧所对的圆周角相等以及∠BDC是△ABD的外角,结合题中所告诉的角度等式进行代换变形即可得结论;(2)连接AG,设∠CGD=∠BGE=β,∠ACF=α,然后推出∠AEG=∠AGE,再根据等角对等边即可证出结论;(3)首先注意到特殊角∠ADE=30°,于是作AP⊥DE于P,由HL定理可得△AEP≌△AGM,进而推出△AEG 是等边三角形,设AE=8k,BE=7k,作GN⊥AE于N,解△BGN可得sin∠ABG的值,而∠ABG是圆周角且所对的弦为AH,于是连接AO并延长交圆O于Q,连接HQ,sin∠AQH=sin∠ABG=AHAQ,而AH已知,从而求出直径AQ,半径也就自然知道了.【详解】解:(1)∵∠BDC=∠ABD+∠BAC,∠BDC﹣∠BFC=2∠ABF,∴∠ABD+∠BAC﹣∠BFC=2∠ABF,∵∠ABF=∠ACF,∠BFC=∠BAC,∴∠ABD+∠BFC﹣∠BFC=2∠ACF,∴∠ABD=2∠ACF.(2)如图2,连接AG.设∠CGD=∠BGE=β,∠ACF=α,则∠ABD=2α,∠AEG=∠ABD+∠BGE=2α+β,∠GDA=∠CGD+∠ACF=α+β,∵GM⊥AD于M且AM=DM,∴AG=DG,∴∠GAD=∠GDA=α+β,∴∠AGE=∠GAD+∠ACF=α+β+α=2α+β,∴∠AGE=∠AEG,∴AE=AG=GD.(3)如图3,连接AG,作AP⊥DE于P,∵∠ADE=30°,∴∠P AD=60°,AP=12 AD,∵GM⊥AD,∴∠AMG=∠APE=90°,∵AM=MD,∴AM=12AD=AP,由(2)可知AE =AG ,在Rt △AEP 和Rt △AGM 中:AE AG AP AM=⎧⎨=⎩ ∴Rt △AEP ≌Rt △AGM (HL ),∴∠EAP =∠GAM ,∵∠GAM +∠P AG =∠P AD =60°,∴∠EAP +∠P AG =∠EAG =60°,∴△AEG 是等边三角形,∴EG =AE =AG =DG ,∵AE :BE =8:7,∴设AE =8k ,BE =7k ,作GN ⊥AE 于N ,AN =EN =4k ,NG =,∴BN =BE +EN =11k ,∴BG 13k ,∴sin ∠ABG =NG BG =13, 连接AO 并延长交圆O 于Q ,连接HQ ,则AQ 直径,∠AHQ =90°,∴sin ∠AQH =AH AQ,∵∠AQH =∠ABG ,AH =∴AQ =26,∴AO =12A Q =13, 即⊙O 的半径为13.【点睛】此题考查的是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数,此题难度较大,掌握是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数是解决此题的关键.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A 点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.【答案】(1)b=9;(2)S=﹣t2+92t;(3)t=1【解析】【分析】(1)由直线解析式可得A、B两点坐标,根据△AOB的面积列方程解出b的值.(2)分别用t表示OC和OD的长即可得到S与t的表达式.(3)首先根据题意画出示意图,然后根据所给定的线段等量关系与角度等量关系推导出∠FEM的正切值,过点E作GP⊥OB于P交DF的延长线于点G,可以推证∠DEG=∠FEM,于是利用∠DEG的正切值列出比例方程,最后解出t的值.【详解】解:(1)如图1,∵直线y=﹣x+b交y轴于点A,交x轴于点B,∴A (0,b ),B (b ,0)∴OA =OB =b ,∴S △AOB =212b =812. ∴b =9或-9(不符合与y 轴的交点,舍去负值).(2)如图2,由题意知OC =t ,AD =2t ,则OD =OA ﹣AD =9﹣2t , ∴S =12OD •OC =12t (9﹣2t )=﹣t 2+92t . (3)∵MH HE =833, ∴设MH =8k ,HE =33k ,如图3,在HE 上截取HN =MH =8k ,连接FN ,则EN =EH ﹣HN =25k ,∵FH ⊥CE 于H ,∴FM =FN ,∠FME =∠FNM ,∵∠FME =32∠FEM , ∴设∠FEM =2α,∠FME =3α,∴∠FNM=3α,∵∠FNM=∠NFE+∠FEN,∴∠NFE=∠FNM﹣∠FEM=3α﹣2α=α,在FE上取一点Q,连接NQ,使NQ=NE=25k,则∠NQE=∠FEM=2α,∵∠NQE=∠NFE+∠QNF=α+∠QNF,∴∠QNF=α=∠NFE,∴FQ=NQ=25k,作NR⊥QE于R,则QR=RE=n,∴FE=FQ+QE=25k+2n,∵cos∠FEH=cos2α=HEFE=REEN,∴33252+kk n=25nk,解得n=15k,∴QR=RE=15k,∴NR20k,∴tan2α=NRRE=43.过点E作GP⊥OB于P交DF的延长线于点G,∴∠CPE=∠BPE=90°,∵OA=OB=9,∴∠OAB=∠OBA=45°,∴∠PEB=45°,∴BP=PE,∵DF∥OB,∴∠ODF=∠ADF=90°,∴四边形DOPG为矩形,∴GP=OD,DG=OP,作CT⊥OB交AB于T,交DF于K,连接DT,则ODKC 为矩形,△CTB 为等腰直角三角形,∴DK =OC =t ,CK =OD ,CT =CB ,∵∠FDA =90°,∠F AF =45°,∴△ADF 为等腰直角三角形,∴DF =AD =2OC =2t ,∴KDF 中点,∴T 为AF 中点,∴△DTF 为等腰直角三角形,∴∠DTK =∠FTK =45°,∵DC ⊥CE ,∴∠DCT +∠TCE =∠TCE +∠BCE =90°,∴∠DCT =∠ECB ,在△DCT 和△ECB 中:DTC EBC CT CBDCT ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DCT ≌△ECB (ASA ),∴CD =CE ,∴△DCE 为等腰直角三角形,∴∠CED =45°,∵∠DCO +∠ECP =∠DCO +∠ODC =90°,∴∠ODC =∠ECP ,在△DOC 和△CPE 中:DOC CPE ODC PCE DC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DOC ≌△CPE (AAS ),∴BP =PE =OC =t ,∴DG =OP =OB ﹣PB =9﹣t ,∴FG =DG ﹣DF =9﹣3t ,∵∠GFE =∠AFD =45°,∠GEF =∠BEP =45°,。

