信号与系统期末练习题(含公式)答案
信号及系统期末考试试题及答案
信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试复习题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期末考试题及答案(第五套)
信号与系统期末考试题及答案(第五套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1.。
2. 已知实信号的傅立叶变换,信号的傅立叶变换为。
3. 已知某连续时间系统的系统函数为,该系统属于类型。
低通4. 如下图A-1所示周期信号,其直流分量=。
4图A-15. 序列和=。
由于。
6. LTI 离散系统稳定的充要条件是。
的全部极点在单位圆内。
7. 已知信号的最高频率,对信号取样时,其频率不混迭的最大取样间隔=。
为。
8. 已知一连续系统在输入作用下的零状态响应,则该系统为系统(线性时变性)。
线性时变9. 若最高角频率为,则对取样,其频谱不混迭的最大间隔是。
)sgn(t )(t δ)(k δ)(t ε)(k ε________)42()3(55=+--⎰-dt t t δ5.0)3(21)2()3(21)42()3(25555-=-=---=+--=--⎰⎰t t dt t t dt t t δδ)(t f )()()(ωωωjX R j F +=)]()([21)(t f t f t y -+=)(ωj Y _________11)(+=s s H _________)(t f_________∑-∞=kn n )(ε_________)()1(0,00,1][k k k k k n kn εε+=⎩⎨⎧<≥+=∑-∞=_________)(z H )(t f )(0Hz f )2/(t f m ax T _________m axT 0max max 121f f T ==)(t f )4()(t f t y =_________)(t f m ω)2()4()(tf t f t y =_________mT ωπωπ34max max ==10. 已知的z 变换,得收敛域为时,是因果序列。
二、计算题(共50分,每小题10分)1. 某线性时不变连续时间系统的单位冲激响应和输入如图A-2所示,从时域求解该系统的零状态响应。
信号与系统期末考试题及答案(第一套)
信号与系统期末考试题及答案(第⼀套)信号与系统期末考试题及答案(第⼀套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
⼀、填空(共30分,每⼩题3分)1. 已知某系统的输⼊输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、⾮线性)(时变、⾮时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最⾼⾓频率为,则对信号进⾏时域取样,其频谱不混迭的最⼤取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅⽴叶变换=。
不存在8. 已知⼀离散时间系统的系统函数,判断该系统是否稳定。
不稳定9.。
310. 已知⼀信号频谱可写为是⼀实偶函数,试问有何种对称性)sgn(t )(t δ)(k δ)(t ε)(k ε)0(2)()()(2X dt t df t f t t y +=)(t f ________________?∞-=-+32_________)221()32(dt t t t δ?∞∞-=--_________)24()22(dt t t εε??∞∞-==--1)24()22(21dt dt t t εε},3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε)()(21k f k f *________}12,26,21,9,2{)()(21↓=*k f k f )(t f ),(),()(00为常数t K t t Kf t y f -=)(ωj H ________=)(t h ________0)(t j Ke j H ωω-=)()(0t t K t h -=δ)(t f )(Hz f m )2()()(t f t f t y ==max T ________m ax T )(6121max max s f f T m==)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+?∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f。
信号与系统 期末复习试卷1
, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
信号与系统试题及答案(大学期末考试题)
信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统期末考试-A卷-答案
