最新河南高考数学(文科)高考试题(word版)(附答案)
2023年高考数学试题全国甲卷文科(带答案)
绝密★启用前2023年普通高等学校招生全国统一考试(全国甲卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U ={1,2,3,4,5},集合M ={1,4},N ={2,5},则N ∪C U M =()A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}2.5(1+i 3)(2+i )(2-i )=()A.-1B.1C.1-iD.1+i3.已知向量a =(3,1),b =(2,2),则cos a +b ,a -b =()A.117B.1717C.55D.2554.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.235.记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 3=45,则S 5=()A.25B.22C.20D.156.执行右边的程序框图,则输出的B =()A.21B.34C.55D.897.设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1 ⋅PF 2=0,则|PF 1|⋅|PF 2|=()A.1 B.2C.4D.58.曲线y=e xx+1在点(1,e2)处的切线方程为()A.y=e4x B.y=e2x C.y=e4x+e4D.y=e2x+3e49.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为5,C的一条渐近线与圆(x-2)2+(y-3)2=1交于A,B两点,则|AB|=()A.55B.255C.355D.45510.在三棱锥P-ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=6,则该棱锥的体积为()A.1B.3C.2D.311.已知函数f(x)=e-(x-1)2。
高考真题——文科数学(新课标-河南卷)word版-含答案
2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2024年全国统一高考数学试卷(文科)(甲卷)[含答案]
2024年全国统一高考数学试卷(文科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩ 5z x y =-()A .5B .C .D .122-72-4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-73295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .141312236.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C .2D 7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .16128.函数的区间,的图像大致为 2()()sin xx f x x e ex -=-+-[ 2.8- 2.8]()A .B .C .D .9.已知 cos cos sin ααα=-tan()(4πα+=)A .B .CD.1+1-1-10.已知直线与圆交于,两点,则的最小值为 20ax y a ++-=22:410C x y y ++-=A B ||AB ()A .2B .3C .4D .611.已知、是两个平面,、是两条直线,.下列四个命题:αβm n m αβ= ①若,则或//m n //n α//n β②若,则,m n ⊥n α⊥n β⊥③若,且,则//n α//n β//m n ④若与和所成的角相等,则n αβm n ⊥其中,所有真命题的编号是 ()A .①③B .②③C .①②③D .①③④12.在中,内角,,所对边分别为,,,若,,则 ABC ∆A B C a b c 3B π=294b ac =sin sin (A C +=)A .BCD32二、填空题:本题共4小题,每小题5分,共20分.13.函数在,上的最大值是 ()sin f x x x =[0]π14.已知甲、乙两个圆台上下底面的半径均为和,母线长分别为和,则两个圆台的2r 1r 122()r r -123()r r -体积之比 .V V =甲乙15.已知,,则 .1a >8115log log 42a a -=-a =16.曲线与在上有两个不同的交点,则的取值范围为 .33y x x =-2(1)y x a =--+(0,)+∞a 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知等比数列的前项和为,且.{}n a n n S 1233n n S a +=-(1)求的通项公式;{}n a (2)求数列的通项公式.{}n S 18.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲、乙两车间产95%99%品的估级品率存在差异?(2)已知升级改造前该工厂产品的优级品率.设为升级改造后抽取的件产品的优级品率.如0.5p =p n 果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认p p >+12.247)≈附:,22()()()()()n ad bc K a b c d a c b d -=++++2()P K k 0.0500.0100.001k3.8416.63510.82819.(12分)如图,在以,,,,,为顶点的五面体中,四边形与四边形均A B C D E F ABCD CDEF 为等腰梯形,,,,,,,//AB CD //CD EF 2AB DE EF CF ====4CD =AD BC ==AE =为的中点.M CD (1)证明:平面;//EM BCF (2)求点到的距离.M ADE20.(12分)已知函数.()(1)1f x a x lnx =--+(1)求的单调区间;()f x (2)若时,证明:当时,恒成立.2a 1x >1()x f x e -<21.(12分)已知椭圆的右焦点为,点在椭圆上,且轴.2222:1(0)x y C a b a b +=>>F 3(1,2M C MF x ⊥(1)求椭圆的方程;C (2)过点的直线与椭圆交于,两点,为线段的中点,直线与交于,证明:(4,0)P C A B N FP NB MF Q 轴.AQ y ⊥(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线xOy O x 的极坐标方程为.C cos 1ρρθ=+(1)写出的直角坐标方程;C (2)直线为参数),若与交于、两点,,求的值.:(x tl t y t a =⎧⎨=+⎩C l A B ||2AB =a [选修4-5:不等式选讲]23.实数,满足.a b 3a b + (1)证明:;2222a b a b +>+(2)证明:.22|2||2|6a b b a -+-2024年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.集合,2,3,4,5,,,则 {1A =9}{|1}B x x A =+∈(A B = )A .,2,3,B .,2,C .,D .,2,{14}{13}{34}{19}【解析】:,2,3,4,5,,,1,2,3,4,,{1A =9}{|1}{0B x x A =+∈=8}则,2,3,.故选:.{1A B = 4}A 2.设,则 z =(z z ⋅=)A .B .1C .D .2i-1-解法一:,则.故选:.z =z =()2z z ⋅=⋅=D 解法二:22z z z ⋅==3.若实数,满足约束条件则的最小值为 x y 4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩5z x y =-()A .5B .C .D .122-72-【解析】:作出不等式组所表示的平面区域,如图所示:4330,220,2690,x y x y x y --⎧⎪--⎨⎪+-⎩将约束条件两两联立可得3个交点:,,,(0,1)C -3(,1)2A 1(3,)2B 由得,则可看作直线在轴上的截距,5z x y =-1155y x z =-15z -1155y x z =-y 经检验可知,当直线经过点,时,最小,代入目标函数可得:.3(2A 1)z 72min z =-故选:.D 4.等差数列的前项和为,若, {}n a n n S 91S =37(a a +=)A .B .C .1D .2-7329解法一:,则,解得.故选:.91S =193799()9()122a a a a S ++===3729a a +=D 解法二:利用等差数列的基本量由,根据等差数列的求和公式,,91S =9119891,93612dS a a d ⨯=+=∴+=.()37111122262893699a a a d a d a d a d +=+++=+=+=解法三:特殊值法不妨取等差数列公差,则,则.故选:D0d =9111199S a a ==⇒=371229a a a +==解法四:【构造法】:设的公差为,利用结论是首项为,公差为的等差数列,{}n a d n S n ⎧⎫⎨⎬⎩⎭1a 2d 则,,()911118428922S d a a d a d =+=+=+371112628a a a d a d a d +=+++=+则,所以.故选:D ()()9111371118428==92229S d a a d a d a a =+=+=++3729a a +=解法五:根据题意,故选:D375922299a a a S +===5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是 ()A .B .C .D .14131223【解析】:甲、乙、丙、丁四人排成一列共有种可能,4424A =丙不在排头,且甲或乙在排尾的情况有种可能,故.故选:.1122228C C A=81243P ==B 6.已知双曲线的两个焦点分别为、,且经过点,则双曲线的离心率是 1(0,4)F 2(0,4)F -(6,4)P -C ()A .4B .3C.2D 解法一:因为双曲线的两个焦点分别为、,且经过点,1(0,4)F 2(0,4)F -(6,4)P -所以,,,12||8F F =1||6PF =2||10PF ==则双曲线的离心率.故选:.C 2822106c e a ===-C 解法二:点纵坐标相同,所以是通径的一半即1P F 、1||PF 21||6b PF a ==则即,则双曲线的离心率.故选:.2166a a -=2a =C 224c e a ===C 解法三:双曲线的离心率C 121221086F F e PF PF ===--解法四 :根据焦点坐标可知4c =,根据焦点在y 轴上设双曲线方程为22221y xa b -=,则22221636116a b a b ⎧-=⎪⎨⎪+=⎩,则2a b =⎧⎪⎨=⎪⎩2c e a ==7.曲线在处的切线与坐标轴围成的面积为 6()31f x x x =+-(0,1)-()A .BC .D .1612【解析】:因为,所以,曲线在处的切线斜率,6()3f x x x =+5()63f x x '=+(0,1)-3k =故曲线在处的切线方程为,即,(0,1)-13y x +=31y x =-则其与坐标轴围成的面积.故选:.1111236S =⨯⨯=A 8.函数的区间,的图像大致为 2()()sin x x f x x ee x -=-+-[ 2.8-2.8]()A .B .C .D .解法一:,2()()sin x x f x x e e x -=-+-则,故为偶函数,故错误;22()()()sin()()sin ()x x x x f x x e e x x e e x f x ---=--+--=-+-=()f x AC (1),故错误,正确.f 1111111()sin11()sin 1062242e e e e e e eπ-=-+->-+-=-->->D B 故选:.B 解法二:函数为偶函数。
2021年河南省高考文科数学真题及参考答案
2021年河南省高考文科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集{}54321,,,,=U ,集合{}21,=M ,{}43,=N ,则()=N M C U ()A .{}5B .{}2,1C .{}4,3D .{}4,3,2,12.设i iz 34+=,则=z ()A .i 43--B .i 43+-C .i43-D .i43+3.已知命题p :1sin ,<∈∃x R x ;命题q :1,≥∈∀xe R x ,则下列命题中为真命题的是()A .qp ∧B .q p ∧⌝C .qp ⌝∧D .()q p ∧⌝4.函数()3cos 3sinxx x f +=的最小正周期和最大值分别是()A .π3和2B .π3和2C .π6和2D .π6和25.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≤-≥+324y y x y x ,则y x z +=3的最小值为()A .18B .10C .6D .46.=-125cos 12cos22ππ()A .21B .33C .22D .237.在区间⎪⎭⎫ ⎝⎛210,随机取1个数,则取到的数小于31的概率为()A .43B .32C .31D .618.下列函数的最小值为4的是()A .422++=x x yB .xx y sin 4sin +=C .xx y -+=222D .xx y ln 4ln +=9.设函数()xxx f +-=11,则下列函数中为奇函数的是()A .()11--x fB .()11+-x f C .()11-+x f D .()11++x f 10.在正方体1111D C B A ABCD -中,P 为11D B 的中点,则直线PB 与1AD 所成的角为()A .2πB .3πC .4πD .6π11.设B 是椭圆1522=+y x 的上顶点,点P 在C 上,则PB 的最大值为()A .25B .6C .5D .212.设0≠a ,若a x =为函数()()()b x a x a x f --=2的极大值点,则()A .b a <B .b a >C .2a ab <D .2a ab >二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()5,2=a,()4,λ=b ,若b a ∥,则=λ.14.双曲线15422=-y x 的右焦点到直线082=-+y x 的距离为.15.记ABC ∆的内角C B A ,,的对边分别为c b a ,,,面积为3,︒=60B ,ac c a 322=+,则=b .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号一次为.(写出符合要求的一组答案即可)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别为x ,y ,样本方差分别为21s ,22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果1022221s s x y +≥-,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高.)18.