轴对称图形专项练习题80

合集下载

轴对称作图折叠剪纸专项练习30题(有答案)ok

轴对称作图折叠剪纸专项练习30题(有答案)ok

轴对称作图折叠剪纸专项练习30题(有答案)1.如图,在正方形网格上有一个△DEF.(1)作△DEF关于直线HG的轴对称图形;(2)作△DEF的EF边上的高;(3)若网格上的最小正方形边长为1,求△DEF的面积.2.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.3.如图,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△_________与△_________成轴对称,对称轴是_________;△_________与△_________成中心对称,对称中心的坐标是_________.4.已知:如图,△ABC、直线m、点M在网格中如图所示的位置,请按以下要求作图:(1)将△ABC向上平移6个单位得△A1B1C1;(2)作出△ABC关于直线m的轴对称图形△A2B2C2;(3)作出△A2B2C2绕点M顺时针旋转90°的图形△A3B3C3.5.△ABC在平面直角坐标系中如图所示,(1)作出△ABC关于x轴对称的图形△A1B1C1;若P(a,b)是△ABC内一点,请用a,b表示出点P关于x轴对称的点P1的坐标;(2)作出△ABC关于原点对称的图形△A2B2C2,写出点C2的坐标.(3)△A2B2C2能否由△A1B1C1通过某种变换而得到?若能,请指出是何种变换.6.在平面直角系中,已知△ABC和△DEF的顶点分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:(1)画出△ABC以点O为位似中心,在y轴异侧放大2倍后得到的△A1B1C1,并写出点C1的坐标;(2)画出△A1B1C1关于x轴的对称图形△A2B2C2.并写出点C2的坐标;(3)指出△A2B2C2经过哪些变换,可以与△DEF拼成一个正方形.7.作图题(1)如图1,作出△ABC关于直线l的对称图形;(2)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图2),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.8.(1)如图,作出△ABC关于直线l的对称图形;(2)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.9.如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,怎样击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球?请画出A球经过的路线,并写出作法.10.如图,直线m是一个轴对称图形的对称轴,画出这个轴对称图形的另一半;若它是一个正五角星,那么它一共有几条对称轴?它的五个星角(最外围5个角)度数之和是多少度?11.把一张正方形纸片按如图①、图②对折两次后,得到图③,并在其中挖去一个三角形小孔,请你画出展开后的图形(折痕用虚线画出).12.小明把一张长方形纸片对折两次,画上一个四边形,再剪去这个图形(镂空),展开长方形纸,得到如下的图案,设折痕为l1、l2、l3,观察图并填空:(1)图中有_________条对称轴;(2)四边形①与四边形②关于_________成轴对称,折痕l2既是_________与_________的对称轴,又是_________与_________的对称轴,整体上看也是_________与_________的对称轴;(3)若小明把纸片对折三次,展开后,得到的四边形有几个,有几条对称轴?13.如图所示,将三角形纸片ABC的一个角折叠,折痕为EF,若∠A=80°;∠B=68°;∠CFE=78°,求∠CEF的度数.14.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC 交于点F.(1)填空:∠AFC=_________度;(2)求∠EDF的度数.15.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD=_________度;(2)求∠CAE的度数.16.如图,矩形ABCD,AB>AD,E在AD上,将△ABE沿BE折叠后,A点正好落在CD上的点F.(1)用尺规作出E、F;(2)若AE=5,DE=3,求DF的长.17.如图所示,将矩形ABCD沿着直线BD折叠,使点C落在点C′,BC′交AD于点E,AD=8,AB=4.(1)求证:△BED是等腰三角形;(2)求△BED的面积.18.如图所示,在矩形ABCD中,已知BC=2AB,E是CD上一点,连接BE,将矩形沿直线BE折叠,使点C落在AD的F点上,连接CF,求∠DCF的度数.19.如图,请你用三种方法把左边的小正方形分别平移到右边三个图形中,使它成为轴对称图形.20.长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD折叠,使点C 与点A重合,折痕为EF.(1)如果∠DEF=123°,求∠BAF的度数;(2)判断△ABF和△AGE是否全等吗?请说明理由.21.将矩形纸片ABCD沿着对角线AC折叠,使点B落在点E处.(1)EF和DF的大小关系如何?请说明理由.(2)若∠ACB=20,求∠EAF的度数.22.如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC为折痕,点E、A′、B′在同一条直线上.(1)猜想折痕EC和ED的位置关系,并说明理由.(2)ED的反向延长线交CA交于F,若∠BED=35°,求∠AEF和∠A′EC的度数.23.如图,将一张长方形纸片ABCD先以FG为折痕斜折过去,使角的顶点A落在A′处,再把BF折过去,折痕为EF.若∠AFG=25°,则∠BFE的度数是多少?24.(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H 重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.25.如图,在Rt△ABC中,∠ACB=90゜,∠A=50゜,将其折叠,使点A落在边CB上A′处,折痕为CD.求∠A′DB 的度数.26.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,请回答下列问题:(1)线段PC、PB与正方形的边长有什么关系?(2)∠CPB的度数是多少?(3)还能知道哪些角的度数?请指出来.27.如图,△AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.28.如图,折叠长方形ABCD的一边AD,点D落在BC边的D′处,AE是折痕,已知AB=8cm,CD′=4cm,求AD的长.29.如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,求∠DAE的度数.30.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长.参考答案:1.解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;(2)如图所示,DH为EF边上的高线;(3)△DEF的面积=×3×2=32.解:(1)各点坐标为:A1(0,4),B1(2,2),C1(1,1)(2)各点坐标为:A2(6,4),B2(4,2),C2(5,1)(3)△A1B1C1与△A2B2C2关于直线x=3轴对称3.解:(1)(2)(3)如图所示;(4)由图可知:△A2B2C2与△A3B3C3呈轴对称,且对称轴为y轴;△A1B1C1与△A3B3C3呈中心对称,且对称中心为(2,0).故答案为:A2B2C2 ,A3B3C3,y轴;A1B1C1,A3B3C3,(2,0).4.