120 信号与系统期末试题答案一、填空题(4小题,每空2分,共20分)1.线性 时变 因果 稳定2. 离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、简答题(5小题,共 25 分)1、解:该方程的一项系数是y(t)的函数,而y(2t)将使系统随时间变化,故描述的系统是非线性时变系统。
(每个知识点1分)(4分)2、解:当脉冲持续时间τ不变,周期T 变大时,谱线间的间隔减小,同频率分量的振幅减小(2分);当脉冲持续时间τ变小,周期T 不变时,谱线间的间隔不变,同频率分量的振幅减小(3分)。
(5分)3、解:信号通过线性系统不产生失真时,)()(0t t k t h -=δ0)()()(ωωϕωωj j j Ke e e H -==j H (每个知识点2分)(4分)4、解: 由于是二阶系统,所以系统的稳定性只需要其特征多项式的各系数大于零。
则本系统稳定的条件为:K-5>0(3分)和3K+1>0(3分).解之可得K>5(2分)。
(8分)5、解:香农取样定理:为了能从抽样信号 f s(t)中恢复原信号 f (t),必须满足两个条件:(1)被抽样的信号f (t)必须是有限频带信号,其频谱在|ω|>ωm 时为零。
(1分)(2)抽样频率 ωs ≥2ωm 或抽样间隔 mm S f T ωπ=≤21(1分) 。
其最低允许抽样频率m s f f 2=或m ωω2=称为奈奎斯特频率(1分),其最大允许抽样间隔mm N f T ωπ==21 (1分)称为奈奎斯特抽样间隔。
(每个知识点1分)(4分) 三.简单计算(5小题,5分/题,共25分)1.(5分)解:cos(101)t +的基波周期为15π, sin(41)t -的基波周期为12π 二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。
信号与系统》期末试卷与答案
信号与系统》期末试卷与答案信号与系统》期末试卷A卷班级:__________ 学号:_________ 姓名:_________ 成绩:_________一.选择题(共10题,20分)1、序列x[n] = e^(j(2πn/3)) + e^(j(4πn/3)),该序列的周期是:A。
非周期序列B。
周期 N = 3C。
周期 N = 3/8D。
周期 N = 242、连续时间系统 y(t) = x(sin(t)),该系统是:A。
因果时不变B。
因果时变C。
非因果时不变D。
非因果时变3、连续时间LTI 系统的单位冲激响应h(t) = e^(-4t)u(t-2),该系统是:A。
因果稳定B。
因果不稳定C。
非因果稳定D。
非因果不稳定4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a_k 是:A。
实且偶B。
实且为奇C。
纯虚且偶D。
纯虚且奇5、信号x(t) 的傅立叶变换X(jω) = {1,|ω|2},则x(t) 为:A。
sin(2t)/2tB。
sin(2t)sin(4t)sin(4t)/πtC。
0D。
16、周期信号x(t) = ∑δ(t-5n),其傅立叶变换X(jω) 为:A。
∑δ(ω-5)B。
∑δ(ω-10πk)C。
5D。
10πjω7、实信号 x[n] 的傅立叶变换为X(e^jω),则 x[n] 奇部的傅立叶变换为:A。
jRe{X(e^jω)}B。
Re{X(e^jω)}C。
jIm{X(e^jω)}D。
Im{X(e^jω)}8、信号 x(t) 的最高频率为 500Hz,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为:A。
500B。
1000C。
0.05D。
0.0019、信号 x(t) 的有理拉普拉斯共有两个极点 s = -3 和 s = -5,若 g(t) = e^(xt),其傅立叶变换G(jω) 收敛,则 x(t) 是:A。
左边B。
右边C。
双边D。
不确定10、系统函数 H(s) = (s+1)/s,Re(s)。
信号与系统期末考试试题有标准答案的.doc
信 号与系统 期 末 考 试 试 题一、选择题(共10 题,每题 3 分 ,共30 分,每题给出四个答案,其中只有一个正确的)1、 卷积 f 1(k+5)*f2 (k-3)等于。
( A ) f 1 (k)*f 2(k)( B ) f 1(k)*f 2(k-8) ( C ) f 1(k)*f 2 (k+8) (D ) f 1(k+3)*f 2 (k-3)2、 积分(t 2) (1 2t )dt 等于。
( A )( B )( C ) 3( D ) 53、 序列 f(k)=-u(-k) 的 z 变换等于。
( A )z z ( B ) - z ( C ) 1 ( D ) 11 z 1 z 1z 14、 若 y(t)=f(t)*h(t), 则 f(2t)*h(2t) 等于。