(12分)如图,四棱锥ABCD P -的底面是矩形,⊥PD 底面ABCD ,M 为BC 的中点,且AM PB ⊥.(1)证明:平面⊥P AM 平面PBD ;(2)若1==DC PD ,求四棱锥ABCD P -的体积.19.(12分)设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知3219,3,a a a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n n T S ,分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.20.(12分)已知抛物线C :()022>=p px y 的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足QF PQ 9=,求直线OQ 斜率的最大值.旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.521.(12分)已知函数()123++-=ax x x x f (1)讨论()x f 的单调性;(2)求曲线()x f y =过坐标原点的切线与曲线()x f y =的公共点的坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,☉C 的圆心为()12,C ,半径为1.(1)写出☉C 的一个参数方程;(2)过点()14,F 作☉C 的两条切线,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.23.【选修4-5:不等式选讲】(10分)已知函数()3++-=x a x x f .(1)当1=a 时,求不等式()6≥x f 的解集;(2)若()a x f ->,求a 的取值范围.参考答案一、选择题1.A解析:由题意可得{}4,3,2,1=N M ,∴(){}5=N M C U 2.C 解析:在等式i iz 34+=两边同时乘i 得,34-=-i z ,∴i z 43-=.3.A 解析:p 真,q 真,∴选A 4.D解析:由题可得()⎪⎭⎫⎝⎛+=43sin 2πx x f ,故周期为πωπ62==T ,最大值为2.5.C 解析:由约束条件可得可行域如图所示,当直线y x z +=3过点()31,B 时,z 取最小值为6.6.D解析:原式236cos 12sin 12cos22==-=πππ7.B 解析:本题为集合概型,测度为长度,()32021031=--=A P .8.C 解析:由题意可知A 的最小值为3,B 等号成立条件不成立,D 无最小值.9.B解析:()xx f ++-=121关于()11--,中心对称,向右1个单位,向上1个单位后关于()0,0中心对称,∴()11+-=x f y 为奇函数.10.D解析:如图,1PBC ∠为直线PB 与1AD 所成的角的平面角.易知11BC A ∆为正三角形,又P 为11C A 的中点,∴61π=∠PBC .11.A 解析:由P 在C 上,设()00,y x P ,且152020=+y x ,()10,B ,因此()202021-+=y x PB,由152020=+y x 可得[]1,1,5502020-∈-=y y x ,代入上式得()20202155-+-=y y PB,化简得[]1,14254140202-∈+⎪⎭⎫ ⎝⎛+-=y y PB .因此当且仅当410-=y 时,PB 的最大值为25.12.D解析:若0>a ,其图象如图(1),此时,b a <<0;若0<a ,其图象如图(2),此时,0<<a b .综上,2a ab >.二、填空题13.58解析:由已知,b a ∥,则λ542=⨯,故58=λ.14.5解析有题意可知,双曲线的右焦点坐标为()0,3,由点到直线的距离公式得521802322=+-⨯+=d .15.22解析:343sin 21===∆ac B ac S ABC ,∴4=ac .由余弦定理,823222==-=-+=ac ac ac ac c a b ,∴22=b .16.②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面P AC ⊥平面ABC ,2==PC P A ,5==BC BA ,2=AC .俯视图为⑤;侧视图为③,如图(2),P A ⊥平面ABC ,1=P A ,5==AB AC ,2=BC ,俯视图为④.三、解答题17.解:(1)()0.107.92.101.100.108.99.92.100.103.108.9101=+++++++++=x ()3.105.104.105.106.103.101.100.101.104.101.10101=+++++++++=y ,()()()()2222210.100.1020.109.90.108.920.107.9[101-⨯+-+-⨯+-⨯=s ()()()036.0]0.103.100.102.1020.101.10222=-+-⨯+-+,()()()()2222223.104.1023.103.103.101.1033.100.10[101-⨯+-+-⨯+-⨯=s ()()04.0]3.106.103.105.10222=-+-⨯+.(2)由(1)中数据得3.0=-x y ,0304.00076.021022221==+s s .则0304.009.03.0>=,显然>-x y 1022221s s +,∴可判断新设备生产产品的该项指标的均值较旧设备有显著提高.18.解:(1)∵⊥PD 底面ABCD ,⊂AM 平面ABCD ,∴AM PD ⊥,∵AM PD ⊥,AM PB ⊥,P PD PB = ,⊂PB 平面PBD ,⊂PD 平面PBD ,∴⊥AM 平面PBD又∵⊂AM 平面P AM ,∴平面P AM 平面PBD .(2)∵M 为BC 的中点,∴AD BM 21=且1==DC AB ……①∵⊥AM 平面PBD ,⊂BD 平面PBD ,∴BD AM ⊥.则有︒=∠+∠90MAD BAM ,︒=∠+∠90ADB MAD ,即ADB BAM ∠=∠,则有ADB BAM ∆∆~,则有DAABAB BM =,即将①代入得2=AD .212=⨯=⋅=DC AD S ABCD ,32123131=⨯⨯=⋅=-PD S V ABCD ABCD P .19.解:(1)设{}n a 的公比为q ,则1-=n n qa ,∵3219,3,a a a 成等差数列,∴q q 32912⨯=+,解得31=q故131-⎪⎭⎫ ⎝⎛=n n a ,⎪⎭⎫ ⎝⎛-=--=n n n S 31123311311.又n n n b 3=,则n n n nn T 3313332311321+-++++=- ,两边同乘31,则143233133323131++-++++=n n n nn T ,两式相减得132133131313132+-++++=n n n nT ,即1133112133113113132++-⎪⎭⎫⎝⎛-=--⎪⎭⎫ ⎝⎛-=n nn nn n n T ,整理得nn n n n n T 3232433231143⨯+-=⨯-⎪⎭⎫⎝⎛-=,∴032343112332324322<⨯+-=⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛⨯+-=-n n n n n n n S T ,故2nn S T <.20.解:(1)在抛物线中,焦点F 到准线的距离为p ,故2=p ,∴x y 42=.设()()()01,,2211,,,F y x Q y x P ,则()1212,y y x x PQ --=,()22,1y x QF --=,∵QF PQ 9=,∴()21219x x x -=-,1129y y y -=-,∴91021-=x x ,2110y y =,又∵点P 在抛物线上,1214x y =,∴()()910410222-=x y ,则点Q 的轨迹方程为259522-=x y .设直线OQ 的方程为kx y =,当直线OQ 和曲线259522-=x y 相切时,斜率最大,联立直线与曲线方程,得02595222=+-x x k ,相切时,0=∆,即025945222=⋅-⎪⎭⎫ ⎝⎛-k ,解得31=k 或31-=k (舍去)∴直线OQ 斜率的最大值为31.21.解:(1)函数()x f 的定义域为R ,其导数为()a x x x f +-='232.①当31≥a 时,()0='x f 至多有一解,即()0≥'x f ,∴()x f 在R 上单调递增;②当31<a 时,令()0='x f ,即0232=+-a x x ,解得3311,331121ax a x -+=--=.()0>'x f 时,1x x <或2x x >;()0<'x f 时,21x x x <<∴()x f 在()1x ,∞-上单调递增,在()21,x x 上单调递减,在()+∞,2x 上单调递增.∴当31≥a 时,()x f 在R 上单调递增;当31<a 时,()x f 在⎪⎪⎭⎫ ⎝⎛--∞-3311a ,上单调递增,在⎪⎪⎭⎫ ⎝⎛-+--33113311a a ,上单调递减,在⎪⎪⎭⎫⎝⎛∞+-+,3311a 上单调递增.(2)记曲线()x f y =过坐标原点的切线为l ,切点为()1,020300++-ax x x x P .()a x x x f +-='020023.∴切线l 的方程为()()()002002030231x x a x x ax x x y -+-=++--,又切线l 过坐标原点,则0122030=--x x ,解得10=x ∴切线l 的方程为()xa y +=1若()x a ax x x +=++-1123,则有方程0123=+--x x x ,解得1=x 或1-=x ∴曲线()x f y =过坐标原点的切线与曲线()x f y =的公共点的坐标为()a +1,1和()a ---1,1.(二)选考题22.解:(1)∵☉C 的圆心为()12,C ,半径为1,故☉C 的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,(θ为参数).(2)设切线()14+-=x k y ,即014=+--k y kx ,故1114122=++--kk k ,即212k k +=,∴2214k k +=,解得33±=k .故直线方程为()1433+-=x y ,()1433+--=x y .故两条切线的极坐标方程为1334cos 33sin +-=θθρ或1334cos 33sin ++=θθρ.23.解:(1)当1=a 时,()31++-=x x x f ,即求631≥++-x x 的解集.当1≥x 时,622≥+x ,得2≥x ;当13<<-x 时,64≥,此时没有x 满足条件;当3-≤x 时,622≥--x ,解得4-≤x .综上,解集为(][)∞+-∞-,,24 .(2)()a x f ->min ,而由绝对值的几何意义,即求x 到a 和3-距离的最小值.当x 在a 和3-之间时最小,此时()x f 最小值为3+a ,即a a ->+3.3-≥a 时,032>++a ,得23->a ;当3-<a 时,a a ->--3,此时a 不存在.综上,23->a .。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)
2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
2021年高考真题——文科数学(新课标II卷)Word版含答案(自画图)
绝密★启用前2021年一般高等学校招生全国统一考试文 科 数 学留意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|12}A x x =-<<,{|03}B x x =<<,则A B =A .(1,3)-B .(1,0)-C .(0,2)D .(2,3)2.若a 为实数,且231aii i+=++,则a = A .-4 B .-3 C .3 D .43.依据下面给出的2004年至2021年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年削减二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈削减趋势D .2006年以来我国二氧化硫年排放量与年份正相关 4.向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .35.设S n 等差数列{}n a 的前n 项和。
若a 1 + a 3 + a 5 = 3,则S 5 = A .5 B .7 C .9D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .18B .17 C .16D .157.已知三点(1,0)A,B,C ,则ΔABC 外接圆的圆心到原点的距离为A .53 BCD .43 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
2020年河南省高考数学试卷(文科)(新课标Ⅰ)