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。

2022年人教版中考第一次模拟考试《数学试卷》含答案解析

2022年人教版中考第一次模拟考试《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.下列是中心对称图形但不是轴对称图形的是( ) A. B. C. D.2.整数681700用科学记数法表示为96.81710⨯,则原数中” “的个数为( ) A.个 B.个 C.个 D.个3.如图,OA 是表示北偏东55︒方向的一条射线,则OA 的反向延长线OB 表示的是( )A. 北偏西55︒方向上的一条射线B. 北偏西35︒方向上的一条射线C. 南偏西35︒方向上的一条射线D. 南偏西55︒方向上的一条射线 4.在等式[]209()a a a ⋅-⋅=中,”[]“内的代数式为( )A. 6aB. ()7a -C. 6a -D. 7a5.如图是由几个大小相同的小正方体组合而成的几何体,则下列视图中面积最小的是( )A. 主视图B. 俯视图C. 左视图D. 主视图和俯视图 6.不等式214(1)x x -<+解集表示在如图所示的数轴上,则阴影部分盖住的数是( )A. B. C. 1.5- D. 2.5-7.交换下列命题的题设和结论,得到的新命题是假命题的是( )A. 两直线平行,同位角相等B. 相等的角是对顶角C. 所有的直角都是相等的D. 若a=b,则a﹣3=b﹣38.我国正在逐步进入人口老龄化社会,某市老龄化社会研究机构经过抽样调查,发现当地老年人的日常休闲方式主要有,,,,五种类型,抽样调查的统计结果如下表,则下列说法不正确的是()休闲类型休闲方式人数老年大学老年合唱队350老年舞蹈队400太极拳200其它方式500A. 当地老年人选择型休闲方式的人数最少B. 当地老年人选择型休闲方式的频率是7 30C. 估计当地万名老年人中约有1.8万人选择型休闲方式D. 这次抽样调查的样本容量是15009.如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角ABC,尺规作图及步骤如下:步骤一:以点为圆心,CA为半径画弧;步骤二:以点为圆心,BA为半径画弧,两弧交于点; 步骤三:连接AD,交BC延长线于点.下面是四位同学对其做出的判断:小明说:BH AD⊥;小华说:BAC HAC∠=∠;小强说:BC HC=;小方说:AH DH=.则下列说法正确的是()A. 只有小明说得对B. 小华和小强说的都对C. 小强和小方说的都不对D. 小明和小方说的都对10.如图描述了在一段时间内,小华,小红,小刚和小强四名工人加工零件的合格率与所加工零件的总个数之间的关系(合格个数合格率总个数),则这四名工人在这段时间内所加工零件合格的个数最多的是()A. 小华B. 小红C. 小刚D. 小强11.如图,ABD∆是O的内接正三角形,四边形ACEF是O的内接正四边形,若线段BC恰是O的一个内接正边形的一条边,则n=()A. B. C. D.12.若满足2220x x--=,则分式231211xx x⎛⎫--÷⎪--⎝⎭的值是()A. B. 12C. D.32-13.如图,一根电线杆PO⊥地面MN,垂足为,并用两根斜拉线PA,PB固定,使点,,,在同一平面内,现测得66PAO ∠=︒,54PBO ∠=︒,则PA PB =( )A. tan 66tan 54︒︒B. cos54cos66︒︒C. sin 66sin 54︒︒D. sin 54sin 66︒︒14.ABC ∆的三边长分别为,,,其中5a =,和是关于的一元二次方程:22(23)320x k x k k -++++=(为常数)的两个实数根,若ABC ∆中只有两条边相等,则的值为( )A.或B.或C.或D. 任意实数15.如图,将一个三角板ABC ∆,绕点按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A. 62-B. 6C. 2D.16.如图,已知点(2,0)A ,(0,1)B ,以AB 为边作菱形ABCD ,使点,在第一象限,且对角线//BD x 轴,点(2,4)P -总在直线:24l y kx k =++(0)k ≠的图象上,若使与菱形ABCD 有交点,则的取值范围是( )A. 32k ≤-B. 12k ≥-且0k ≠C. 3122k -≤≤-D. 32k ≤-或12k ≥-且0k ≠ 二、填空题17.若2336=,则” “内的运算符号为_________.18.如图,已知AB 是O 的直径,且4AB =,是O 上一点,将弧AC 沿直线AC 翻折,使翻折后的圆弧恰好经过圆心,则 (1)AC 的长是_________.(2)劣弧BC 的长是__________.19.如图,10AOB ∠=︒,点在OB 上.以点为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P;,按照上面的要求一直画下去,就会得到11223OP PP PP P P ===,则 (1)234P P P ∠=_________;(2)与线段OP 长度相等的线段一共有__________条(不含OP ).三、解答题20.王老师数学课上带领同学们做数学游戏,规则如下:游戏规则甲任报一个有理数数传给乙;乙把这个数减后报给丙;丙再把所得的数的绝对值报给丁;丁再把这个数的一半减,报出答案.根据游戏规则,回答下面的问题:(1)若甲报的数为12,则乙报的数为_________,丁报出的答案是_________; (2)若甲报的数为3-,请列出算式并计算丁报出的答案;(3)若丁报出的答案是,则直接写出甲报的数.21.已知甲、乙两个长方形纸片,其边长如图中所示()0m >,面积分别为S 甲和S 乙.(1)①用含的代数式表示S =甲_________,S =乙_________;②用” “、” “或” “号填空:S 甲________S 乙;(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正.