人教版八年级数学上册第十五章教案
人教版数学八年级上册15

4.练习巩固:设计不同难度的练习题,让学生自主练习,巩固所学知识,形成技能。
5.课堂小结:对本节课的知识点进行总结,强调分式约分在实际运算中的应用。
6.课后作业:布置适量的课后作业,巩固学生对分式约分的理解和掌握。
-创设“我来当小老师”的教学环节,鼓励学生上台讲解自己的解题思路,增强学生对难点的理解和表达能力。
-教师在学生解题过程中提供个别指导,针对不同学生的具体问题进行针对性讲解,帮助学生克服个人在学习中的障碍。
3.教学策略和手段:
-采用问题驱动的教学方法,设计一系列具有挑战性的问题,激发学生的求知欲和解决问题的动力。
(二)讲授新知
在讲授新知环节,我将结合教材内容,详细讲解分式的基本性质和约分方法。首先,我会解释分式的定义,强调分子和分母的符号处理。接着,通过具体的例子,演示分式约分的步骤,讲解如何利用分式的基本性质进行简化。在此过程中,我会突出以下要点:
1.分式的约分实质上是寻找分子和分母的公因式,并消去这些公因式。
人教版数学八年级上册15.1.2分式的基本性质分式的约分教学设计
一、教学目标
(一)知识与技能
1.让学生掌握分式的基本性质,理解分式约分的概念及意义,能够熟练运用分式的基本性质进行分式的简化。
2.培养学生运用数学符号进行逻辑推理的能力,提高他们在解决实际问题时运用分式约分技巧的能力。
3.通过分式的约分,使学生进一步巩固整式的乘除法运算,提高他们的运算速度和准确性。Байду номын сангаас
3.实践应用题:设计1-2道与生活实际相关的分式约分问题,要求学生运用所学的知识解决实际问题,例如计算家庭预算分配、物品平均分配等,让学生感受数学在生活中的应用。
第十五章 分式【教案】八年级上册数学

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版数学八年级上册《第十五课时第15章 数学活动》教案

人教版数学八年级上册《第十五课时第15章数学活动》教案一. 教材分析《第十五课时第15章数学活动》是人教版数学八年级上册的一章内容。
这一章节的主要目的是让学生通过实践活动,巩固和提高他们在前几章中学到的知识,提高他们的动手能力和实际应用能力。
本章内容主要包括:用几何画板作图、研究函数的性质、解决实际问题等。
这些内容都是学生在日常生活中可能会遇到的,通过这些活动,可以提高学生学习数学的兴趣,培养他们的创新意识和实践能力。
二. 学情分析学生在学习本章内容时,已经掌握了函数、几何图形的性质等基本知识。
他们具备一定的数学思维能力和解决问题的能力,但部分学生对数学的兴趣不高,学习积极性有待提高。
此外,学生的动手操作能力和实际应用能力也有待提高。
三. 教学目标1.让学生通过实践活动,巩固和提高他们在前几章中学到的知识。
2.培养学生的动手能力和实际应用能力。
3.提高学生学习数学的兴趣,培养他们的创新意识和实践能力。
四. 教学重难点1.重点:让学生通过实践活动,巩固和提高他们在前几章中学到的知识。
2.难点:培养学生解决实际问题的能力,以及创新意识和实践能力。
五. 教学方法1.采用问题驱动法,引导学生主动参与实践活动。
2.运用小组合作学习法,培养学生的团队协作能力。
3.采用案例分析法,让学生通过分析实际问题,提高他们的解决问题的能力。
六. 教学准备1.准备相关的教学材料,如PPT、几何画板等。
2.提前让学生预习本章内容,了解相关知识点。
3.准备一些实际问题,用于课堂讨论和分析。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生回顾前几章所学知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示本章内容,让学生了解本节课的学习目标和要求。
同时,教师可以简要介绍一些与本章内容相关的实际问题,激发学生的学习兴趣。
3.操练(15分钟)教师引导学生利用几何画板等工具,进行实际操作,解决一些简单的问题。
2024年人教版八年级数学上册教案及教学反思全册第15章 分式 整数指数幂(第2课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第2课时一、教学目标【知识与技能】1.会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数.2.经历探索用10的负整数次幂来表示绝对值较小的数的过程,完善科学记数法,培养正向、逆向思维能力.【过程与方法】经历探索用科学记数法表示数的过程,理解科学记数法.【情感、态度与价值观】用科学记数法的形式渗透数学的简洁之美,通过完善科学记数法,培养对数学完美形式的追求.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用科学记数法表示绝对值较小的数.【教学难点】含负指数的整数指数幂的运算,尤其是混合运算以及科学记数法中10的指数与小数点的关系.五、课前准备教师:课件、直尺、科学记数结构图等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课通过上节课的学习,大家明确了整数指数幂具有正整数指数幂的运算性质,这节课我们来学习运用其性质进行有关计算及负整数指数幂在科学记数法中的运用.(出示课件2)(二)探索新知1.创设情境,探究用科学记数法表示绝对值较小的数教师问1:口答:(1)(3-2)2;(2)[(-4)-3]0;(3)5-3×52;(4)(-0.5)-2;(5)222332--⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭;(6)4.7×10-4.注:前三个小题计算比较直接,可快速抢答,并陈述所用法则;后三个小题允许学生笔算后再口答,并陈述计算时的注意点,尤其是第(5)小题,有正向、逆向两个思路,注意方法的选择.而(6)为学习科学记数法表示绝对值较小的数作了铺垫.学生回答:(1)3-4=181;(2)1;(3)5-1=15;(4)(-12)-2=(-2)2=4;(5)(23×32)-2=1-2=1;(6)0.00047教师问2:由前面的练习可知4.7×10-4=0.00047,反过来就是,0.00047=4.7×10-4,由这个形式同学们能想到什么?学生回答:科学记数法.教师问3:那现在我们就一起研究怎样把绝对值较小的数用科学记数法表示出来.请同学们首先完成以下练习:填空:(用科学记数法表示一些绝对值较大的数)(1)4000000000=________;(2)-369000=________;学生回答:(1)4×109(2)-3.69×105教师问4:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?(出示课件4)先完成下面的题目:(出示课件5)填空:(1)0.1=______=______;(2)0.01=______=_______;(3)0.001=______=______;(4)0.0001=_______=______;(5)0.00001=_______=________.学生讨论后回答:(1)110=10-1;(2)1100=10-2;(3)11000=10-3;(4)110000=10-4;(5)1100000=10-5.教师问5:你发现用10的负整数指数幂表示0.0000…001这样较小的数有什么规律吗?请你把总结的规律和你的同伴交流.学生交流后,师生达成共识:表达成10的负整数指数幂的形式时,其指数恰好是第一个非零数前面所有“0”的个数的相反数.教师问6:你能归纳出数学式子吗?学生讨论后回答:教师问7:你能利用10的负整数指数幂,将绝对值较小的数表示成类似形式吗?0.00001=________;0.0000000257=2.57×0.00000001=2.57×________.学生回答:10-5;10-8教师问8:如何用科学记数法表示0.0035和0.0000982呢?(出示课件6)学生回答:0.0035=3.5×0.001=3.5×10-3;0.0000982=9.82×0.00001=9.82×10-5教师问9:观察这两个等式,你能发现10的指数与什么有关呢?师生共同讨论后解答如下:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.教师问10:归纳:请说一说你对科学记数法的认识.师生共同讨论后解答如下:绝对值较大的数用科学记数法能表示为a×10n的形式,其中,n等于数的整数位数减1,a的取值为1≤|a|<10;绝对值较小的数用科学记数法能表示为a×10-n的形式,其中,a的取值一样为1≤|a|<10,但n的取值为小数中第一个不为零的数字前面所有的零的个数.教师讲解:这样,任何一个数根据需要都可以记成科学记数法的形式. a×10n的形式,其中,n为整数,a的取值为1≤|a|<10;例1:用科学记数法表示下列各数:(出示课件7-9)(1)0.005师生共同解答如下:(2)0.0204师生共同解答如下:(3)0.00036师生共同解答如下:例2:计算下列各题:(出示课件11)(1)(-4×10-6)÷(2×103)(2)(1.6×10-4)×(5×10-2)师生共同解答如下:解:(1)(-4×10-6)÷(2×103)=(-4÷2)(10-6÷103)=-2×10-9(2)(1.6×10-4)×(5×10-2)=(1.6×5)×(10-4×10-2)=8×10-6总结点拨:科学记数法的有关计算,分别把前边的数进行运算,10的幂进行运算,再把所得结果相乘.例3:纳米(nm)是非常小的长度单位,1nm=10–9m,把1nm3的物体放到乒乓球上,就如同把乒乓球放到地球上,1mm3的空间可以放多少个1nm3的物体?(物体之间间隙忽略不计)师生共同解答如下:(出示课件13)解:1mm=10-3m,1nm=10-9m.(10-3)3÷(10-9)3=10-9÷10-27=1018,1mm3的空间可以放1018个1nm3的物体.(三)课堂练习(出示课件16-20)1.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克将0.0000005用科学记数法表示为()A.5×107B.5×10-7C.0.5×10-6D.5×10-62.用科学记数法表示下列各数:(1)0.001=________________;(2)-0.000001=_______________;(3)0.001357=____________________;(4)-0.000504=________________________.3.下列是用科学记数法表示的数,试写出它的原数.(1)4.5×10-8=________________;(2)-3.14×10-6=________________;(3)3.05×10-3=___________________.4.计算(结果用科学记数法表示).(1)(6×10-3)×(1.8×10-4);(2)(1.8×103)÷(3×10-4).5.一根约为1米长、直径为80毫米的光纤预制棒,可拉成至少400公里长的光纤.试问:1平方厘米是这种光纤的横截面积的多少倍?(用科学记数法表示且保留一位小数)参考答案:1.B2.(1)10-3;(2)-10-6;(3)1.357×10-3;(4)-5.04×10-43.(1)0.000000045;(2)-0.00000314;(3)-0.00305.4.(1)解:原式=1.08×10-6;(2)解:原式=0.6×107=6×1065.解:这种光纤的横截面积为1÷(1.256×10-4)≈8.0×103答:1平方厘米是这种光纤的横截面的8.0×103倍.(四)课堂小结今天我们学了哪些内容:用科学记数法表示绝对值小于1的数绝对值小于1的数用科学记数法表示为a×10-n的形式,1≤│a│<10,n为原数第1个不为0的数字前面所有0的个数(包括小数点前面那个0).(五)课前预习预习下节课(15.3)149页到151页的相关内容。
人教版初中数学教科书八年级上册第15章《从分数到分式》教案