2020年河南省高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={x|x2−3x−4<0},B={−4, 1, 3, 5},则A∩B=()A.{−4, 1}B.{1, 5}C.{3, 5}D.{1, 3}【答案】D【考点】交集及其运算【解析】求解一元二次不等式得到集合A,再由交集运算得答案.【解答】集合A={x|x2−3x−4<0}=(−1, 4),B={−4, 1, 3, 5},则A∩B={1, 3},2. 若z=1+2i+i3,则|z|=()A.0B.1C.√2D.2【答案】C【考点】复数的模【解析】根据复数的定义化简原式,并通过模长公式求解即可.【解答】z=1+2i+i3=1+2i−i=1+i,∴|z|=√12+12=√2.3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.√5−14B.√5−12C.√5+14D.√5+12【答案】棱柱、棱锥、棱台的侧面积和表面积【解析】先根据正四棱锥的几何性质列出等量关系,进而求解结论.【解答】设正四棱锥的高为ℎ,底面边长为a,侧面三角形底边上的高为ℎ′,则依题意有:{ℎ2=12aℎℎ2=ℎ2−(a2)2,因此有ℎ′2−(a2)2=12aℎ′⇒4(ℎa)2−2(ℎa)−1=0⇒ℎa=√5+14(负值舍去);4. 设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.1 5B.25C.12D.45【答案】A【考点】古典概型及其概率计算公式【解析】根据古典概率公式即可求出.【解答】O,A,B,C,D中任取3点,共有C53=10种,其中共线为A,O,C和B,O,D两种,故取到的3点共线的概率为P=210=15,5. 某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:∘C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i, y i)(i=1, 2,…,20)得到下面的散点图:由此散点图,在10∘C至40∘C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+be xD.y=a+b ln x【答案】求解线性回归方程【解析】直接由散点图结合给出的选项得答案.【解答】由散点图可知,在10∘C至40∘C之间,发芽率y和温度x所对应的点(x, y)在一段对数函数的曲线附近,结合选项可知,y=a+b ln x可作为发芽率y和温度x的回归方程类型.6. 已知圆x2+y2−6x=0,过点(1, 2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4【答案】B【考点】直线与圆相交的性质【解析】由相交弦长|AB|和圆的半径r及圆心C到过D(1, 2)的直线的距离d之间的勾股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与CD垂直时d最大,求出d的最大值,进而求出弦长的最小值.【解答】由圆的方程可得圆心坐标C(3, 0),半径r=3;设圆心到直线的距离为d,则过D(1, 2)的直线与圆的相交弦长|AB|=2√r2−d2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|=√(3−1)2+(2−0)2=2√2,所以最小的弦长|AB|=2√32−(2√2)2=2,7. 设函数f(x)=cos(ωx+π6)在[−π, π]的图象大致如图,则f(x)的最小正周期为()A.10π9B.7π6C.4π3D.3π2【答案】C【考点】三角函数的周期性【解析】由图象观察可得最小正周期小于13π9,大于10π9,排除A,D;再由f(−4π9)=0,求得ω,对照选项B,C,代入计算,即可得到结论.【解答】由图象可得最小正周期小于π−(−4π9)=13π9,大于2×(π−4π9)=10π9,排除A,D;由图象可得f(−4π9)=cos(−4π9ω+π6)=0,即为−4π9ω+π6=kπ+π2,k∈Z,(∗)若选B,即有ω=2π7π6=127,由−4π9×127+π6=kπ+π2,可得k不为整数,排除B;若选C,即有ω=2π4π3=32,由−4π9×32+π6=kπ+π2,可得k=−1,成立.8. 设a log34=2,则4−a=()A.1 16B.19C.18D.16【答案】B【考点】对数的运算性质【解析】直接根据对数和指数的运算性质即可求出.【解答】因为a log34=2,则log34a=2,则4a=32=9则4−a=14a =19,9. 执行如图的程序框图,则输出的n=()A.17B.19C.21D.23【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,分析循环中各变量值的变化情况,可得答案.【解答】n=1,S=0,第一次执行循环体后,S=1,不满足退出循环的条件,n=3;第二次执行循环体后,S=4,不满足退出循环的条件,n=5;第三次执行循环体后,S=9,不满足退出循环的条件,n=7;第四次执行循环体后,S=16,不满足退出循环的条件,n=9;第五次执行循环体后,S=25,不满足退出循环的条件,n=11;第六次执行循环体后,S=36,不满足退出循环的条件,n=13;第七次执行循环体后,S=49,不满足退出循环的条件,n=15;第八次执行循环体后,S=64,不满足退出循环的条件,n=17;第九次执行循环体后,S=81,不满足退出循环的条件,n=19;第十次执行循环体后,S=100,不满足退出循环的条件,n=21;第十一次执行循环体后,S=121,满足退出循环的条件,故输出n值为21,10. 设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【答案】D【考点】等比数列的性质【解析】根据等比数列的性质即可求出.【解答】{a n}是等比数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,11. 设F1,F2是双曲线C:x2−y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.7 2B.3C.52D.2【答案】B【考点】双曲线的离心率【解析】先判断△PF1F2为直角三角形,再根据双曲线的定义和直角三角形的性质即可求出.【解答】由题意可得a=1,b=√3,c=2,∴|F1F2|=2c=4,∵|OP|=2,∴|OP|=12|F1F2|,∴△PF1F2为直角三角形,∴PF1⊥PF2,∴|PF1|2+|PF2|2=4c2=16,∵||PF1|−|PF2||=2a=2,∴|PF1|2+|PF2|2−2|PF1|⋅|PF2|=4,∴|PF1|⋅|PF2|=6,∴△PF1F2的面积为S=12|PF1|⋅|PF2|=3,12. 已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【考点】球的表面积和体积【解析】画出图形,利用已知条件求出OO1,然后求解球的半径,即可求解球的表面积.【解答】由题意可知图形如图:⊙O1的面积为4π,可得O1A=2,则3 2AO1=AB sin60∘,32AO1=√32AB,∴AB=BC=AC=OO1=2√3,外接球的半径为:R=√AO12+OO12=4,球O的表面积:4×π×42=64π.二、填空题:本题共4小题,每小题5分,共20分。
2020年河南省高考数学试卷(文科)(新课标Ⅰ)
2020年河南省髙考数学试卷(文科)(新课标I )一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合Λ = {%∣X 2-3X -4<0}, B={-4, 1, 3, 5},则AC ∖B=() A.{-4, 1}B.{l, 5}C.{3, 5}D.{l, 3}【答案】D【考点】 交集及其运算 【解析】求解一元二次不等式得到集合4,再由交集运算得答案• 【解答】集⅛4={%∣%2-3X -4 <0} = (-l, 4), B={-4, 1,3,5}, 则AnB=(1, 3}, 2.若z=l +2i + iS 则IZl=()A.0B.lC.√2D.2【答案】C【考点】 复数的模 【解析】根据复数的定义化简原式,并通过模长公式求解即町. 【解答】z=l + 2i + i 3= l + 2i - i = l + i, .∙. IZI =√12÷ I 2= ∖[2.3•埃及胡夫金字塔是占代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四 棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面枳,则其侧面三角形 底边上的高与底面正方形的边长的比值为()【答案】A. √5-lD.√5+lB •导C【考点】棱柱、棱锥、棱台的侧面积和表面积【解析】先根据正四棱锥的几何性质列出等量关系,进而求解结论.【解答】设正四棱锥的高为/1,底面边长为6侧面三角形底边上的高为∕Λ则依题意有:h2 = ^ah h2 = h2-φ2'因此有护-φ2 = lαΛ,=> 4(》2 _ 2(》一1 =O » =字(负值舍去);4・设O为正方形ABCD的中心,在O, A9 B、C9 D中任取3点,则取到的3点共线的概率为()【答案】A【考点】占典概型及其概率计算公式【解析】根据古典概率公式即可求出.【解答】O, A f B, C, D中任取3点,共有屈=10种, 其中共线为4,O, C和B, O, D两种,故取到的3点共线的概率为P =5.某校一个课外学习小组为研究某作物种子的发芽率y和温度%(单位:9)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(X it y i Xi = I t 220)得到下面的散点图:由此散点图,在10。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
2022年河南高考文数真题及答案(全国乙卷)
2022年河南高考文数真题及答案(全国乙卷)高中数学是一个特别需要用心学习的科目,数学的知识点很多,涉及到的题型也特别多,稍微用错一个公式,计算少算一步,这道题都得不到分。
以下是小编为大家收集整理的关于2022年河南高考文数真题及答案(全国乙卷)的相关内容,供大家参考!2022年全国乙卷适用的省份:河南、安徽、江西、山西、陕西、黑龙江、吉林、甘肃、内蒙古、青海、宁夏、新疆点击查看》》2022年河南高考真题及答案汇总2022年河南高考文数真题及答案(全国乙卷)高校招生的几种模式1、了解学科类别在填报志愿之前,考生应了解大类的具体学科类别,要按照教育部规定的普通高等学校本科专业的设置分类,了解选报的大类是属于12个学科的哪一个学科?又属于哪一个门类?这一点首先要搞清楚。
2、不同大类包含专业不同考生在填报志愿过程中会发现,专业目录中相同的招生大类,各学校所包含的专业也不同。
各省考生在报考时,一定要认真阅读本省当年下发的《招生专业目录》,看清所报学校的招生专业,确定自己喜欢的专业是否包含在某“大类”之中,以免漏报、错报。
3、二次分流选专业要多种因素综合考虑目前国内的高校大类专业分流模式大致有两种:一是基于学生成绩、平时表现等综合因素分专业。
这种模式最直接的影响是,排名在后的学生没有选择的余地。
有些学生可能是为了某个专业才选择大类专业,可在选专业时,受成绩排名等影响,难以选到目标专业。
二是直接按照学生意愿选专业。
这种方法看似更科学,但操作起来很困难。
在实际中,大部分学生更乐意选择“热门专业”,这样一来,“热门专业”扎堆,人数太多难以吸纳。
所以,提前了解所报院校将来分专业的相关规定,是很有必要的,这直接关系到将来学生的专业去向。
4、考生应考虑清楚自己今后的发展方向按大类招生为不了解大学专业设置的高考考生及其家长提供了一个先了解后选择的机会,使考生能够先进入大学学习基础课程和学科技能,后根据专业兴趣、个人特长等选择合适的专业,再进行专业知识点的学习和能力培养。
2023年河南省高考文科数学真题及参考答案
2023年河南省高考文科数学真题及参考答案一、选择题1.=++3222ii ()A .1B .2C .5D .52.设集合{}8,6,4,2,1,0=U ,集合{}6,4,0=M ,{}6,1,0=N ,则=⋃N C M U ()A .{}8,6,4,2,0B .{}8,6,4,1,0C .{}8,6,4,2,1D .U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若c A b B a =-cos cos ,且5π=C ,则=∠B ()A .10πB .5πC .103πD .52π5.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .26.正方形ABCD 的边长是2,E 是AB 的中点,则=⋅ED EC ()A .5B .3C .52D .57.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .218.函数()23++=ax x x f 存在3个零点,则a 的取值范围是()A .()2-∞-,B .()3-∞-,C .()14--,D .()0,3-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .65B .32C .21D .3110.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .2311.已知实数y x ,满足042422=---+y x y x ,则y x -的最大值是()A .2231+B .4C .231+D .712.已知B A ,是双曲线1922=-y x 上两点,下列四个点中,可为AB 中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若⎪⎭⎫ ⎝⎛∈30πθ,,21tan =θ,则=-θθcos sin .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.16.已知点C B A S ,,,均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则=SA .三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.记n S 为等差数列{}n a 的前n 项和,已知112=a ,4010=S .(1)求{}n a 的通项公式;(2)求数列{}n a 前n 项和n T .19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)若︒=∠120POF ,求三棱锥ABC P -的体积.20.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)若()x f 在()∞+,0单调递增,求a 的取值范围.21.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,证明:线段MN 中点为定点.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112CADCDBCBADCD1.解:∵i i i i 212122232-=--=++,∴()52121222232=-+=-=++i ii 3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵C B A -=+π,∴()B A C +=sin sin ,∵c A b B a =-cos cos ,由正弦定理得:B A B A C A B B A sin cos cos sin sin cos sin cos sin +==-∴0cos sin =A B ,∵()π,0∈B ,∴0sin ≠B ,∴0cos =A ,∴2π=A ∵5π=C ,∴10352πππ=-=B .5.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .6.解:以AD AB ,为基底表示:AD AB BC EB EC +=+=21,AD AB AD EA ED +-=+=21,∴31441212122=-=-=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⋅AB AD AD AB AD AB ED EC7.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .8.解:由条件可知()032=+='a x x f 有两根,∴0<a 要使函数()x f 存在3个零点,则03>⎪⎪⎭⎫ ⎝⎛--a f 且03<⎪⎪⎭⎫⎝⎛-a f ,解得3-<a 9.解:有条件可知656626=⨯=A P .10.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .11.解:由042422=---+y x y x 得()()91222=-+-y x ,令t y x =-,则0=--t y x ,圆心()1,2到直线0=--t y x 的距离为321111222≤-=+--t t ,解得231231+≤≤-t ,∴y x -的最大值为231+.12.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.二、填空题13.49;14.55-;15.8;16.213.