解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)如图所示:△A3B3C3即为所求.5.解:(1)△A1B1C1如图所示,点P1的坐标为(a,﹣b);(2)△A2B2C2如图所示,点C2的坐标(2,0);(3)△A2B2C2能由△A1B1C1通过变换得到,是关于y轴对称.6.解:(1)如图所示,△A1B1C1即为所求作的三角形,C1(﹣4,﹣2);(2)如图所示,△A2B2C2即为所求作的三角形,C2(﹣4,2);(3)如图,利用△A2B2C2关于x轴的对称图形△A1B1C1,向下平移1个单位,再绕点Q顺时针旋转90°,使B2A2与DF重合,可以与△DEF拼成一个正方形7.解:(1)如图1所示:(2)如图2所示,8.解:(1)如图所示:(2)如图所示:有两个P点.9.解:作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A球撞击桌面边缘CF的位置10.解:所画图形如右所示:这个图形是一个五角星,它有5条对称轴;∵∠1+∠2=∠6,3+∠4=∠5,∠1+∠5+∠6=180°,∴∠1+∠2+∠3+∠4+∠7=180°,故它的五个星角(最外围5个角)度数之和是180度11.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边12.解:(1)3;(2)l1,②与③,①与④,①②与③④;(3)若小明把纸片对折三次,展开后得到的四边形有八个,有7条对称轴13.解:∵△ABC中,∠A=80°,∠B=68°,∴∠C=180°﹣80°﹣68°=32°,∵△AEF中,∠C=32°,∠CFE=78°,∴∠CEF=180°﹣32°﹣78°=70°14.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°15.解:(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°﹣90°﹣50°=40°.故答案为:40;(2)解法一:∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED﹣∠C=50°﹣30°=20°.解法二:∵△AED是由△ABD折叠得到,∴∠EAD=∠BAD=40°,∴∠BAE=80°,∴∠CAE=180°﹣∠B﹣∠C﹣∠BAE=180°﹣50°﹣30°﹣80°=20°16.解:(1)作法:①作BF=BA交CD于F,②连BF作∠ABF的平分线,则点E、F为所求;(2)连接EF,由条件知:Rt△ABE≌Rt△FBE,∴EF=AE,又∵AE=5,DE=3,∠D=90°,∴DF===417.(1)证明:根据翻折的性质可得:∠2=∠3,又AD∥BC,∴∠1=∠3,∴∠1=∠2,△BED是等腰三角形,得证.(2)解:设ED=x,则AE=8﹣x,BE=ED=x,在Rt△ABE中,根据勾股定理有AB2+AE2=BE2,代入得:42+(8﹣x)2=x2,解得:x=5,S△BED=ED•AB==1018.解:∵将矩形沿直线BE折叠,使点C落在AD的F点上,∴BF=BC,EF=EC,∠EFB=∠BCD=90°,在Rt△ABF中,BF=BC,而BC=2AB,∴BF=2AB,∴∠AFB=30°,∴∠DFE=90°﹣30°=60°,∴∠DEF=30°,∵EF=EC,∴∠ECF=∠EFC,∴∠ECF=∠DEF=15°19.解:设计图案如下:20.解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠DAB=90°,AD∥BC.∴∠AEF=∠CFE.∵∠DEF+∠AEF=180°,且∠DEF=123°,∴∠AEF=57°,∴∠CFE=57°.∵四边形CDEF与四边形AGEF关于EF对称,∴四边形CDEF≌四边形AGEF∴∠G=∠C=∠D=∠GAF=90°.AG=CD,∠AFE=∠CFE.∴∠AFE=57°.∵∠BFA+∠AFE+∠CFE=180°,∴∠BFA=66°.∵∠BFA+∠BAF=90°,∴∠BAF=24°.答:∠BAF的度数为24°;(2)△ABF≌△AGE.∵AG=CD∴AB=AG.∵∠BAE=90°,∠GAF=90°,∴∠BAE=∠GAF,∴∠BAE﹣∠EAF=∠GAF﹣∠EAF,∴∠BAF=∠GAE.在△ABF和△AGE中,∴△ABF≌△AGE(ASA)21.解:(1)EF=DF,理由为:由折叠的性质得到△ABC≌△AEC,再由矩形的性质得到△ABC≌△ADC,∴△AEC≌△ADC,∠E=∠D=90°,∴∠DAC=∠ECA,∴AF=CF,在△AEF和△CDF中,,∴△AEF≌△CDF(AAS),则EF=DF;(2)∵AD∥BC,∴∠DAC=∠ACB=20°,∵在Rt△ABC中,∠B=90°,∠ACB=20°,∴∠BAC=∠EAC=60°,则∠EAF=∠EAC﹣∠DAC=40°22.解:(1)折痕EC和ED是垂直关系.∵EC和ED是折痕,理由:∴∠1=∠2,∠3=∠4,又∵∠1+∠2+∠3+∠4=180°,∴2(∠2+∠3)=180°,∴∠2+∠3=90°,即CE⊥ED,∴折痕EC和ED是垂直关系.(2)由(1)知CE⊥ED,∴∠2+∠3=90°,又∵∠2=∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,即∠A′EC=55°;∵ED的反向延长线交CA交于F,∴∠AEF=∠1=35°.23.解:∵△A′GF由△AGF翻折而成,四边形B′C′EF由四边形BCEF翻折而成,∴∠AFG=∠A′FG=25°,∠BFE=∠B′FE,∴∠BFE+∠B′FE=180°﹣(∠AFG+∠A′FG)=180°﹣50°=130°,∴∠BFE==65°.答:∠BFE的度数是65°24.解:(1)∠1+∠2=2∠A;(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°∵IB平分∠ABC,IC平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BIC=180°﹣(∠IBC+∠ICB),=180°﹣(90°﹣∠A)=90°+×65°=122.5°;(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,∴∠BHC=∠FHG=180°﹣∠A,由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),∴∠BHC=180°﹣(∠1+∠2)25.解:∵将△ACD折叠,使点A落在边CB上A′处,折痕为CD,∠ACB=90°,∴∠DCA=∠BCD=45°,∠CDA=∠CDA′,∴∠CDA=180°﹣∠DCA﹣∠A=180°﹣45°﹣50°=85°,∴∠CDA′=85°,∵∠BDC=∠A+∠DCA=50°+45°=95°,∴∠A′DB=∠BDC﹣∠A′DC=95°﹣85°=10°.26.解:(1)通过翻折变换的特点可知线段PC、PB与正方形的边长相等;(2)∵PC=PB=BC,∴∠CPB=60°;(3)由(2)可知:∠DCP=∠ABP=∠PEF=∠PFE=30°,∠PED=∠AFP=150°.27.解:O′D与AC平行.理由如下:∵O′C∥BD,∴∠2=∠4.∵∠2=∠1,∠3=∠4,∴∠3=∠1.∴O′D∥AC28.解:∵折叠长方形ABCD的一边AD,点D落在BC边的D′处,∴AD=AD′,设AD=xcm,则BD′=(x﹣4)cm,在Rt△ABD′中,AD′2=AB2+D′B2,即x2=82+(x﹣4)2,解得x=10,即AD的长为:10cm29.解:在△ABC中,∠BAC=140°,∴∠B+∠C=180°﹣140°=40°,根据翻折的性质,∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=∠B+∠C=40°,∴∠DAE=∠BAC﹣∠DAC﹣∠CAE=140°﹣40°=100°30.解:根据轴对称的性质得:OE=EM,OF=FN△OEF的=OE+OF+EF=ME+EF+FN=MN=5cm∴△OEF的周长为5cm.。