人教版中学数学教科书八年级上册第15章15.1.1从分数到分式一、学习目标1.了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件.2.通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.3.体会类比等数学思想或方法,获得数学学习的成功经验.二、教学重难点教学重点:分式的概念,分式有意义的条件.教学难点: 分式有意义的条件,分式的值为0的条件.三、教学过程(一)课题导入猜谜语:考试成绩考试作弊考试不作弊七上八下我们已经学过了分数,现在我们就类比分数来学习分式,这就是今天我们要学习的内容:从分数到分式.(二)探究同学们,数学来源于生活又服务于生活,你能利用我们以前学过的知识完成下面两道填空题吗?1.长方形的面积是10cm2,长为7cm,则宽为( )cm;长方形的面积为S,长为a,则宽为( ) .2.把体积为200cm3的水倒入底面积为33cm2的圆柱形容器中,则水面高度为( )cm;把体积为V的水倒入底面积为(a+b)的圆柱形容器中,则水面高度为( ) .在上面的两个问题中,像这些与分数形式一样的式子,我们把它叫做分式,那么什么叫分式?它与我们之前学习的整式有什么区别呢?请同学们带着这些问题,自主学习课本127页-128页思考前的内容,并完成以下学习要求:1.能用分式表示现实情境中的数量关系,体会分式是一种刻画现实世界中数量关系的数学模型.2.了解分式的概念,能判断一个代数式是否为分式.3.完成第129页练习2.(三)解决在学生观察、归纳的基础上,教师板书分式定义:形如(A、B为整式,且B中含字母)的代数式叫做分式.并类比分数剖析分式概念——形式:与分数一样,分式也是由分子、分母和分数线组成.内容:分数的分子分母都是整数,分式的分子分母都是整式.要求:分式的分母中必须含字母;分子中可以含字母,也可以不含字母.下列式子中,哪些是分式?哪些是整式?两类式子的区别是给定字母不同的值,得到的结果也不同.说明字母取值具有任意性,看来分式比分数更具有一般性,那字母是否可以取任何值呢?为什么?那么你认为分式有意义的条件是什么?板书(分式有意义的条件)巩固练习1: 下列分式中的字母满足什么条件时分式有意义?x32)1(1)2(-x x b 351)3(-y x y x -+)4(教师板书(1)的解题步骤,同学们类比老师的做题步骤来做以下三道题. 师生共同总结:分式有意义,需要分母不为0,需要解一个带“≠”的不等式. 巩固练习2 :在分式中,对分子有要求吗?在什么条件下,分式的值为0.x x --212)1((2)引导学生发现分式的值为0的条件是分子等于0且分母不等于0. 1将其中2张卡片分别放在分子、分母上,它们组成的式子是分式吗?如果是分式,它什么时候有意义?x 1-x -3(五)评价总结感悟,发散思维作业:教科书习题15.1复习巩固第1、2、3题.课外作业:教科书习题15.1拓展探索第13题. x ²-1 1+x。
人教版数学八年级上册《第十五课时第15章 数学活动》教学设计

人教版数学八年级上册《第十五课时第15章数学活动》教学设计一. 教材分析《数学活动》是人教版八年级上册第15章的内容,本节课主要让学生通过实践活动,运用所学的数学知识解决实际问题,培养学生的动手操作能力、合作交流能力和解决问题的能力。
教材中安排了丰富的活动内容,包括调查统计、几何图形的制作和变换、数学问题的探究等,这些内容既能巩固学生所学的数学知识,又能激发学生的学习兴趣。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学知识有一定的认识和理解。
但不同学生的数学基础和学习能力存在差异,因此在教学过程中要关注全体学生,尽量让每个学生都能参与到活动中来。
此外,学生在之前的学习中可能更多地注重理论知识的掌握,对于实践活动的参与度和操作能力可能有所欠缺,因此在教学过程中要注重培养学生的动手操作能力和实际问题解决能力。
三. 教学目标1.让学生通过数学活动,巩固和应用所学的数学知识。
2.培养学生的动手操作能力、合作交流能力和解决问题的能力。
3.提高学生学习数学的兴趣,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:让学生通过实践活动,运用所学的数学知识解决实际问题。
2.难点:如何引导学生将所学的数学知识与实际问题相结合,提高解决问题的能力。
五. 教学方法1.采用小组合作的学习方式,让学生在活动中互相交流、互相学习。
2.教师引导学生参与活动,给予学生必要的帮助和指导。
3.通过举例、讲解等方法,让学生理解和掌握活动的目的和意义。
4.以学生为主体,注重培养学生的动手操作能力和实际问题解决能力。
六. 教学准备1.教师准备活动所需的材料和工具,如几何图形的模板、测量工具等。
2.学生准备笔记本、笔等记录工具。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题引导学生进入本节课的主题,激发学生的学习兴趣。
2.呈现(10分钟)教师向学生介绍本节课的活动内容,包括调查统计、几何图形的制作和变换、数学问题的探究等,让学生明确本节课的学习目标。
人教版八年级上册第十五章分式15.3.2分式方程实际应用教案

一、教学内容
人教版八年级上册第十五章分式15.3.2分式方程实际应用教案:
1.掌握分式方程在实际问题中的应用。
2.能够根据实际问题的情境列出分式方程,并求解。
3.举例说明分式方程在生活中的应用。
教学内容:
(1)行程问题:速度、时间和路程的关系,根据已知条件列出分式方程,求解未知数。
3.重点难点解析:在讲授过程中,我会特别强调分式方程的建立和求解这两个重点。对于难点部分,比如去分母、移项等,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如调配溶液,这个操作将演示分式方程的基本原理。
-难点举例:在溶液问题中,学生可能不熟悉如何将分式方程简化并求解。
(3)求解结果的检验:学生往往忽视检验解的正确性,导致答案错误。
-难点举例:在几何问题中,学生求解出边长比例后,需要检验这个比例是否能满足题目中的具体条件。
(4)应用意识的培养:如何引导学生将分式方程与实际生活相结合,提高数学应用意识。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式方程实际应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或计算比例的情况?”比如,如何分配时间进行学习和休息,或者如何按照一定的比例调配溶液。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式方程在生活中的奥秘。
-难点举例:教师需要通过具体案例,让学生体会分式方程在生活中的应用,从而培养学生的应用意识。
数学八年级上册第15章分式 教案 新人教版

【预习速填】
第十五章 分式
15.1 分式
1.分式的概念.分式有三个要素:①形如 的式子;②A,B 都是 ;③分母 B 中含有 .满足 这三个条件的式子即为分式.区别整式和分式的唯一标准是看分母中是否含有字母,若分母 中含有字母,则式子就是分式,若分母中字母,则分子是整式.此外,在列分式表示实际问题中 的某个量时,一定要注量关系的转化. 2.分式有(无)意义及分式值为 0 的条件.理解时注意以下几点:①分式的分母表示除数,由于
a,则宽为 (2)把体积为 200 cm3的水倒入底面积为 33 cm2的圆柱形容器中,则水面的高度为
cm;把体积为 V 的水倒入底面积为 S 的圆柱形容器中,则水面的高度为 学生举手回答,教师与学生一起及时纠正学生出现的错误,并将正确答案填入横线中. 然后教师引入本节课题,并板书.
探究 1:分式的定义 让学生观察刚才的四个式子,看它们有什么相同点和不同点?
教师板书(1)(2)的解答过程,学生独立完成(3)(4).
解:(1)要使分式 有意义,则分母 3x≠0,即 x≠0.因此,当 x≠0 时,分式 有意 义.
(2)要使分式
有意义,则分母 x-1≠0,即 x≠1.因此,当 x≠1 时,分式
有
意义.
(3)要使分式 有意义.
有意义,则分母 5-3b≠0,即 b≠53.因此,当 b≠53 时,分式
教师引导学生总结:①定符号:只把负号留给分式;②定分子与分母的公因式:各项系 数的最大公因数和相同因式的最低次幂的积;③分式约分的最后结果应为最简分式或整式, 即分子、分母没有公因式.
学生先练习,教师再根据情况指导.
教师总结方法:如果分子或分母是多项式,要先分解因式,再找出分子、分母的公因式, 最后根据分式的基本性质进行约分.
人教版八年级上册数学第十五章《平移》全章教学设计

人教版八年级上册数学第十五章《平移》全章教学设计1. 章节概述本章主要介绍平移的概念、性质及其在实际问题中的应用。
通过学习平移,学生能够理解图形的平移变换,掌握平移的性质,并能运用平移解决一些实际问题。
2. 教学目标2.1 知识与技能1. 了解平移的概念,能正确识别平移变换。
2. 掌握平移的性质,包括平移的方向和距离。
3. 能够运用平移性质解决一些实际问题。
2.2 过程与方法1. 通过实际操作,培养学生的观察能力和空间想象能力。
2. 运用几何画板等工具,直观地展示平移变换的过程,提高学生的理解能力。
2.3 情感态度与价值观1. 培养学生的团队合作精神,通过小组讨论和合作解决问题。
2. 培养学生对数学的兴趣和好奇心,激发学生探索数学问题的热情。
3. 教学内容3.1 教学重点1. 平移的概念和性质。
2. 运用平移性质解决实际问题。
3.2 教学难点1. 平移方向的确定。
2. 平移距离的计算。
4. 教学过程4.1 引入新课通过展示一些生活中的平移现象,如电梯上升、滑滑梯等,引导学生思考这些现象背后的数学原理。
激发学生的好奇心,引发学生对平移的兴趣。
4.2 自主学习让学生通过阅读教材,自主学习平移的概念和性质。
然后进行小组讨论,共同总结平移的特点和规律。
4.3 教师讲解1. 讲解平移的概念,明确平移是一种图形变换,图形在平移过程中保持形状和大小不变。
2. 讲解平移的方向和距离,通过实际操作演示平移的过程,让学生直观地感受平移的性质。
3. 通过例题讲解如何运用平移性质解决实际问题,如几何图形的放缩、物体的运动等。
4.4 练习巩固布置一些练习题,让学生独立完成,巩固对平移概念和性质的理解。
同时,引导学生运用平移性质解决实际问题,提高学生的应用能力。
4.5 课堂小结对本节课的内容进行总结,强调平移的概念和性质,以及如何运用平移解决实际问题。
鼓励学生在日常生活中发现和思考平移现象。
5. 课后作业布置一些课后作业,包括一些理论题和实际应用题,让学生进一步巩固平移的知识,并能够灵活运用。
人教版初中数学八年级上册第十五章:分式(全章教案)