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.解:∵⎪⎭⎫⎝⎛∈20πθ,,∴0cos ,0sin >>θθ,由⎪⎩⎪⎨⎧===+21cos sin tan 1cos sin 22θθθθθ,解得552cos ,55sin ==θθ,∴55cos sin -=-θθ.15.解:作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A ,此时截距z -最小,则z 最大,代入得8=z .16.解:如图所示,根据题中条件2==OS OA ,3===AC BC AB ,∴3323321=⎪⎪⎭⎫ ⎝⎛⨯⨯==A O r ,∴()⎪⎩⎪⎨⎧+-=+=2121221212A O OO SA OS A O OO OA即()⎪⎩⎪⎨⎧+-=+=222222r d SA R r d R ,代入数据得()⎪⎩⎪⎨⎧+-=+=343422d SA d ,解得2=SA 或1-=SA (舍)三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s ,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)设等差数列{}n a 的公差为d ,由题意可得⎪⎩⎪⎨⎧=⨯+==+=402910101111012d a S d a a 解得⎩⎨⎧-==2131d a ,∴数列{}n a 的通项公式为()n d n a a n 21511-=-+=.(2)由(1)知n a n 215-=,令0215>-=n a n 得*∈≤<N n n ,70∴当*∈≤<N n n ,70时,()n n a a n T n n 14221+-=+=;当*∈≥N n n ,8时,nn a a a a a a T +++++++= 98721n a a a a a a ----+++= 98721()n a a a a a a +++-+++= 98721()981414492222777+-=+--⨯=-=--=n n n n T T T T T n n 综上所述⎪⎩⎪⎨⎧∈≤++-∈≤+-=**Nn n n n Nn n n n T n ,7,814,7,142219.解:(1)∵BC AB BF AO ⊥⊥,,∴OAB FBC ∠=∠.22tan ==∠AB OB OAB ,22tan ==∠BC AB ACB ,∴ACB FBC ∠=∠.又点O 为BC 中点,∴BC OF ⊥.又BC AB ⊥∴AB OF ∥.∴点F 为AC 中点.∵点E 为P A 中点,∴PC EF ∥.∵点O D ,分别为BC BP ,中点,∴PC DO ∥,即EFDO ∥∵⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)过点P 作OF PH ⊥,垂足为H .由(1)知BC OF ⊥,在PBC ∆中,PC PB =,∴BC PO ⊥.∵O PO OF =⋂,∴BC ⊥平面POF .又⊂PH 平面POF ,∴PH BC ⊥.又∵OF PH ⊥,O BC OF =⋂,∴PH ⊥平面ABC .在PBC ∆中,222=-=OC PC PO .在POH Rt ∆中,︒=∠60POH ,3sin =∠⋅=POH PO PH ∴362213131=⋅⋅⨯=⋅=∆-BC AB PH S PH V ABC ABC P .20.解:(1)(1)当1-=a 时,()(),1ln 11+⎪⎭⎫⎝⎛-=x x x f ,则()()11111ln 12+⨯⎪⎭⎫⎝⎛-++⨯-='x x x x x f ,据此可得()()2ln 1,01-='=f f ,函数在()()11f ,处的切线方程为()12ln 0--=-x y ,即()02ln 2ln =-+y x .(2)由题意知()()()()()11ln 11111ln 1222+++-+=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-='x x x x x ax x a x x x x f .若()x f 在()∞+,0上单调递增,则方程()()01ln 12≥++-+x x x ax 在()∞+,0上恒成立,令()()()0,1ln 12>++-+=x x x x ax x h ,则()()1ln 2+-='x ax x h .当21≥a 时,()()01ln 2≥+-='x ax x h 成立,()x h 单调递增且()00=h ,()0≥x h 成立,符合题意.当210<<a 时,()()()0112,1ln 2=+-=''+-='x a x h x ax x h ,则121-=a x ,则()x h '在⎪⎭⎫ ⎝⎛-121,0a 上单调递减,在⎪⎭⎫ ⎝⎛∞+-,121a 上单调递增,()00='h 则()x h 在⎪⎭⎫⎝⎛-121,0a 上单调递减,()00=h ,则⎪⎭⎫⎝⎛-∈121,0a x 上时,()0<x h 不合题意,舍去.当0≤a 时,()()01ln 2<+-='x ax x h ,()x h 单调递减,()00=h ,则()0<x h 不合题意,舍去.∴a 的取值范围为⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y 。
2023年河南省商丘市部分学校高考数学段考试卷(文科)(六)+答案解析(附后)
2023年河南省商丘市部分学校高考数学段考试卷(文科)(六)1. 已知集合,,则( )A. B. C. D.2. 已知复数,则( )A. B. C. D.3. 在某次演讲比赛中,由两个评委小组分别为专业人士记为小组和观众代表记为小组给参赛选手打分,根据两个评委小组给同一名选手打分的分值绘制成如图所示的折线图,则下列结论错误的是( )A. 小组A打分的分值的平均数为48B. 小组B打分的分值的中位数为66C. 小组A打分的分值的极差大于小组B打分的分值的极差D. 小组A打分的分值的方差小于小组B打分的分值的方差4. 已知,则( )A. B. C. D.5. 某几何体的三视图如图所示,则该几何体的表面积是( )A.B.C.D.6. 执行如图所示的程序框图,输出的( )A. B. C. D. 07. 已知电磁波在空间中自由传播时的损耗公式为,其中D为传输距离单位:,F为载波频率单位:,L为传输损耗单位:若载波频率变为原来的200倍,传输损耗增加90dB,则传输距离约为原来的参考数据:( )A.倍 B. 倍 C. 倍 D. 倍8. 已知是定义在R上的奇函数,,且在上单调递增,则不等式的解集为( )A. B.C. D.9. 将函数的图象向右平移个单位长度,得到函数的图象,则函数的值域为( )A. B. C. D.10. 已知抛物线C:的焦点为F,,M为C上位于第一象限的一点,且点M 的横坐标小于2,则的面积的最大值为( )A. 2B.C. 1D.11. 已知四棱锥的底面ABCD是矩形,高为,则四棱锥的外接球的体积为( )A. B. C. D.12. 已知双曲线的左、右焦点分别为,,点M,N是C的一条渐近线上的两点,且为坐标原点,若P为C的左顶点,且,则双曲线C的离心率为( )A. B. 2 C. D.13. 已知在平行四边形ABCD中,点E满足,,则实数______ .14. 已知圆,圆过点且与圆相切于点,则圆的方程为______ .15. 已知在中,角A,B,C的对边分别为a,b,c,且满足,,则的面积为______ .16. 若过点有n条直线与函数的图象相切,则当n取最大值时,a的取值范围为______ .17. 已知数列是首项为2,公差为4的等差数列,等比数列满足,求的通项公式;记,求数列的前n项和18. 某体育频道为了解某地电视观众对卡塔尔世界杯的收看情况,随机抽取了该地200名观众进行调查,下表是根据所有调查结果制作的观众日均收看世界杯时间单位:时的频率分布表:日均收看世界杯时间时频率如果把日均收看世界杯的时间高于小时的观众称为“足球迷”.根据已知条件完成下面的列联表,并判断是否有的把握认为该地的电视观众是否为“足球迷”与性别有关;非足球迷足球迷合计女70男40合计从样本中为“足球迷”的观众中,先按性别比例用分层抽样的方法抽出5人,再从这5人中随机抽取3人进行交流,求3人都是男性观众的概率.参考公式:,其中参考数据:19.如图,在三棱柱中,是边长为2的等边三角形,,平面平面ABC,E,F分别为棱,BC的中点.证明:平面;若三棱柱的体积为,求点C到平面的距离.20. 已知椭圆的上顶点为A,右顶点为B,坐标原点O到直线AB的距离为,的面积为求椭圆C的方程;若过点且不过点的直线l与椭圆C交于M,N两点,直线MQ与直线交于点E,证明:21. 已知函数当时,求的极小值;若不等式在上恒成立,求实数m的取值范围.22. 在直角坐标系xOy中,曲线的参数方程为为参数,以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为设曲线与曲线交于A,B两点,求;若M,N是曲线上的两个动点,且,求的取值范围.23. 已知函数求不等式的解集;若的最小值为t,a,b,c为正实数,且,证明:答案和解析1.【答案】A【解析】解:因为集合,,则故选:利用交集的定义可求.本题主要考查交集的运算,属于基础题.2.【答案】D【解析】因为,所以,故选:根据复数的除法运算求得z,根据共轭复数的概念可得答案.本题主要考查复数的四则运算,以及共轭复数的定义,属于基础题.3.【答案】C【解析】解:由图可知,小组A打分的平均数为,故A正确;将小组B打分从小到大排列为36、55、58、62、66、68、68、70、75,所以中位数为66,故B正确;小组A打分的分值的极差为,小组B打分的分值的极差为,故C错误;小组A打分的分值相对更集中,所以小组A打分的分值的方差小于小组B打分的分值的方差,故D正确;故选:根据平均数公式判断A,将小组B打分从小到大排列,即可求出中位数,从而判断B,求出极差判断C,根据数据的分布情况判断本题主要考查了平均数、中位数和极差的计算,属于基础题.4.【答案】D【解析】解:因为,所以故选:利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得.本题主要考查了二倍角公式及同角基本关系在三角函数值求解中的应用,属于基础题.5.【答案】D【解析】解:根据几何体的三视图得该几何体为如图所示的多面体,且,,所以,则其表面积为故选:根据三视图得到几何体的直观图,从而求出几何体的表面积.本题主要考查三视图,几何体的表面积的求法,考查运算求解能力,属于基础题.6.【答案】B【解析】解:由程序框图知,第一次循环,判断不成立,,;第二次循环,判断不成立,,;第三次循环,判断不成立,,;第四次循环,判断成立,,;第五次循环,判断成立,,;第六次循环,判断成立,,,跳出循环,输出故选:根据给定的程序框图,依次计算直到条件被满足即可作答.本题主要考查程序框图的应用,属于基础题.7.【答案】B【解析】解:设原来的传输损耗、载波频率、传输距离分别为L,F,D,变化后的传输损耗、载波频率、传输距离分别为,,,则,,因此,于是,解得,所以传输距离约为原来的倍.故选:设出变化前后的相关量,再结合已知列式,借助对数运算求解作答.本题主要考查了函数的实际应用,考查了对数的运算性质,属于中档题.8.【答案】A【解析】解:因为是定义在R上的奇函数,,且在上单调递增,所以,在上单调递增,由,得,当时,由,得,当时,由,得,所以原不等式的解集为故选:由题意不等式等价于,再根据函数的单调性分和两种情况讨论即可得解.本题主要考查了函数的奇偶性和单调性,属于基础题.9.【答案】A【解析】解:将函数的图象向右平移个单位长度得到,所以,所以,,所以,,当,时,,时,则,即;当,时,,时,则,即;综上可得的值域为故选:根据三角函数的变换规则得到的解析式,即可得到的解析式,再将函数写成分段函数,利用辅助角公式化简,最后结合正、余弦函数的性质计算可得.本题主要考查三角函数的图象与性质,考查转化能力,属于中档题.10.【答案】C【解析】解:由题意,可得,则,直线FN的方程为,设与直线FN平行且与抛物线C相切的直线的方程为,联立抛物线C的方程可得,由,可得,所以当M点为直线与抛物线C相切的切点时,M点到直线FN的距离最大,当时,由式可得,则M点的坐标为,此时点M到直线FN的距离为,所以的面积的最大值为故选:求出与直线FN平行且与抛物线C相切的直线的方程,切点为M时,三角形面积最大,即可得解.本题考查抛物线的几何性质,直线与抛物线的位置关系,化归转化思想,属中档题.11.【答案】B【解析】解:如图,在矩形ABCD中,连接对角线AC,BD,记,则点F为矩形ABCD的外接圆圆心,取AD的中点E,连接PE,EF,记的外接圆圆心为G,易知,,且P,E,G共线.因为,,,AD,平面PAD,所以平面PAD,所以平面PAD,平面PAD,,,EF,平面ABCD,所以平面ABCD,所以,所以,易得,所以由正弦定理得的外接圆半径为,即过G作平面PAD,且,连接FO,由平面PAD,可知,则四边形EFOG为矩形,所以,则平面根据球的性质,可得点O为四棱锥的外接球的球心.因为,所以四棱锥的外接球的体积为故选:作出辅助线,求出平面PAD外接圆半径,再利用勾股定理求出外接球的半径,即可求出球的体积.本题主要考查多面体外接球问题,球的体积问题,考查运算求解能力,属于中档题.12.【答案】C【解析】解:设双曲线的焦距为,因为,所以,所以M,N关于原点对称,所以四边形为平行四边形,又,所以四边形为矩形,因为以为直径的圆的方程为,不妨设M,N所在的渐近线方程为,则,由解得或,不妨设,,因为P为双曲线的左顶点,所以,所以,又,,由余弦定理得,即,整理得,所以离心率故选:根据,可得M,N关于原点对称,从而可得四边形为平行四边形,再根据,可得四边形为矩形,再求出M,N的坐标,求出,,再利用余弦定理构造齐次式即可得解.本题主要考查了双曲线的性质,考查了双曲线离心率的求解,属于中档题.13.【答案】【解析】解:如图所示:则,,解得:故答案为:利用向量的四则运算化简求值.本题主要考查了平面向量的线性运算,属于基础题.14.【答案】【解析】解:如图所示:过点和的直线方程为,以点和点为端点的线段的垂直平分线为,由得,则圆的半径,所以圆的方程为故答案为:由两圆外切,两圆心所在直线与圆中弦的垂直平分线交点即为,再求出半径,即可得圆的方程.本题主要考查了圆与圆的位置关系,属于基础题.15.【答案】【解析】解:因为,由正弦定理得,即,得,又,所以因为,所以由余弦定理可得,即,所以,故的面积为故答案为:根据正弦定理以及同角关系可得,进而根据余弦定理即可得ab的值,由面积公式即可求解.本题主要考查了正弦定理,余弦定理,三角形面积公式在求解三角形中的应用,属于中档题.16.【答案】【解析】解:设过点的直线l与的图象的切点为,因为,所以切线l的斜率为,所以切线l的方程为,将代入得,即,设,则,由,得或,当或时,,所以在,上单调递减;当时,,所以在上单调递增,所以,,又,所以恒成立,所以的图象大致如图所示,由图可知,方程最多3个解,即过点的切线最多有3条,即n的最大值为3,此时故答案为:设过点的直线l与的图象的切点为,根据导数的几何意义求出切线方程,再根据切线过点,可得,则方程解的个数即为切线的条数,构造函数,利用导数求出函数的单调区间及极值,作出函数的大致图象,结合图象即可得解.本题主要考查了利用导数研究曲线上某点处的切线方程,属于中档题.17.