①该正方形的边长是_________(用含的代数式表示);②小方同学发现,”S 正与S 乙差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由. 22.学校组织甲、乙两组同学参加国学经典知识对抗赛,每组有位选手,每场比赛两组各派人进行现场对抗比赛,满分为分,共进行了场比赛.学校整理和汇总了这场比赛的成绩,并制成如下所示的尚不完整的统计表和图所示的折线统计图. 场次一 二 三 四 五 六 甲组成绩(单位:分)24 25 27 28 25 乙组成绩(单位:分)27 25 25 24根据以上信息回答下面的问题:(1)若甲、乙两组成绩的平均数相同,①求的值;②将折线统计图补充完整,并根据折线统计图判断哪组成绩比较稳定.(2)若甲、乙两组成绩的中位数相等,直接写出的最小值.(3)在(1)中的条件下,若从所有成绩为25分的选手中随机抽取两人对其答题情况进行分析,请用列表法求抽到的两位选手均来自同一组的概率.23.在菱形ABCD 中,对角线AC 与BD 交于点,5AB =,8BD =,点是对角线AC 上一点(可与,重合),以点为圆心,为半径作P (其中0r >).(1)如图1,当点与重合,且03r <<时,过点,分别作P 的切线,切点分别为M ,.求证:BM DN =; (2)如图2,当点与点重合,且P 在菱形ABCD 内部时(不含边界),求的取值范围;(3)当点为ABD ∆或CBD ∆的内心时,直接写出AP 的长.24.某服装店同时购进甲、乙两种款式的运动服共300套,进价和售价如表中所示,设购进甲款运动服套(为正整数),该服装店售完全部甲、乙两款运动服获得的总利润为元. 运动服款式甲款 乙款 进价(元套) 60售价(元套)100 150(1)求与的函数关系式;(2)该服装店计划投入万元购进这两款运动服,则至少购进多少套甲款运动服?若售完全部的甲、乙两款运动服,则服装店可获得的最大利润是多少元?(3)在(2)的条件下,若服装店购进甲款运动服的进价降低元(其中2040a <<),且最多购进240套甲款运动服,若服装店保持这两款运动服的售价不变,请你设计出使该服装店获得最大销售利润的购进方案. 25.如图,点在直线MN 上,过点作AB MN ⊥,且4AB =,点在射线AN 上(点不与点重合),且满足BPA BPC ∠=∠,BC BP ⊥,BC 与PC 交于点,过点作CD MN ⊥于点.设AP t =()0t >.(1)用含的代数式表示PC 的长;(2)①线段CD 长是________;②线段AD 的长是_________;(用含的代数式表示)(3)当何值时,PBC S ∆有最小值?并求出这个最小值.26.如图,抛物线2:2L y ax ax a k =-++(,为常数且0a >)经过点()1,0C -,顶点为M ,经过点()0,4P a +的直线与轴平行,且与交于点, (在的右侧),与的对称轴交于点,直线:n y ax a =+经过点.(1)用表示及点M 的坐标;(2)BP AP -的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线经过点时,求的值及点,的坐标;(4)当1a =时,设ABC ∆的外心为点,则①求点的坐标;②若点Q 在的对称轴上,其纵坐标为,且满足AQB ACB ∠<∠,直接写出的取值范围.答案与解析一、选择题1.下列是中心对称图形但不是轴对称图形的是( ) A.B. C. D. 【答案】A【解析】【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;而轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此对各选项依次判断,最后得出答案即可.【详解】A :不是轴对称图形,是中心对称图形,符合题意;B :是轴对称图形,不是中心对称图形,不合题意;C :是轴对称图形,也是中心对称图形,不合题意;D :是轴对称图形,也是中心对称图形,不合题意;故选:A .【点睛】本题主要考查了中心对称图形与轴对称图形的判断,熟练掌握相关概念是解题关键. 2.整数681700用科学记数法表示为96.81710⨯,则原数中” “的个数为( ) A.个B.个C.个D.个 【答案】B【解析】【分析】首先将96.81710⨯写成不用科学记数法表示的原数的形式,然后由此即可得出答案.【详解】∵96.817106817000000⨯=,∴原数中有个” “,故选:B .【点睛】本题主要考查了把科学记数法表示的数还原为原数,熟练掌握相关概念是解题关键. 3.如图,OA 是表示北偏东55︒方向的一条射线,则OA 的反向延长线OB 表示的是( )A. 北偏西55︒方向上的一条射线B. 北偏西35︒方向上的一条射线C. 南偏西35︒方向上的一条射线D. 南偏西55︒方向上的一条射线【答案】D【解析】【分析】 如图,首先根据题意得出∠1或∠2的度数,由此进一步结合题意判断OA 的反向延长线OB 表示的方向即可. 【详解】如图,根据对顶角相等可知∠2=55°,再根据余角的性质可得∠1=35°,∴OA 的反向延长线OB 表示的是:南偏西55°方向上的一条射线或西偏南35°方向上的一条射线. 故选:D .【点睛】本题主要考查了方位角的相关知识,熟练掌握相关概念是解题关键.4.在等式[]209()a a a ⋅-⋅=中,”[]“内的代数式为( )A. 6aB. ()7a -C. 6a -D. 7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案. 【详解】()01a -=,则原式化简为:[]29a a ⋅=, ∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键. 5.如图是由几个大小相同的小正方体组合而成的几何体,则下列视图中面积最小的是( )A. 主视图B. 俯视图C. 左视图D. 主视图和俯视图【答案】C【解析】【分析】 首先根据三视图的定义得出该几何体的主视图、左视图以及俯视图是由几个小正方体组成,由此进一步得出答案即可.【详解】由题意得:该几何体的主视图由5个小正方形组成,左视图由3个小正方形组成,俯视图是由5个小正方形组成, ∴三种视图面积最小的是左视图,故选:C .