( A )1y( 2t ) ( B ) 1 y(2t ) ( C ) 1 y( 4t ) ( D ) 1 y(4t)4 2 4 25、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+(t ) ,当输入 f(t)=3e — t u(t) 时,系统的零状态响应 y f (t) 等于(A ) (-9e -t +12e -2t )u(t)( B )(3-9e -t +12e -2t )u(t)(C ) (t) +(-6e -t +8e -2t )u(t)(D )3 (t )+(-9e -t +12e -2t)u(t) 6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 ( C )离散性、周期性(D )离散性、收敛性7、 周期序列 2COS (1.5 k 45 0 ) 的 周期 N 等于(A ) 1( B )2( C )3(D )48、序列和k 1 等于k( A ) 1 (B) ∞ (C)u k 1 (D) ku k19、单边拉普拉斯变换 F s2s 1e 2s 的愿函数等于s 210、信号 f tte 3t u t 2 的单边拉氏变换 F s 等于二、填空题(共 9 小题,每空 3 分,共 30 分)1、卷积和 [ ()k+1u(k+1)]* (1 k) =________________________、单边 z 变换 F(z)= z 的原序列 f(k)=______________________2 2z 1s、已知函数f(t) 的单边拉普拉斯变换F(s)=,则函数 y(t)=3e-2t ·f(3t)的单边拉普3s 1拉斯变换 Y(s)=_________________________4、频谱函数 F(j )=2u(1-)的傅里叶逆变换 f(t)=__________________5、单边拉普拉斯变换 F (s)s23s 1的原函数 f(t)=__________________________s 2s6、已知某离散系统的差分方程为 2y(k) y(k 1) y(k 2)f (k ) 2 f ( k 1) ,则系统的单位序列响应 h(k)=_______________________ 7、已知信号 f(t) 的单边拉氏变换是 F(s),则信号 y(t )t 2f ( x)dx 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应 h(t)=9、 写出拉氏变换的结果 66u t, 22t k三、 ( 8 分)四、( 10 分)如图所示信号f t,其傅里叶变换F jw F f t ,求( 1) F 0 ( 2)F jw dw六、( 10 分)某 LTI系统的系统函数H ss 2,已知初始状态y 00, y2, 激s 2 2s1励 f tu t , 求该系统的完全响应。
信号与系统期末考试试题(有答案的)
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性1、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F=,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
信号与系统期末考试题库及答案
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
(完整版)《信号与系统》期末试卷与答案
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
《信号与系统》期末试题1(含答案)
4
6
2
低抽样频率为
(A)
A、 6Hz B、 8Hz
C、10Hz
D、 12Hz
(6) 单边拉普拉斯变换 F (s) se s 的原函数是 s2 4
(D )
A、 cos(2t) (t 1)
B、 cos[2(t 1)] (t)
C、 cos(2t 1) (t 1)
D、 cos[2(t 1)] (t 1)
(7) 离散序列 f1(k) {1,0,2,1}( k 0,1,2,3)、 f2 (k) {3,7,2}( k 1,0,1, )设离散卷
积和 y(k) f1(k) f2 (k) ,则 y(2)
(B )
A、8
B、17
C、11
D、2
(8) 某离散信号的 z 变换为 F (z) z2 2z ,已知该序列为右边序列,则该序列的收 z2 2z 3
作出
f2 (t)
的导数
df2 (t) dt
的波形;
(3) 利用卷积积分的性质,作出 f1 (t) f2 (t) 的波形。
(D )
1 f1(t)
1 0
1
t
f2 (t) 1
解
t
1 f1(t)dt
1 0 1
t
1 0 1 t
f
2
(t
)
1
1 0 1 t
2
f1(t) f2 (t) 1
0
2t
期末考试试题
第 1-3 页
s
2
3
进行 laplace 反变换可得:
yzs (t)
(3 2
e t
2e 2t
1 e3t ) (t) 2