【答案】解:由数列是首项为2,公差为4的等差数列,可得;等比数列的公比设为q,由,,即,解得,则:,则数列的前n项和,,上面两式相减可得,化为【解析】由等差数列和等比数列的通项公式,计算可得所求通项公式;求得,由数列的错位相减法求和,结合等比数列的求和公式,可得所求和.本题考查等差数列和等比数列的通项公式、求和公式,以及数列的错位相减法求和,考查方程思想和运算能力,属于中档题.18.【答案】解:由频率分布表可知,“足球迷”对应的频率为所以在抽取的200人中,“足球迷”有人.故列联表如下:非足球迷足球迷合计女701080男8040120合计15050200所以因为,所以有的把握认为该地的电视观众是否为“足球迷”与性别有关.样本中为“足球迷”的观众有50人,男、女人数之比为4:故用分层抽样方法从中抽出5人,男性有4人,记为,,,,女性有1人,记为B,从这5人中再随机抽取3人,有,,,,,,,,,共10个结果,其中3人都是男性观众的结果有4个,所以3人都是男性观众的概率为【解析】由频率分布表填写列联表,计算,与临界值比较确定结论;由分层抽样确定男性和女性人数,5人中随机抽取3人,列举所有可能的结果,由古典概型公式计算概率.本题考查独立性检验以及古典概型相关知识,属于中档题.19.【答案】解:证明:如图,取AB的中点G,连接,GF,则,所以,,所以四边形为平行四边形,所以因为平面,平面,所以平面取AC的中点D,连接BD,因为是等边三角形,所以又平面平面ABC,且平面平面,所以平面因为平面,所以因为,,BD,平面ABC,所以平面所以,得因为平面ABC,所以在和中,由勾股定理可得,所以设点C到平面的距离为d,由,得,解得所以点C到平面的距离为【解析】利用中位线得线线平行,进而可证平行四边形,由线面平行的判断定理即可求证.根据面面垂直可得线面垂直,利用体积公式可求解,进而根据等体积法即可求解.本题考查线面平行以及点到平面的距离相关知识,属于较难题.20.【答案】解:依题意,,,有,因为的面积为2,则,又点O到直线AB的距离为,则有,于是,而,解得,所以椭圆C的方程为;证明:直线PQ的斜率,当直线l的斜率不存在时,直线l的方程为,代入椭圆方程得,不妨设此时,,则,直线NE的斜率,因此;当直线l的斜率存在时,设其方程为,设,,则直线MQ的方程为,令,得,由消去y得:,由于点P在椭圆C内,必有,则,,,因此,即,所以【解析】根据给定条件,结合点到直线的距离、三角形面积列出关于a,b的方程组,求解作答;直线l的斜率存在时,设出其方程并与椭圆方程联立,求出直线MQ的方程,求出点E的坐标,利用韦达定理结合斜率坐标公式求出直线NE的斜率即可判断,再验证直线l的斜率不存在的情况作答.本题主要考查了椭圆的标准方程,考查了直线与椭圆的位置关系,属于中档题.21.【答案】解:当时,,则,令,得或,令,得,所以在和上单调递增,在上单调递减,所以由,可得,故在上恒成立,令,若,则恒成立,不合题意.若,则令则在上恒成立,所以在上单调递减.当时,,即,所以在上单调递减,故,即在上恒成立,满足题意.当时,,所以存在,使得,当时,,当时,,所以在上单调递增,在上单调递减,所以存在,使得,不合题意.综上,实数m的取值范围是【解析】求出函数的导函数,利用研究函数单调性,从而求出极小值;构造函数,即只需寻找函数恒小于零时实数m的取值范围.本题主要考查利用导数研究函数的最值与极值,考查运算求解能力,属于中档题.22.【答案】解:因为曲线的参数方程为为参数,所以,又,所以曲线的普通方程为,又曲线的极坐标方程为,由,所以曲线的直角坐标方程为,由,解得或,所以又,所以,所以,即曲线的极坐标方程为,因为,所以设,,所以,所以当时取得最小值,当时取得最大值8,所以的取值范围为【解析】首先将曲线的参数方程化为普通方程,曲线的极坐标方程化为直角坐标方程,再联立两曲线方程,求出交点坐标,再由距离公式计算可得;首先求出曲线的坐标方程,设,,即可表示出,再利用二倍角公式公式化简,最后结合正弦函数的性质计算可得.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】解:当时,可化为,解得,所以;当时,可化为,解得,此时无解;当时,可化为,解得,所以;综上,不等式的解集为;证明:因为,当时等号成立,所以,所以,当且仅当,即,时,等号成立,又,当且仅当,即时,等号成立,所以【解析】分和两种情况,分别求出不等式的解集,最后取并集即可;先求出的最小值为,所以,再结合基本不等式证明即可.本题主要考查了绝对值不等式的解法,考查了基本不等式的应用,属于中档题.。
2023年高考真题全国乙卷 文科数学(Word版)
12.设A,B为双曲线 上两点,下列四个点中,可为线段AB中点的是()
A. B. C. D.
二、填空题
13.已知点 在抛物线C: 上,则A到C的准线的距离为______.
14.若 ,则 ________.
15.若x,y满足约束条件 ,则 的最大值为______.
16.已知点 均在半径为2的球面上, 是边长为3的等边三角形, 平面 ,则 ________.
18.记 为等差数列 的前 项和,已知 .
(1)求 的通项公式;
(2)求数列 的前 项和 .
19.如图,在三棱锥 中, , , , , 的中点分别为 ,点 在 上, .
(1)求证: //平面 ;
(2)若 ,求三棱锥 的体积.
20.已知函数 .
(1)当 时,求曲线 在点 处的切线方程.
(2)若函数 在 单调递增,求 的取值范围.
A. B. C. D.
5.已知 是偶函数,则 ()
A. B. C.1D.2
6.正方形 的边长是2, 是 的中点,则 ()
A. B.3C. D.5
7.设O为平面坐标系的坐标原点,在区域 内随机取一点A,则直线OA的倾斜角不大于 的概率为()
A. B. C. D.
8.函数 存在3个零点,则 的取值范围是()
A. B. C. D.
9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()
A. B. C. D.
10.已知函数 在区间 单调递增,直线 和 为函数 的图像的两条对称轴,则 ()
A. B. C. D.
11.已知实数 满足 ,则 的最大值是()
2023年高考全国甲卷数学(文)真题(纯答案版)
参考答案2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.C3.B4.D5.C6.B7.B8.C9.D 10.A11.A 12.C二、填空题:本大题共4小题,每小题5分,共20分.13.1 214.215.1516.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)1(2)418.(1)证明见解析. (2)119.(1)19.8(2)(i)23.4m=;列联表见解析,(ii)能20.(1)()f x在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a≤21.(1)2 p=(2)12-(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(1)3π4(2)cos sin30ραρα+-=[选修4-5:不等式选讲](10分)23.(1),3 3aa ⎛⎫ ⎪⎝⎭(2)。
2022年河南高考数学(文科)真题及参考答案
2022年河南高考数学真题及参考答案文科数学注意事项1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1086,42,,,=M ,{}61<<-=x x N ,则=⋂N M ()A.{}4,2 B.{}6,4,2 C.{}86,4,2, D.{}1086,42,,,2.若()i b a i 221=++,其中a ,b 为实数,则()A.1,1-==b a B.1,1==b a C.1,1=-=b a D.1,1-=-=b a 3.已知向量()1,2=a ,()4,2-=b=-()A.2B.3C.4D.54.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.65.若y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则y x z -=2的最大值是()A.2- B.4C.8D.126.设F 为抛物线x y C 4:2=的焦点,点A 在C 上,点()0,3B ,若BF AF =,则=AB ()A.2B.22C.3D.237.执行右图的程序框图,输出的=n ()A.3B.4C.5D.68.右图是下列四个函数中的某个函数在区间[]3,3-的大致图象,则该函数是()A.1323++-=x x x y B.1323+-=x x x y C.1cos 22+=x x x y D.1sin 22+=x x y 9.在正方体1111D C B A ABCD -,E ,F 分别为AB ,BC 的中点,则()A.平面EF B 1⊥平面1BDDB.平面EF B 1⊥平面BD A 1C.平面EF B 1∥平面ACA 1 D.平面EFB 1∥平面DC A 1110.已知等比数列{}n a 的前3项和为168,4252=-a a ,则=6a ()A.14B.12C.6D.311.函数()()1sin 1cos +++=x x x x f 在区间[]π2,0的最小值、最大值分别为()A.22ππ,-B.223ππ,-C.222+-ππ, D.2223+-ππ,12.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.31B.21 C.33 D.22二、填空题:本题共4小题,每小题5分,共20分。
河南高考文科数学试题及答案-新课标1word版
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1(B) 2(C) 4(D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a=(A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2021年全国高考乙卷数学(文)试题(解析版)
河南省2021年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A. {}5B. {}1,2C. {}3,4D. {}1,2,3,4【答案】A 【解析】【分析】首先进行并集运算,然后进行补集运算即可. 【详解】由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A.2. 设i 43i z =+,则z =( ) A. –34i - B. 34i -+C. 34i -D. 34i +【答案】C 【解析】【分析】由题意结合复数的运算法则即可求得z 的值. 【详解】由题意可得:()2434343341i i i i z i i i ++-====--. 故选:C.3. 已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A. p q ∧ B. p q ⌝∧C. p q ∧⌝D. ()p q ⌝∨【答案】A 【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin 0=0,所以命题p真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题; 所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .4. 函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3π和2 B. 3π和2C. 6π和2D. 6π和2【答案】C 【解析】【分析】利用辅助角公式化简()f x ,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,22()sin cos 2sin co 2sin 3s 33334x x x x f x x π⎛⎫=+=+ ⎛⎪ ⎪+⎫⎪⎝⎭,所以()f x 的最小正周期为2613T,最大值为2.故选:C .5. 若,x y 满足约束条件4,2,3,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则3z x y =+的最小值为( )A. 18B. 10C. 6D. 4【答案】C 【解析】【分析】由题意作出可行域,变换目标函数为3y x z =-+,数形结合即可得解. 【详解】由题意,作出可行域,如图阴影部分所示,由43x y y +=⎧⎨=⎩可得点()1,3A ,转换目标函数3z x y =+为3y x z =-+,上下平移直线3y x z =-+,数形结合可得当直线过点A 时,z 取最小值, 此时min 3136z =⨯+=. 故选:C. 6. 22π5πcoscos 1212-=( ) A.12【答案】D 【解析】【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解. 【详解】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos26π==故选:D.7. 在区间10,2⎛⎤ ⎥⎝⎦随机取1个数,则取到的数小于13的概率为( )A.34B.23C.13D.16【答案】B 【解析】【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫⎪⎝⎭随机取1个数”,对应集合为: 102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12, A =“取到的数小于13”, 对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13, 所以()()()10231302l A P A l -===Ω-. 故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.8. 下列函数中最小值为4的是( ) A. 224y x x =++B. 4sin sin y x x=+C. 222x x y -=+D. 4ln ln y x x=+【答案】C 【解析】【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242xxx x y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出. 9. 设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+C. ()11f x +-D. ()11f x ++【答案】B 【解析】【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.10. 在正方体1111ABCD A BC D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.π2B.π3C.π4D.π6【答案】D 【解析】【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则1111122,22BC PC D B ===, 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D11. 