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)

人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。

专题 轴对称图形和性质 专项训练七年级数学下册

专题 轴对称图形和性质  专项训练七年级数学下册

专题5.1轴对称图形和性质(专项训练)(2023春•青秀区校级月考)1. 下列图形中是轴对称图形的是()A. B. C. D.(2023•莲湖区三模)2. 下面关于食品安全的图形中,是轴对称图形的是()A. B.C. D.(2023•南岗区校级一模)3. 下列图形中,不是轴对称图形的是()A. B. C. D.(2023•佛山一模)4. “甲骨文”是中国的一种古老文字,又称“契文”“殷墟文字”,下列甲骨文中,一定不是轴对称图形的是()A. B. C. D.(2023春•海淀区校级月考)5. 图中的图形为轴对称图形,该图形的对称轴的条数为( )A. 1B. 2C. 4D. 8(2021春•威宁县校级期末)6. 在汉字“生活中的日常用品”中,成轴对称的有( )A. 2个B. 3个C. 4个D. 5个(2023•保亭县一模)7. 如图,ABC 与A B C '''∆关于直线l 对称,则B ∠的度数为___.(2023•大埔县校级开学)8. 如图,△ABC 与△DEF 关于直线l 对称,若∠C =40°,∠B =80°,则∠F =______.(2023•陵水县一模)9. 如图,ABC 与A B C '''∆关于直线l 对称,则B ∠的度数为___.(2023•崖州区一模)10. 如图,如果直线l 是ABC 的对称轴,其中70B ∠=︒,则C ∠的度数为___________.(2023•定安县一模)11. 如图,点D 为ABC 的边AC 上一点,点B ,C 关于DE 对称,若6AC =,2AD =,则线段BD 的长度为______.(2022秋•西湖区校级期末)12. 如图,ABC 与DEF 关于直线l 对称,若65A ∠=︒,80B ∠=︒,则F ∠=_________.(2023•琼海一模)13. △ABC 与A B C ''' 关于直线l 对称,则∠B 的度数为________.(2022秋•宣州区期末)14. 如图,在面积为4的等边ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是_____________.(2021春•含山县期末)15. 如图,在边长为1的小正方形网格中,△AOB 的顶点均在恪点上.(1)B 点关于y 轴的对称点坐标为 ;(2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,在图中画出△A 1O 1B 1,并标出点的坐标;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后点P 的对应点P 1的坐标为 .(2020秋•南京期末)16. 如图,在平面直角坐标系中,已知点(14)(44)(21)A B C ---,,,,,,直线l 经过点(1,0),且与y 轴平行.(1)请在图中画出△ABC ;(2)若△A 1B 1C 1与△ABC 关于直线l 对称.请在图中画出△A 1B 1C 1;(3)若点P (a ,b )关于直线l 的对称点为P 1,则点P 1的坐标是 .(2022秋•陕州区期末)17. 如图,点M ,N 在直线l 的同侧,小东同学想通过作图在直线l 上确定一点Q ,使MQ 与QN 的和最小,那么下面的操作正确的是( )A. B.C. D.(2022秋•金平区期末)18. 某区计划在公路旁修建一个核酸采集点P,现有如下四种方案,则核酸采集点P到A B、两个小区之间的距离之和最短的是()A. B.C. D.(2022秋•河口区期末)19. 如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA 于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为( )A. 6cmB. 5cmC. 4cmD. 3cm(2022秋•香洲区期末)20. 已知30AOB ∠=︒,在AOB ∠内有一定点P ,点M ,N 分别是,OA OB 上的动点,若PMN 的周长最小值为3,则OP 的长为( )A. 1.5B. 3C.D. (2023•紫金县校级开学)21. 如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6 cm ,则∠AOB 的度数是( )A. 15B. 30C. 45D. 60(2022秋•湖里区期末)22. 如图,在四边形ABCD 中,C α∠=︒,90B D ∠=∠=︒,E ,F 分别是BC ,DC 上的点,当AEF △的周长最小时,EAF ∠的度数为( )A. αB. 2αC. 180α- D. 1802α-(2022秋•东丽区期末)23. 如图,在四边形ABCD 中,72,90C B D ∠=︒∠=∠=︒,M ,N 分别是BC ,DC 上的点,当AMN 的周长最小时,MAN ∠的度数为( )A. 72︒B. 36︒C. 108︒D. 38︒24. 如图,在△ABC 中,AB =3,AC =4,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP +BP 的最小值是( )A. 4B. 5C. 6D. 725. 如图,AD 是等边△ABC 的BC 边上的中线,F 是AD 边上的动点,E 是AC 边上动点,当EF +CF 取得最小值时,则∠ECF 的度数为( )A. 15°B. 22.5°C. 30°D. 45°26. 如图,在△ABC 中,AB=AC ,BC=4,面积是14,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A. 6B. 8C. 9D. 1027. 如图,在等边△ABC 中,点E 是AC 边的中点,点P 是△ABC 的中线AD 上的动点,且AD =6,则EP +CP 的最小值是( )A. 12B. 9C. 6D. 3(2022秋•市北区校级期末)28. 如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为( )A. 18︒B. 19︒C. 20︒D. 21︒(2021秋•琼海期末)29. 如图,点D 与点D 关于AE 对称,'56CED ∠=︒,则∠AED 的度数为( )A. 57°B. 60°C. 62°D. 67°(2023春•城阳区期中)30. 如图,将一张长方形纸条沿某条直线折叠,若1116∠=︒,则2∠=( )A. 58︒B. 68︒C. 64︒D. 54︒54(2023春•江都区月考)31. 如图1是长方形纸带,25DEF ∠=︒,将纸带沿EF 折叠成图2,再沿GF 折叠成图3,则图3中的CFE ∠的度数是( )A. 100︒B. 105︒C. 110︒D. 120︒(2022秋•南充期末)32. 如图,长方形纸片ABCD ,P 为边AD 的中点,将纸片沿BP CP ,折叠,使点A 落在E 处,点D 落在F 处,若140∠=︒,则BPC ∠大小为( )A. 105︒B. 110︒C. 115︒D. 120︒(2022秋•川汇区期末)33. 如图,点D ,E 分别在ABC 的AB ,BC 边上,将BDE 沿DE 对折,使点B 与点C 重合,DE 为折痕,若70,A AC BD ∠=︒=,则B ∠的值是( )A. 45︒B. 60︒C. 35︒D. 40︒(2022秋•桥西区期末)34. 长方形ABCD 如图折叠,D 点折叠到D 的位置,已知40D FC '∠=︒,则∠=EFC ( )A. 120︒B. 115︒C. 112︒D. 110︒(2022秋•路北区校级期末)35. 如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC 外的A '处,折痕为DE .如果A CEA BDA αβγ''∠=∠=∠=,,,那么α,β,γ三个角的关系是( )A. 2γβα=+B. 2γαβ=+C. 22γαβ=+D. γαβ=+(2022秋•汝阳县期末)36. 将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A. 80°B. 90°C. 100°D. 110°(2022秋•禅城区期末)37. 如图把一张长方形的纸按如图那样折叠后,B 、D 两点分别落在了B ',D 点处,若6128AOB ''∠=︒,则BOG ∠的度数为( )A. 596'︒B. 5916'︒C. 574'︒D. 5744'︒(2023春•青秀区校级月考)38. 如图,长方形纸带ABCD 中,AD ∥CB ,将ABCD 沿EF 折叠,C 、D 两点分别与C ′、D ′对应,若∠1=2∠2,则∠1的度数为_____.(2023春•新城区校级月考)39. 如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E .