人教版初中数学八年级上册第十五章:分式(全章教案)第十五章分式本章的内容包括:分式、分式的运算、分式方程.本章我们将类比分数学习分式,解一些分式方程,并学会解能化为一元一次方程的分式方程及利用分式的知识解决一些实际问题.在中考中,本章重点在考查分式有意义的条件、分式的化简与求值、分式方程及其应用.【本章重点】利用分式的基本性质进行约分和通分、分式的混合运算及列分式方程解决实际问题.【本章难点】分式的混合运算及列分式方程解决实际问题.【本章思想方法】1.掌握类比思想.如:类比分数的概念及性质理解分式的概念及性质,类比分数的运算法则理解分式的运算法则.2.掌握转化思想.如:把除法转化为乘法,把异分母分式加减法转化为同分母分式加减法,把分式方程转化为整式方程.3.体会数学建模思想.如:在利用分式方程解决实际问题时,需根据实际问题建立数学模型,从而列出分式方程求解.15.1分式2课时15.2分式的运算5课时15.3分式方程2课时15.1分式15.1.1从分数到分式(第1课时)一、基本目标【知识与技能】1.理解分式的定义,能够根据定义判断一个式子是否是分式.2.能够确定一个分式有意义、无意义的条件.3.能用分式表示现实情境中的数量关系.【过程与方法】经历类比、探究的过程,理解分式的概念和分式有意义的条件,在此基础上,利用分式有意义的条件求分式中未知数的值.【情感态度与价值观】类比分数的概念理解分式的概念,养成类比思考的习惯,探究分式有意义的条件,形成缜密的思维方式.二、重难点目标【教学重点】分式的概念及分式有意义、无意义的条件.【教学难点】利用分式有意义的条件求未知数的值.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P127~P128的内容,完成下面练习.【3 min 反馈】一、分式的概念1.式子S a 、V S 以及引言中的9030+v ,6030-v ,有什么特点?(1)它们与分数的相同点:形式相同都有分子和分母; (2)不同点:分式中分母含有字母,而分数的分母不含字母.2.一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫做分子,B 叫做分母.3.下列各式中,是分式的有①②④⑦.①2bs ;②3000300a ;③27;④V S ;⑤S 32;⑥2x 2+15;⑦45bc ;⑧-5. 二、分式AB的相关知识1.当B =0时,分式AB 无意义.2.当B ≠0时,分式A有意义.3.当A =0且B ≠0时,分式AB 的值为零.4.当x 取何值时,下列分式有意义? (1)3x +2;(2)x +53-2x.解:(1)x ≠-2. (2)x ≠32.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探索】(引发学生思考)根据分式有、无意义所满足的条件进行判断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0即x =±1.值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1;无意义x 2-x =0,即x =0或x =1;值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为零一定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.下列各式中,是分式的是( C ) A .3x 2+x -1 B .x -23C.2x -3x -1D .1(2x -1)2.分式xx 2+1有意义,则x 的取值范围为( D )A .x ≠1B .x ≠-1C .x ≠1或x ≠-1D .全体实数3.若分式xx 2-16的值为0,则x 的值为0.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!15.1.2分式的基本性质(第2课时)一、基本目标【知识与技能】1.理解和掌握分式的基本性质.2.能运用分式的基本性质约分、通分.【过程与方法】经历观察、对比、猜想的过程,归纳出分式的基本性质,在理解分式基本性质的基础上对分式进行约分和通分,从中了解最简分式和最简公分母.【情感态度与价值观】通过对比归纳分式的基本性质的过程,养成对比的习惯,通过对分式进行约分和通分,加深对分式基本性质的理解.二、重难点目标【教学重点】分式的基本性质,最简分式.【教学难点】运用分式的基本性质对分式进行约分和通分.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P129~P132的内容,完成下面练习.【3 min 反馈】1.分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为A B =A ·C B ·C ,A B =A ÷CB ÷C(C ≠0),其中A 、B 、C 是整式.2.分式的约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.3.最简分式:分子与分母没有公因式的分式,叫做最简分式.3.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.4.最简公分母:通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.环节2 合作探究,解决问题活动1 小组讨论(师生互学) 【例1】填空: (1)x y =x 2y ( ); (2)x 2-y 2xy 2+y 3=x -y ( ); (3)x -1y =( )xy2.【互动探索】(引发学生思考)根据分式的基本性质,当分式的分子(分母)乘或除以一个不等于0的整式时,分母(分子)该怎么变化?【分析】(1)因为xy 的分子x 乘xy 才能化为x 2y ,为保证分式的值不变,根据分式的基本性质,分母也需乘xy ,即x y =x ·xy y ·xy =x 2yxy 2.(2)因为x 2-y 2xy +y 3的分子x 2-y 2除以x +y 才能化为x -y ,为保证分式的值不变,根据分式的基本性质,分母也需除以x +y ,即x 2-y 2xy 2+y 3=(x 2-y 2)÷(x +y )(xy 2+y 3)÷(x +y )=x -yy 2.(3)因为x -1y 的分母y 乘xy 才能化为xy 2,为保证分式的值不变,根据分式的基本性质,分子也需乘xy ,即x -1y =(x -1)·xy y ·xy =x 2y -xyxy 2.【答案】(1)xy 2 (2)y 2 (3)x 2y -xy【互动总结】(学生总结,老师点评)利用分式的基本性质对分式变形时,注意分子、分母乘(除以)同一个不等于0的整式.【例2】约分:(1)2bcac ; (2)(x +y )y xy 2; (3)x 2+xy (x +y )2. 【互动探索】(引发学生思考)分式的约分步骤→找出分子分母的公因式→化简为最简分式.【解答】(1)2bc ac =2b c ÷c ac ÷c =2b a .(2)(x +y )y xy 2=(x +y )y ÷y xy 2÷y =x +yxy .(3)x 2+xy (x +y )2=x (x +y )(x +y )2=x x +y. 【互动总结】(学生总结,老师点评)如果分子或分母是多项式,先分解因式再约分,约分的结果是最简分式或整式.【例3】通分:(1)x ac 与y bc ; (2)2x x 2-9与x 2x +6. 【互动探索】(引发学生思考)分式的通分步骤→确定各分式的公分母→化为分母相同的分式.【解答】(1)最简公分母是abc . x ac =x ·b ac ·b =bx abc . y bc=y ·a bc ·a =ay abc.(2)最简公分母是2(x +3)(x -3). 2xx 2-9=2x ·22(x +3)(x -3)=4x2x 2-18. x 2x +6=x (x -3)2(x +3)(x -3)=x 2-3x 2x 2-18 . 【互动总结】(学生总结,老师点评)确定公分母时,一般取各分母的所有因式的最高次幂的积作公分母.活动2 巩固练习(学生独学)1.分式3aa 2-b 2的分母经过通分后变成2(a -b )2·(a +b ),那么分子应变为( C )A .6a (a -b )2(a +b )B .2(a -b )C .6a (a -b )D .6a (a +b )2.约分:(1)2-a a 2-4; (2)9-a 2-a 2-3a ; (3)m 2-7m 49-m 2. 解:(1)-1a +2.(2)a -3a .(3)-m m +7. 3.通分: (1)12x 与1y ; (2)a2a +6与a -1a 2-9; (3)a -1a 2+2a -3与1-a 2-4a +2a 2. 解:(1)12x =y 2xy ,1y =2x2xy.(2)a2a +6=a (a -3)2(a +3)(a -3)=a 2-3a 2a 2-18,a -1a 2-9=2(a -1)2(a +3)(a -3)=2a -22a 2-18. (3)a -1a 2+2a -3=2(a -1)2(a +3)(a -1)=2a -22a 2+4a -6,1-a 2-4a +2a 2=1-a 2(a -1)2=-12(a -1)=-(a +3)2(a +3)(a -1)=-a +32a 2+4a -6.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2分式的运算15.2.1分式的乘除第1课时分式的乘除一、基本目标【知识与技能】理解分式乘除法的运算法则,并能正确进行计算.【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标【教学重点】分式的乘除法法则.【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P135~P137的内容,完成下面练习.【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式. 环节2 合作探究,解决问题活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y7x ÷-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么?【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算:(1)x 2y x 3·-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学) 【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a 的值.【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴ a +b -2=0,1-a =0.解得a =1,b =1.4a 2-ab 16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!第2课时分式的乘方及乘除混合运算一、基本目标【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序.【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标【教学重点】分式的乘方法则和混合运算顺序.【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P138~P139的内容,完成下面练习.【3 min 反馈】1.教材第138页“思考”:a b 2=a 2b 2;a b 3=a 3b 3;a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法.环节2 合作探究,解决问题活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x .【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算.【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x=2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x=2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)-2b 2a 33;(2)c 3a 2b 2÷c 4a 3b 2·c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知x 3y 22÷-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·-8xy 9a 2b ÷3x(-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)c 3a 2b 2÷c 4a 3b 2÷a c 4; (4)a -b ab 2·? ????-a b -a 3·(a 2-b 2).解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系.【解答】x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1 x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)。
人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案

-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。
人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.理解整式的乘法和除法运算的意义和性质;2.掌握整式的乘法和除法的计算方法;3.掌握整式的因式分解方法;4.能够应用所学知识解决相关问题。
二、教学重点1.整式的乘法和除法的计算方法;2.整式的因式分解方法。
三、教学难点整式的因式分解方法。
四、教学准备1.教材《人教版八年级数学上册》;2.录音机、磁带。
五、教学过程1. 导入通过以往学习知识的回顾,复习整式的基本概念和运算法则。
2. 整式的乘法(1) 同底数相乘两个整式的乘法,当因式中的字母及其指数相同时,可以进行相乘。
例如:(a+b)(a+b)=a2+2ab+b2(2) 不同底数相乘两个整式的乘法,当因式中的字母及其指数不同时,先用代数公式展开,再进行合并同类项。
例如:(a+b)(a+c)=a2+ac+ab+bc3. 整式的除法整式的除法是整式的乘法的逆运算。
通过列竖式进行计算,将被除式视作整式的公因式进行除法运算。
例如:(3x2+4x+5)÷(x+2)4. 整式的因式分解(1) 提取公因式法根据整式的乘法运算法则,将整式中所有的项进行拆分,提取公因式。
例如:6xy+9y=3y(2x+3)(2) 公式法利用一些公式和运算性质进行因式分解。
例如:x2+5x+6=(x+3)(x+2)(3) 分组法将待分解的整式中的项进行分组,然后对每个组进行公因式提取。
例如:2x3+xy+3x2y+3y=x(2x2+y)+3y(x2+1)=x(2x2+y)+3y(x2+1)5. 综合练习通过完成一些练习题,巩固和运用所学的整式的乘除和因式分解知识。
六、课堂小结1.整式的乘法和除法是根据乘法和除法的运算法则进行计算的;2.整式的因式分解可以通过提取公因式、使用公式和进行分组等方法进行。
七、课后作业1.完成课后习题;2.预习下一章节内容。
人教版八年级数学第十五章《分式的除法运算》全章教案

人教版八年级数学第十五章《分式的除法运算》全章教案一、教学目标1. 掌握分式的除法运算的基本概念和方法;2. 能够正确使用分式的除法运算解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。
二、教学重难点1. 教学重点:分式的除法运算的步骤和注意事项;2. 教学难点:将实际问题转化为分式的除法运算。
三、教学准备1. 教材:人教版八年级数学教材;2. 教具:黑板、粉笔、教学PPT。
四、教学过程1. 导入(5分钟)通过一个简单的例子引起学生对分式的除法运算的兴趣,并让学生回顾上一章节研究的内容。
2. 基础知识讲解(15分钟)- 讲解什么是分式的除法运算;- 分式的除法运算的步骤和注意事项。
3. 练与讨论(25分钟)布置一些练题,让学生进行个人或小组练,并进行讨论。
4. 错题讲解(10分钟)根据学生练的情况,选择一些典型的错题进行讲解,帮助学生理解和掌握分式的除法运算。
5. 拓展应用(15分钟)通过一些实际问题,让学生将问题转化为分式的除法运算,并进行求解。
6. 小结与反思(5分钟)对本节课的内容进行小结,让学生总结分式的除法运算的要点,并反思自己在研究过程中的收获和不足。
五、课后作业布置一些练题,巩固学生对分式的除法运算的理解和应用能力。
六、教学反思本节课通过导入、知识讲解、练习与讨论、错题讲解、拓展应用等环节,全面培养学生对分式的除法运算的理解和应用能力。
通过实际问题的拓展应用环节,能够更好地激发学生的学习兴趣和思维能力。
在教学过程中,学生的参与度较高,积极性较好,但还需加强对知识的理解和运用能力的培养。
在布置课后作业时,需要根据学生的实际情况进行分层设计,以帮助学生巩固所学知识。
2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.