设B 是椭圆22:15x C y +=的上顶点,点P 在C 上,则PB 的最大值为( )A.52B. 6C. 5D. 2【答案】A 【解析】【分析】设点()00,P x y ,由依题意可知,()0,1B ,220015x y +=,再根据两点间的距离公式得到2PB ,然后消元,即可利用二次函数的性质求出最大值.【详解】设点()00,P x y ,因为()0,1B ,220015x y +=,所以()()()222222200000001251511426424PB x y y y y y y ⎛⎫=+-=-+-=--+=--+ ⎪⎝⎭,而011y -≤≤,所以当012y =时,PB 的最大值为52.故选:A .【点睛】本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B 最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值.. 12. 设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A. a b <B. a b >C. 2ab a <D. 2ab a >【答案】D 【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故ab .()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >. 综上所述,2ab a >成立. 故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________. 【答案】85【解析】【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=. 故答案:85. 14. 双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【解析】【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c =,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.15. 记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.【答案】【解析】【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABCSac B === 所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一) 【解析】【分析】由题意结合所给的图形确定一组三视图的组合即可. 【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A BC D -中,12,1AB BC BB ===, ,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -. 故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21S 和22S . (1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y S S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【解析】【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差. (2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==.(2)依题意,0.320.15y x -==⨯==,=y x -≥. 18. 如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)23. 【解析】【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥, 从而~DAB ABM ,设BM x =,2AD x =, 则BM AB AB AD =,即221x =,解得22x =,所以2AD 因为PD ⊥底面ABCD , 故四棱锥P ABCD -的体积为(1212133V =⨯⨯=. 【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.19. 设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析.【解析】【分析】利用等差数列的性质及1a 得到29610q q -+=,解方程即可; 利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n----=-<⋅⋅, 所以2n n ST <.【点晴】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.20. 已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 【答案】(1)24y x =;(2)最大值为13. 【解析】【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭, 所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -, 由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥=,此时103OQk <≤,当且仅当00925y y =,即035y =时,等号成立; 当00y <时,0OQ k <; 综上,直线OQ 的斜率的最大值为13. 【点睛】关键点点睛:解决本题的关键是利用平面向量的知识求得点Q 坐标的关系,在求斜率的最值时要注意对0y 取值范围的讨论.21. 已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-, 当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增, 当时,的解为:12113113,32a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113a ⎛---∞ ⎝⎭,113a⎫+-+∞⎪⎪⎝⎭上单调递增,在113113,33a a ⎡⎤⎢⎥⎣-+-⎦-上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+,则切线方程为:()()()322000000132y x x ax x x ax x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x ax --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做.则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.【答案】(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=-2cos()43πρθ-=+【解析】【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y -+-=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x -=-,即140kx y k -+-=,由圆心到直线的距离等于11=,解得k =330y -+-=330y +--=, 将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=-2cos()43πρθ-=+【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.[选修4—5:不等式选讲]23. 已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭.【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. 【点睛】解绝对值不等式的方法有零点分段法、几何意义法.解含有两个绝对值,且其中的x 的系数相等时,可以考虑利用数轴上绝对值的几何意义求解;利用绝对值三角不等式求最值也是常见的问题,注意表述取等号的条件.。
河南省高三文科数学试题(解析版)
高三文科数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效. 4.本卷命题范围:高考范围.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( ){}2|4A x x =≥(){}ln 3|B x y x ==-A B = A.B.[]2,3[)2,3C. D.][(,22,3⋃-∞-⎤⎦][(),22,3-∞-⋃【答案】C 【解析】【分析】先分别求得集合和集合,再根据交集的运算即可得到. A B A B ⋂【详解】因为集合或,{}{2|4|2A x x x x =≥=≥}2x ≤-集合, (){}{}{}|ln 3|30|3B x y x x x x x ==-=->=<所以, {}{}|2|23A B x x x x =≤-≤< 即, (][),22,3A B =-∞ 故选:C. 2. 已知复数(是虚数单位),则在复平面内对应的点位于( ) 14i1iz +=-i z A .第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】【分析】先根据复数的除法运算得到,从而得到,再由复数的几何意义即可求解. 35i 22z =-+z 【详解】由题意得:,所以, ()()()()14i 1i 14i 35i 1i 1i 1i 22z +++===-+--+35i 22z =--由复数的几何意义得:在复平面内对应的点的坐标为,位于第三象限,z 35,22⎛⎫-- ⎪⎝⎭故选:C.3. “”是“”的( ) 1x >21x >A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件 【答案】B 【解析】【分析】判断和的包含关系即可判断它们构成的命题的关系﹒ {|1}x x >2{|1}x x >【详解】∵ 或,{|1}x x >2{|1}{|1x x x x >=>1}x <-∴“”是“”充分不必要条件﹒ 1x >21x >故选:B ﹒4. 已知向量,的夹角为,,,则( )a b120︒2a =3b =a b += A.B.C. 7D. 19【答案】A 【解析】【分析】根据向量的数量积公式得到,从而求得,即可求得. a b ⋅2a b + a b + 【详解】由题意得:,1cos1202332a b a b ⎛⎫⋅=︒=⨯⨯-=- ⎪⎝⎭则,()22222222337a b a a b b +=+⋅+=+⨯-+=因为,所以,0a b +> a b +=故选:A.5. 已知为第四象限角,则的值为( ) sin 2cos 1,ααα+=sin 2αA. B.C. D.2425-242545-45【答案】A 【解析】【分析】结合同角关系,解方程组得,再由倍角公式求值.sin cos αα、【详解】因为,联立解得或,22sin 2cos 1,sin cos 1a a a a +=+=sin 1cos 0αα=⎧⎨=⎩3sin 54cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩又为第四象限角,所以,所以. α3sin 54cos 5αα⎧=-⎪⎪⎨⎪=⎪⎩24sin 22sin cos 25ααα==-故选:A .6. 等比数列中,,则数列的前6项和为( ) {}n a 364,32a a =-={}n a A. 21 B.C. 11D.21-11-【答案】A 【解析】【分析】求出等比数列的公比,通项公式和前项和,即可求出前6项和. {}n a n n S 【详解】由题意,,N n *∈在等比数列中,, {}n a 364,32a a =-=设公比为,前项和为,q n n S ∴,解得:, 3363432a a q q ==-=2q =-∴,()()3133422n n n n a a q---==-⨯-=--∴,()()()()()()11111121121,211123nnnn a q a S q-----⎡⎤=--=-===--⎣⎦---∴,()66121213S ⎡⎤=⨯--=⎣⎦故选:A.7. 如图是一个几何体的三视图,则该几何体的体积是( )A. 432B. 216C. 144D. 72【答案】C 【解析】【分析】根据条件中的三视图得到该几何体是三棱柱中截去一个以三棱柱上底面为底面,侧棱为高的一个三棱锥所得,再结合棱柱和棱锥的体积公式即可求解. 【详解】由三视图可知,该几何体如图①所示,是由如图②所示的三棱柱中截去三棱锥所得, ABC A B C '''-A A B C '''-根据条件可得,所求几何体的体积, 11161266126144232ABC A B C A A B C V V V ''''''--=-=⨯⨯⨯-⨯⨯⨯⨯=所以该几何体的体积是, 144故选:C.8. 已知函数的部分图象如图所示,则下列说法正确的是()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<( )A. 的最小值是 ()f x 2-B. 的最小正周期为 ()f x 2πC. 在区间上单调递增 ()f x 5,1212ππ⎡⎤-⎢⎥⎣⎦D. 将的图象向右平移个单位长度后得到函数的图象 ()f x π6cos 2y x =【答案】A 【解析】【分析】根据题目所给函数图象分别过,和,再结合正弦函数的图象与性质求得()0,15π,012⎛⎫⎪⎝⎭11π,012⎛⎫⎪⎝⎭,对各个选项逐一判断即可.()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭【详解】由图象可得:函数的最小正周期满足, ()f x T 11π5ππ212122T =-=即函数的最小正周期,所以B 选项错误; ()f x πT =因为,且,所以,即,2ππT ω==0ω>2ω=()()sin 2f x A x ϕ=+又知图象过和, ()0,15π,012⎛⎫⎪⎝⎭则有,即,则,其中, sin 15πsin 2012A A ϕϕ=⎧⎪⎨⎛⎫⨯+= ⎪⎪⎝⎭⎩5ππ61sin k A ϕϕ⎧+=⎪⎪⎨⎪=⎪⎩5ππ61sin k A ϕϕ⎧=-+⎪⎪⎨⎪=⎪⎩k ∈Z 又,,所以取,即,, 0A >0πϕ<<1k =π6ϕ=2A =所以函数, ()π2sin 26f x x ⎛⎫=+⎪⎝⎭即,则的最小值为,所以A 选项正确; ()[]2,2f x ∈-()f x 2-当时,,5ππ,1212x ⎡⎤∈-⎢⎥⎣⎦π2ππ2,633x ⎡⎤+∈-⎢⎥⎣⎦又,取得最小值, ππ262x +=-()f x 所以在不是单调函数,所以C 选项错误; ()f x 5ππ,1212⎡⎤-⎢⎥⎣⎦将的图象向右平移个单位长度后得到,所以D 选项()f x π62sin 22sin π6π6π26y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦错误, 故选:A.9. 