若35CBD ∠=︒,则ADE ∠的度数为________.(2022秋•山西期末)40. 如图,在长方形纸片ABCD 中,AB CD ∥,将纸片ABCD 沿EF 折叠,A ,D 两点的对应点分别为点A ',D .若2CFE CFD ∠∠'=,则∠=AEF _________︒.(2023•长安区四模)41. 如图所示,将长方形ABCD 沿图中标示的DE 折叠,点E 在AB 边上,点A 恰好落在边BC 的点G 处,若54CDG ∠=︒,则DEG ∠的度数为___.专题5.1轴对称图形和性质(专项训练)(2023春•青秀区校级月考)【1题答案】【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项B、C、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项A能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2023•莲湖区三模)【2题答案】【答案】B【解析】【分析】根据轴对称图形的定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此解答即可.【详解】解:A、该图形不是轴对称图形,故此选项不合题意;B、该图形是轴对称图形,故此选项符合题意;C、该图形不是轴对称图形,故此选项不合题意;D、该图形不是轴对称图形,故此选项不合题意.故选:B.【点睛】本题考查了轴对称图形的识别,熟记轴对称图形的定义是解本题的关键.(2023•南岗区校级一模)【3题答案】【答案】A【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:A.【点睛】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.(2023•佛山一模)【4题答案】【答案】D【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,C选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以都是轴对称图形;D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2023春•海淀区校级月考)【5题答案】【答案】C【解析】【分析】根据轴对称的性质画出该图形的对称轴即可求解.【详解】解:由题意可知该图的对称轴如图所示:由图可知该图形的对称轴有4条.故选:C .【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.(2021春•威宁县校级期末)【6题答案】【答案】B【解析】【分析】根据轴对称的定义即可求解.【详解】根据轴对称的定义,在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选:B .【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知轴对称的定义.(2023•保亭县一模)【7题答案】【答案】100︒##100度【解析】【分析】根据轴对称的性质得出30C C '==︒∠∠,进而根据三角形内角和定理即可求解.【详解】解:ABC 与A B C '''∆关于直线l 对称,∴30C C '==︒∠∠;1805030100B ∴∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了轴对称的性质,三角形内角和定理,熟练掌握轴对称的性质以及三角形内角和定理是解题的关键.(2023•大埔县校级开学)【8题答案】【答案】40°【解析】【分析】根据轴对称的性质可得结果.【详解】∵△ABC 与△DEF 关于直线l 对称,∴△ABC ≌△DEF ,∴∠F=∠C=40°,故答案为40°.【点睛】本题考查了轴对称的性质.关于轴对称的两个三角形全等是解题的关键.(2023•陵水县一模)【9题答案】【答案】100︒##100度【解析】【分析】根据轴对称的性质得出30C C '==︒∠∠,进而根据三角形内角和定理即可求解.【详解】解:ABC 与A B C '''∆关于直线l 对称,∴30C C '==︒∠∠;1805030100B ∴∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了轴对称的性质,三角形内角和定理,熟练掌握轴对称的性质以及三角形内角和定理是解题的关键.(2023•崖州区一模)【10题答案】【答案】70︒##70度【解析】【分析】根据直线l 是ABC 的对称轴,得到C B ∠=∠,即可得解.【详解】解:∵直线l 是ABC 的对称轴,70B ∠=︒,∴ABC 是轴对称图形,70C B ∠=∠=︒;故答案为:70︒.【点睛】本题考查轴对称图形.根据直线l 是ABC 的对称轴,得到三角形是轴对称图形,是解题的关键.(2023•定安县一模)【11题答案】【答案】4【解析】【分析】证明BD DC =,可得结论.【详解】解:6AC = ,2AD =,624CD AC AD ∴=-=-=,B ,C 关于DE 对称,4DB DC ∴==,故答案为:4.【点睛】本题考查轴对称的性质,线段的和差定义等知识,解题的关键是掌握线段的垂直平分线的性质,属于中考常考题型.(2022秋•西湖区校级期末)【12题答案】【答案】35°##35度【解析】【分析】根据轴对称的性质与三角形的内角和等于180°可得.【详解】∵△ABC 与△DEF 关于直线l 对称,∴∠A =∠D =65°,∠B =∠E =80°,∴∠F =180°﹣∠D ﹣∠E =180°﹣65°﹣80°=35°.故答案为:35°.【点睛】本题考查轴对称的性质与三角形的内角和,解题的关键是掌握轴对称的性质与三角形的内角和.(2023•琼海一模)【13题答案】【答案】105︒【解析】【分析】根据轴对称的性质,轴对称图形全等,则,,A A B B C C '''∠=∠=∠∠=∠,再根据三角形内角和定理即可求得【详解】 △ABC 与A B C ''' 关于直线l 对称ABC A B C '''∴△≌△∴,,A A B B C C '''∠=∠=∠∠=∠30C C '∴∠=∠=︒45A ∠=︒1804530105B ∴∠=︒-︒-︒=︒故答案为:105︒【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.(2022秋•宣州区期末)【14题答案】【答案】2【解析】【分析】根据AD 是等边三角形的高可知,AD 是线段BC 的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出EBF ECF ≌△△,故阴影部分的面积等于ABD △的面积,据此即可求解.【详解】解:∵AD 是等边三角形的高,∴AD 是线段BC 的垂直平分线,∴BE CE BF CF EF EF ===,,,∴EBF ECF ≌△△,∴ABD S S = 阴影,∴122ABD ABC S S S === 阴影.故答案为:2.【点睛】本题主要考查了三角形的面积与等边三角形的性质,熟练掌握相关概念是解题关键.(2021春•含山县期末)【15题答案】【答案】(1)(﹣3,2);(2)见解析,A1(-2,5),O1(-3,2),B1(0,4);(2)(a﹣3,b+2).【解析】【分析】(1)根据点(x,y)关于y轴对称的点的坐标为(﹣x,y)解答即可;(2)利用坐标平移变换的性质分别作出O,A,B的对应点O1,A1,B1即可.(3)根据平移变换的规律解决问题即可.【详解】解:(1)∵B(3,2),∴B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图,△A1O1B1即为所求,由图可知,A1(-2,5),O1(-3,2),B1(0,4);(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后点P的对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).【点睛】本题考查坐标与图形变换-轴对称、坐标与图形变换-平移,理解变换规律是解答的关键.(2020秋•南京期末)【16题答案】【答案】(1)详见解析;(2)详见解析;(3)(2,)a b -.【解析】【分析】(1)依次将点(14)(44)(21)A B C ---,,,,,表示在平面直角坐标系中,顺次连接三个点即可;(2)分别作出(14)(44)(21)A B C ---,,,,,关于直线1x =的对称点111A B C 、、,再顺畅连接111A B C 、、即可;(3)根据题意,1P P 、关于直线1x =对称,则1P P 、的横坐标的和的一半是1,纵坐标不变,据此解题.【详解】解:(1)如图所示,△ABC 即为所求;(2)如图所示,△A 1B 1C 1即为所求;(3)设点(,)P a b 关于直线l 的对称点为1(,)P x y ,由题意得,12a x y b+⎧=⎪⎨⎪=⎩2x a y b=-⎧∴⎨=⎩1(2,)P a b ∴-故答案为:(2,)a b -.