第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。
学生:直尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。
2024年人教版八年级上册第十五章 分式分式的运算

15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。
人教版八年级数学上册第15章《分式》教学设计(共12课时)

人教版八年级数学上册第15章《分式》教学设计(共12课时)一. 教材分析人教版八年级数学上册第15章《分式》是学生在学习了实数、代数式、方程等知识后,进一步拓展数学知识的一个章节。
分式作为数学中的一个重要概念,不仅在初中数学中占有重要地位,而且在高中乃至大学的数学学习中也会经常用到。
本章主要内容有分式的概念、分式的运算、分式的性质等。
通过本章的学习,使学生能理解分式的概念,掌握分式的运算方法,了解分式的性质,为后续学习函数、不等式等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等知识有了初步的认识。
但是,学生对分式的理解还比较模糊,分式的运算和性质对于他们来说是一个新的挑战。
因此,在教学过程中,需要引导学生从实际问题中抽象出分式的概念,通过对比、归纳等方法,让学生自己发现并总结分式的性质,从而提高他们的学习兴趣和自主学习能力。
三. 教学目标1.知识与技能:使学生理解分式的概念,掌握分式的基本运算方法,了解分式的性质。
2.过程与方法:通过自主学习、合作交流等方法,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习分式的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:分式的概念、分式的运算、分式的性质。
2.难点:分式的运算规律、分式的性质的推导和应用。
五. 教学方法1.启发式教学:通过提问、引导、讨论等方式,激发学生的思维,培养他们的抽象思维能力。
2.自主学习:鼓励学生自主探究,发现问题、解决问题,提高他们的自主学习能力。
3.合作交流:引导学生进行小组讨论,分享学习心得,互相帮助,共同提高。
六. 教学准备1.教学PPT:制作清晰、简洁的教学PPT,便于学生理解和记忆。
2.教学素材:准备一些与分式相关的实际问题,用于引导学生从实际问题中抽象出分式的概念。
3.练习题:准备一些分式的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生从实际问题中抽象出分式的概念。
人教版八年级上册第15章《分式》全章教案(21页,含反思)