在正方体中,为正方形ABCD 的中心,则直线与直线所成角的余弦值1111ABCD AB C D -O 1CD 1B O 为( )A.B.C.D.12【答案】B 【解析】【分析】建立空间直角坐标系,设正方体棱长,求出相关各点的坐标,利用向量的夹角公式求得答案. 【详解】如图,以D 为坐标原点,DA ,DC, 分别为x ,y ,z 轴,建立空间直角坐标系, 1DD 设正方体棱长为2,则 ,11(2,2,2),(1,1,0),(0,2,0),(0,0,2)B O C D 则 ,()()110,2,2,1,1,2CD OB =-=故 ,111111cos ,=||||CD OB CD OB CD OB ⋅=⋅ 故线与直线,1CD 1B O 故选:B10. 已知函数,若,则实数的取值范围是( )()122(1)x f x x -=+-()()3log 2f a f >a A. B. ()1,9,9⎛⎫-∞⋃+∞ ⎪⎝⎭()(),19,-∞+∞ C.D.()10,9,9⎛⎫⋃+∞ ⎪⎝⎭()()0,19,⋃+∞【答案】D 【解析】【分析】根据条件,分析得到函数关于直线对称且在上单调递增,进而将不等式()f x 1x =[)1,+∞转化为,结合对数函数的图象与性质即可求解.()()3log 2f a f >3log 11a ->【详解】由可得:,()()2121x f x x -=+-()212xf x x +=+则,()()()221221xxf x x x f x --+=+-=+=+所以函数是偶函数,则函数的图象关于直线对称,()1y f x =+()1y f x =+0x =所以函数的图象关于直线对称,()f x 1x =又时,在上单调递增,则在上单调递减,1x ≥()()2121x f x x -=+-[)1,+∞()f x (),1-∞若,则,()()3log 2f a f >()()3log121fa f ->-即,所以或,解得:或, 3log 11a ->3log 2a >3log 0a <9a >01a <<所以实数的取值范围是, a ()()0,19,⋃+∞故选:D.11. 已知椭圆,,分别是的左顶点和上顶点,是的左焦点,若2222:1(0)x y C a b a b+=>>A B C F C ,则的离心率为( )tan 2tanFAB FBA ∠=∠C A.B.12C.D.【答案】C 【解析】【分析】根据椭圆的性质结合锐角三角函数,在和在求出,的正切Rt ABO △Rt BFO △FAB ∠BFO ∠值,由两角差的正切公式求出的正切值,结合题目条件得,的关系,即求出椭圆的离心率. FBA ∠a c 【详解】由题意作出图形,如下图所示:可知:,,,OA a =OB b =OF c =在中可得:, Rt ABO △tan tan b BAO FAB a∠=∠=在中可得:, Rt BFO △tan b cBFO ∠=所以 tan tan tan tan()1tan tan 1b b BFO FABc a FBA BFO FAB b bBFO FAB c a-∠-∠∠=∠-∠==+∠⋅∠+⋅化简得: 2()tan b a c FBA ac b-∠=+因为,所以①, tan 2tan FAB FBA ∠=∠2()2b b a c a ac b -=⋅+又,所以①整理可得:, 222b a c =-2230c a ac +-=即,解得 2310e e -+=e =又,所以, (0,1)e ∈e =故选:C.12. 若,则的大小关系为( )0.2e ,ln3.2a b c ===,,a b c A. B. a b c >>a c b >>C. D.b c a >>b a c >>【答案】D 【解析】【分析】先比较与的大小,通过比较和即可得到,再比较与的大小,构造a b 5a 5b b a >a c (),利用导数证明得到时,,从而得到()e 1x f x x =--0x >0x >e 1x x >+,通过,结合的单调0.2 1.2e 10.2 1.2ln e a =>+==()()561.26ee 2.7387.4=>≈()53.2335.5≈ln y x =性即可得到,即可得到,,的大小关系. a c >a b c【详解】由,得:,,0.2e 0a =>0b =>5e a =5b =因为,所以,则;e >55b a >b a >设(),则,()e 1x f x x =--0x >()e 1x f x '=-当时,,所以在上单调递增, 0x >()0f x ¢>()f x ()0,∞+所以时,,即时,, 0x >()()00f x f >=0x >e 1x x >+所以, 0.2 1.2e 10.2 1.2ln e a =>+==又,,()()561.26ee 2.7387.4=>≈()53.2335.5≈所以,则, 1.2e 3.2> 1.2ln e ln 3.2>又,所以, ln 3.2c =a c >综上:, b a c >>故选:D.【点睛】方法点睛:构造函数比较大小主要方法有:1. 通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到它们之间的大小关系.2. 通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.在本题中,通过构造函数,利用导()e 1xf x x =--数证明得到时,,进而放缩得到.0x >e 1x x >+0.2 1.2e 10.2 1.2ln e a =>+==二、填空题:本题共4小题,每小题5分,共20分.13. 请写出渐近线方程为的一个双曲线方程____________.y =【答案】(答案不唯一)2213y x -=【解析】【分析】先指定焦点所在位置,由题意可得,进行赋值即可得双曲线方程. ::a b c【详解】若焦点在轴上,由题意可得:,x ::2a b c =不妨令,则双曲线方程.12a b c ===,2213y x -=故答案为:.(答案不唯一) 2213y x -=14. 已知函数的图象在点处的切线与直线互相垂直,则实数()e 1x f x a =+()()0,0f 310x y ++==a________. 【答案】13【解析】【分析】对函数求导得到,从而得到在点处的切线斜率,根据条件结合两直线垂()f x ()f x '()()0,0f 直的斜率关系得到关于的方程,即可求解.a 【详解】由题意得:,()e xf x a '=则在点处的切线斜率,()()0,0f ()0k f a '==又因为在点处的切线与直线互相垂直, ()()0,0f 310x y ++=且直线的斜率为, 310x y ++=3-所以,解得:, ()31a ⨯-=-13a =故答案为:. 1315. 在圆内随机地取一点,则该点坐标满足的概率为224x y +=(),P x y ()()2210y x x y -++≤________. 【答案】## 120.5【解析】【分析】根据条件得到或,结合画出符合要求的可行域,根20210y x x y -≤⎧⎨++≤⎩20210y x x y -≥⎧⎨++≥⎩224x y +=据圆的性质及直线,的位置关系确定可行域与圆面积的比例,即可求得概率.20y x -=210x y ++=【详解】要满足,则①或②,()()2210y x x y -++≤20210y x x y -≤⎧⎨++≤⎩20210y x x y -≥⎧⎨++≥⎩在平面直角坐标系中分别作出不等式组①、②和圆, 224x y +=则满足要求的可行域如下图阴影部分所示:由图知:在圆内随机取在阴影部分,224x y +=(),P x y 而直线过圆心,且直线与直线相互垂直, 20y x -=()0,020y x -=210x y ++=所以图中阴影部分的面积为圆面积的,12故点满足的概率为, (),P x y ()()2210y x x y -++≤12故答案为:.1216. 已知数列满足,(),若,数列的前项和为{}n a 11a =113nn n a a +⎛⎫+= ⎪⎝⎭*n ∈N 13n n n b a -={}n b n nS ,则________.20222022202243S a -=【答案】2022 【解析】【分析】根据题目条件,利用的表达式,求出的表达式,再错位相加求和,化简可得n S 3n S 的通项公式,即可求解.{}43n nn Sa -【详解】由题意得:,21123123333n n n n S b b b b a a a a -=++++=+⋅+⋅++⋅L L 即,2312333333nn n S a a a a =⋅+⋅+⋅++⋅L 两式相加得:,()()()2111223143333n n n n n n S a a a a a a a a --=+++⋅+++⋅++⋅L 数列满足,(),{}n a 11a =113nn n a a +⎛⎫+= ⎪⎝⎭*n ∈N所以,即,12121111413333333n n n n n S a --⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 43nn n S n a =+⋅则,所以,43nn n S a n -=202220222022432022S a -=故答案为:.2022【点睛】思路点睛:本题解决的难点在于以学习过的数列相关的知识为基础,通过问题的特征,引出新的解题思路,然后在快速理解的基础上,解决新问题.本题中主要是根据题目条件,联想到数13n n n b a -=列的错位相减求和,再根据条件和所求式进行构造及推理,将平时常113nn n a a +⎛⎫+= ⎪⎝⎭20222022202243S a -见的错位相减求和转化为本题中所用的错位相加求和,可得所求式子的结果.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 为应对中国人口老龄化问题,各地积极调研出台三孩配套政策.某地为了调研生育意愿是否与家庭收入有关,对不同收入的二孩家庭进行调研.某调查小组共调研了20个家庭,记录了他们的家庭年可支配收入以及生育三孩的意愿,若将年可支配收入不低于20万划归为富裕家庭,20万以下为非富裕家庭,调研结果如下表.家庭年可支配收入(万元) 12 16 22 30 10 8 8 19 20 8 是否愿意生三孩否 是 否 否 否 否 是 否 是 否 家庭年可支配收入(万元) 32 28 48 24 19 29 50 18 18 60 是否愿意生三孩 否是否是否是是否否否(1)根据上述数据,请完成下面列联表,并判断能否有90%的把握认为生育三孩与家庭是否富裕有关?富裕家庭 非富裕家庭 总数 愿意生三孩 不愿意生三孩 总数20(2)相关权威部门的数据表明年可支配收入在20万元以上(含20万元)的家庭约占全部家庭的,110若以该调查组的调研数据为依据制定相关政策,你认为是否合理?请说明理由.附:,.22()()()()()n ad bc K a b c d a c b d -=++++n a b c d =+++20()P K k …0.10 0.05 0.025 0.010 0.005 0.0010k 2.7063.8415.0246.6357.87910.828【答案】(1)详见解析;(2)详见解析. 【解析】【分析】(1)根据提供的数据,列出列联表,再求得值,与临界值对照下结论; 2K (2)根据提供的数据中,富裕家庭的占比与比较,下结论. 110【小问1详解】解:由上述数据,得列联表如下:富裕家庭 非富裕家庭 总数 愿意生三孩 5 2 7 不愿意生三孩 5 8 13 总数101020因为,2220(5825) 1.978 2.7067131010⨯⨯-⨯=≈<⨯⨯⨯K 所以没有90%的把握认为生育三孩与家庭是否富裕有关; 【小问2详解】因为调查组的调研数据中的富裕家庭占比为, 101120210=>所以调查组的调研数据与实际不符,故不合理.18. 如图1所示,在长方形中,,是的中点,将沿折起,ABCD 22AB AD ==M DC ADM △AM 使得,如图2所示,在图2中.AD BM ⊥(1)求证:平面; BM ⊥ADM (2)求点到平面的距离.C BMD【答案】(1)证明见解析(2) 12【解析】【分析】(1)在图1中,连接,根据勾股定理结合条件得到,再由线面垂直的判定定理BM BM AM ⊥即可证明出平面;BM ⊥ADM (2)在图2中,作的中点,连接,根据(1)的结论结合面面垂直的判定和性质得到线段AM O OD 是三棱锥的高,从而求出三棱锥的体积,再由等体积法,即可求得点到平面OD D BCM -D BCM -C 的距离.BMD 【小问1详解】在图1中,连接,如图所示:BM因为在长方形中,,是的中点, ABCD 22AB AD ==M DC 所以, 1AD DM BC CM ====则,AM ==BM ==又,即,所以,2AB =222AB AM CM =+BM AM ⊥在图2中,又,,平面,平面, AD BM ⊥AD AM A = AD ⊂ADM AM ⊂ADM 所以平面. BM ⊥ADM 【小问2详解】在图2中,作的中点,连接,如图所示:AM O OD因为,所以,且, 1AD DM ==OD AM ⊥12OD AM ==又由(1)得:平面,平面,BM ⊥ADM BM⊂ABCM 所以平面平面,又平面平面,ABCM ⊥ADM ABCM ADM AM =,平面,所以平面,OD AM ⊥OD ⊂ADM OD ⊥ABCM 即线段是三棱锥的高, OD D BCM -所以三棱锥的体积, D BCM -11111332BCM V S OD =⨯⨯=⨯⨯⨯=△又平面,平面,所以, BM ⊥ADM DM ⊂ADM BM DM ⊥则的面积 DBM △11122DBM S DM BM =⨯⨯=⨯=△设点到平面的距离为, C BMD d则三棱锥的体积, C BDM -1133BDM V S d d =⨯⨯==△, =12d =故点到平面的距离为. C BMD 1219.在①;②;③cos cos 2cos a B b A c A +=22(sin sin )sin sin sin B C A B C -=-(其中为的面积)三个条件中任选一个补充在下面问题中,并1(sin tan cos )4S b b A a A B =+S ABC 作答.在中,角,,边分别为,,,且________. ABC A B C a b c (1)求角的大小;A(2)若为锐角三角形且,求的取值范围. ABC a =b c +注:如果选择多个条件分别解答,则按第一个解答计分. 【答案】(1)π3(2) (【解析】【分析】(1)选①:根据正弦定理边化角结合诱导公式得到,进而得到sin 2sin cos C C A =1cos 2A =,即可求解;选②:利用正弦定理角化边结合余弦定理得到,即可求解;选③:根据条件和三1cos 2A =角形的面积公式得到,通过三角恒等变换和诱导公式得到()11sin tan cos sin 42S b b A a A B ab C =+=,即可求解; 1cos 2A =(2)根据正弦定理得到,再利用诱导公式和三角恒等变换得到()6sin sin b c B C +=+,结合条件得到的取值范围,根据正弦函数的图象与性质即可得到的取π6b c B ⎛⎫+=+ ⎪⎝⎭B b c +值范围. 