【点睛】本题主要考查了几何体的三视图的面积,熟练掌握相关概念是解题关键.6.不等式214(1)x x -<+的解集表示在如图所示的数轴上,则阴影部分盖住的数是( )A.B. C. 1.5- D. 2.5-【答案】D【解析】【分析】首先将该不等式的解集求出来,由此进一步判断即可.【详解】原不等式去掉括号可得:2144x x -<+,移项化简可得:25x -<,解得: 2.5x >-,∴阴影部分盖住的数是 2.5-,故选:D .【点睛】本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.7.交换下列命题的题设和结论,得到的新命题是假命题的是()A. 两直线平行,同位角相等B. 相等的角是对顶角C. 所有的直角都是相等的D. 若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.我国正在逐步进入人口老龄化社会,某市老龄化社会研究机构经过抽样调查,发现当地老年人的日常休闲方式主要有,,,,五种类型,抽样调查的统计结果如下表,则下列说法不正确的是()A. 当地老年人选择型休闲方式的人数最少B. 当地老年人选择型休闲方式的频率是7 30C. 估计当地万名老年人中约有1.8万人选择型休闲方式D. 这次抽样调查的样本容量是1500【答案】C【解析】【分析】首先直接通过表格数据即可得出选择A型休闲方式的人数最少,然后利用频率定义、样本估计总体与样本容量的概念逐一判断即可.【详解】A:选择A型休闲方式的人数为50,与其他方式相比最少,故选项正确;B:选择B型休闲方式的频率是3507150030=,故选项正确;C:当地选择C型休闲方式的老人大约人数为:万4001.61500⨯=万,故选项错误;D:样本容量为503504002005001500+++=,故选项正确;故选:C.【点睛】本题主要考查了频率定义、样本估计总体与样本容量的概念,熟练掌握相关概念是解题关键.9.如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角ABC∆,尺规作图及步骤如下:步骤一:以点为圆心,CA为半径画弧;步骤二:以点为圆心,BA为半径画弧,两弧交于点;步骤三:连接AD,交BC延长线于点.下面是四位同学对其做出的判断:小明说:BH AD⊥;小华说:BAC HAC∠=∠;小强说:BC HC=;.小方说:AH DH则下列说法正确的是()A. 只有小明说得对B. 小华和小强说的都对C. 小强和小方说的都不对D. 小明和小方说的都对【答案】D【解析】【分析】首先连接BD、CD,结合题意可知CA=CD,BA=BD,然后根据”到线段两个端点距离相等的点在线段的垂直平分线上”以及”两点确定一条直线”得出BH垂直平分AD,由此进一步逐一判断即可.【详解】如图,连接CD、BD,则:CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,即直线BC是线段AD的垂直平分线,∴BH⊥AD,且AH=DH,即小明与小方的说法正确,∵CA不一定平分∠BAH,故小华的说法错误,∵点C不一定是BH的中点,故小强的说法错误,综上所述,小明与小方的说法正确,故选:D.【点睛】本题主要考查了线段垂直平分线的性质,熟练掌握相关概念是解题关键.10.如图描述了在一段时间内,小华,小红,小刚和小强四名工人加工零件的合格率与所加工零件的总个数之间的关系(合格个数合格率总个数),则这四名工人在这段时间内所加工零件合格的个数最多的是()A. 小华B. 小红C. 小刚D. 小强【答案】C【解析】【分析】根据题意可以得知加工零件合格的个数等于加工零件的合格率与所加工零件的总个数的乘积,由此通过观察进一步判断即可.=,【详解】由题意得,加工零件合格的个数xy∴观察图象中四个人对应的点的位置,分别将四个人对应的点与原点连接起来,然后进一步依次作其各自垂直于轴的垂线,据此通过直观观察比较此时四个三角形的面积大小,可以得出小刚的横、纵坐标的乘积最大,即小刚加工零件合格的个数最多,故选:C.【点睛】本题主要考查了反比例函数性质的应用,熟练掌握相关概念是解题关键.11.如图,ABD∆是O的内接正三角形,四边形ACEF是O的内接正四边形,若线段BC恰是O的一个内接正边形的一条边,则n=()AB. C. D.【答案】B【解析】【分析】 连接OB ,OC ,首先根据等边三角形性质与正方形性质结合圆的相关性质得出∠BAC 的度数,然后进一步根据”同弧所对的圆心角是圆周角的倍”得出∠BOC 的度数,由此进一步求解即可.【详解】连接BO 、CO ,由题意可得,∠BAD=60°,∠CAF=90°,根据ABD ∆是O 内接正三角形,四边形ACEF 是O 的内接正四边形, 则:2CAF BAD BAC ∠-∠∠==15°, ∵同弧所对的圆心角是圆周角的倍,∴2BOC BAC ∠=∠=30°,3601230n ∴==, 故选:B .【点睛】本题主要考查了正多边形与圆的综合运用,熟练掌握相关概念是解题关键.12.若满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( )A. B. 12 C. D. 32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭, 又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.13.如图,一根电线杆PO ⊥地面MN ,垂足为,并用两根斜拉线PA ,PB 固定,使点,,,在同一平面内,现测得66PAO ∠=︒,54PBO ∠=︒,则PA PB=( )A. tan 66tan 54︒︒B. cos54cos66︒︒C. sin 66sin 54︒︒D. sin 54sin 66︒︒【答案】D【解析】【分析】首先在Rt △PAO 中利用sin PO PAO PA ∠=表示出PA ,然后在Rt △PBO 中利用sin PO PBO PB∠=表示出PB ,据此进一步表示出PA PB,然后将其化简即可.