3. 全响应:
全响应为
(完整版)信号与系统期末试卷与答案
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。
信号与系统期末考试试题有答案的
信号与系统期末考试试题一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的1、 卷积f 1k+5f 2k-3 等于 ;Af 1kf 2k Bf 1kf 2k-8Cf 1kf 2k+8Df 1k+3f 2k-32、 积分dt t t ⎰∞∞--+)21()2(δ等于 ;A1.25B2.5C3D53、 序列fk=-u-k 的z 变换等于 ;A1-z z B-1-z zC 11-zD 11--z4、 若yt=ftht,则f2th2t 等于 ;A)2(41t y B )2(21t y C )4(41t y D )4(21t y 5、 已知一个线性时不变系统的阶跃相应gt=2e -2t ut+)(t δ,当输入ft=3e —t ut 时,系统的零状态响应y f t 等于A-9e -t +12e -2t ut B3-9e -t +12e -2t utC )(t δ+-6e -t +8e -2t ut D3)(t δ +-9e -t +12e -2t ut6、 连续周期信号的频谱具有(A ) 连续性、周期性 B 连续性、收敛性 C 离散性、周期性 D 离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1B2C3D4 8、序列和()∑∞-∞=-k k 1δ等于A1 B ∞ C ()1-k u D ()1-k ku9、单边拉普拉斯变换()se ss s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s ()()()2323++-s se C s ()()332++-s s e D s二、填空题共9小题,每空3分,共30分1、 卷积和0.5k+1uk+1)1(k -δ=________________________2、 单边z 变换Fz=12-z z的原序列fk=______________________ 3、 已知函数ft 的单边拉普拉斯变换Fs=1+s s,则函数yt=3e -2t ·f3t 的单边拉普拉斯变换Ys=_________________________4、 频谱函数Fj ω=2u1-ω的傅里叶逆变换ft=__________________5、 单边拉普拉斯变换ss s s s F +++=2213)(的原函数ft=__________________________ 6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应hk=_______________________7、 已知信号ft 的单边拉氏变换是Fs,则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Ys=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应ht=9、写出拉氏变换的结果()=t u 66 ,=kt 22三、8分四、10分如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求1 ()0F 2()⎰∞∞-dw jw F六、10分某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应;信号与系统期末考试参考答案一、选择题共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的1、D2、A3、C4、B5、D6、D7、D8、A9、B 10、A二、填空题共9小题,每空3分,共30分1、()()k u k5.0 2、)()5.0(1k u k + 3、52++s s 4、()tj e t jt πδ+5、)()()(t u e t u t t -++δ6、()[]()k u k 15.01+-+ 7、 ()s F s e s2-8、()()t u t e t 2cos - 9、s66, 22k/S k+1四、10分 解:12)()0()()(==∴=⎰⎰∞∞--∞∞-dt t f F dte tf F t j ωω2ωωπωd e F t f t j ⎰∞∞-=)(21)(ππωω4)0(2)(==∴⎰∞∞-f d F六、10分 解:由)(S H 得微分方程为)()()(2)(t f t y t y t y ''=+'+'')()()0(2)(2)0()0()(22S F S S Y y S SY y Sy S Y S =+-+'-----12)0()0()2()(12)(222++'+++++=∴--S S y y S S F S S S S Y 将SS F y y 1)(),0(),0(='--代入上式得 222)1(1)1(1)1(2)(+-++++=S