【小问1详解】 若选①:由正弦定理得:, sin cos sin cos 2sin cos A B B A C A +=即,()sin 2sin cos A B C A +=又因为,则, ()πC A B =-+()()sin sin πsin C A B A B =-+=+⎡⎤⎣⎦所以,又,则, sin 2sin cos C C A =()0,πC ∈sin 0C >所以,又,所以.1cos 2A =()0,πA ∈π3A =若选②:由正弦定理得:,化简得:,()22b c a bc -=-222b c a bc +-=又由余弦定理得:,2221cos 222b c a bc A bc bc +-===因为,所以. ()0,πA ∈π3A =若选③: 因为, ()11sin tan cos sin 42S b b A a A B ab C =+=即,sin cos sin 2sin cos A Bb A aa C A+=则,sin cos sin cos 2cos sin b A A a A B a A C +=又由正弦定理得:, 2sin sin cos sin cos 2sin cos sin B A A A B A A C +=又,,所以, ()0,πA ∈sin 0A >sin cos sin cos 2cos cos B A A B A C +=即,()sin 2cos sin A B A C +=又因为,则, ()πC A B =-+()()sin sin πsin C A B A B =-+=+⎡⎤⎣⎦所以,又,则, sin 2sin cos C C A =()0,πC ∈sin 0C >所以,所以.1cos 2A =π3A =【小问2详解】由正弦定理得:, 6sin sin b c B C ===则,, 6sin b B =6sin c C =所以, ()6sin sin b c B C +=+又,()πC A B =-+所以,()π1sin sin πsin sin 32C A B B B B ⎛⎫=-+=+=+⎡⎤⎪⎣⎦⎝⎭则,3π6sin 9sin 26b c B B B B B ⎛⎫⎛⎫+=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭∵为锐角三角形,ABC ∴,即,解得:, π02π02B C ⎧<<⎪⎪⎨⎪<<⎪⎩π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ62B <<∴,ππ2π363B <+<πsin 16B⎛⎫<+≤ ⎪⎝⎭∴96πB ⎛⎫<+≤ ⎪⎝⎭故的取值范围是.b c +(20. 在平面直角坐标系xOy 中,抛物线E :上一点到焦点F 的距离()220y px p =>()()004,0S y y >.不经过点S 的直线l 与E 交于A ,B .5SF =(1)求抛物线E 的标准方程;(2)若直线AS ,BS 的斜率之和为2,证明:直线l 过定点. 【答案】(1)24y x =(2)证明见解析 【解析】【分析】(1)利用抛物线的定义即可求出p ;(2)根据斜率公式,韦达定理列方程求出直线方程即可. 【小问1详解】抛物线D :的焦点,准线方程为,()220y px p =>,02p F ⎛⎫⎪⎝⎭2px =-因为抛物线上一点到焦点F 的距离, 00(4,)(0)S y y >5SF =由抛物线的定义得,所以. 452p+=2p =所以抛物线E 的标准方程是; 24y x =【小问2详解】将代入可得或(舍),所以点S 坐标为,4x =24y x =04y =04y =-(4,4)由题意直线l 的斜率不等于0,设直线l 的方程是,,,x my n =+()11,A x y ()22,B x y 联立,得,24y x x my n⎧=⎨=+⎩2440y my n --=由韦达定理得,121244y y my y n+=⎧⎨=-⎩因为直线,的斜率之和为2,AS BS 所以, 121222121212444411444444444y y y y y y x x y y ⎛⎫----+=+=+ ⎪--++⎝⎭--1212124(8)24()16y y y y y y ++==+++所以,121224()0y y y y ++=将代入上式可得 ,121244y y my y n +=⎧⎨=-⎩2n m =所以直线l 的方程是,显然它过定点. ()2x my n m y =+=+()0,2-21. 设函数,.()()22e xf x x x =-()2e ln e g x x a x =-(1)若函数在上存在最大值,求实数的取值范围; ()g x ()e,+∞a (2)当时,求证:.2a =()()f x g x >【答案】(1)()0,1(2)证明见解析 【解析】【分析】(1)对函数求导得到,分类讨论和,根据导数与函数单调性的关系得()g x ()g x '0a ≤0a >到:当,且时,取得最大值,根据在上存在最大值,得到,即可求0a >e x a =()g x ()g x (e,)+∞ee a>得的取值范围;a (2)当时,将原不等式可转化为,分别构造,2a =2ln (2)e 2e e xx x x-+>()(2)e 2e xx x ϕ=-+,利用导数,分别求得其最小值和最大值,可得且两个函数的最值点不2e ln ()xh x x=min max ()()x h x ϕ=相等,即可证明. ()()f x g x >【小问1详解】(1)由得:(), 2()e ln e g x x a x =-()22e e e e a xg x a x x-=='-0x >①当时,,所以在上单调递增,在不存在最大值,0a ≤()0g x '>()g x (0,)+∞(e,)+∞②当时,令,解得:, 0a >()0g x '=e0x a=>当时,,在上单调递增, ,e 0x a ⎛⎫∈ ⎪⎝⎭()0g x '>()g x e 0,a ⎛⎫ ⎪⎝⎭当时,在上单调递减,,e x a ⎛⎫∈+∞⎪⎝⎭()0g x '<e ,a ⎛⎫+∞ ⎪⎝⎭所以在时,取得最大值, ()g x e x a =e g a ⎛⎫⎪⎝⎭又由函数在上存在最大值, ()g x (e,)+∞因此,解得:, ee a>1a <所以的取值范围为. a (0,1)【小问2详解】证明:当时,,且函数的定义域为,2a =2()e ln 2e g x x x =-()g x ()0,∞+要证明,即证明时,, ()()f x g x >0x >()222e e ln 2e x x x x x ->-只需要证明:时,,0x >()222e 2e e ln x x x x x -+>因为,所以不等式等价于 0x >2ln (2)e 2e e xxx x-+>设(),则,()(2)e 2e xx x ϕ=-+0x >()()1e xx x ϕ-'=令得:,()0x ϕ'=1x =当时,,当时,, 01x <<()0x ϕ'<1x >()0x ϕ'>所以在上单调递减,在上单调递增, ()ϕx (0,1)(1,)+∞故,且当时,等号成立;()(1)e x ϕϕ≥=1x =又设(),则, 2e ln ()x h x x=0x >22e (1ln )()x h x x -'=令得:,()0h x '=e x =当时,,当时,, 0e x <<()0h x '>e x >()0h x '<所以在上单调递增,在上单调递减, ()h x (0,e)(e,)+∞故,且当时,等号成立;()(e)e h x h ≤=e x =综上可得:时,,且等号不同时成立, 0x >()()x h x ϕ≥所以时,, 0x >()()x h x ϕ>即当时,得证.2a =()()f x g x >【点睛】关键点睛:本题解决的关键在于将要证明的原不等式(),转()222e e ln 2e x x x x x ->-0x >化为(),进而分别构造,,再结合导2ln (2)e 2e e xx x x -+>0x >()(2)e 2e x x x ϕ=-+2e ln ()x h x x=数,分别求得其最小值和最大值,得到且两个函数的最值点不相等,从而证明min max ()()x h x ϕ=.()()f x g x >(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为xOy 1C 44cos sin x ty t⎧=⎨=⎩t O x 极轴建立极坐标系,曲线的极坐标方程为. 2C cos 5sin 10ρθρθ-+=(1)求的普通方程和的直角坐标方程; 1C 2C (2)求与的公共点的直角坐标. 1C 2C 【答案】(1(,),; 1+=[]0,1x ∈[]0,1y ∈510x y -+=(2) 11,44⎛⎫⎪⎝⎭【解析】【分析】(1)根据条件得到:(为参数)(,),利用同角三角函数的平22sin cos tt==t []0,1x ∈[]0,1y ∈方关系消去参数得到的普通方程,再将代入的极坐标方程即可得到的直角坐标方t 1C cos sin x y ρθρθ=⎧⎨=⎩2C 2C 程;(2)联立(1)得到的和的直角坐标方程,通过代入消元法和利用平方处理根式即可求解方程,从1C 2C 而得到与的公共点的直角坐标. 1C 2C 【小问1详解】因为参数,则,所以,,t ∈R []sin 1,1t ∈-[]2sin 0,1t ∈[]4sin 0,1t ∈同理参数,则,所以,,t ∈R []cos 1,1t ∈-[]2cos 0,1t ∈[]4cos 0,1t ∈由曲线的参数方程为(为参数)得:(为参数), 1C 44cos sin x ty t ⎧=⎨=⎩t 22sin cos tt==t (,), 1+=[]0,1x ∈[]0,1y ∈所以(,); 1C 1+=[]0,1x ∈[]0,1y ∈将代入的极坐标方程得:,cos sin x y ρθρθ=⎧⎨=⎩2C 510x y -+=所以的直角坐标方程为:. 2C 510x y -+=【小问2详解】由(1)知的直角坐标方程为:,即, 2C 510x y -+=51x y =-将代入()51x y =-1C 1+=1=[]0,1y ∈①,①式两边平方整理得:②,1=21y -=②式两边平方整理得:,解得:或, 24510y y -+=1y =14y =当时,,不满足题意,舍去; 1y =514x y =-=当,,满足题意, 14y =1514x y =-=所以与的公共点的直角坐标为. 1C 2C 11,44⎛⎫⎪⎝⎭选修4-5:不等式选讲23. 已知. ()|1||21|f x x x =+--(1)解不等式;()21f x x <+(2)若关于x 的不等式有解,求m 的取值范围. ()|33|f x x m >+-【答案】(1) ()3,-+∞(2) ()3,+∞【解析】【分析】(1)利用零点分段法分类讨论即可得结果; (2)首先分离参数,再利用绝对值三角不等式求出最小即可. 【小问1详解】 当时,,解得,此时; 12x >()121221f x x x x x =+-+=-+<+13x >12x >当时,,解得,此时; 112x ≤≤-()121321f x x x x x =++-=<+1x <112x ≤≤-当时,,解得,此时; 1x <-()121221f x x x x x =--+-=-<+3x >-31x -<<-综上可得:不等式的解集为. ()21f x x <+()3,-+∞【小问2详解】关于x 的不等式有解,()|33|f x x m >+-即能成立, |1||21||21|33||22||x x x m x x ++-=++-->+由于, |21|22|2221|3y x x x x =+-≥+-+=+即的最小值为3,|22||21|y x x +=+-所以m 的取值范围. ()3,+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z =A .0B .12C .1D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D 5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A.B .12πC .D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -= A .15B .5 C .25D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.学,科网 18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 21.(12分)已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;学科*网(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 23.[选修4—5:不等式选讲](10分)已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()01x ∈,时不等式()f x x >成立,求a 的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题 1.A 2.C 3.A 4.C 5.B 6.D 7.A8.B9.B10.C11.B12.D二、填空题13.-7 14.6 15. 16三、解答题17.解:(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n-=,所以a n =n ·2n -1.18.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =. 作QE ⊥AC ,垂足为E ,则QE =P 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.19.解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m 3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为 11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=.20.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k ++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN . 综上,∠ABM =∠ABN .21.解:(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e .从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --. 设g (x )=e ln 1e x x --,则e 1()e x g x x'=-. 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点.故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥. 22.[选修4-4:坐标系与参数方程](10分)解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.学.科网 综上,所求1C 的方程为4||23y x =-+. 23.[选修4-5:不等式选讲](10分)解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >. (2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].。