【详解】在Rt △PAO 中,sin PO PAO PA∠=,∴PO sin66PA =︒; 在Rt △PBO 中,sin PO PBO PB∠=,∴PO sin54PB =︒; ∴PA PB =PO sin54sin54sin66sin66PO ︒︒⨯=︒︒, 故选:D .【点睛】本题主要考查了三角函数的综合运用,熟练掌握相关概念是解题关键.14.ABC ∆的三边长分别为,,,其中5a =,和是关于的一元二次方程:22(23)320x k x k k -++++=(为常数)的两个实数根,若ABC ∆中只有两条边相等,则的值为( )A.或B.或C.或D. 任意实数 【答案】B【解析】【分析】首先根据该一元二次方程得出其根的判别式为1,由此可知该方程有两个不相等的实数根,结合题意可知和中必有一个为5,据此将其代入原方程,最后根据方程求解即可.【详解】由方程22(23)320x k x k k -++++=可得:其根的判别式为:()()2223413210k k k ⎡⎤-+-⨯⨯++=>⎣⎦, ∴该方程总有两个不相等的实数根,∵和是该方程的两个根,又ABC ∆中只有两条边相等,∴5b a ==或5c a ==,即是该方程的根,不存在b c =的情况,∴把5x =代入原方程,得:225(23)5320k k k -+⨯+++=,即27120k k -+=,解得:3k =或4k =,故选:B .【点睛】本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关概念是解题关键.15.如图,将一个三角板ABC ∆,绕点按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )- B. 6 C. 2 D.A. 62【答案】A【解析】【分析】连接BD,延长BE交AD于点,根据旋转性质可知AB=AD,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD为等边三角形,然后进一步通过证明△BAE≅△BDE得出∠ABE=∠DBE,根据等腰三角形”三线合一”可知BF⊥AD,且AF=DF,由此利用勾股定理分别计算出AB、BF的长,最后通过BE=BF−EF进一步计算即可得出答案.【详解】如图,连接BD,延长BE交AD于点,由旋转可知,AB=AD,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形”三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴22222+=∴AB=BD=AD=2,∴AF=2, ∴BF=226AB AF -=,∵∠AED=90°,AE=DE ,∴∠FAE=45°,∵BF ⊥AD ,∴∠FEA=45°,∴EF=AF=2,∴BE=BF −EF=62-,故选:A .【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.如图,已知点(2,0)A ,(0,1)B ,以AB 为边作菱形ABCD ,使点,在第一象限,且对角线//BD x 轴,点(2,4)P -总在直线:24l y kx k =++(0)k ≠的图象上,若使与菱形ABCD 有交点,则的取值范围是( )A. 32k ≤-B. 12k ≥-且0k ≠ C. 3122k -≤≤- D. 32k ≤-或12k ≥-且0k ≠ 【答案】C【解析】【分析】根据题意,结合菱形的性质首先得出点C 的坐标为(2,2),点D 的坐标为(4,1),然后分别将点B 、C 、D 的坐标代入24y kx k =++,求得的值,最后根据一次函数图象的性质进一步分析即可.【详解】由题意可得:点C 的坐标为(2,2),点D 的坐标为(4,1),若使与菱形ABCD 有交点,则分别代入点B 、C 、D 的坐标,把点B(0,1)代入24y kx k =++,得32k =-, 把点C(2,2),点D(4,1)分别代入24y kx k =++,均得12k =-, ∵B 点是菱形ABCD 最左边的点,D 点是菱形ABCD 最右边的点,∴若使与菱形ABCD 有交点,则:3122k -≤≤-, 故选:C .【点睛】本题主要考查了一次函数图象的性质与菱形性质的综合运用,熟练掌握相关概念是解题关键. 二、填空题17.若2336=,则” “内的运算符号为_________. 【答案】【解析】【分析】根据二次根式的运算法则进一步选择所填的运算符号即可.【详解】∵2336⨯=,故” “内的运算符号为×,故答案为:×.【点睛】本题主要考查了二次根式的运算,熟练掌握相关运算法则是解题关键.18.如图,已知AB 是O 的直径,且4AB =,是O 上一点,将弧AC 沿直线AC 翻折,使翻折后的圆弧恰好经过圆心,则(1)AC 的长是_________.(2)劣弧BC 的长是__________.【答案】 (1). 23 (2).23π 【解析】【分析】(1)首先利用垂径定理以及”30°角所对的直角边等于斜边的一半”得出∠EAO 为30°,由此进一步利用三角函数即可得出AC ;(2)由(1)进一步得出∠COB=60°,然后进一步结合题意直接计算出劣弧BC 的长即可. 【详解】如图,作OE AC ⊥交O 于,交AC 于,连接OC ,BC ,则:OA=OF=OC=OB ,(1)由折叠的性质可知,12EF OE OF ==, ∴12OE OA =, ∴在Rt △AOE 中,EAO ∠=30°,∵AB=4,∵AB 为直径,∴∠ACB=90°∴在Rt △CAB 中,cos ∠CAB 3AC AB ==, ∴23AC = 故答案为:3(2)由(1)可得∠CBO=90°−∠CAB=60°,又∵CO=OB ,∴∠COB =60°,∴劣弧BC 的长60423603ππ⨯⨯==, 故答案为:23π. 【点睛】本题主要考查了圆的性质和弧的长度计算与三角函数的综合运用,熟练掌握相关概念是解题关键. 19.如图,10AOB ∠=︒,点在OB 上.