第十五章分式15.1分式15. 1.1从分数到分式1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.2.能够经过分式的定义理解和掌握分式存心义的条件.要点理解分式存心义的条件及分式的值为零的条件.难点能娴熟地求出分式存心义的条件及分式的值为零的条件.一、复习引入1. 什么是整式?什么是单项式?什么是多项式?2. 判断以下各式中 ,哪些是整式?哪些不是整式?① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2a +b 2;⑥3;⑦3x 2- 43 ;④ ;⑤ a 2+ b 2 .32x 2+ 2x +12x二、研究新知1. 分式的定义(1) 学生看教材的问题:一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为多少?剖析:设江水的流速为 v 千米 / 时.轮船顺流航行 90 千米所用的时间为90小时 ,逆流航行 60 千米所用时间为60小时,30+ v 30- v所以 90 = 60.30+ v 30- v(2) 学生达成教材第 127 页“思虑”中的题.察看:以上的式子 9060S V30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不同点?能够发现 ,这些式子都像分数相同都是AB (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.A归纳:一般地 ,假如 A ,B 表示两个整式 ,并且 B 中含有字母 ,那么式子 B 叫做分式. 稳固练习:教材第 129 页练习第 2 题.2. 自学教材第 128 页思虑:要使分式存心义 ,分式中的分母应知足什么条件?分式的分母表示除数 ,因为除数不可以为 0,所以分式的分母不可以为 0,即当 B ≠ 0 时,分 式 A才存心义.B学生自学例 1.例 1以下分式中的字母知足什么条件时分式存心义?2 ;(2) x; (3) 1 ; (4)x +y (1) 3xx - 1 5- 3bx - y.解: (1)要使分式 3x 2存心义 ,则分母 3x ≠ 0,即 x ≠ 0;(2) 要使分式x存心义 ,则分母x - 11(3) 要使分式存心义 ,则分母 5- 3bx + y(4) 要使分式 x - y 存心义 ,则分母x - 1≠ 0,即 x ≠ 1;55- 3b ≠ 0,即 b ≠ ;x - y ≠ 0,即 x ≠ y.思虑:假如题目为:当x 为何值时 ,分式无心义.你知道怎么解题吗?稳固练习:教材第 129 页练习第 3 题. 3. 增补例题:当 m 为何值时 ,分式的值为 0?m ;(2) m - 2; (3) m 2- 1(1) m - 1 m + 3 m + 1 .思虑:当分式为 0 时,分式的分子、分母各知足什么条件?剖析:分式的值为 0 时,一定同时知足两个条件: (1) 分母不可以为零;(2)分子为零.答案: (1)m = 0; (2)m = 2; (3)m = 1. 三、归纳总结 1. 分式的观点.2. 分式的分母不为 0 时,分式存心义;分式的分母为 0 时,分式无心义.3. 分式的值为零的条件: (1)分母不可以为零; (2) 分子为零.四、部署作业教材第 133 页习题 15.1 第 2, 3 题.在引入分式这个观点从前先复习分数的观点,经过类比来自主研究分式的观点 ,分式有意义的条件 ,分式值为零的条件 ,从而更好更快地掌握这些知识点,同时也培育学生利用类比转变的数学思想方法解决问题的能力.15. 1.2 分式的基天性质 (2 课时 )第 1 课时分式的基天性质1.认识分式的基天性质,灵巧运用分式的基天性质进行分式的变形.2.会用分式的基天性质求分式变形中的符号法例.要点理解并掌握分式的基天性质.难点灵巧运用分式的基天性质进行分式变形.一、类比引新 1. 计算:(1) 5 2 4 8× 15 ; (2) ÷ .6 5 15 思虑:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基天性质. 2. 你能说出分数的基天性质吗?分数的分子与分母都乘 (或除以 )同一个不为零的数 ,分数的值不变.3. 试试用字母表示分数的基天性质:小组议论沟通如何用字母表示分数的基天性质,而后写出分数的基天性质的字母表达式.a = a ·c a = a ÷cb b ·c , b b ÷c .( 此中 a , b ,c 是实数 ,且 c ≠ 0) 二、研究新知1. 分式与分数也有近似的性质 ,你能说出分式的基天性质吗?分式的基天性质:分式的分子与分母乘 (或除以 )同一个不为零的整式 ,分式的值不变. 你能用式子表示这个性质吗? AA ·C A A ÷CB = B ·C , B = B ÷C .(此中 A , B ,C 是整式 ,且 C ≠ 0)如 x = 1, b =ab2,你还可以举几个例子吗?2x 2 a a回首分数的基天性质 ,让学生类比写出分式的基天性质 ,这是从详细到抽象的过程.学生试试着用式子表示分式的性质 ,增强对学生的抽象表达能力的培育.2. 想想以下等式成立吗?为何?- a a ; - a a a= = =- . - b b b - b b教师出示问题.学生小组议论、沟通、总结.例 1 不改变分式的值 ,使以下分式的分子与分母都不含“-”号:- 2a- 3x- x 2(1) - 3a ; (2) 2y ; (3)- y.例 2不改变分式的值 ,使以下分式的分子与分母的最高次项的系数都化为正数:x + 1 2- x - x - 1(1) - 2x - 1; (2)- x 2+ 3;(3) x + 1 .指引学生在达成习题的基础长进行归纳 ,使学生掌握分式的变号法例.例 3填空:x 3( ) 3x 2+ 3xy=x + y;= y,( )(1) xy6x 2(),2a -2 ( ) .(b ≠ 0)(2)1=2b = 2aba b a a bx 3解: (1)因为 xy 的分母 xy 除以 x 才能化为 y ,为保证分式的值不变 ,依据分式的基天性 质,分子也需除以 x ,即x 3= x 3 ÷x =x 2. xy xy ÷ x y相同地 ,因为 3x 2+ 3xy的分子 3x 2+3xy 除以 3x 才能化为 x + y ,所以分母也需除以 3x ,6x 2即3x 2+ 3xy(3x 2+ 3xy ) ÷( 3x ) x + y6x 2=6x 2 ÷( =2x.3x )所以 ,括号中应分别填入 x 2和 2x.(2) 因为 ab1的分母 ab 乘 a 才能化为 a 2b ,为保证分式的值不变 ,依据分式的基天性质 ,分子也需乘 a ,即1 = 1·a = a2 . ab ab ·a a b2a - b相同地 ,因为a2 的分母 a 2乘 b 才能化为 a 2b ,所以分子也需乘 b ,即2a - b ( 2a -b ) ·b 2ab -b 22 == 2.a a 2 ·b a b所以 ,括号中应分别填 a 和 2ab - b 2.在解决例题 1, 2 的第 (2)小题时 ,教师能够指引学生察看等式两边的分母发生的变化,再思虑分式的分子如何变化;在解决例2 的第 (1)小题时 ,教师指引学生察看等式两边的分子发生的变化 ,再思虑分式的分母随之应当如何变化.三、讲堂小结1. 分式的基天性质是什么? 2. 分式的变号法例是什么?3. 如何利用分式的基天性质进行分式的变形? 学生在教师的指引下整理知识、理顺思想. 四、部署作业教材第 133 页习题 15.1 第 4, 5 题.经过算数中分数的基天性质,用类比的方法给出分式的基天性质,学生接受起来其实不感觉困难,但要要点重申分子分母同乘 (或除 )的整式不可以为零,让学生养成谨慎的态度和习惯.第 2 课时分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的观点.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.要点运用分式的基天性质正确地进行分式的约分与通分.难点通分时最简分分母确实定;运用通分法例将分式进行变形.一、类比引新1.在计算56×152时,我们采纳了“约分”的方法,分数的约分约去的是什么?分式a+ b相等吗?为何?aba2+ab利用分式的基天性质,分式a2b约去分子与分母的公因式a,其实不改变分式的值a+ b获得. a2+ ab a2b,,能够教师点拨:分式a2+ ab能够化为a+ b__分式的约分 __.a2b ab ,我们把这样的分式变形叫做4 64 62. 如何计算 5+ 7?如何把 5,7通分?近似的 ,你能把分式 a, c变为同分母的分式吗?b d利用分式的基天性质 ,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分 __.二、研究新知- 25a 2bc 3;(2) x 2- 9; 1. 约分: (1) 15ab 2c x 2+ 6x +9 6x 2- 12xy + 6y 2 (3) 3x -3y .剖析:为约分 ,要先找出分子和分母的公因式.2322解: (1) - 25a bc =- 5abc ·5ac =-5ac ;15ab 2c5abc · 3b 3bx 2- 9 ( x + 3)( x - 3) x - 3(2)x2+= (x + 3) 2 =;6x +9x + 36x 2- 12xy + 6y 2 6( x - y )2(3)3x -3y==2(x - y).3(x - y )若分子和分母都是多项式 ,则常常需要把分子、分母分解因式(即化成乘积的形式 ) ,然后才能进行约分. 约分后 ,分子与分母没有公因式 ,我们把这样的分式称为 __最简分式 __.( 不 能再化简的分式 )2. 练习:约分:2ax 2y ; - 2a ( a +b ) ( a - x ) 2 2- 4 ; m 2- 3m 2-13b ( a +b ) ; ; x ; 99.3axy 2 ( x -a ) 3 xy + 2y9- m 298学生先独立达成 ,再小组沟通 ,集体校正.3. 议论:分式1 , 114的最简公分母是什么?3 22 3, 6xy2x y z 4x y提出最简公分母观点.一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.学生议论、小组沟通、总结得出求最简公分母的步骤:(1) 系数取各分式的分母中系数最小公倍数; (2) 各分式的分母中所有字母或因式都要取到; (3) 相同字母 (或因式 )的幂取指数最大的;(4) 所得的系数的最小公倍数与各字母 (或因式 )的最高次幂的积 (此中系数都取正数 ) 即为最简公分母.4. 通分: (1) 32 与a -2 b; (2) 2x 与 3x .2a b ab c x - 5 x + 5 剖析:为通分 ,要先确立各分式的公分母.解: (1)最简公分母是 2a 2b 2c.33·bc 3bc2a 2b = 2a 2b · bc =2a 2b 2 c , a - b ( a -b ) ·2a 2a 2 -2abab 2c =ab 2c · 2a = 2a 2b 2c .(2) 最简公分母是 (x - 5)(x + 5) .2x=2x( x+ 5)=2x2+ 10xx- 5 ( x- 5)( x+ 5)x2- 25,3x =3x( x- 5)= 3x2- 15x x+ 5 ( x+ 5)( x- 5)x2- 25. 5.练习:通分: (1) 12与 5 ; (2) 21与 2 1 ; (3) 12与2x.3x 12xy x + x x - x (2- x)x - 4教师指引:通分的要点是先确立最简公分母;假如分式的分母是多项式则应先将分母分解因式,再按上述的方法确立分式的最简公分母.学生板演并互批实时纠错.6.思虑:分数和分式在约分和通分的做法上有什么共同点?这些做法的依据是什么?教师让学生议论、沟通,师生共同作以小结.三、讲堂小结1.什么是分式的约分?如何进行分式的约分?什么是最简分式?2.什么是分式的通分?如何进行分式的通分?什么是最简公分母?3.本节课你还有哪些迷惑?四、部署作业教材第 133 页习题 15.1 第 6, 7 题.本节课是在学习了分式的基天性质后学的,要点是运用分式的基天性质正确的约分和通分,约分时要注意必定要约成最简分式,娴熟运用因式分解;通分时要将分式变形后再确立最简公分母.15. 2分式的运算15. 2.1分式的乘除(2课时)第 1 课时分式的乘除法1.理解并掌握分式的乘除法例.2.运用法例进行运算,能解决一些与分式相关的实质问题.要点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1. 分数的乘除法的法例是什么?2. 计算: 3 × 15 ; 3 155 12 ÷ .5 2由分数的运算法例知3 15 = 3× 15 315 3 × 2 = 3× 2× 12 5× 12 ; ÷ = 15 .5 5 2 5 5× 153. 什么是倒数? 我们在小学学习了分数的乘除法 ,关于分式如何进行计算呢?这就是我们这节要学习的内容.二、研究新知问题 1:一个水平搁置的长方体容器 ,其容积为 V ,底面的长为 a ,宽为 b 时,当容器的水占容积的 m时,水面的高度是多少?n问题 2:大拖沓机 m 天耕地 a hm 2,小拖沓机 n 天耕地 b hm 2,大拖沓机的工作效率是小拖沓机的工作效率的多少倍?问题 1 求容积的高 V m,问题 2 求大拖沓机的工作效率是小拖沓机的工作效率的 a b ·÷ 倍.ab nm n依据上边的计算 ,请同学们总结一下对分式的乘除法的法例是什么?分式的乘法法例:分式乘分式 ,用分子的积作为积的分子 ,分母的积作为积的分母. 分式的除法法例:分式除以分式 ,把除式的分子、分母颠倒地点后,与被除式相乘.a ca ·c a c a d a ·d·=; ÷ = ·=.b d b ·d b d bc b ·c 三、举例剖析例 1 计算:4x y ab 3 - 5a 2b 2(1) 3y ·2x 3; (2)2c 2÷4cd.剖析:这道例题就是直策应用分式的乘除法法例进行运算.应当注意的是运算结果应约分到最简 ,还应注意在计算时跟整式运算相同 ,先判断运算符号 ,再计算结果.解: (1)4xy = 4xy = 2 ;3y ·36x 3y 3x 22x(2) ab 3- 5a 2b 2 ab 34cd 4ab 3cd 2bd2c 2÷ = 2· 2 2=- 2 2 2=- .4cd 2c - 5a b 10a b c 5ac 例 2 计算:a 2- 4a +4 a - 1(1) a 2- 2a +1·a 2- 4;1 1(2) 49-m 2÷ m 2- 7m . 剖析:这两题是分子与分母是多项式的状况 ,第一要因式分解 ,而后运用法例.( a -2) 2 a - 1 a - 2解: (1)原式 ( a -1) 2· ( a + 2)( a - 2)= ( a -1)( a + 2) ;(2) 原式 1 1÷( 7- m )( 7+ m ) m ( m - 7)= 1 m ( m - 7) =- m7+m ) · 1 .( 7- m )( m + 7例 3 “丰产 1 号”小麦试验田边长为 a 米 (a > 1)的正方形去掉一个边长为 1 米的正方形蓄水池后余下的部分 ,“丰产 2 号”小麦的试验田是边长为 (a - 1)米的正方形 ,两块试验田的小麦都收获了 500 千克.(1) 哪一种小麦的单位面积产量高?(2) 高的单位面积产量是低的单位面积产量的多少倍?剖析:此题的实质是分式的乘除法的运用.解: (1)略.500500 500 a 2- 1 a + 1 (2) ( a -1) 2÷ a 2- 1=( a - 1) 2· 500 =a - 1.“丰产 2 号”小麦的单位面积产量是“丰产1 号”小麦的单位面积产量的a + 1倍.a - 1四、随堂练习1. 计算: (1) c 2 · a 2b 2 (2)- n 2 · 4m 2 y 2; 2m 5n 3;(3) ÷(- );ab c 7x x 2ya 2- 4 a 2- 1 (4) - 8xy ÷ ; (5)- 2 ·2 4a + 4 ;5x a -2a + 1 a +y 2- 6y + 9(6)÷(3- y).y + 2答案: (1)abc ; (2)- 2m; (3)- y; (4)- 20x 2;(5) ( a + 1)( a - 2) ;(6) 3- y 5n 14-( a - 1)( a + 2) y + 2 . 2. 教材第 137 页练习 1, 2,3 题.五、讲堂小结(1) 分式的乘除法法例; (2) 运用法例时注意符号的变化;(3) 因式分解在分式乘除法中的应用;(4) 步骤要完好 ,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也能够写成一个多项式 ,如 ( a - 1) 2 a 2- 2a + 1或 a .a六、部署作业教材第 146 页习题 15.2 第 1, 2 题.本节课从两个拥有实质背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实质需要产生的,从而激发他们学习的兴趣,接着,从分数的乘除法例的角度指引学生经过察看、研究、归纳总结出分式的乘法法例.有益于学生接受新知识,并且能表现由数到式的发展过程.第 2课时分式的乘方及乘方与乘除的混淆运算1.进一步娴熟分式的乘除法法例,会进行分式的乘、除法的混淆运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.要点分式的乘方运算,分式的乘除法、乘方混淆运算.难点分式的乘除法、乘方混淆运算,以及分式乘法、除法、乘方运算中符号确实定.一、复习引入1.分式的乘除法法例.分式的乘法法例:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘.2.乘方的意义:a n= a·a·a· ·a(n 为正整数 ).二、研究新知例 1(教材例 4) 计算2x 3 x÷·.5x- 3 25x 2- 9 5x + 3解:2x 3·x÷+ 3 5x-3 25x 2- 9 5x25x 2- 9x (先把除法一致成乘法运算 )= 2x ·3 · 5x - 3 5x+3 2x 2 =3 .( 约分到最简公式 ) 分式乘除运算的一般步骤:(1) 先把除法一致成乘法运算;(2) 分子、分母中能分解因式的多项式分解因式; (3) 确立分式的符号 ,而后约分;(4) 结果应是最简分式.1. 由整式的乘方引出分式的乘方,并由特别到一般地指引学生进行归纳.2(1)( a )2=a a= a2;bb ·b b↑↑由乘方的意义 由分式的乘法法例(2) 同理:a 3 a a aa 3( )= ··= 3;b b b b ba n a a aa · a · · an 个a n( ) = ·· ·n个== n .b b b bb · b · · bn 个 b2. 分式乘方法例:n分式: (a b )n = ab n .(n 为正整数 )文字表达:分式乘方是把分子、分母分别乘方. 3. 当前为止 ,正整数指数幂的运算法例都有什么?(1)a n · a n = a m +n ; (2)a m ÷ a n = a m -n ;(3)(a m ) n =a mn ;(4)(ab) n = a n b n ;a a n(5)( b )n= b n . 