S S S S Y 11)1(12+++=S S )()()(t u e t u te t y t t --+=∴二、写出下列系统框图的系统方程,并求其冲激响应; 15分解:x ”t + 4x ’t+3xt = ft yt = 4x ’t + xt则:y”t + 4y’t+ 3yt = 4f’t + ft根据ht的定义有h”t + 4h’t + 3ht = δth’0- = h0- = 0先求h’0+和h0+;因方程右端有δt,故利用系数平衡法;h”t中含δt,h’t含εt,h’0+≠h’0-,ht在t=0连续,即h0+=h0-;积分得h’0+ - h’0- + 4h0+ - h0- +3 = 1考虑h0+= h0-,由上式可得h0+=h0-=0h’0+ =1 + h’0- = 1对t>0时,有 h”t + 4h’t + 3ht = 0故系统的冲激响应为一齐次解;微分方程的特征根为-1,-3;故系统的冲激响应为ht=C1e-t + C2e-3tεt代入初始条件求得C1=0.5,C2=-0.5, 所以ht=0.5 e-t– 0.5e-3tεt三、描述某系统的微分方程为y”t + 4y’t + 3yt = ft求当ft = 2e-2t,t≥0;y0=2,y’0= -1时的解; 15分解: 1 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2;齐次解为y h t = C1e -t + C2e -3t当ft = 2e–2 t时,其特解可设为y p t = Pe -2t将其代入微分方程得P4e -2t + 4–2 Pe-2t + 3Pe-t = 2e-2t解得 P=2于是特解为 y p t =2e-t全解为: yt = y h t + y p t = C1e-t + C2e-3t + 2e-2t其中待定常数C1,C2由初始条件确定;y0 = C1+C2+ 2 = 2,y’0 = –2C1–3C2–1= –1解得 C1 = 1.5 ,C2 = –1.5最后得全解 yt = 1.5e– t – 1.5e – 3t +2 e –2 t , t≥0三、描述某系统的微分方程为y”t + 5y’t + 6yt = ft求当ft = 2e-t,t≥0;y0=2,y’0= -1时的解; 15分解: 1 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3;齐次解为y h t = C 1e -2t+ C 2e-3t当ft = 2e – t时,其特解可设为y p t = Pe -t将其代入微分方程得Pe -t + 5– Pe -t + 6Pe -t = 2e -t解得 P=1于是特解为 y p t = e -t全解为: yt = y h t + y p t = C 1e -2t + C 2e -3t + e -t其中 待定常数C 1,C 2由初始条件确定; y0 = C 1+C 2+ 1 = 2,y ’0 = –2C 1 –3C 2 –1= –1解得 C 1 = 3 ,C 2 = – 2最后得全解 yt = 3e – 2t – 2e – 3t + e – t, t ≥012分312()13k k k F s m n s s s =++<++解:部分分解法 ()100()10(2)(5)100(1)(3)3s s k sF s s s s s ===++==++其中211(1)()10(2)(5)20(3)s s k s F s s s s s =-=-=+++==-+解:333(3)()10(2)(5)10(1)3s s k s F s s s s s =-=-=+++==-+1002010()313(3)F s s s s ∴=--++解:)(e 310e 203100)(3t t f t t ε⎪⎭⎫⎝⎛--=∴--)e e 1(e 2s s ss s-----六、有一幅度为1,脉冲宽度为2ms 的周期矩形脉冲,其周期为8ms,如图所示,求频谱并画出频谱图频谱图;10分解:付里叶变换为Fn 为实数,可直接画成一个频谱图;ΩΩ=Ω-=-Ω-n n Tjn T t jn )2sin(2e 122τττf(t)tT-T…12τ-2τ32597(),(1)(2)s s s F s s s +++=++已知求其逆变换12()212k k F s s s s =+++++解:分式分解法 11223(1)2(1)(2)311s s s k s s s s k s =-=-+=+⋅=+++==-+其中 21()212F s s s s ∴=++-++)()e e 2()(2)(')(2t t t t f t t εδδ---++=∴周期信号 ft =试求该周期信号的基波周期T ,基波角频率Ω,画出它的单边频谱图,并求ft 的平均功率; 解 首先应用三角公式改写ft 的表达式,即显然1是该信号的直流分量; 的周期T1 = 8 的周期T2 = 6所以ft 的周期T = 24,基波角频率Ω=2π/T = π/12,根据帕斯瓦尔等式,其功率为P= 