以点为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;,按照上面要求一直画下去,就会得到11223OP PP PP P P ===,则 (1)234P P P ∠=_________;(2)与线段OP 长度相等的线段一共有__________条(不含OP ).【答案】 (1). 100 (2).【解析】【分析】(1)根据题意首先可以得出1PO PP =,121PPP P =,…,从而进一步可得1PPB ∠=20°,21P P A ∠=30°,32P P B ∠=40°,43P P A ∠=50°,54P P B ∠=60°,…,最后利用三角形内角和定理直接计算即可;(2)根据题意,若按照题中的要求一直画下去,可得到点n P ,由此可得1090n ︒⨯<︒,从而进一步得出的值,然后利用54P P B ∠=60°、4556P P P P =可以得出456P P P ∆为等边三角形,最后进一步分析即可.【详解】(1)由题意可知,1PO PP =,121PPP P =,…, 则11POP OPP ∠=∠,1212PPP PP P ∠=∠,…,∵AOB ∠=10°,∴1PPB ∠=20°,21P P A ∠=30°,32P P B ∠=40°,43P P A ∠=50°,54P P B ∠=60°,…,∴234P P P ∠=180°−40°−40°=100°,故答案为:100;(2)根据题意,若按照题中的要求一直画下去,可得到点n P ,∴1090n ︒⨯<︒,解得9n <.∵为整数,故8n =.∵54P P B ∠=60°,4556PP P P =,∴456P P P ∆为等边三角形,∴与线段OP 长度相等的线段一共有条(不含OP ),故答案为:9.【点睛】本题主要考查了等腰三角形性质在探索图形规律中的运用,熟练掌握相关概念并找出相应的规律是解题关键.三、解答题20.王老师在数学课上带领同学们做数学游戏,规则如下:根据游戏规则,回答下面的问题:(1)若甲报的数为12,则乙报的数为_________,丁报出的答案是_________; (2)若甲报的数为3-,请列出算式并计算丁报出的答案; (3)若丁报出的答案是,则直接写出甲报的数.【答案】(1)32-,14-;(2)32;(3),. 【解析】【分析】(1)按照游戏中的说法将”甲报的数为12“代入,然后依次计算即可; (2)按照游戏中的说法将”甲报的数为3-“代入,然后直接计算即可;(3)按照游戏中的说法,将”丁报出的答案是 “代入,然后进一步分析即可.【详解】(1)由题意可得: 若甲报的数为12,则乙报的数为:13222-=-, ∴丙报的数为:3322-=, ∴丁报的答案为:3111224⨯-=-;故答案为:32-,14-; (2)由题意可得:若甲报的数为3-,则乙报的数为:325--=-,∴丙报的数为:55-=,∴丁报的答案为:135122⨯-=; (3)由题意得:若丁报的答案为0,则丙报的这个数的一半为1,即该数为2,∴乙报给丙的数为2或2-,∴甲报给乙的数为4或0.【点睛】本题主要考查了有理数的运算,熟练掌握相关方法是解题关键.21.已知甲、乙两个长方形纸片,其边长如图中所示()0m >,面积分别为S 甲和S 乙.(1)①用含的代数式表示S =甲_________,S =乙_________;②用” “、” “或” “号填空:S 甲________S 乙;(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正.①该正方形的边长是_________(用含的代数式表示);②小方同学发现,”S 正与S 乙的差是定值”请判断小方同学的发现是否正确,并通过计算说明你的理由.【答案】(1)①21227m m ++,21024m m ++;②;(2)①5m +;②正确,理由见解析.【解析】【分析】(1)①根据长方形面积的计算公式直接计算化简即可;②利用”作差法”比较大小即可;(2)①首先求出乙的周长,由此得出该正方形的边长即可;②将二者相减,然后进一步化简分析即可.【详解】(1)①由题意得:甲的面积为:()()2122739m m m m ++=++, 乙的面积为:()()2102446=m m m m ++++, ②∵21227m m ++−()21024m m ++=23m +,其中0m >,∴230m +>,∴21227m m ++>21024m m ++,故答案为:①21227m m ++,21024m m ++;②;(2)①由题意得:乙的周长为:()246420m m m +++=+,∵该正方形纸片的周长与乙的周长相等, ∴该正方形边长为:42054m m +=+; ②正确,理由如下:()22(5)1024S S m m m -=+-++乙正()()2210251024m m m m =++-++1=∴S S -乙正的差等于,是定值.【点睛】本题主要考查了整式运算的综合运用,熟练掌握相关概念是解题关键.22.学校组织甲、乙两组同学参加国学经典知识对抗赛,每组有位选手,每场比赛两组各派人进行现场对抗比赛,满分为分,共进行了场比赛.学校整理和汇总了这场比赛的成绩,并制成如下所示的尚不完整的统计表和图所示的折线统计图.根据以上信息回答下面的问题:(1)若甲、乙两组成绩的平均数相同,①求的值;②将折线统计图补充完整,并根据折线统计图判断哪组成绩比较稳定.(2)若甲、乙两组成绩的中位数相等,直接写出的最小值.(3)在(1)中的条件下,若从所有成绩为25分的选手中随机抽取两人对其答题情况进行分析,请用列表法求抽到的两位选手均来自同一组的概率.【答案】(1)①26;②图见解析,乙组成绩较稳定;(2)25;(3)13.【解析】【分析】(1)①首先根据”甲、乙两组成绩的平均数相同”可以得出甲、乙两组的总分数一样,据此列出方程求解即可;②根据已经计算出的的值再结合表格信息进一步补全图形,由此再根据折线波动情况进行分析比较即可;(2)首先根据中位数的定义求出甲组的中位数,然后进一步根据乙组成绩加以分析即可;(3)根据题意,根据列表法找出所有可能发生的事件,然后进一步求出相应的概率即可.【详解】(1)①∵甲、乙两组成绩的平均数相同,∴2425272825212327252524n+++++=+++++,解得,26n=;②补全折线统计图如下图所示:。