三、举例剖析 例2计算:- 2a 2b(1)( 3c )2;2a b3÷2a· (c2(3)( - x 2 y 2 )3÷ y )4;y )2· (- x (-x a 2- b 2 a - b(4) 22÷ () 2.a + ba + b22 4 2(- 2a b )=4a b 2 ;解: (1)原式= ( 3c ) 29ca 6b 3 d 3c 2a 3b 3 (2) 原式= -c 3d 9· 2a ·4a 2=- 8cd 6;46 4(3) 原式=x · (- y x =- x 5; y 2x 3)·4y(4) 原式= ( a + b )( a - b ) ( a + b ) 2 ( a + b ) 32 2· ( a - b ) 2=22 .a +b ( a - b )( a + b )学生板演、 纠错并实时总结做题方法及应注意的地方: ①关于乘、 除和乘方的混淆运算 ,应注意运算次序 ,但在做乘方运算的同时 ,可将除变乘;②做乘方运算要先确立符号.例3 计算:b3n -1c2a2n -1(1) a 2n+1·b 3n-2;x 2-2xy + y 2x - y(2)(xy - x 2) ÷ · x 2 ;xy (3)( a 2- b 2 a -b )2.ab )2÷ (a解: (1)原式= b 3n -2· b · c 2 a 2n - 1bc 2 a2n -1· a 2·b 3n -2=a 2;x ( x - y ) xy2· x - y(2) 原式=-1 ·x 2 =- y ;( x - y )( a + b )2( a - b ) 2 a 2 a 2+ 2ab +b 2 (3) 原式= a 2b 2· (a -b ) 2=b 2. 本例题是本节课运算题目的拓展,关于 (1)指数为字母 ,可是方法不变; (2)(3) 是较复杂的 乘除乘方混淆运算 ,要进一步让学生熟习运算次序,注意做题步骤.四、稳固练习教材第 139 页练习第 1, 2 题. 五、讲堂小结 1. 分式的乘方法例. 2. 运算中的注意事项. 六、部署作业教材第 146 页习题 15.2 第 3 题.分式的乘方运算这一课的教课先让学生回想从前学过的分数的乘方的运算方法用类比的方法让学生得出分式的乘方法例.在解说例题和练习时充分调换学生的踊跃性大家都参加进来 ,提升学习效率.,而后采,使15. 2.2分式的加减(2 课时)第 1 课时分式的加减理解并掌握分式的加减法例,并会运用它们进行分式的加减运算.要点运用分式的加减运算法例进行运算.难点异分母分式的加减运算.一、复习发问 1. 什么叫通分? 2. 通分的要点是什么? 3. 什么叫最简公分母?4. 通分的作用是什么? (引出新课 ) 二、研究新知1. 出示教材第 139 页问题 3 和问题 4. 教材第 140 页“思虑”.1 分式的加减法与分数的加减法近似,它们的实质相同. 察看以下分数加减运算的式子:5+2=31- 2=- 11+1= 3+2=5 1- 1= 3- 2=1,得出分式的加减法5 5,5 55, 2 3666, 2 3 6 6 6.你能将它们推行 法例吗?教师提出问题 ,让学生列出算式 ,获得分式的加减法法例. 学生议论:组内沟通 ,教师点拨. 2. 同分母的分式加减法.a b a ±b公式: ±=c .c c文字表达:同分母的分式相加减 ,分母不变 ,把分子相加减.3. 异分母的分式加减法.分式: a c ad bc ad ±bc± = ± = bd .b d bd bd文字表达:异分母的分式相加减 ,先通分 ,变为同分母的分式 ,而后再加减.三、典型例题 例 1(教材例 6) 计算:5x +3y- 2x2; (2)1 + 1(1) 2- y 2 2.xx - y2p + 3q 2p - 3q解: (1)5x + 3y - 2xx 2- y2 x 2- y 25x + 3y - 2x 3x + 3y 3 = 2 2 = 2 - y 2 = ;x - y x x -y(2) 1 + 12p +3q2p - 3q=2p - 3q +2p + 3q ( 2p + 3q )( 2p - 3q ) ( 2p + 3q )( 2p - 3q )= 2p - 3q + 2p + 3q=4p( 2p + 3q )( 2p - 3q ) 4p 2- 9q 2.小结:(1) 注意分数线有括号的作用 ,分子相加减时 ,要注意添括号.(2) 把分子相加减后 ,假如所得结果不是最简分式 ,要约分.例2 计算:m + 2n + n - 2m . n - m m - n n - m剖析: (1)分母能否相同? (2)如何把分母化为相同的?(3)注意符号问题.解:原式= m + 2n - n - 2mn - m n -m n - m= m + 2n - n - 2mn -m=n - mn - m= 1. 四、讲堂练习1. 教材第 141 页练习 1, 2 题.5232.计算: (1)-+ ;12 2(2) m 2- 9+3- m ;(3)a + 2- 4;2- aa 2-b 2 ab - b 2(4) ab -ab -ab 2.五、讲堂小结1. 同分母分式相加减 ,分母不变 ,只要将分子作加减运算 ,但注意每个分子是个整体 ,要合时添上括号.2.关于整式和分式之间的加减运算 ,则把整式当作一个整体 ,即当作是分母为 1 的分式 ,以便通分.3.异分母分式的加减运算 ,第一察看每个公式能否为最简分式 ,能约分的先约分 ,使分式简化 ,而后再通分 ,这样可使运算简化.4. 作为最后结果 ,假如是分式则应当是最简分式. 六、部署作业教材第 146 页习题 15.2 第 4, 5 题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的详细方法,经过类比的思想方法,由数的运算引出式的运算规律,表现了数学知识间详细与抽象、从特别到一般的内在联系.尔后,利用相同的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,切合学生认知的发展规律,有助于知识的层层落实与掌握.第 2 课时分式的混淆运算1.明确分式混淆运算的次序,娴熟地进行分式的混淆运算.2.能灵巧运用运算律简易运算.要点娴熟地进行分式的混淆运算.难点娴熟地进行分式的混淆运算.一、复习引入回想:我们已经学习了分式的哪些运算?1.分式的乘除运算主假如经过( )进行的,分式的加减运算主假如经过( ) 进行的.2.分数的混淆运算法例是再算 (),最后算 ( ( ) ,近似的,分式的混淆运算法例是先算 ) ,有括号的先算 ( )里面的.( ),二、研究新知1.典型例题例1计算:( x+2 + 4 ) ÷x .x-2 x2- 4x+ 4 x- 2 剖析:应先算括号里的.例 2计算:4y 24x 2yx + 2y + x - 2y - x 2- 4y2. 剖析: (1)此题应采纳逐渐通分的方法挨次进行; (2)x + 2y 能够看作 x + 2y.1 例 31 -2x 计算:1x + yx + y ·( 2x -x -y).剖析:此题可用分派律简易计算.例 4 [ 1 2-1 2] ÷( 1 - 1 ).( a + b ) ( a - b ) a +b a - b 剖析:可先把被除式利用平方差公式分解因式后再约分.例 5(教材例 7)2a 21a b计算 ()·- ÷ .b a - b b 4解: 2a1- ab( )2· b ÷b a -b 4= 4a 2 1 - a 4 b 2 · ·a -b b b4a 24a4a 2 4a ( a -b ) = b 2( a - b ) - b 2= b 2( a - b )- b 2( a - b )4a 2- 4a 2+ 4ab 4ab= b 2( a - b ) =b 2( a - b ) = 4a ab - b 2.点拨:式与数有相同的混淆运算次序:先乘方 ,再乘除 ,而后加减. 例 6(教材例 8)计算: (1)(m + 2+ 52m - 4) · ;2- m 3- mx + 2 - x - 1x -4 (2)( x 2- 2x x 2- 4x + 4) ÷ x .解: (1)(m + 2+ 5 2m - 4) ·2- m 3- m = ( m + 2)( 2- m )+ 5 2m - 42-m ·3- m= 9- m 2 2( m - 2) 2- m · 3- m= ( 3- m )( 3+ m ) - 2( 2- m ) 2- m · 3- m=- 2(m + 3);(2)( x + 2- x - 1x -4x 2 x 2) ÷ x - 2x - 4x + 4= [ x + 2 -x - 1 x ( x - 2) 2] ·x ( x - 2)x - 4=( x + 2)( x - 2)-( x -1) x ·x x ( x - 2) 2x - 4 = x 2- 4- x 2+ x( x - 2) 2( x - 4)1= ( x - 2) 2. 分式的加、减、乘、除混淆运算要注意以下几点:(1) 一般按分式的运算次序法例进行计算,但合适地使用运算律会使运算简易.(2) 要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用 ,可防止运算烦 琐.(3) 注意括号的“添”或“去”、“变大”与“变小”.(4) 结果要化为最简分式.增强练习 ,指引学生实时纠正在例题中出现的错误 ,进一步提升运算能力.三、稳固练习x 21. (1)x - 1- x - 1;(2)(1 - 2)2÷x - 1;x +1 x + 12ab2bc(3)( a -b )( a - c ) + ( a - b )( c - a );(4)( 1 + 1 ) ÷2 xy2 .x - y x + y x - y 2. 教材第 142 页第 1, 2 题. 四、讲堂小结1.分式的混淆运算法例是先算 ( ),再算 () ,最后算 (),有括号先算 ()里的.2. 一些题应用运算律、公式能简易运算. 五、部署作业1. 教材第 146 页习题 15.2 第 6 题.1 - 1 x 2- 2x + 1,此中 x = 2-1.2. 先化简再求值 x + 1 x 2- 1· x + 1分式的混淆运算是分式这一章的要点和难点,波及到因式分解和通分这两个较难的知识点,可依据学生的详细状况,合适增添例题、习题,让学生娴熟掌握分式的运算法例并提升运算能力.15. 2.3整数指数幂1.知道负整数指数幂a-n=1n.(a≠ 0, n 是正整数 ) a2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于 1 的数.要点掌握整数指数幂的运算性质 ,会有科学记数法表示绝对值小于1 的数.难点负整数指数幂的性质的理解和应用.一、复习引入1. 回想正整数指数幂的运算性质:(1) 同底数的幂的乘法: a m · a n = a m +n (m , n 是正整数 ) ;(2) 幂的乘方: (a m )n = a mn (m , n 是正整数 ); (3) 积的乘方: (ab)n = a n b n (n 是正整数 );(4) 同底数的幂的除法: a m ÷ a n =a m -n (a ≠ 0, m , n 是正整数 , m >n) ;a n a n(5) 分式的乘方: ( ) =n (n 是正整数 ).bb2. 回想 0 指数幂的规定 ,即当 a ≠ 0 时, a 0= 1. 二、研究新知3 312,再假定正整数指数幂的运算性质am÷ a n( 一)1.计算当 a ≠ 0 时, a 3÷ a 5= a5=a =aa 3· a 2 a-- -2.于是= a m n (a ≠ 0, m , n 是正整数 , m > n)中的 m > n 这个条件去掉 ,那么 a 3÷ a 5= a 3 5= a - 2 1获得 a =2(a ≠ 0).a总结:负整数指数幂的运算性质:一般的 ,我们规定:当 n 是正整数时 ,a -n= 1n (a ≠ 0).a 2. 练习稳固: 填空:(1) - 22= ________, (2)( - 2)2= ________, (3)( - 2)0= ________,(4)20= ________,-3-3 =________. (5)2 = ________, (5)( - 2) 3.例 1 (教材例 9) 计算:-2 5 b 3- 2; (1)a÷ a ; (2)( 2)a(3)(a -1 b 2 )3; (4)a - 2b 2· (a 2b - 2)-3.解: (1)a -2÷ a 5= a -2- 5=a -7= a 17;b 3-6a 4 -b -(2)( 2) 2= - 4= a 4b 6 = 6; a ab 6(3)(a -1 b2 )3= a -3b6=ba 3;- - - - - -b 8 (4)a 2b 2· (a 2b 2) 3= a 2b 2· a 6 b 6= a 8b 8= 8.a[剖析 ] 本例题是应用推行后的整数指数幂的运算性质进行计算 ,与用正整数指数幂的 运算性质进行计算相同 ,但计算结果有负指数幂时 ,要写成分式形式.4. 练习:计算: (1)(x 3y - 2)2; (2)x 2y - 2· (x -2y)3;(3)(3x 2y -2 2 - 23) ÷ (x y) . 5.例 2 判断以下等式能否正确?(1)a m÷ a n= a m·a -n; (2)(ab)n = a n b -n .[ 剖析 ] 类比负数的引入使减法转变为加法 ,获得负指数幂的引入能够使除法转变为幂的乘法这个结论 ,从而使分式的运算与整式的运算一致同来 ,而后再判断等式能否正确.( 二)1.用科学记数法表示值较小的数因为 0.1= 1 = 10 - 110 ; 0.01=________= ________;0. 001= ________=________所以 0.000 025= 2.5× 0.000 01= 2.5×10-5.我们能够利用 10 的负整数次幂 ,用科学记数法表示一些绝对值较小的数,马上它们表示成 a ×10-n 的形式 ,此中 n 是正整数 ,1≤ |a|< 10.2. 例 3(教材例 10) 纳米是特别小的长度单位 , 1 纳米= 10-9米,把 1 纳米的物体放到 乒乓球上 ,就好像把乒乓球放到地球上 .1 立方毫米的空间能够放多少个1 立方纳米的物体?(物体之间的空隙忽视不计 )[ 剖析 ]这是一个介绍纳米的应用题,是应用科学记数法表示小于 1 的数.3.用科学记数法表示以下各数:0. 00 04,- 0.034,0.000 000 45, 0.003 009.4.计算:-8 3 -3 2 -3 3.(1)(3 × 10 )× (4× 10 ); (2)(2 ×10 ) ÷(10 )三、讲堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍旧成立.2.科学记数法不单能够表示一个值大于10 的数,也能够表示一些绝对值较小的数,在应用中,要注意 a 一定知足1≤ |a|< 10,此中 n 是正整数.四、部署作业教材第 147 页习题 15.2 第 7, 8, 9 题.本节课教课的主要内容是整数指数幂学设计上,教师要点发掘学生的潜伏能力,将从前所学的相关知识进行了扩大.在本节的教,让学生在讲堂上经过察看、考证、研究等活动,加深对新知识的理解.15.3分式方程(2课时)第 1 课时分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原由,并掌握解分式方程的验根方法.要点解分式方程的基本思路和解法.难点理解解分式方程时可能无解的原由.一、复习引入问题: 一艘轮船在静水中的最大航速为 30 km/h ,它以最大航速沿江顺流航行 90 km 所用时间 ,与以最大航速逆流航行 60 km 所用的时间相等 ,江水的流速为多少?90=60[ 剖析 ] 设江水的流速为 x 千米 /时,依据题意 ,得 30+ v 30- v .①方程①有何特色?[ 归纳 ] 方程①中含有分式 ,并且分母中含有未知数 ,像这样的方程叫做分式方程. 发问:你还可以举出一个分式方程的例子吗? 辨析:判断以下各式哪个是分式方程.x + 2= 2y - z ; (3)1; (4)y=0; (5)1+ 2x = 5.(1)x + y = 5; (2) 5 3 x x + 5 x依据定义可得: (1)(2) 是整式方程 , (3) 是分式 , (4)(5) 是分式方程.二、研究新知1. 思虑:如何解分式方程呢?为认识决本问题 ,请同学们先思虑并回答以下问题:(1) 回首一下解一元一次方程时是怎么去分母的,从中可否获得一点启迪?(2) 有没有方法能够去掉分式方程的分母把它转变为整式方程呢? [ 可先松手让学生自主研究 ,合作学习并进行总结]方程①能够解答以下:方程两边同乘以 (30+ v)(30 -v),约去分母 ,得 90(30- v)= 60(30 + v). 解这个整式方程 ,得 v = 6. 所以江水的流度为 6 千米 /时.[ 归纳 ]上述解分式方程的过程 ,实质上是将方程的两边乘以同一个整式 ,约去分母 ,把分式方程转变为整式方程来解.所乘的整式往常取方程中出现的各分式的最简公分母.2. 例 1 解方程:1 = 210.②x - 5 x - 25解:方程两边同乘 (x 2- 25),约去分母 ,得 x + 5= 10.解这个整式方程 ,得 x = 5.事实上 ,当 x = 5 时,原分式方程左侧和右侧的分母 (x - 5)与 (x 2- 25)都是 0,方程中出现的两个分式都没存心义 ,所以 ,x = 5 不是分式方程的根 ,应当舍去 ,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不合适原分式方程的解 (或根 ) ,这类根往常称为增根.所以,在解分式方程时一定进行查验.3.那么,可能产生“增根”的原由在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母 ).方程①两边乘 (30+ v)(30 - v),获得整式方程,它的解 v=6.当 v= 6 时, (30+ v)(30 - v)≠ 0,这就是说,去分母时,①两边乘了同一个不为 0 的式子,所以所得整式方程的解与①的解相同.方程②两边乘(x- 5)(x + 5),获得整式方程,它的解 x= 5.当 x= 5 时,(x -5)(x + 5)= 0,这就是说,去分母时,②两边乘了同一个等于0 的式子,这时所得整式方程的解使②出现分母为 0 的现象,所以这样的解不是②的解.4.验根的方法:解分式方程进行查验的要点是看所求得的整式方程的根能否使原分式方程中的分式的分母为零.有时为了简易起见,也可将它代入所乘的整式 (即最简公分母 ),看它的值能否为零.假如为零,即为增根.如例 1 中的 x= 5,代入 x2- 25=0,可知 x= 5 是原分式方程的增根.三、举例剖析例 2(教材例 1) 解方程 2 =3.x- 3 x解:方程两边乘x(x -3) ,得 2x = 3x- 9.解得 x= 9.查验:当x= 9 时, x(x - 3)≠ 0.所以,原分式方程的解为x=9.例 3(教材例 2) 解方程x - 1= 3.x- 1 (x- 1)( x+ 2)解:方程两边乘 (x- 1)(x +2),得x(x + 2)- (x- 1)(x + 2)= 3.解得 x= 1.查验:当x= 1 时, (x-1)(x + 2)= 0,所以 x= 1 不是原分式方程的解.所以,原分式方程无解.四、讲堂小结1.分式方程:分母中含有未知数的方程.2.解分式方程的一般步骤以下:。
人教版八年级数学第十五章《分式化简》全章教案