【点睛】本题考查作图—轴对称变换,是重要考点,难度较易,掌握相关知识是解题关键.(2022秋•陕州区期末)【17题答案】【答案】C【解析】【分析】先作点M 关于l 的对称点M ′,连接M ′N 交l 于点Q ,即可.【详解】作点M 关于直线l 的对称点M ′,再连接M ′N 交l 于点Q ,则MQ+NQ=M ′Q+NQ=M ′N ,由“两点之间,线段最短”,可知点Q 即为所求.故选C【点睛】本题主要考查轴对称的应用以及线段的性质,熟练掌握“马饮水”模型,是解题的关键.(2022秋•金平区期末)【18题答案】【答案】B【解析】【分析】用对称的性质,通过等线段代换,将所求路线转化为两点之间的距离.【详解】解:作点A 关于直线m 的对称点A ',连接A B '交直线m 于P ,根据两点之间线段最短,可知选项B 中的核酸采集点P 到A B 、两个小区之间的距离之和最短,故选:B .【点睛】本题考查了最短路径的数学问题,熟练掌握两点之间,线段最短是解题的关键.(2022秋•河口区期末)【19题答案】【答案】B【解析】【分析】对称轴就是两个对称点连线的垂直平分线,由垂直平分线的性质可得MP =1M P ,NP =2N P ,所以12PP =MP +MN +NP =5cm .【详解】∵P 与1P 关于OA 对称,∴OA 为线段1P P 的垂直平分线,∴MP =1M P ,同理,P 与2P 关于OB 对称,∴OB 为线段2P P 的垂直平分线,∴NP =2N P ,∵△PMN 的周长为5cm .∴12PP =1M P +MN +2N P =MP +MN +NP =5cm ,故选B【点睛】对称轴是对称点的连线垂直平分线,再利用垂直平分线的性质是解此题的关键.(2022秋•香洲区期末)【20题答案】【答案】B【解析】【分析】根据题意画出符合条件的图形,求出60OD OE OP DOE ==∠=︒,,得出等边三角形DOE ,求出3DE =,求出PMN 的周长DE =,即可求出答案.【详解】解:作P 关于OA 的对称点D ,作P 关于OB 的对称点E ,连接DE 交OA 于M ,交OB 于N ,连接PM PN ,,则此时PMN 的周长最小,连接OD OE ,,∵P 、D 关于OA 对称,∴OD OP PM DM ==,,同理OE OP PN EN ==,,∴OD OE OP ==,∵P 、D 关于OA 对称,∴OA PD ⊥,∵OD OP =,∴DOA POA ∠=∠,同理POB EOB ∠=∠,∴223060DOE AOB ∠=∠=⨯︒=︒,∵OD OE =,∴DOE 是等边三角形,∴DE OD OP ==,∵PMN 的周长是3PM MN PN DM MN EN DE ++=++==,∴3OP =故选:B .【点睛】本题考查了轴对称-最短路线问题,关键是画出符合条件的图形.(2023•紫金县校级开学)【21题答案】【答案】B【解析】【分析】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,由对称的性质得出PM=DM ,OP=OC ,∠COA=∠POA ;PN=DN ,OP=OD ,∠DOB=∠POB ,得出∠AOB=12∠COD ,证出△OCD 是等边三角形,得出∠COD=60°,即可得出结果.【详解】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ;∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD ,∵△PMN 周长的最小值是6cm ,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP ,∴OC=OD=CD ,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B .【点睛】此题考查轴对称的性质,最短路线问题,等边三角形的判定与性质,熟练掌握轴对称的性质,证明三角形是等边三角形是解题的关键.(2022秋•湖里区期末)【22题答案】【答案】D【解析】【分析】要使AEF △的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A 关于BC 和CD 的对称点A ',A '',即可得出AA E A α'''∠+∠=,即可得出答案.【详解】解:作A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于E ,交CD 于F ,∴AF A F ''=,AE A E '=,∴EA A EAA ''∠=∠,FAD A ''∠=∠,则A A '''即为AEF △的周长最小值,C α∠= ,90ABC ADC ∠=∠=︒180DAB α∴∠=︒-,()180180AA E A αα'''∴∠+∠=︒-︒-=,EA A EAA ''∠=∠ ,FAD A ''∠=∠,EAA A AF α'''∴∠+∠=,1801802EAF ααα∴∠=︒--=︒-,故选:D .【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E ,F 的位置是解题关键.(2022秋•东丽区期末)【23题答案】【答案】B【解析】【分析】根据要使AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC 和BC 的对称点A A '",,即可得出72AA M A HAA ∠'∠"∠'︒+==,进而得出2AMN ANM AA M A ∠∠∠'∠"+=(+)即可得出答案.【详解】解:作A 关于BC 和CD 的对称点A A '",,连接A A '",,交BC 于M ,交CD 于N ,则A A '"即为AMN 的周长最小值.作DA 延长线AH ,∵108DAB ∠=︒,∴72HAA ∠'=︒,∴72AA M A HAA ∠'∠"∠'︒+==,∵MA A MAA NAD A ∠'∠'∠∠"=,=,且MA A MAA AMN NAD A ANM ∠'∠'∠∠∠"∠+=,+=,∴2272144AMN ANM MA A MAA NAD A AA M A ∠∠∠'∠'∠∠"∠'+∠"⨯︒︒+=+++=()==,∴36MAN ∠=︒,故选:B .【点睛】本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E ,F 的位置是解题关键.【24题答案】【答案】A【解析】【分析】根据题意知点B 关于直线EF 的对称点为点C ,故当点P 在AC 上时,AP+BP 有最小值.【详解】解:连接PC .∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:A.【点睛】本题考查了轴对称-最短路线问题的应用,明确点A、P、C在一条直线上时,AP+PB有最小值是解题的关键.【25题答案】【答案】C【解析】【分析】过点B作BE⊥AC于点E,交AD于点F,连接CF,根据垂线段最短可知此时EF+CF取得最小值,再利用等边三角形的性质求解即可.【详解】解:如图:过点B作BE⊥AC于点E,交AD于点F,连接CF,根据垂线段最短可知此时EF+CF取得最小值,∵△ABC是等边三角形,∴AE=EC,AF=FC,∴∠FAC=∠FCA,∵AD是等边△ABC的BC边上的中线,∴∠BAD=∠CAD=30°,∴∠ECF=30°.故选:C.【点睛】本题考查最短路径问题——垂线段最短,等边三角形的性质,根据垂线段最短找到点E、F是解题的关键.【26题答案】【答案】C【解析】【详解】解:连接AD,如图所示:∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=14,解得AD=7,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=7+12×4=7+2=9.故选C.【27题答案】【答案】C【解析】【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解即可.【详解】解:作点E关于AD的对称点F,连接CF,∵△ABC 是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,∴AD 是BC 的垂直平分线,∴点E 关于AD 的对应点为点F ,∴CF 就是EP +CP 的最小值.∵△ABC 是等边三角形,E 是AC 边的中点,∴F 是AB 的中点,∴CF 是△ABC 的中线,∴CF =AD =6,即EP +CP 的最小值为6,故选:C .【点睛】本题主要考查了轴对称-最短路线问题以及等边三角形的性质,熟练掌握等边三角形和轴对称的性质是解题的关键.(2022秋•市北区校级期末)【28题答案】【答案】C【解析】【分析】根据三角形内角和定理求出100ACB ∠=︒,再根据折叠的性质得,30ACN A ︒∠=∠=,50FCE B ︒∠=∠=,进而得20NCF ∠=︒.