人教版九年级中考英语一模考试试题(含答案)

人教版九年级中考英语一模考试试题(含答案)

九年级中考英语模拟试卷(满分150分时间120分钟)选择题部分共90分I.听力测试(30分)A)听录音,从每组句子中选出一个你所听到的句子。

每个句子听一遍。

1. A. This is my cousin. B. I like pandas best. C. She has a volleyball.2. A. Have a nice trip! B. Let’s make a cake! C. Hope things work out!3. A.Are these his trousers? B. Is there a park near here? C. Does he have a fever?4. A. Lily can’t find her pencil. B. Sarah didn’t go to the zoo. C. Jill doesn’t eat junk food.5. A. How old is the actor? B. Who went to the countryside? C. Why not talk to her?B)在录音中,你将听到五段对话,每段对话后有一个小题,从每小题A、B、C中选出能回答所给问题的正确答案。

每段对话听两遍。

6. How will they get to the cinema?A. By bus.B. By subway.C. By bike.7. Who did Dave go fishing with?A. His father.B. His sister.C. His brother.8. What club doesAndy want to join?A. The sports club.B. The music club.C. The art club.9. When did Bob wake up?A. At 10:00.B.At 10:30.C.At 11:00.10. Where probably are the speakers?A. In a restaurant.B. In a shop.C. In the hospital.C)在录音中,你将听到一段对话,对话后有五个小题,从每小题A、B、C中选出能回答所给问题的正确答案。

人教版九年级英语中考模拟及参考答案

人教版九年级英语中考模拟及参考答案

人教版九年级英语中考模拟单项选择选出可以填入空白处的最佳选项。

26. ---Is this Kate’s bicycle?---No, ________ is under the tree. She put it there this morning.A. hisB. hersC. mineD. yours【答案】B【解析】句意:---这是Kate的自行车吗?---不是,她的在树下,她今天早上放那的。

试题分析:四个选项都是名词性物主代词,其不同在于适用于不同的人称。

Kate是女生,根据语境,应选B。

【考点】名词性物主代词的辨析。

【点拨】对选项进行分类,明确各项之间的不同更有利于选择正确答案。

27. Just walk down this road and you’ll see the museum ________ your right.A. onB. inC. atD. by【答案】A【解析】句意:只要沿着这条路走下去,你就会看到博物馆在你的右面。

试题分析:on one’s right/left.固定搭配,意为:在某人的右面或左面。

【考点】介词表示地点;介词的固定搭配;【点拨】固定的介词短语是掌握介词用法的助力,学生应随时记忆积累。

28. Eating dumplings at the Spring Festival is ________ in China.A. patientB. luckyC. possibleD. traditional【答案】D【解析】句意:在中国,春节吃饺子是传统。

试题分析:A. pati ent病人,有耐心的;B. lucky幸运的;C. possible可能的;D. traditional 传统的;根据语境及意义,故选D。

【考点】形容词的辨析【点拨】对于大多数学生而言,根据语境选择适当的词并不困难,而关键是词汇量的不足。

Traditional,谐音记忆:传得深远。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级中考模拟试卷(一)【附答案】
物理试卷2019.6




1.本试卷共8页,共五道大题,35道小题,满分90分。

考试时间90分钟。

2.在试卷和答题卡上准确填写学校名称、班级、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共30分,每小题2分)1.在国际单位制中,电压的单位是
A. 安培B.伏特C.欧姆D..瓦特
2.图1中正确表示了光从空气进入玻璃中的光路是
3.下列四个实例中,能够使蒸发减慢的是
A.将湿衣服晾在通风向阳处B.将湿手伸到干手器下方吹
C.将新鲜的黄瓜装入塑料袋D.将新收获的玉米摊开晾晒
4.下列用电器中,额定功率接近1kw的是
A. 电冰箱
B.台灯
C.笔记本电脑
D.电饭煲
5.随着智能时代的到来,智能机器人已经走进千家万户,它能够与人进行智能的对话。

下列说法中正确的是
A. 机器人是高科技产品,它发出的声音不是由振动产生的
B. 机器人的声音可以在真空中传播
C. 我们能够辨别机器人发出的声音,主要利用了它的音色
D.将机器人的音量调小以免干扰周围邻居,是在人耳处减弱噪声
6.下列物态变化过程中放热的是
A.熔化 B.汽化C.升华D.凝华
7.下列说法中正确的是
A. 磁感线是铁屑组成的
B. 磁场看不见摸不着,但是可以借助小磁针感知它的存在
C. 地球是一个巨大的磁体,地磁的南北极跟地理的南北极是完全重合的
D. 小磁针的S极在某点所受磁场力的方向,跟该点磁感线的方向相同
图1
8.笔记本电脑在工作时会发热,为了加快散热保护电脑,当升温到一定值时,温控开关S 1自动闭合,风扇启动,如果断开电源总开关S 2,风扇M 和其他工作系统同时停止工作。