人教版八年级数学第十五章《分式化简》全章教案教学目标- 了解分式的概念和性质- 学会化简分式- 掌握将带分数化为假分数的方法- 学会对分式进行运算教学内容第一节分式的基本概念1. 分式的定义和组成部分2. 分式的分类和性质3. 分式的化简方法和步骤第二节分式的化简1. 化简基本分式2. 化简复杂分式3. 化简含有括号的分式第三节带分数的化简1. 带分数的定义和特点2. 将带分数化为假分数的方法和步骤第四节分数的运算1. 分数的加减法2. 分数的乘法3. 分数的除法教学步骤第一节分式的基本概念1. 引入分式的概念,让学生了解分式在数学中的作用和意义。
2. 解释分数的组成部分,例如分子、分母的含义。
3. 介绍分式的分类和性质,让学生了解不同类型的分式有哪些特点。
第二节分式的化简1. 给学生提供一些基本分式的例子,让他们学会化简这些分式。
2. 引导学生思考如何化简复杂的分式,给予他们一些策略和方法。
3. 解释如何化简含有括号的分式,让学生明白括号的运算规则对于化简的影响。
第三节带分数的化简1. 介绍带分数的定义和特点,让学生理解带分数是一种特殊的分数形式。
2. 教授将带分数化为假分数的方法,指导学生进行相关的练。
第四节分数的运算1. 引导学生进行分数的加减法练,让他们掌握不同分数之间的运算规则。
2. 介绍分数的乘法和除法,解释相应的运算规则。
3. 给学生一些练题,让他们运用所学知识进行分数运算。
教学资源- 课本《数学八年级》第十五章节内容- 手写板或投影仪- 课件和练册教学评价- 在课堂上指导学生进行相关的练,即时纠正他们的错误。
- 布置课后作业,检查学生对于分式化简的掌握情况。
- 进行小组或个人演示,评估学生对于分数运算的理解和应用能力。
课堂延伸- 鼓励学生在生活中寻找和分式相关的实际应用,如实际分配问题、比例和利润计算等。
- 激发学生对于数学的兴趣,鼓励他们进行相关的探索和研究。
以上是《人教版八年级数学第十五章《分式化简》全章教案》的内容。
人教版-幂的乘方教学设计2024-2025学年八年级上册数学