【详解】解:∵30A ∠=︒,50B ∠=︒,∴100ACB ∠=︒,∵将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,∴30ACN A ︒∠=∠=,50FCE B ︒∠=∠=,∴100305020NCF ︒∠=︒-︒-︒=,故选:C .【点睛】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,折叠的性质是解题关键.(2021秋•琼海期末)【29题答案】【答案】C【解析】【分析】利用轴对称的性质,平角的定义求解即可.【详解】解:∵点D 与点D'关于AE 对称,∴∠AED =∠AED′,∵∠CED′=56°,∴∠AED =12(180°-∠'CED )=12(180°-56°)=62°,故选:C .【点睛】本题考查轴对称的性质,平角的定义等知识,解题的关键是掌握轴对称的性质.(2023春•城阳区期中)【30题答案】【答案】A【解析】【分析】先标注图形,根据“两直线平行,内错角相等”得BAC ∠,再根据折叠的性质得BAD ∠,最后根据“两直线平行,内错角相等”得出答案.【详解】解:如图,∵AB CD ,∴1116B A C ∠=∠=︒.由折叠可得,1582BAD BAC ∠=∠=︒.∵AB CD ,∴258B A D ∠=∠=︒.故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质等,灵活选择平行线的性质定理是解题的关键.(2023春•江都区月考)【31题答案】【答案】B【解析】【分析】根据长方形的性质和翻折的性质求出BFE ∠和BFC ∠的度数,即可求出CFE ∠的度数.【详解】解: 四边形ABCD 为长方形,AD BC ∴∥,25BFE DEF ∴∠=∠=︒.由长方形的性质可知:90A B C D ∠=∠=∠=∠=︒,由翻折的性质可知,图2中,180********EFC DEF ∠=︒-∠=︒-︒=︒,∴15525130BFC EFC BFE ∠=∠-∠=︒-︒=︒.∴图3中,13025105CFE BFC BFE ∠=∠-∠=︒-︒=︒.故答案选:B .【点睛】本题考查了翻折的性质,要充分利用长方形的性质和翻折的性质解题,从翻折变化中找到不变量是解题的关键.(2022秋•南充期末)【32题答案】【答案】B【解析】【分析】根据折叠的性质的到12APB EPB APE ∠=∠=∠,12DPC FPC DPF ∠=∠=∠,结合平角的定义及140∠=︒即可得到答案;【详解】解:∵纸片沿BP CP ,折叠,使点A 落在E 处,点D 落在F 处,∴12APB EPB APE ∠=∠=∠,12DPC FPC DPF ∠=∠=∠,∵140∠=︒,∴1801140APE DPF ∠+∠=︒-∠=︒,∴11()170401102BPC EPB FPC APE DPF ∠=∠+∠+∠=∠+∠+∠=︒+︒=︒,故选B .【点睛】本题考查矩形中折叠及整体代换的思想,解题的关键是根据折叠得到角度相等整体代换.(2022秋•川汇区期末)【33题答案】【答案】C【解析】【分析】由折叠的性质得出B BCD ∠=∠,设B BCD x ∠=∠=,由三角形的外角的性质求出2ADC x ∠=,再由,BD CD AC BD ==可得AC CD =,则可得2ADC A x ∠=∠=.最后列方程求解即可.【详解】解:∵将BED 沿DE 折叠,使点B 与点C 重合,∴BD CD =,∴B BCD ∠=∠,设B BCD x ∠=∠=,∴2ADC B BCD x ∠=∠+∠=,∵,BD CD AC BD ==,∴AC CD =,∴2ADC A x ∠=∠=,∵70,A ∠=︒∴270x =解得:35x =,∴35B ∠=︒,故选:C .【点睛】本题考查了折叠的性质,等腰三角形的性质及三角形的外角性质,利用折叠的性质及三角形的外角性质,理解等腰三角形的性质解题的关键.(2022秋•桥西区期末)【34题答案】【答案】D【解析】【分析】根据翻折不变性可知,DFE D FE ∠∠=',又因为40D FC ∠'=︒,根据平角的定义,可求出EFC ∠的度数.【详解】根据翻折不变性得出,DFE EFD ∠∠=',∵40180D FC DFE EFD D FC ∠∠∠∠'=︒+'+'=︒,,∴218040140EFD ∠'=︒-︒=︒,∴70EFD ∠'=︒,∴7040110EFC EFD D FC ∠∠∠='+'=︒+︒=︒.故选D .【点睛】此题考查了角的计算和翻折变化,掌握长方形的性质和翻折不变性是解题的关键.(2022秋•路北区校级期末)【35题答案】【答案】B【解析】【分析】设,AC A D '交于点F ,由折叠得:A A '∠=∠,根据将三角形的外角的性质得出BDA A AFD AFD A CEA '''∠=∠+∠∠=∠+∠,,进而即可求解.【详解】解:如图所示,设,AC A D '交于点F ,由折叠得:A A '∠=∠,BDA A AFD AFD A CEA '''∠=∠+∠∠=∠+∠, ,A CEA BDA αβγ''∠=∠=∠=,, ,2BDA γααβαβ'∴∠==++=+,故选:B .【点睛】本题考查了三角形外角的性质,折叠问题,熟练掌握三角形外角的性质以及折叠的性质是解题的关键.(2022秋•汝阳县期末)【36题答案】【答案】B【解析】【分析】根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,且∠EBD =∠A ′BE +∠DBC ′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°.故选B .【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE =∠A ′BE ,∠DBC =∠DBC ′是解题的关键.(2022秋•禅城区期末)【37题答案】【答案】B【解析】【分析】根据折叠的性质得出BOG B OG ∠=∠',进而根据平角的定义可得1(180)2B OG AOB ''∠=∠︒-,代入数据即可求解.【详解】解: 折叠后,B 、D 两点分别落在了B ',D 点处,BOG B OG ∴∠='∠,'6128AOB ∠=︒' ,1(180)2B OG AOB ''︒∴∠=-∠()118061282=⨯︒︒'-=5916'︒.故选:B .【点睛】本题考查了角度的计算,折叠的性质,熟练掌握折叠的性质是解题的关键.(2023春•青秀区校级月考)【38题答案】【答案】72°【解析】【分析】由题意∠1=2∠2,设∠2=x ,易证∠DEF =∠1=∠FED ′=2x ,构建方程即可解决问题.【详解】解:由翻折的性质可知:∠DEF =∠FED ′,∵AD ∥BC ,∴∠DEF =∠1,∵∠1=2∠2,∴设∠2=x ,则∠DEF =∠1=∠FED ′=2x ,∵∠2+∠DEF +∠FED ′=180°,∴5x =180°,∴x =36°,∴∠1=2∠2=2x =72°.故答案为:72°.【点睛】本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.(2023春•新城区校级月考)【39题答案】【答案】20︒【解析】【分析】根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得:CDB EDB ∠=∠,AD BC ∥ ,35CBD ∠=︒,35CBD ADB ∴∠=∠=︒,90C ∠=︒ ,903555CDB ∴∠=︒-︒=︒,55EDB ∴∠=︒,553520ADE EDB ADB ∴∠=∠-∠=︒-︒=︒,故答案为:20︒.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.(2022秋•山西期末)【40题答案】【答案】72【解析】【分析】设CFD x '∠=,则22CFE CFD x '∠=∠=,3EFD x '∠=,由折叠的性质得:23180x x +=︒,36272CFE ∠=︒⨯=︒,进而得出根据平行线的性质即可求解.【详解】解:设CFD x '∠=,则22CFE CFD x '∠=∠=,3EFD x '∠=,由折叠的性质得:3DFE EFD x '∠=∠=,180DFE CFE ∠+∠=︒ ,即23180x x +=︒,36x ∴=︒,36272CFE ∴∠=︒⨯=︒,AB CD ∥,72AEF CFE ∴∠=∠=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握平行线的性质,折叠性质是解题的关键.(2023•长安区四模)【41题答案】【答案】72︒##72度【解析】【分析】根据折叠的性质得出18ADE GDE ∠=∠=︒,进而根据90DEG GDE ∠=︒-∠,即可求解.【详解】解:54CDG ∠=︒ ,90905436ADG CDG ∴∠=︒-∠=︒-︒=︒,又11361822ADE GDE ADG ︒︒∠=∠=∠=⨯= ,90D A E D G E ∠=∠=︒90901872DEG GDE ∴∠=︒-∠=︒-︒=︒.故答案为:72︒.【点睛】本题考查了折叠的性质,熟练掌握是折叠的性质解题的关键.。