是ft 的π/4/π/12 =3次谐波分量;是ft 的π/3/π/12 =4次谐波分量;画出ft 的单边振幅频谱图、相位频谱图如图二、计算题共15分已知信号)()(t t t f ε=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--63sin 41324cos 211ππππt t ⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-+=263cos 41324cos 211)(ππππππt t t f ⎪⎭⎫⎝⎛+34cos 21ππt ⎪⎭⎫ ⎝⎛-323cos 41ππ 323741212121122=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+34cos 21ππt ⎪⎭⎫ ⎝⎛-323cos 41ππ (a)(b)12643ωo1、分别画出01)(t t t f -=、)()()(02t t t t f ε-=、)()(03t t t t f -=ε和)()()(004t t t t t f --=ε的波形,其中 00>t ;5分2、指出)(1t f 、)(2t f 、)(3t f 和)(4t f 这4个信号中,哪个是信号)(t f 的延时0t 后的波形;并指出哪些信号的拉普拉斯变换表达式一样;4分3、求)(2t f 和)(4t f 分别对应的拉普拉斯变换)(2s F 和)(4s F ;6分1、4分2、)(4t f 信号)(t f 的延时0t 后的波形;2分3、s t ss F s F 02121)()(-==2分241)(st e s s F -=;2分 三、计算题共10分如下图所示的周期为π2秒、幅值为1伏的方波)(t u s 作用于RL 电路,已知Ω=1R ,H L 1=; 1、 写出以回路电路)(t i 为输出的电路的微分方程; 2、 求出电流)(t i 的前3次谐波;解“1、⎪⎩⎪⎨⎧<<-<<-<<=ππππππt t t t u s 2,2,022,1)(;2分2、∑=+=510)cos(21)(n n s nt a a t u)5cos(52)3cos(32)cos(221)cos()2sin(22151t t t nt n n n πππππ+-+=+=∑= 3分3、)()()(t u t i t i s =+'2分4、)3sin(51)3cos(151)sin(1)cos(121)(t t t t t i ππππ--++=3分 四、计算题共10分已知有一个信号处理系统,输入信号)(t f 的最高频率为m m f ωπ2=,抽样信号)(t s 为幅值为1,脉宽为τ,周期为S T τ>S T 的矩形脉冲序列,经过抽样后的信号为)(t f S ,抽样信号经过一个理想低通滤波器后的输出信号为)(t y ;)(t f 和)(t s 的波形分别如图所示; 1、试画出采样信号)(t f S 的波形;4分2、若要使系统的输出)(t y 不失真地还原输入信号)(t f ,问该理想滤波器的截止频率c ω和抽样信号)(t s 的频率s f ,分别应该满足什么条件 6分解:1、4分2、理想滤波器的截止频率m c ωω=,抽样信号)(t s 的频率m s f f 2≥;6分 五、计算题共15分某LTI 系统的微分方程为:)(6)(2)(6)(5)(t f t f t y t y t y +'=+'+'';已知)()(t t f ε=,2)0(=-y ,1)0(='-y ;求分别求出系统的零输入响应、零状态响应和全响应)(t y zi 、)(t y zs 和)(t y ;解:1、se s dt e dt e t s F st st st 1|1)()(000=-===∞-∞-∞-⎰⎰ε;2分 2、)(6)0(2)(2)(6)0(5)(5)0()()(2s Ff s sF s Y y s sY y s sy s Y s +-=+-+'-----3分 3、35276511265)0(5)0()0()(22+-+=+++=+++'+=---s s s s s s s y y sy s Y zi 21112216532)(2+-=⋅+=⋅+++=s s s s s s s s s Y zs )( ss s s s s s s Y zi 1653265112)(22⋅+++++++=5分 4、)()57()(32t e e t y t t zi ε---=)()1()(2t e t y t zs ε--=)()561()(32t e e t y t t ε---+=5分。
《信号与系统》期末考试试题答案
第1 页(共4 页)《信号与系统》须知:符号e (t)(t)、、e (k)(k)分别为单位阶跃函数和单位阶跃序列。
分别为单位阶跃函数和单位阶跃序列。
LTI 表示线性时不变。
为加法器。