《幂的乘方》教学设计一、课题名称幂的乘方二、课程课时1课时三、教材内容分析本节课是人教版八年级上册数学第十五章《整式的乘除与因式分解》中的内容。
幂的乘方是在学习了同底数幂的乘法之后,对幂的运算的进一步拓展。
教材通过具体的例子引导学生观察、分析、归纳出幂的乘方的运算法则,让学生体会从特殊到一般的数学思想方法。
四、课标目标1.理解幂的乘方的运算法则。
2.能运用幂的乘方的运算法则进行计算。
五、教学重点、难点1.教学重点幂的乘方运算法则的推导过程。
运用幂的乘方运算法则进行计算。
2.教学难点对幂的乘方运算法则的理解。
法则中指数的运算。
六、课的类型及主要教学方法1.课的类型:新授课。
2.主要教学方法:讲授法、探究法、练习法。
七、教学过程1.导入新课教学环节:复习旧知。
教师活动:同学们,我们上节课学习了同底数幂的乘法,谁能来说一下同底数幂的乘法法则是什么?学生活动:学生回答同底数幂的乘法法则:aᵐ×aⁿ=aᵐ+ⁿ(m、n都是正整数)。
设计意图:通过复习旧知,为学习幂的乘方做铺垫。
目标达成预测:学生能够准确回答同底数幂的乘法法则。
2.讲授新课探索幂的乘方运算法则教学环节:计算式子。
教师活动:现在我们来计算一下(a²)³和(a³)²,看看结果是多少?并观察式子的特点。
学生活动:学生进行计算,(a²)³=a²×a²×a²=a ²+²+²=a⁶,(a³)²=a³×a³=a³+³=a⁶。
并发现式子是幂的乘方形式。
设计意图:通过具体的计算,让学生初步感受幂的乘方的特点。
目标达成预测:学生能够正确计算式子的结果,并观察到式子的特点。
教学环节:引导归纳。
教师活动:同学们,我们再来计算一下(a⁴)³、(a ⁵)²等式子,看看它们有什么规律?学生活动:学生进行计算,(a⁴)³=a⁴×a⁴×a⁴=a ⁴+⁴+⁴=a¹²,(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹⁰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章分式15.1.1从分数到分式教学对象:八年级(4)、(6)班备课时间:2016/11/22教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能: 使学生了解分式的概念,明确分式中分母不能为0是分式成立的条件.2.过程与方法: 使学生能求出分式有意义的条件.3.情感与价值观: 通过对分式的学习,培养学生严谨的学习态度,培养学生数学建模的思想.教学重点:理解分式的概念,明确分式成立的条件.教学难点:明确分式有意义的条件.教学过程:一、引入1.让学生填写[思考],学生自己依次填出:,,,.2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B 都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.动动脑:710a s 33200s v v +20100v-2060v +20100v-2060v +20100v -2060a s sv引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式才有意义. 二、例题讲解例1. 当x 为何值时,分式 有意义. 已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围. 例2. 当m 为何值时,分式的值为0?(1) (2) (3) 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.三、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, ,, , , 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3) 四、小结:谈谈你的收获五、布置作业练习题中的1、2题B A x 7209y +54-m 238y y -91-x 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --2212312-+x x15.1.2分式的基本性质(一)教学对象:八年级(4)、(6)班备课时间:2016/11/22教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能:理解分式的基本性质.2.过程与方法:会用分式的基本性质将分式约分.3.情感与价值观: 通过对分式的基本性质的学习培养学生抽象概括的能力. 教学重点:理解分式的基本性质。
教学难点:分式基本性质的运用。
教学过程一、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.分式的基本性质:分式的分子、分母同乘以(或除以)同一个整式,使分式的值不变. 可用式子表示为:==(C ≠0) B A CB C A ••B A CB C A ÷÷4320152498343201524983二、例题讲解例1.填空:(1) = (2) = 例2.约分: (1)(2) 三、随堂练习1.填空:(1) = (2)=2.约分:(1) (2)四、小结谈谈你的收获五、布置作业习题中2、4题c a b ++1()cn an +()222y x y x +-()y x -532164xyz yz x -x y y x --3)(2x x x 3222+()3+x 32386b b a ()33a c ab b a 22632228mn nm15.1.2分式的基本性质(二)教学对象:八年级(4)、(6)班备课时间:2016/11/23教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能: 使学生在理解分式的基本性质的基础上对分式进行通分和约分.2.过程与方法: 通过对分式的化简来提高学生的运算能力.3.情感与价值观:渗透类比转化的数学思想方法.教学重点:理解分式的基本性质. 掌握通分。
教学难点:灵活运用分式基本性质进行分式的通分和约分。
三、教学过程一、复习引入1.判断下列约分是否正确:(1)= (2)= (3)=0 2.通分和 和c b c a ++b a 22y x y x --y x +1nm n m ++436512183二、例题讲解例.通分:(1)和 (2)和 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.三、随堂练习1.通分:(1)和 (2)和 四、小结谈谈你的收获五、布置作业资料上的4、5两小题223ab c 28bca -11-y 11+y 321ab cb a 2252xy a 223xb15.2.1分式的乘除(一)教学对象:八年级(4)、(6)班备课时间:2016/11/25教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能: 使学生在理解分式的乘除法法则,并用法则进行运算.2.过程与方法: 通过对分式的乘除法的学习,会进行分式乘除运算.3.情感与价值观: 教学过程中体现类比的转化思想.教学重点:分式的乘除法运算.教学难点:分母与分子是多项式时的分式的乘除法.教学过程一、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.P14[观察] 从上面的算式可以看到分式的乘除法法则.P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?nm ab v ⋅⎪⎭⎫ ⎝⎛÷n b m a类似分数的乘除法法则得到分式的乘除法法则的结论.二、例题讲解例1. (1) (2) [分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.例2. (1) (2) [分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.例3.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高.三、随堂练习计算(1) (2)-8xy (3) 四、小结谈谈你的收获五、布置作业课本中第1、2、3题322542n m m n ⋅-⎪⎭⎫ ⎝⎛-÷x x y 274411242222++-⋅+--a a a a a a )3(2962y y y y -÷++-15002-a ()21500-a ab c 2c b a 22⋅x y 52÷b a ab abb a 234222-⋅-15.2.1分式的乘除(二)教学对象:八年级(4)、(6)班备课时间:2016/11/25教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能: 使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算.2.过程与方法: 使学生理解并掌握分式乘方的运算性质.3.情感与价值观: 能运用分式的这一性质进行运算法.教学重点:熟练分式的乘除混合运算和分式的乘方.教学难点:熟练乘方运算性质的理解和运算.教学过程一、课堂引入计算(1) (2) 二、例题讲解例1.计算(1) (2) [分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.例2.计算(1) )(x y y x x y -⋅÷)21()3(43xy x y x -⋅-÷)2(216322b a a bc a b -⋅÷9323496222-⋅+-÷-+-a a b a ba a )4(3)98(23232b x b a xy y x ab -÷-⋅= (先把除法统一成乘法运算) = (判断运算的符号) = (约分到最简分式) (2) = (先把除法统一成乘法运算) = (分子、分母中的多项式分解因式) == 三、随堂练习计算(1) (2) 四、小结谈谈你的收获五、布置作业资料上7、8题xb b a xy y x ab 34)98(23232-⋅-⋅xb b a xy y x ab 349823232⋅⋅32916ax b x x x x xx x --+⋅+÷+--3)2)(3()3(444622x x x x x x x --+⋅+⋅+--3)2)(3(31444622x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x 22--x )6(4382642z y x y x y x -÷⋅-22222)(x y x xy y xy x x xy -⋅+-÷-15.2.1分式的乘除(三)教学对象:八年级(4)、(6)班备课时间:2016/11/26教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能:进一步理解分式乘除法混合运算的运算法则.2.过程与方法:熟练掌握分式运用公式来运算.3.情感与价值观: 解决乘方的问题,在符号问题上的方法.教学重点:复杂的分式乘除运算.教学难点:复杂分式乘、除、乘方的混合运算的步骤.教学过程一、课堂引入计算下列各题:(1)==( ) (2) ==( ) (3)==( ) [提问]由以上计算的结果你能推出(n 为正整数)的结果吗?二、例题讲解例.(1) (2) 2)(b a⋅b a b a 3)(b a ⋅b a ⋅b a b a 4)(b a⋅b a ⋅b a b a ba ⋅nb a)(332)2(ab -4234223)()()(c a ba cb ac ÷÷[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.三、随堂练习1.判断下列各式是否成立,并改正.(1)= (2)= (3)= (4)= 2.计算(1) (2) (2) (3) (4) (5) 四、小结谈谈你的收获五、布置作业习题2、3两题23)2(a b 252a b 2)23(ab -2249a b -3)32(x y -3398x y 2)3(bx x -2229b x x -22)35(y x 332)23(c b a -32223)2()3(x ay xy a -÷23322)()(z x zy x -÷-)()()(422xy x y y x -÷-⋅-232)23()23()2(ayx y x x y -÷-⋅-15.2.2分式的加减(一)教学对象:八年级(4)、(6)班备课时间:2016/11/27教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能:熟练地进行同分母的分式加减法的运算.2.过程与方法:会把异分母的分式通分,转化成同分母的分式相加减.3.情感与价值观: 通过对分式的加减法的学习,提高学生的计算能力. 教学重点:进行异分母的分式加减法的运算.教学难点:熟练地进行异分母的分式加减法的运算.教学过程一、课堂引入1.ppt 出示问题3和问题4.从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出的最简公分母是什么?你能说出最简公分母的确定方法吗?二、例题讲解例1.计算(1) 2243291,31,21xy y x y x ba ab b a b a b a b a 22255523--+++(2) [分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;例2.计算 解: = == = = 三、随堂练习计算(1) (2)四、小结谈谈你的收获五、布置作业课后习题第7、8题96312-++a a 96261312--+-+-x x x x 96261312--+-+-x x x x )3)(3(6)3(2131-+-+-+-x x x x x )3)(3(212)3)(1()3(2-+---++x x x x x )3)(3(2)96(2-++--x x x x )3)(3(2)3(2-+--x x x 623+--x x mn m n m n m n n m -+---+22b a b a b a b a b a b a b a b a ---+-----+-8754656315.2.2分式的加减(二)教学对象:八年级(4)、(6)班备课时间:2016/11/28教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能:在掌握分式的加减法法则的基础上,用法则进行分式的混合运算.2.过程与方法:对分式的加减法进一步学习,提高学生的计算能力和分式的应用能力.3.情感与价值观: 培养学生乐于探究、合作交流的习惯,进一步培养学生的数学意识. 教学重点:熟练地进行分式的混合运算.教学难点:正确熟练进行分式的运算.教学过程一、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.二、例题讲解例1.计算(1) (2) [分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.)1)(1(yx x y x y +--+22242)44122(aa a a a a a a a a -÷-⋅+----+例2计算 解: = = = = 三、随堂练习计算(1) (2) (3) (4)计算,并求出当-1的值. 四、小结谈谈你的收获五、布置作业习题4、6题2224442y x x y x y x y x y y x x +÷--+⋅-2224442y x x y x y x y x y y x x +÷--+⋅-22222224))((2x y x y x y x y x y x y y x x +⋅-+-+⋅-2222))((yx y x y x y x xy --⋅+-))(()(y x y x x y xy +--y x xy +-xx x x x 22)242(2+÷-+-)11()(ba ab b b a a -÷---)2122()41223(2+--÷-+-a a a a 24)2121(a a a ÷--+=a15.2.3整数指数幂教学对象:八年级(4)、(6)班备课时间:2016/11/27教学用具:PPT 课件、教案、课本等教学目标:1.知识与技能:知道负整数指数幂=(a ≠0,n 是正整数),掌握整数指数幂的运算性质.2.过程与方法:会用科学计数法表示小于1的数.3.情感与价值观: 会进行简单的整数范围内的幂运算.教学重点:掌握整数指数幂的运算性质.教学难点:会用科学计数法表示小于1的数.教学过程一、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:(m,n 是正整数);(2)幂的乘方:(m,n 是正整数); (3)积的乘方:(n 是正整数);(4)同底数的幂的除法:( a ≠0,m,n 是正整数,m >n); (5)商的乘方:(n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,.n a -na 1n m n m a a a +=⋅mn n m aa =)(n nn b a ab =)(n m n m a a a -=÷n nn ba b a =)(10=a3.你还记得1纳米=10-9米,即1纳米=米吗? 4.计算当a ≠0时,===,再假设正整数指数幂的运算性质(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么==.于是得到=(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,=(a ≠0). 二、例题讲解例1.计算(1)20= (2)2 -3= (3)(-2) -3=例2. 计算( 1)x 2y -2 ·(x -2y)3 (2) (2×10-3)2÷(10-3)3例3. 用科学计数法表示下列各数:0. 003 009 -0. 0000000307三、随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)33. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45,4.计算(3×10-8)×(4×103)四、小结谈谈你的收获五、布置作业.练习题的第9题 910153a a ÷53a a 233a a a ⋅21a n m n m a a a -=÷53a a ÷53-a 2-a 2-a 21an a -n a115.3 分式方程(一)教学对象:八年级(4)、(6)班备课时间:2016/11/29教学用具:PPT课件、教案、课本等教学目标:1.知识与技能:使学生理解分式方程的意义.2.过程与方法:使学生掌握可化为一元一次方程的分式方程的一般解法.3.情感与价值观:了解解分式方程解的检验方法.从而渗透数学的转化思想.教学重点:可化为一元一次方程的分式方程的解法.教学难点:检验分式方程解的原因教学过程一、复习及引入新课什么叫方程?什么叫方程的解?含有未知数的等式叫做方程,而使方程两边相等的未知数的值就叫做叫做方程的解二、新课讲解分式方程是怎样定义的?分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v 千米/时,可列方程=解方程得:v =5检验:v =5为方程的解。