第十三章轴对称练习题

第十三章轴对称练习题

第十三章轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 正方形C. 长方形D. 等边三角形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 垂直轴C. 旋转轴D. 反射轴3. 轴对称图形的两个对称部分在对称轴上的距离是相等的,这种说法正确吗?A. 正确B. 错误4. 一个图形经过轴对称变换后,其面积大小会发生变化吗?A. 会B. 不会5. 轴对称图形的对称轴可以是曲线吗?A. 可以B. 不可以二、填空题6. 轴对称图形的对称轴可以是一条直线,也可以是一条________。

7. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形被称为________图形。

8. 在轴对称图形中,对称轴两侧的对应点到对称轴的距离是________的。

9. 一个等腰三角形的底边和两腰相等,那么它的底边中点与顶点的连线是该三角形的________。

10. 轴对称图形在数学中有着广泛的应用,例如在________几何中,轴对称可以帮助简化问题。

三、简答题11. 请简述轴对称图形的基本性质。

12. 举例说明如何判断一个图形是否是轴对称图形。

13. 解释为什么轴对称图形的对称轴两侧的图形可以完全重合。

四、计算题14. 已知一个轴对称图形的对称轴是垂直于x轴的直线,该图形在x轴上的投影是一个长为10,宽为5的矩形。

求该图形的面积。

15. 如果一个图形关于y轴对称,并且该图形的上半部分是一个半径为3的半圆,求该图形的周长。

五、应用题16. 在一个平面直角坐标系中,点A(-3,4)和点B(1,-2)关于y轴对称。

求点B关于y轴对称的点B'的坐标。

17. 一个等腰梯形的上底长为6,下底长为10,高为4。

求该等腰梯形的面积。

18. 如果一个矩形的长是宽的两倍,且矩形的面积为48平方厘米,求该矩形的长和宽。

六、证明题19. 证明:如果一个三角形是轴对称的,那么它的对称轴是其中一条中线。

轴对称典型题(最全)

轴对称典型题(最全)

轴对称填空选择一、填空题1..角是轴对称图形,其对称轴是.2..点M(-2,1 )关于x 轴对称点N 的坐标是.3..如图,在△ABC 中,AB=AC=14 cm,边AB 的中垂线交AC 于D,且△BCD 的周长为24cm,则BC= .4.下列数中,成轴对称图形的有个5..等腰△ABC 中,AB=AC=10 ,∠A=30 °,则腰AB 上的高等于.6 .一个等腰三角形的一个外角等于110 °,则这个三角形的三个内角分别是.7 .一辆汽车牌在水中的倒影为,则该车牌照号码为.8 .仔细观察下图的图案,并按规律在横线上画出合适的图形.9. (1 )等腰三角形的一个内角等于130 °,则其余两个角分别为;(2)等腰三角形的一个内角等于70 °,则其余两个角分别为.10. 如图14 -112 所示,△ABC 是等边三角形,∠ 1= ∠2= ∠3,则∠BEC 的度数为11 .如图所示,在△ABC 中,∠C=90 °,DE 垂直平分AB ,交AB 于E ,交BC 于D,∠1=B 1∠2,则∠B= 2E D A C12. 如图14-111 所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69 °,则∠A 等于13 、如图,在△ABC 中,∠C=90 °,AB 的垂直平分线交BC 于D,若∠B=20 °,则∠DAC=14 、等腰三角形的周长是25 cm, 一腰上的中线将周长分为3∶2 两部分,则此三角形的底边长为_.15 .点(2,5)关于直线x=1 的对称点的坐标为.16 .已知点A(x,-4 )与点B(3 ,y)关于y 轴对称,那么x+y 的值为.17. 如图14 -116 所示,∠A=15 °,AB=BC=CD=DE=EF ,则∠DEF= .18. 如图14 -117 所示,在△ABC 中,∠C=90 °,A D 平分∠BAC ,交BC 于点D ,CD=3 ,BD=5 ,则点D 到AB 的距离为.19. 如图14 -118 所示,在△ABC 中,AB=AC ,∠A=60 °,BE ⊥AC 于E ,延长BC 到D ,使CD=CE ,连接DE,若△ABC的周长是24 ,BE= a,则△BDE 的周长是.20 .已知:点P 为∠AOB 内一点,分别作出P 点关于OA、OB 的对称点P1,P2,连接P1P2 交OA 于M,交OB 于N,P1P2=15 ,则△PMN 的周长为.P1BMPO N AP221 .如图,Rt △ABC ,∠C =90 °,∠B=30 °,BC =8 ,D 为AB 中点,P 为BC 上一动点,连接AP 、DP, 则AP +DP 的最小值是22 .如图,点B、D、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF, ∠A =20 o,则∠FEB =度.二、选择题1. 等腰三角形的一边等于5,一边等于12 ,则它的周长为( )A.22B.29C.22 或29D.172. 如图14-110 所示,图中不是轴对称图形的是( )3. 已知点 A (-2 ,1)与点 B 关于直线x=1 成轴对称,则点 B 的坐标为()A.(4 ,1)B.(4 ,-1)C. (-4,1)D. (-4 ,-1)4 .如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是().5..下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.正方形C.等边三角形D.长方形6..已知点P(-2,1),那么点P 关于x 轴对称的点P 的坐标是()A.(-2 ,1) B .(-2,-1)C.(-1 ,2) D .(2 , 1 )7..桌面上有A 、B 两球,若要将 B 球射向桌面任意一边,使一次反弹后击中 A 球,则如图所示8 个点中,可以瞄准的点有()个.A. 1 B. 2C.4 D .6P8 、.下列几何图形中,是轴对称图形且对称轴的条数大于 1 的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线 .A. 3 个B. 4 个C. 5 个D. 6 个9 .下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的A轴对称图形 . 正确的说法有( )个A . 1 个B . 2 个C . 3 个D . 4 个EBCD10 .如图:等边三角形 ABC 中, BD = CE , AD 与 BE 相交于点 P ,则∠APE 的度数是 () A .45 °B . 55 °C . 60 °D . 75°11. 等腰梯形两底长为 4cm 和 10cm ,面积为 21cm 2 ,则 这个梯形较小的底角是( )度.A . 45°B . 30°C . 60°D . 90 °12 .下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有()A 、2 个B 、3 个C 、4 个D 、 5 个︰13 .小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A 、21: 10B 、10:21C 、10 : 51D 、 12: 0114 .如图所示,共有等腰三角形()A 、5 个B 、4 个C 、3 个D 、2 个A D 72E723636BC15 .先将正方形纸片对折 ,折痕为 MN ,再把 B 点折叠在折痕 MN 上,折痕为 AE ,点 B 在 MN 上的DMA对应点为 H ,沿 AH 和 DH 剪下 ,这样剪得的三角形中( )A.AH DH AD B .AH DH ADC.AH AD DH D .AH DH AD16 .平面内点A(-1,2) 和点B(-1,6) 的对称轴是()CA、x 轴B、y 轴C、直线y=4D、直线x=-1A A D E B17.如图,在△ABC 中,∠ACB= 100 °,AC=AE ,BC=BD ,则∠DCE 的度数为()A.20 ° B .25 °C.30 °D.40 °EDB C18.如图,△ABC 中,AB AC , A 30 ,DE 垂直平分AC ,则BCD 的度数为()CD A.80 B.75 C.65 D.45A E B19 、如图,△ABC 中,∠C = 90 °,AC = BC,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cm B.8cm C .6cm D .9cm20 、已知等腰三角形的两边a,b,满足2a 3b 5 +(2 a+3b-13) 2=0 ,则此等腰三角形的周长为( )A.7 或8B.6 或10C.6 或7D.7 或1021 、小宇同学在一次手工制作活动中,先把一张矩形纸片按图 1 的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图 2 的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是cm .22 .在下列说法中,正确的是()A、如果两个三角形全等,则它们必是关于直线成轴对称的图形B、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C、等腰三角形是关于底边中线成轴对称的图形D、一条线段是关于经过该线段中点的直线成轴对称的图形23 .若一个图形上所有点的纵坐标不变,横坐标乘以- 1 ,则所得图形与原图形的关系为()A、关于x 轴成轴对称图形B、关于y 轴成轴对称图形C、关于原点成中心对称图形D、无法确定24 如图,已知线段AB 的端点 B 在直线l 上(AB 与l 不垂A直)请在直线l 上另找一点C,使△ABC 是等腰三角形,这l样的点能找( )BA 2 个B 3 个C 4 个D 5 个B25 .如图 B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形,若CE =15cm ,CPCD =6cm ,则AC =,∠ECD =.O AD26 .如图:已知∠AOP= ∠BOP=15 °,PC ∥OA ,PD ⊥OA ,若PC=4 ,PD= ()A .4 B.3 C.2 D.127 .∠AOB 的平分线上一点P 到OA 的距离为5 ,Q 是OB 上任一点,则()A .PQ >5B .PQ≥5C .PQ <5 D.PQ ≤528 .等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为()A .3cm 或5cm B.3cm 或7cm C .3cm D.5cm29 .如图,在Rt △ABC 中,∠ACB =90 °,∠BAC 的平分线交BC 于D. 过C 点作CG ⊥AB 于G ,交AD 于E. 过D 点作DF ⊥AB 于F. 下列结论:①∠CED =∠CDE ;②SAEC ︰SAEGAC ︰AG ;③∠ADF =2∠ECD ;④SCEDS DFB ;⑤CE =DF. 其中正确结论的序号是【】A.①③④B.①②⑤C.③④⑤D.①③⑤30 .如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ .以下六个结论:① AD =BE; ②PQ ∥AE; ③AP =BQ; ④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE. 其中不正确的有【】个A.0 B.1 C .2 D .3三、解答题1 、在网格中作出关于直线m 的相应对称图作出△PNM 关于直线n 的对称图形2 、如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题:(1 )画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B1C1;(2) 在DE 上画出点P,使PB1PC 最小;(3 )在DE 上画出点Q,使QA QC 最小。