根据上述特点,图2中符合散热控温特点的电路图是
9. 下列关于表1中所提供信息的说法中正确的是
A .不同物质的比热容一定不同
B .发生物态变化后,物质的比热容不变
C .因为水的比热容大,所以白天海水温度比沙滩温度高
D .因为水的比热容大,所以我国北方楼房中的暖气用水做传热介质
10.图3所示是在水平公路上匀速直线行驶的太阳能汽车。

下列说法中正确的是
A. 以汽车上的太阳能板为参照物汽车是运动的
B. 汽车受到的牵引力与汽车受到的阻力是一对平衡力
C. 路面对汽车的支持力与汽车受到的重力是一对相互作用力
D. 此过程中汽车将太阳能全部转化为汽车的机械能
11.图4是位于我国湖北省宜昌市著名的三峡大坝,它是当今世界最大的水利发电工程——三峡水电站的主体工程。

下列说法中正确的是
A. 大坝使上游的水位升高,提高了水的动能
B. 水从大坝的上游流下时,重力做功的功率不变
C. 水轮机发电利用了磁场对电流的作用
D. 水轮机发电的过程,是将机械能转化为电能的过程
12.如图5甲所示,电源电压恒定,R 为热敏电阻,其阻值随温度的变化如图5乙所示,R 0为保护电阻,闭合开关S ,下列说法中正确的是
A .温度升高时,电流表的示数会减小
B .温度升高时,电压表的示数会增大
C .温度升高时,电压表与电流表的比值变小
D .温度升高时,电路消耗的总功率保持不变

1 图
2 图5

3 图4
13.一位物理老师利用杠杆原理,仅用小小的弹簧测力计就测出了一头大象的质量。

测量时用一根长度为12m 的槽钢作为杠杆,如图6所示。

吊钩固定于槽钢的中点O 。

当槽钢水平静止时,弹簧测力计的示数F 1为200N 。

测得l 1为6m ,l 2为 4cm 。

若不计装大象铁笼的质量,g 取10N/kg 。

下列说法中正确的是
A .称象时,槽钢是等臂杠杆
B .大象受到的重力是杠杆的阻力
C .大象的质量是3t
D .使用该杠杆可以省功
14.小阳想利用一块电流表和阻值已知的电阻R 0测量电阻R X 的阻值。

他选择了满足实验要求的电源、电流表A ,并连接好了实验电路,如图7所示。

闭合开关S 1、S 2,读出电流表A 的示数为I 1,闭合开关S 1、断开开关S 2,读出电流表A 的示数为I 2。

下列四个选项中,R x 的表达式正确的是
A .0221X R I I I R
-=B .102I R I R X =C .201I R I R X =D .02
12R I I I R X -=
15.如图8所示,已调好的弹簧测力计下挂着一重为3N 的物体,物体一半浸入水中时,弹簧测力计的示数为1 N ,g 取10N/kg 。

下列说法中正确的是
A .物体受到的浮力是1N
B .物体的体积是2×10-4m 3
C .物体的密度是0.75×103kg/m 3
D .如果测力计不拉着物体,物体在水中会沉底
二、多项选择题(下列各小题均有四个选项,其中符合题意的选项均多于一个。

共10分,每小题2分。

每小题选项全选对的得2分,选对但不全的得1分,有错选的不得分)
16.下列说法中正确的是:
A .冰在0℃时没有内能
B .扫地时尘土飞扬,说明分子在做无规则运动
C .汽油机在做功冲程中把内能转化为机械能
D .注射器内的水很难被压缩,说明水分子间有斥力
17.下列说法中正确的是:
A. 验电器是利用同种电荷相互排斥的原理制作的
B. 电路中只要有电压存在,就一定有电流
C. 金属导线中发生定向移动的电荷是自由电子
D. 规定自由电子定向移动的方向为电流方向
图7 图6 图8
18.家用挂烫机以其使用方便、衣物不易损坏等优点深受消费者的欢迎,如图9所示。

挂烫机接通电源后,水槽中的水被加热,形成的水蒸气通过导管喷出,从
而快速除去衣服上的褶皱。

下列说法中正确的是
A .导管喷出的白气是水蒸气
B .挂烫机工作时,可以将电能转化为内能
C .清洁挂烫机水槽中的水垢时,应切断电源
D .烫熨的衣服温度升高是通过热传递的方式改变了它的内能
19.图10所示是研究电磁现象实验的示意图,下列说法中正确的是
A .图甲实验说明通电导体周围存在磁场
B .图乙是研究发电机工作原理的实验装置
C .图丙是探究电磁铁磁性强弱与电流关系的实验装置
D .图丁是研究电动机工作原理的实验装置
20.我国拥有完全自主知识产权的C919喷气式大型客机,2018年12月28日第三架机试飞成功。

下列说法中正确的是
A .飞机在跑道上加速起飞时,它的惯性逐渐变大
B .飞行员通过电磁波与地面的控制中心联系
C .飞机向后喷射燃气推动飞机前进,是利用了大气压的作用
D .飞机的机翼做成上凸下平的形状,利用了流体压强与流速的关系获得升力
三、实验解答题(共39分,21~23题各2分、26、28、29、31题各3分,24、27、30、32题各4分,25题5分)
21.如图11所示,MN 为平镜,PO 为法线。

则入射光线AO 的反射光线是_____________(选填:“OB ”或“OC ”)。

22.足球运动员用力将足球踢出,足球在水平地面上滚动过程中的受力示意图正确的是图12
中的________________(选填:“甲”或“乙”)图。

23
.小阳站在地面上,要利用两个滑轮组装成的滑轮组将重物提升到楼上。

请在图13中画出省力的滑轮组绕绳方法。

图13
图11 图12 图9 图10。

相关文档
最新文档