流体输送设备

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章流体输送设备

(Fluid-moving Machinery)

第一节概述

如果要将流体从一个地方输送到期一个地方或者将流体从低位能向高位能处输送,就必须采用为流体提供能量的输送设备。泵一一用于液体输送:风机一一用于气体输送。本章主要介绍常用输送设备的工作原理和特性,以便恰当地选择和使用这些流体输送设备。

第二节液体输送设备一泵(Pumps)

§ 2. 1. 1 离心泵(Centrifugal Pumps)

一、离心泵的工作原理及主要部件

1、工作原理:离心泵体内的叶轮固立在泵轴上,叶轮上有若干弯曲的叶片,泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管相连接,侧旁的排出口和排出管路9 相连接。启动前,须灌液,即向壳体内灌满彼输送的液体。

启动电机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提髙,同时也增大了流速,一般可达15〜25m/so

液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,又将一部分动能转变为静压能,使泵出口处液体的压强进一步提髙。液体以较高的压强,从泵的排出口进入排岀管路,输送至所需的场所。

当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区,由于贮槽内液而上方的压强大于泵吸入口处的压强,在此压差的作用下,液体便经吸入管路连续地被吸入泵内,以补充被排出的液体,只要叶轮不停的转动,液体便不断的被吸入和排出。

由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮,液体在离心力的作用下获得了能量以提高压强。

气缚现象:不灌液,则泵体内存有空气,由于P空气<

通常在吸入管路的进口处装有一单向底阀,以截留灌入泵体内的液体。另外,在单向阀下而装有滤网,作用是拦阻液体中的固体物质被吸入而堵塞管道和泵壳。

启动与停泵:灌液完毕后,此时应关闭出口阀后启动泵,这时所需的泵的轴功率最小,启动电流较小,以保护电机。启动后渐渐开启出口阀。

停泵前,要先关闭出口阀后再停机,这样可避免排岀管内的水柱倒冲泵壳内叶轮,叶片,以延长泵的使用寿命。

2、主要部件

1)叶轮:作用是将原动机的机械能传给液体,使液体的静压能和动能均有所提高。叶轮按其结构形状分有三种:

①闭式:叶轮内6〜12片弯曲的叶片,前后有盖板,叶轮后盖板上开有若干个平衡小孔,以平衡一部分轴向推力。

②半闭式:叶轮内6〜12片弯曲的叶片,前有盖板,叶轮后盖板上开有若干个平衡小孔, 以平衡一部分轴向推力。

③敞式(开式):叶轮内6〜12片弯曲的叶片,前后无盖板。

闭式效率最高,适用于输送洁净的液体,不适于输送浆料或含悬浮物的液体。

半闭式和开式效率较低,常用于输送浆料或悬浮液。

叶轮按吸液方式分有二种:

①单吸:液体只有一侧被吸入。

②双吸:液体可同时从两侧吸入,具有较大的吸液能力。而且基本上可以消除轴向推力。

2)泵壳(蜗壳形):作用是汇集由叶轮抛出的液体,同时将高速液体的部分动能转化为静压能。原因是泵壳形状为蜗壳形,流道截面逐渐增大,ul, pt O

3)轴封装置:泵轴与泵壳之间的密封称为轴封。作用是防止高压液体从泵壳内沿轴的四周而漏岀,或者外界空气以相反方向漏入泵壳内。

二、离心泵的主要性能参数

1.流呈Q(V):单位时间内泵输送的液体体积点/s (或n?/h, 1/s等)。Q取决于泵的结构、尺寸(叶轮直径与叶片的宽度)和转速。Q的大小可通过安装在排出管上的流量计测得。

2.扬程H (压头):泵对单位重量的液体所提供的有效能量,m液柱。

若在泵的吸入口和排出口分别装上真空表和压力表并取1-1\ 2-2截而作汁算,则

3.轴功率及效率轴功率%—一原动机(电动机或蒸汽透平等)传送给泵轴的功率,kWo 效率一一泵轴通过叶轮传给液体能量的过程中的能量损失。

4.转速n

泵的叶轮每分钟的转数,即**r. p. m. ” : rings per minute

三、离心泵的基本方程式(简单了解)

为简化液体在叶轮内的复杂运动,作两点假设:

①叶轮内叶片的数目为无穷多,即叶片的厚度为无限薄,从而可以认为液体质点完全沿着叶片的形状而运动,亦即液体质点的运动轨迹与叶片的外形相重合。

②输送的是理想液体,由此在叶轮内的流动阻力可忽略。

基本方程式的表达式

离心泵基本方程式的讨论

与n和D:的关系:2 )

与叶片几何形状的关系

其它条件不变时, 与叶片的形状(0 J有关。

四、离心泵的性能曲线(重点)

1.实际的H〜Q线

实际情况为:

①叶轮上的叶片数目是有限的6〜12片,叶片间的流道较宽,这样叶片对液体流朿的约束就减小了,使

有所降低。

②液体在叶片间流道内流动时存在轴向涡流,其直接影响速度△,导致泵的压头降低。

③液体具有粘性。

④泵内有各种淤漏现象,实际的Q小于

所以,实际的H〜Q线应在

线的下方,实际的H〜Q曲线由实验测立。

2.离心泵的特性曲线

当泵转速n—定时,由实验可测得H〜Q, Na〜Q,耳〜Q,这三条曲线称为性能曲线,由泵制造厂提供。供泵用户使用。泵厂以20C淸水作为工质做实验测左性能曲线。

i) H〜Q, QT—HJ,呈抛物线H=A-BQ2

ii) Na〜Q, QT->Na「当Q=0, Na 最小

iii)Q,QT^n先T后l,存在一最髙效率点,此点称为设计点。与Hum对应的H, Q, Na值称为最佳工况参数,也是铭牌所标值。

泵的髙效率区n=92%n…m,这一区域左为泵的运转范用。

五、离心泵性能的改变与换算

泵的生产厂家所提供的离心泵特性曲线一般都是在一泄转速和常压下以20C的淸水作为工质做实验的。若被输液的P, u不同,或改变泵的n,叶轮直径,则性能要发生变化。

1.密度的影响:

相关文档
最新文档