一、单项选择题(每小题4分,共32分)D 1、序列和33(2)ii i d ¥-=-¥-å等于A .3e (k –2)B .3e (k)C .1D .3 D 2、积分55(1)d 2t t e t d --ò等于A .0B .1C .eD .e 2 B 3、()(a )f t t d =A .(0)f t d()B .1(0)()|a |f t d C .(0)f aD .0()f t a æöd ç÷èøB 4、1()f t 、2()f t 波形如题4图所示,12()()*()f t f t f t =则(2)f =t1()f t -22240t2()f t 11-120题4图A .12B .1C .32D .2 B 5、已知)()()(21k f k f k f *=,)(1k f 、)(2k f 波形如题5图所示,)0(f 等于1()f k 012312()f k 011-11kk题5图A .1B .2C .3D .4 D 6、已知()1sgn()f t t =+则其傅立叶变换的频谱函数()F j w 等于A .12()j pd w +w B .2j wC .1()j pd w +wD .2()j 2pd w +w∑D 7、已知单边拉普拉斯变换的象函数22()1F s s =+则原函数)(t f 等于等于A .()te t -e B .2()te t -e C .2cos ()t t e D .2sin ()t t e B 8、已知)()(k k kf e =,其双边Z 变换的象函数)(z F 等于等于 A .1-z z B .2)1(-z z C .1--z z D .2)1(--z z二、填空题(每小题5分,共30分)分) 9、单边拉普拉斯变换定义()F S =0()stf t e dt-¥-ò;双边Z 变换定义式()F Z =()kk f k z¥-=-¥å10、已知()f t 的波形如题10图所示,则(12)f t -波形波形 (1) ;()df t dt波形波形(2) 。
信号与系统期末练习题(含公式)答案
信号与系统期末练习题(1)
1、基本概念
1)、信号可以用确定得时间函数来表示得就是(确定性信号)也称为(规则信号)
2)、不能用确定时间函数来表示得信号就是(随机信号)
3)、如果信号能量有限,且平均功率为0得信号称为(能量信号),能量无穷大,功率为有限制得信号称为(功率信号),能量趋于无穷大,且功率趋于无穷大得信号称(非能量非功率信号)。
4)、波形特点就是任意半个周期得波形可由它前面半周期得波形沿横轴反折得到得函数称为(奇谐函数),请画出一个该函数波形得波形图
5)、波形得实际周期为T1=T/2,即在一个周期内函数得前半周期与后半周期波形相同,这种函数称为(偶谐函数),请画出一个该函数得波形图
6)、函数得公共周期
7)、就是否线性时不变系统?
满足分解性、零输入线性、零状态线性,故就是线性系统
初始状态与激励得系数均不就是常数,所以就是时变系统
8)、就是否线性就是不变系统?
线性时不变系统
9)求解下列计算
1)、=f(t-t1+t2) 2)、 0 3)、 = 0 4)、【1/ΙaΙ】δ(t)5)、 = 1 6)、tu(t)
2、求信号得傅里叶变换
1、
2)、
3)、
4)、已知,得傅里叶变换就是( )
3、求信号得傅里叶反变换
1、
2、
3)、已知信号得傅里叶变换就是,则得傅里叶反变换为(te-t u(t))
3、求信号得拉普拉斯反变换
1)、 2)、
3)、 4)、
6、拉普拉斯变换性质得应用
1)判断就是否稳定系统
2)得零点与极点分别就是哪些?画出零极点分布图、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统期末练习题(1)
1、基本概念
1)、信号可以用确定的时间函数来表示的是(确定性信号)也称为(规则信号)
2)、不能用确定时间函数来表示的信号是(随机信号)
3)、如果信号能量有限,且平均功率为0的信号称为(能量信号),能量无穷大,功率为有限制的信号称为(功率信号),能量趋于无穷大,且功率
趋于无穷大的信号称(非能量非功率信号)。
4)、波形特点是任意半个周期的波形可由它前面半周期的波形沿横轴反折得到的
函数称为(奇谐函数),请画出一个该函数波形的波形图
5)、波形的实际周期为T1=T/2,即在一个周期内函数的前半周期和后半周期波
形相同,这种函数称为(偶谐函数),请画出一个该函数的波形图
6)、函数的公共周期
7)、是否线性时不变系统?
满足分解性、零输入线性、零状态线性,故是线性系统
初始状态和激励的系数均不是常数,所以是时变系统
8)、是否线性是不变系统?
线性时不变系统
9)求解下列计算
1)、=f(t-t1+t2) 2)、 0 3)、 = 0 4)、【1/ΙaΙ】δ(t)5)、 = 1 6)、tu(t)
2、求信号的傅里叶变换
1、
2)、
3)、
4)、已知,的傅里叶变换是( )
3、求信号的傅里叶反变换
1、
2、
3)、已知信号的傅里叶变换是,则的傅里叶反变换为(te-t u(t))
3、求信号的拉普拉斯反变换
1)、 2)、
3)、 4)、
6、拉普拉斯变换性质的应用
1)判断是否稳定系统
2)的零点和极点分别是哪些?画出零极点分布图.。