(完整word版)三年级轴对称图形练习题

(完整word版)三年级轴对称图形练习题

三年级数学下册轴对称图形练习题一、填空。

1、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。

2、圆的对称轴有()条,半圆形的对称轴有()条。

3、在对称图形中,对称轴两侧相对的点到对称轴的()相等。

4、()三角形有三条对称轴,()三角形有一条对称轴。

5、正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。

6、如果把一个图形沿着一条直线折过来,直线两侧部分能够完全重合,那么这个图形就叫做___________,这条直线叫做________.7、对称轴_______连结两个对称点之间的线段.8、宋体的汉字“王”、“中”、“田”等都是轴对称图形,•请再写出三个这样的汉字:_________.9、长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.10、如图是一种常见的图案,这个图案有_____条对称轴,请在图上画出对称轴.11、右图是从镜中看到的一串数字,这串数字应为.12、下列图形中是轴对称图形的在括号里画“√”。

二、选择题。

1、下列英文字母中,是轴对称图形的是()A、SB、HC、PD、Q2、下列各种图形中,不是轴对称图形的是()8题)3、下图是一些国家的国旗,其中是轴对称图形的有()A、4个B、3个C、2个D、1个4、下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有()A、2个B、3个C、4个D、5个5、下列图形中,对称轴最多的是()。

A、等边三角形 B 、正方形 C 、圆D、长方形6、下面不是轴对称图形的是()。

A、长方形B、平行四边形C、圆D、半圆7、要使大小两个圆有无数条对称轴,应采用第()种画法。

A 、B、c8、图中的图形中是常见的安全标记,其中是轴对称图形的是( )9、找出下面图形中是轴对称图形,并且有两条对称轴的是()A.B.C.D.三、操作题:1、下列图形是轴对称图形吗?如果是,分别画出它们的对称轴。

《轴对称》练习题

《轴对称》练习题

《轴对称》练习题《轴对称》练习题一、知识点1、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。

⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。

两个图形中的对应点叫做__________2、线段垂直平分线的性质⑴线段是轴对称图形,它的对称轴是__________________⑵线段的垂直平分线上的点到______________________相等3、角平分线的性质⑴角是轴对称图形,其对称轴是_______________⑵角平分线上的点到______________________________相等4、等腰三角形的特征和识别⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)⑶如果一个三角形有两个角相等,那么这两个角所对的'________也相等(简称为“____________________”)5、等边三角形的特征和识别⑴等边三角形的各____相等,各____相等并且每一个角都等于________⑵三个角相等的三角形是__________三角形⑶有一个角是60°的____________三角形是等边三角形二、选择题1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个2.图9-19中,轴对称图形的个数是()A.4个B.3个C.2个D.1个3.下列判断正确的是()A.经过线段中点的直线是该线段的对称轴B.若两条线段相等,那么这两条线段关于某直线对称C.若两条线段关于某直线对称,那么这两条线段相等D.锐角三角形都是轴对称图形4.下列图形中不是轴对称图形的是( )A.有两个角相等的三角形;B.有一个角是45°的直角三角形.C.有两个角分别是50°和80°的三角形D.平行四边形.5.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.不确定.6.有一个等腰三角形的周长为25,一边长为11,那么腰长为()A.11B.7C.14D.7或117.若三角形中最大内角是60°,那么这个三角形是( )A.等腰三角形B.等边三角形C.不等边三角形D.不确定8.等边三角形的两条高线相交所成钝角的度数是()A.105°B.120°C.135°D.150°9.若△ABC两边的垂直平分线的交点在三角形的外部,则△ABC是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能10.若三角形一边上的高也平分这条边,那么这个三角形是()A.直角三角形B.有两条边相等C.等边三角形D.锐角三角形11.图9-12中,点D在BC上,且DE⊥AB,DF⊥AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档